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been applied to 4D cardiac MRI and 4D thoracic CT dataset. Results show an av-
erage runtime reduction above 90%, both in CPU and GPU executions, compared
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1. Introduction1

Image registration is the procedure that pursues to spatially align a set of im-2

ages for subsequent processing. Many applications rely on an accurate registra-3

tion procedure (see, for instance, [1, 2] and references therein). Image registration4

methods may also be applied for motion estimation in dynamic images, where the5

goal is to quantify the function of moving organs or the elasticity of vessels [3],6

or as a means to give rise to efficient image acquisition procedures [4, 5].7

When a set of images are to be registered, pairwirse or groupwise approaches8

may be adopted; the former may be carried out sequentially, i.e., ordering the9

images and registering pairs of consecutive images to each other, or may be based10

on selecting one of the images as a common reference and registering the rest of11

the set to that reference. Pairwise approaches may not be the best choice since the12

procedure is not executed globally but as a partition of isolated problems. On the13

other hand, Groupwise (GW) approaches consist in a single joint procedure [6]14

and have shown advantages over the pairwise approaches (as this is the case in [4]15

and [5] in a dynamic MR reconstruction procedure).16

In general terms, image registration involves three main steps: 1) selection17

of a deformation model; 2) definition of a cost function, and 3) adoption of an18

optimization strategy [3]. In this paper we focus on the deformation model and,19

specifically, on the free-form deformations (FFD) for non-rigid registration [7, 8].20

An FFD model inherently gives rise to smooth deformation fields with the appro-21

priate selection of its basis functions. However, these models also have limita-22

tions [9]. In particular, it is important to highlight limitations on memory space23

and execution time with large-scale 3D+t images. This issue has been analyzed in24

previous works, in which different solutions have been proposed to improve their25

efficiency.26

A multi-level approach was proposed by Schnabel et al. in [10], which gener-27

alized Rueckert’s method [7] by simulating a non-uniform control point distribu-28

tion. The multi-resolution registration is the sum of a hierarchy of deformations29

at different mesh resolutions. Successive deformation refinements are evaluated30

only in a subset of active control points at each level, which involves a lower31

run-time in the high resolution levels. In [11], Sun et al. propose the use of lower-32

order basis functions combined with stochastic perturbation and smoothing tech-33

niques. Other works suggest parallel implementations of the FFD based registra-34

tion. Rohlfing and Maurer [12] propose an efficient parallel implementation using35

64 CPUs of a supercomputer. The proposed approach by Ino et al. in [13] incor-36

porates data distribution, data-parallel processing, and load balancing techniques37

2



into the aforementioned Schnabel’s registration algorithm. In [14], Rohrer et al.38

propose a multicore implementation of the original Rueckert’s method for a Cell39

Broadband Engine platform. In addition, several works propose efficient imple-40

mentations using graphics processing units (GPU), reporting significant speedups41

over CPU implementations [15, 16, 17, 18, 19, 20].42

Recently, some Deep Learning approaches have been applied to the registra-43

tion problem. These solutions promise fast registrations in operation mode, once44

the networks have been trained. For pairwise image registration, the VoxelMorph45

learning framework [21, 22] parameterizes the deformations via a convolutional46

neural network (CNN). In [23], the authors use a very involved architecture with47

a large number of parameters as well as several skip connections for GW regis-48

tration of multimodal static images. In these approaches, only 2D solutions are49

reported.50

Interpolation by means of convolutions is well-known [24, 25] for over four51

decades, although examples of recent contributions can be found [26]; however,52

a lukewarm opinion about their efficiency has been recently reported [27]. As53

for FFDs, their implementation based on convolutions has not gained popularity54

since its onset [7, 28] and, to the best of our knowledge, reported implementa-55

tions are not based on convolutions either. Our contribution consists in a new and56

highly efficient implementation of a 4D (3D+t) GW registration approach with57

FFDs based on simple convolutional operations, which leads to a great reduction58

in the execution time. Results will be shown with monomodal images of both MR59

and CT images, although our approach is independent of the metric used since the60

core of the proposal relies on how the transformation is tackled. The proposed61

methodology has been compared with the classical FFD implementation based on62

tensor products, both in CPU and GPU. Results show a mean runtime reduction63

of 91.5% for CPU and of 93.2% for GPU executions in Matlab. It is worth men-64

tioning that the proposed approach could be adapted to multi-resolution scenarios65

and may further benefit from parallelization strategies and sparse convolution op-66

timizations.67

The remainder of this paper is structured as follows. Section 2 describes the68

methods; we first revise the FFD concepts and then we analytically show its 3D69

convolutional implementation. We then calculate the best-case complexity of the70

method and compare it with the implementation of the spatial transformation us-71

ing tensor products. This section ends with a description of the 4D GW regis-72

tration approach. Results are shown in Section 3 and the discussion is carried73

out in Section 4. Section 5 gathers the main conclusions of the paper. Finally,74

we also include an appendix to give insight into the gradient calculations and its75
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implementation with convolutions.76

77

2. Methods78

2.1. Background79

Free-form deformations (FFDs) are a powerful geometric modeling technique80

which can be used to represent arbitrary deformations applied to objects [29];81

hence, they have become a popular approach for non-rigid registration algorithms82

[8], specially for medical image applications. The basic idea consists in locally83

deforming a given image by manipulating a grid of control points distributed84

across the image at an arbitrary mesh resolution [7]. Image registration based on85

FFD commonly uses B-spline functions to define the transformations; specifically,86

third-order B-spline basis functions are selected because of their good balance be-87

tween function smoothness and support region [11].88

The goal of any image registration method is to find the spatial transformation89

T that maps each point in the source image into the corresponding point in the90

target image. Therefore, for the particular 3D case, T : x 7! x0, such that x0 =91

T(x), where x = (x1, x2, x3) 2 X ⇢ R3 represents the fixed image domain and92

x0 = (x0
1, x

0
2, x

0
3) 2 X 0 ⇢ R3 stands for the moving image domain. According to a93

FFD-based registration [7, 28], T is defined through a cubic B-spline interpolation94

from a lattice of control points u = (u1, u2, u3), taking integer values �bKl/2c 95

ul  b(Kl�1)/2c (where Kl is the number of control points along each dimension96

l, l 2 {1, 2, 3}). The resolution of the control point grid, i.e., the spacing in pixels97

between control points along each dimension, is given by � = (�1,�2,�3).98

Then, if we denote the center of the control point mesh in X as c = (c1, c2, c3) =99

(dN1/2e, dN2/2e, dN3/2e) —with Nl the volume size along dimension l—, the100

location of each control point u in X can be expressed as pu = (pu1 , pu2 , pu3) =101

c +� � u, where ‘�’ symbolizes the Hadamard product. Note that� is defined102

such that �l · Kl  Nl, with �l > 0. With these previous considerations, the103

B-spline based 3D transformation is defined as104

T(x) = x+
X

u2N (x)

 
3Y

l=1

B3

✓
xl � pul

�l

◆!
· ✓u (1)

where N (x) is a certain vicinity of the voxel, ✓u = (✓u1 , ✓u2 , ✓u3) represents the105

control point displacements, and B3 stands for the third order B-spline function106

obtained through the Cox-DeBoor recursion formula as defined in [30].107
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B-spline functions have a compact support. Therefore, the displacement of108

a control point affects the transformation only in a local neighborhood of that109

control point. In other words, a given control point has an influence radius Rl.110

Thus, Eq. (1) can be expressed as111

T(x) = x+

C2
1X

u1=C1
1

C2
2X

u2=C1
2

C2
3X

u3=C1
3

 
3Y

l=1

B3

✓
xl � pul

�l

◆!
· ✓u (2)

where C1
l = �b(cl � xl +Rl)c/�l, and C2

l = b(xl � cl +Rl)/�lc.112

Therefore, the deformation at each point is given by the 3D tensor product of113

1D functions [7, 28]. Displacements of the control points (✓u) act as parameters114

of the transformation and the resolution of the control point mesh defines the115

number of degrees of freedom, and consequently the computational complexity116

[8]. Moreover, the spacing between control points restricts the performance of117

the registration [10]; a coarse resolution of the grid of control points gives rise to118

more global and smoother deformations, whereas a finer resolution allows bring119

forth local and less smooth deformations.120

In order to determine the optimal transformation, a registration cost function121

must be defined and minimized. Typically, the cost function consists of two terms122

[7]:123

C(⇥) =

Z

X
[�Csimilarity(IF (x), IM(T(x))) + �Csmooth(T(x))] dx (3)

where IF stands for the fixed image and IM for the moving image. The first term124

in Eq. (3) represents the cost associated with the image similarity, which mea-125

sures the accuracy of the registration, i.e. the degree of alignment between the126

two images. In addition, to constrain the deformation to be smooth, a penalty reg-127

ularization term weighted by a factor � is included in the registration cost function128

(Csmooth(T)).129

2.2. Convolutional Implementation130

In this work, the well-known idea of convolution-based interpolation is revis-131

ited [24, 25]. The goal of this Section is to establish the link between the B-spline132

FFD formulation based on tensor products [7, 28] and the convolutional imple-133

mentation.134

Due to the compact support property of B-splines referred to above, the sum-135

mations in Eq. (2) can be extended to the whole control point mesh. With this idea136
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in mind, we now assume that the FFD is defined on a Cartesian coordinate sys-137

tem. We first consider, for simplicity, a 1D scenario with point positions taking on138

integer values 1  i  N1 and a set of K1 control points with �1 spacing, located139

on a subset of the N1 points. We use the running index 1  u1  K1 to refer to140

each control point and assume pu1 denotes the location of the control point with141

index u1 in the N1-point grid, i.e., pu1 2 {1, . . . , N1}. Then, we can write the 1D142

transformation as:143

T (i) = i+
K1X

u1=1

B3

✓
i� pu1

�1

◆
· ✓u1 = i+

K1X

u1=1

B�1(i� pu1) · ✓u1 (4)

with B�l(m) := B3(m/�l). Now, for convenience we rewrite this expression144

above using a new index 1  q1  N1, such that145

T (i) = i+
N1X

q1=1

B�1(i� i1(q1)) · [�(q1 � i1(q1)) · ✓i2(q1)]| {z }
⇧(q1)

(5)

where � is the Kronecker delta, i.e. �(t) = 1 if t = 0 and �(t) = 0 if t 6= 0, and146

i1(q1) is a function defined to cancel the contribution of any point q1 that it is not147

a control point,148

i1(q1) =

⇢
q1 if 9u1 : q1 = pu1

1/2 otherwise (6)

and i2(q1) is a function defined to select the appropriate displacement:149

i2(q1) =

⇢
u1 if q1 = pu1

0 otherwise (7)

and we set ✓0 = 0 arbitrarily. Therefore, function ⇧(q1) in Eq. (5) is null on those150

points q1 on which a control point is not located (which, in turn, makes the value151

of ✓0 irrelevant). Then, Eq. (5) can be extended and reformulated as a convolution152

operation2:153

T (i) = i+
N1X

q1=1

B�1(i� q1) · ⇧(q1) = i+B�1(i) ⇤ ⇧(i) (8)

2Following [31], y[n] = x[n] ⇤ h[n] denotes the convolution of the signals x[n] and h[n]
evaluated at point n.
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The extension to a 3D scenario is straightforward; assume a Cartesian grid154

where voxel positions take on integer values x = (i, j, k) (with 1  i  N1;155

1  j  N2; 1  k  N3) and a control point mesh with cardinality K =156

K1 ⇥K2 ⇥K3, located on a subset of the grid points. Then,157

T(x) = x+
N1X

q1=1

B�1(i�i1(q1))
N2X

q2=1

B�2(j�j1(q2))
N3X

q3=1

B�3(k�k1(q3))·⇧(q1, q2, q3)

(9)
where158

⇧(q1, q2, q3) = �(q1 � i1(q1))�(q2 � j1(q2))�(q3 � k1(q3))✓i2(q1),j2(q2),k2(q3) (10)

with the functions j1 and k1 defined according to Eq. (6) and functions j2 and k2159

defined as Eq. (7), respectively, to address the two other spatial dimensions (and,160

accordingly using u2 and u3 instead of u1). Similarly, T(x) can be reformulated161

as:162

T(x) = x+
N1X

q1=1

B�1(i� q1)
N2X

q2=1

B�2(j � q2)
N3X

q3=1

B�3(k � q3) ·⇧(q1, q2, q3)

| {z }
 (q1,q2,k)| {z }

�(q1,j,k)| {z }
�(i,j,k)

(11)
Therefore, the 3D tensor product in the original formulation for the deforma-163

tions (in Eq. (2)) is reduced to the evaluation of simple 1D discrete convolutions164

along each coordinate axis, according to the following steps:165

1. Evaluation of (i, j, k): 1D convolution along k-axis evaluated only in the166

subset of (pu1 , pu2) corresponding to control point positions (see Figs. 1a167

and 1b) as follows:168

 (pu1 , pu2 , k) = B�3(k) ⇤⇧(pu1 , pu2 , k) (12)

2. Evaluation of�(i, j, k): 1D convolution along j-axis evaluated in pu1 points169

corresponding to control point locations (see Fig. 1c) as:170

�(pu1 , j, k) = B�2(j) ⇤ (pu1 , j, k) (13)
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3. Evaluation of �(i, j, k): 1D convolution along i-axis evaluated in the whole171

Cartesian grid (see Fig. 1d):172

�(i, j, k) = B�1(i) ⇤�(i, j, k) (14)

4. Finally, the transformation for each voxel is173

T(x) = x + �(i, j, k) (15)

The convolutional implementation of the B-spline based FFD model entails a174

substantial improvement in the computational efficiency of the registration pro-175

cess, since the operators are limited to a number of points and, in addition, the176

convolution operator has been highly optimized in different development environ-177

ments, e.g. Matlab, since it is commonly used in signal processing. Note that this178

new interpretation in terms of 1D convolutions also affects the gradient evaluation179

needed in the optimization process of the 3D transformation, which contributes to180

a greater reduction of global execution time. This is now explored.181

(a) (b) (c) (d)

Figure 1: Representation of the efficient 3D FFD model evaluation: (a) regular set of control
points (red boxes) distributed across the Cartesian grid; (b) 1D convolution along k-axis evaluated
in those rows and columns containing control points; (c) 1D convolution along j-axis evaluated
in all slices, but only in those rows containing control points; (d) 1D convolution along i-axis
evaluated in the whole mesh.

182

2.3. Computational Complexity183

In order to quantify the computational benefits of the convolutional approach184

we evaluate the computational cost of both approaches in terms of number of185

operations. For simplicity, we consider M as a shortcut for any of the volume186

spatial dimensions, since we assume the three dimensions will be comparable.187
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Similarly, the parameter � will be used as the distance (in pixels) between control188

points in any of the dimensions and the parameter K will be the number of control189

points along any dimension. Hence, K ⇡ M/�. In addition, the compact support190

of the B-spline function (B�) in each dimension is S = 2Rl� 1 = (E+1)�� 1.191

The computational cost for a dense 1D discrete convolution along one line192

of a given dimension, e.g. B�(k) ⇤ ⇧(1, 1, k), is [M ⇥ S]. However, our ap-193

proach intrinsically involves the evaluation of highly sparse convolutions; specifi-194

cally the convolution computation at each point only consists in (E + 1) effective195

products (i.e., those not known beforehand to be null). Therefore, if we con-196

sider an optimized operator for sparse convolutions, it is possible to conclude197

that: (i) Eq. (12) takes [M ⇥ (E + 1) ⇥ K ⇥ K] operations; (ii) Eq. (13) takes198

[M ⇥ (E+1)⇥K⇥M ] operations; (iii) Eq. (14) takes [M ⇥ (E+1)⇥M ⇥M ]199

operations. Thus, the total number of operations to compute the transformation200

for the whole image volume following the convolutional formulation can be ex-201

pressed as: [M3 ⇥ (E + 1)⇥ (1/�2 + 1/�+ 1)].202

As for the evaluation of the transformation using the classical tensor prod-203

uct approach, it is possible to precompute the 3D B-spline product matrix, i.e.204 Q3
l=1 B

�(xl � pul
), during the algorithm initialization. Therefore, the computa-205

tional cost of Eq. (2) is reduced to [M3 ⇥ (E + 1)3].206

As can be seen, the computational complexity of the convolutional formula-207

tion depends on the resolution of the control point grid and, consequently, on the208

number of control points along each dimension. Figure 2 shows the theoretical209
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Figure 2: Computational complexity for transformation evaluation: (a) Number of operations
needed for volume size M = 512; (b) Reduction of operations (%) with the proposed convolu-
tional formulation.
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number of operations for a range of � values and the reduction percentage for the210

proposed efficient implementation. Note that for � > 2 the number of operations211

is reduced above 90% with the convolutional approach.212

213

2.4. Group-Wise Registration214

The convolutional approach for B-spline FFD implementation presented here215

can be applied to pairwise image registration procedures, both in 3D and 2D do-216

mains, as well as to group-wise (GW) registration. This work focuses on the latter.217

Previous works have successfully applied elastic GW registration to the alignment218

of cardiac MR perfusion images [32], to motion estimation in cardiac cine MRI219

[33, 34, 35, 36], and to abdominal diffusion-weighted MRI [37, 38]. Many other220

uses of GW registration have been described elsewhere [23, 39].221

Now, as an application example, we focus on the non-rigid GW registration222

of 4D (3D+t) cardiac MR images, with the aim of providing a robust estimation223

of the cardiac motion during cardiac cycle. Consider a dynamic MRI sequence224

m = {m1(x1),m2(x2), ...,mN(xN), }, with temporal index 1  n  N and225

mn(xn) defined over the 3D image domain xn = (in, jn, kn)2 Xn ⇢ R3. The226

images are originally defined at grid positions (integer coordinates) albeit during227

the registration process the images may be resampled at non-grid coordinates. See228

Section 3 for further details on interpolation.229

Now, the goal is to find the optimal set of spatial transformations T⇥ = {Tn,⇥ :230

x0
n = Tn,⇥(x) 2 Xn} which maps the coordinates of each material point in a231

common reference image (say, x 2 Xref ) into its corresponding coordinates in232

Xn, 1  n  N (see Fig. 3).233

As previously stated, optimal parameters of the deformations (⇥ = {✓nu})234

are found by minimizing a cost function235

⇥̂ = argmin
⇥

C(⇥) = argmin
⇥

✓Z

X
(V⇥(x) +R⇥(x)dx

◆
(16)

As for the second term R⇥, we have used the the simple regularizer proposed in236

[40]. This is an alternative to traditional Jacobian penalty methods that relaxes the237

invertibility condition by using a piecewise quadratic penalty function directly on238

the deformation coefficients that encourages diffeomorphic transformations and239

requires less computation time. As for the first term, the GW registration metric240

is based on the variance of the intensity along time. Specifically, the function V⇥241

is defined as242

10



Figure 3: Scheme of spatial transformations in GW registration for 3D cine cardiac MRI.

V⇥(x) =
1

N

NX

n=1

 
mn(Tn,⇥(x))�

1

N

NX

k=1

mk(Tk,⇥(x))

!2

=
1

N

NX

n=1

⇣
mn(x

0
n)�m⇥(x)

⌘2
(17)

where m⇥(x) is the image average over time after applying T⇥.243

In the optimization process, the gradient of the function C(⇥) must be evalu-244

ated at each iteration. This operation represents the bottleneck of the FFD based245

registration algorithms. In our case, the gradient evaluation is also performed by246

simple convolution operations (see Appendix A), which leads to a greater reduc-247

tion in the execution time of the proposed registration method.248

3. Results249

250
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3.1. 3D Cine cardiac MRI251

The GW registration algorithm has been applied to eight isotropic 3D+t car-252

diac MR scans of different swine in order not only to test the ability of this method253

to capture the non-rigid motion of the heart, but also to analyze the computational254

benefits and efficiency of the convolutional implementation proposed in this work.255

All images have a high spatial resolution (voxel size = 1 mm3) with field of view256

equal to 183⇥183⇥183 mm3 and show a short-axis (SA) view of the heart. Each257

MRI sequence consists of N = 20 temporal frames, where each of them repre-258

sents a different phase of the cardiac cycle.259

The 4D elastic GW registration has been carried out four times for each cardiac260

cine MRI, following two different approaches, both on CPU and GPU, to find261

the optimal set of transformations: (a) the classical implementation based on 3D262

tensor products, and (b) the proposed convolutional implementation. As images263

have similar geometry, some parameters of the FFD model were fixed for all cases.264

The spacing of control points is 8⇥8⇥8 mm3, which led to a 23⇥23⇥23 control265

point mesh for each image frame. Therefore, this means that a total of 730,020266

(= 233⇥ 3⇥ 20) parameters —components of⇥— must be optimized in the GW267

registration process. As discussed in Sect. 2, cubic B-spline functions are used to268

model the deformations. Therefore, each control point affects the transformation269

of voxels within a neighborhood with 15 mm of radius, a total of 31⇥31⇥31270

voxels in this case.271

The registration process is accompanied by a linear interpolation that allows272

us to apply the transformation described in Section 2.2. Specifically, this process273

consists in looping over all voxels in the common reference image x 2 Xref ,274

and interpolating the moving image at the transformed coordinates (x0
n, mapped275

position), to fill in this value at position x in the registered image.276

The optimization problem in Eq. (16) is solved by means of an iterative non-277

linear conjugate gradient algorithm. In particular, we use Polak-Ribière [41] con-278

strained by Fletcher-Reeves [42], based on strong Wolfe line search. A maximum279

number of 100 iterations is set for the optimizer.280

Figure 4 illustrates the GW registration results. The optimization processes281

for the two implementations are virtually identical but for irrelevant numerical282

precision; specifically, the difference between the accumulated squared moduli of283

displacements with both methods is on the order of 10-6 pixels in both CPU and284

GPU.285

Binary masks of the myocardium in systole and diastole from an expert man-286

ual segmentation are available for each cardiac MRI sequence. In order to analyze287
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Systole Diastole

. . .

Reference

(a)

(b)

. . .

Reference

(a). . . (a). . .

Figure 4: GW registration results. (a) (left) Dynamic MRI sequence before registration (systolic
and diastolic cardiac phases); (b) (left) Reference image after registration. Images in right column
of the figure show the temporal evolution of the intensity profile indicated in the reference image
by the red dashed line.

the registration accuracy, the mask at systole is transformed to the diastolic phase288

and compared to the expert mask at diastole. The transformation that maps coordi-289

nates from diastole to systole is defined as the composition Tdia,sys = Tsys � T
�1
dia,290

where the inverse transformation (T�1
dia) maps the coordinates from the diastolic291

phase to the common reference space; this second transformation is approximated292

iteratively by an additional optimization procedure, as described in [3]. The dias-293

tolic manual mask is transformed similarly to systolic phase. The Dice coefficient294

was evaluated in each case; we also evaluated the end-diastolic and end-systolic295

volumes (see Table 1). In addition, the dynamic cardiac MRI sequences were also296

registered using the Elastix3 software, with the parameter files used in [3] for GW297

registration.298

The overall execution times in each case for our Matlab implementations are299

included in Table 2. In addition, specific runtimes per iteration for the evaluation300

of transformations and gradients are shown in Table 3. As stated in Sect. 2.3,301

the computational complexity depends on�. For this reason, CPU runtimes have302

been also analyzed experimentally for different resolutions of the control point303

grid (see Fig. 5).304

305

3http://elastix.isi.uu.nl/
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ID

DICE COEFFICIENT (%)
EDV (mL) ESV (mL)

Diastole Systole

Conv. Elastix Conv. Elastix Conv. Elastix GT Conv. Elastix GT
1 83.2 81.9 81.2 80.8 119 121 128 94 93 89
2 80.8 78.3 78.0 78.3 86 90 99 40 37 37
3 81.8 77.7 81.6 79.2 145 151 170 103 97 99
4 87.9 82.4 87.5 82.7 68 66 70 31 32 31
5 85.7 83.0 85.1 82.3 71 66 69 24 27 25
6 85.7 81.0 82.9 78.2 133 130 154 91 89 81
7 85.7 72.6 84.9 72.1 142 139 146 83 88 89
8 85.7 79.0 84.6 78.7 208 191 212 151 161 156

Table 1: Registration results for 4D cardiac MRI dataset. Several metrics for both the proposed
GW convolutional approach and the Elastix registration are shown for comparison, namely, Dice
coefficient between manually segmented myocardial mask for diastolic phase and the correspond-
ing transformed mask from the systolic phase, and vice versa (left), End-diastolic volume (EDV,
three columns in the middle of the table) and end-systolic volume (ESV, three left-most columns).
Volumes are measured in mL on both the transformed masks and on the manually segmented
masks (ground-truth, GT).

GW registration approach CPU Time (min.) GPU Time (min.)

3D tensor products 674.16 ± 56.98 33.15 ± 2.99
1D convolutions 57.15 ± 3.11 2.24 ± 0.13
Convolutional improvement 91.5 % 93.2 %

Table 2: Computational times (minutes) of the 4D elastic GW registration method in CPU and
GPU executions for 3D tensor product and convolutional implementation of the FFD (mean ±
standard deviation from eight different dynamic cardiac MRI sequences) and improvement (time
reduction) of the convolutional approach.

3.2. 3D+t Thoracic CT306

4D CT data of the lungs was taken from the publicly available POPI-model307

[43]. This dataset includes a total of six sequences with 10 respiratory phases308

each. Moreover, the POPI dataset provides 100 manually annotated landmarks in309

the end-of-inspiration and end-of-expiration phases. These 100 anatomical land-310

marks are also available in all frames for 3 CT sequences.311

In this case, each CT sequence was registered using the proposed convolu-312

tional approach with a spacing between control points of � = (12, 12, 12) mm.313
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Operation
CPU execution (sec.) GPU execution (sec.)

T. Prod. Conv. Reduction T. Prod. Conv. Reduction
Transformations 117.51 4.57 96.1 % 2.15 0.33 84.7 %
Gradients 172.67 11.45 93.4 % 11.99 0.44 96.3 %

Table 3: Mean execution times (seconds) for the critical operations in the GW registration pro-
cedure: evaluation of the set of transformations and gradient calculation during the optimization
process.
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Figure 5: Empirical Matlab runtimes in CPU (seconds): (a) Transformation evaluation; (b) Gradi-
ent computation.

Images were decimated in the two first dimensions by a factor of 2. After registra-314

tion, the obtained transformations were scaled up to the original spatial resolution.315

More details about the CT sequences, control point grid and runtimes in CPU and316

GPU are included in Table 4.317

In order to validate the accuracy of the proposed registration method, the318

group-wise target registration error (gwTRE) [1, 3] was evaluated using the afore-319

mentioned collection of landmarks P = {P1,P2, · · · ,PNt}, with Nt frames for320

which a Np number of landmarks are available, Pi = {pi,1,pi,2, · · · ,pi,Np}:321

gwTRE =
1

Nt

1

Np

NtX

i 6=r

NpX

j=1

k Ti,r(pi,j)� pr,j k (18)

where Ti,r = Tr � T
�1
i stands for the transformation from the ith frame to a ref-322

erence frame (end-of-inspiration, in this case). As in the case of cardiac MRI323
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dataset, the CT sequences were also registered using the Elastix software to vali-324

date our registration. Results are shown in Table 5.325

ID Volume Size Spatial Res. (mm) Grid Iter.
Time (min.)

CPU GPU
1 256⇥256⇥141⇥10 1.95⇥1.95⇥2 42⇥42⇥27 34 17.1 0.7
2 256⇥256⇥169⇥10 1.95⇥1.95⇥2 42⇥42⇥33 26 17.1 0.7
3 256⇥256⇥170⇥10 1.76⇥1.76⇥2 42⇥42⇥33 50 31.5 1.1
4 256⇥256⇥187⇥10 1.56⇥1.56⇥2 42⇥42⇥35 22 18.4 0.6
5 256⇥256⇥139⇥10 2.34⇥2.34⇥2 42⇥42⇥27 37 21.1 0.9
6 256⇥256⇥161⇥10 2.34⇥2.34⇥2 42⇥42⇥31 16 15.0 0.6

Table 4: Registration of the POPI dataset. Volume size, spatial resolution and control point grid
are specified for each CT sequence. CPU and GPU runtimes are expressed in minutes; the number
of iterations of the optimizer in each case for GW registration with the proposed convolutional
formulation is also included.

ID Nt
gwTREconv gwTREElastix

mm. pixels mm. pixels
1 10 0.918 0.70 1.740 1.28
2 10 1.810 1.30 3.480 2.46
3 10 1.090 0.88 1.870 1.46
4 2 1.312 0.93 2.720 1.67
5 2 0.806 0.53 2.483 1.53
6 2 0.982 0.64 2.331 1.30

Mean ± Std. dev. 1.15±0.33 0.83±0.25 2.44±0.58 1.62±0.40

Table 5: Groupwise target registration error for POPI dataset in millimeters and pixels. We show
the results for both the proposed method and for Elastix registration.

4. Discussion326

All experiments non based on Elastix were run using MATLAB R2019a on327

a VM with two processors (Intel Xeon E5-2697 v4 @ 2.30 GHz), with a total328

of 35 cores (2 threads per core) and 500 GB of RAM. The GPU executions were329

carried out in a nVIDIA Quadro RTX5000 device by using the CUDA capabilities330

of MATLAB.331
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The GW registration approach proposed in this work has been tested on two332

different datasets: 4D cardiac MRI sequences (Sect. 3.1) and 4D thoracic CT333

sequences (Sect. 3.2). Although we focus on monomodal image registration,334

its adaptation to multimodal registration is straightforward and only requires the335

appropriate change of the registration metric. As previously stated, the method336

relies on how that transformation is tackled.337

As for the registration accuracy, manual and transformed segmentation masks338

of the myocardium have been compared for the MRI dataset. Table 1 shows the339

corresponding Dice coefficient in each case, and it also includes the results ob-340

tained from Elastix. The average values are 84.6% and 83.2% for the convolu-341

tional GW registration in diastole and systole, respectively. As can be seen, our342

registration slightly outperforms the Elastix results (Dice coeff. of 79.5% for di-343

astole and 79% for systole). For the CT dataset, registration accuracy has been344

evaluated in terms of gwTRE on the available landmarks (Table 5). Results of345

our convolutional approach are also compared with the Elastix GW registration,346

where the latter shows less precision. We stress, however, that the main goal of347

this work is not to achieve a better registration accuracy but to propose an efficient348

alternative to computing the core of FFD transformations, as well as the gradients.349

In terms of computational efficiency, the improvement of the convolution-350

based FFD has been quantified for the best-case implementation (Sect. 2.3) and351

experimental results have also been reported for ours (see Tables 2-3 and Fig. 5).352

Experiments carried out on cardiac MRI in Matlab with our convolutional pro-353

posal show a reduction in the GW registration time above 90% (91.5% and 93.2%354

on CPU and GPU implementation, respectively) in comparison with the classical355

tensor product formulation. In addition, execution time reduction in the estima-356

tion of both the transformations and the gradients has also been analyzed. Table357

3 shows that gradients calculation represents the bottleneck of the non-rigid reg-358

istration algorithm. Figure 5 reveals that regardless of the control point spacing,359

the convolutional formulation provides a reduction in CPU runtime above 93%360

for both the transformation and the gradient computation.361

Previous works have already dealt with the high computational times of the362

FFD-based registration. However, the comparison of our proposal with these so-363

lutions is not straightforward. The referenced Elastix framework is executed from364

a compiled language while our routines are interpreted. Therefore, these compar-365

isons have not been included. Other previously proposed solutions are based on366

sophisticated paralellization strategies both in multi-CPU [12, 13, 14] and GPU367

implementations [15, 17, 19]. Nevertheless, we have not explored any parallel368

processing or data distribution methodology. For our GPU executions, the default369
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parallelization provided by the Parallel Computing Toolbox for GPU computing370

in Matlab has been directly used.371

With our method, additional optimizations are possible; Elastix, for instance,372

makes use of undersampling strategies and adaptive stochastic gradient descent373

optimization to reduce the computational cost without losing accuracy. This can374

be easily accomplished with our method; the transformation in Eq (11) can be375

directly applied in any level of the resolution pyramid. In addition, if a stochastic376

gradient descent strategy is used, the gradient will be sparser than in the case that377

a batch gradient is used. This would give rise to additional savings by using sparse378

convolution algorithms, which is a current hot topic spurred by the deep learning379

paradigm shift [44, 45].380

Our convolutional implementation allows for further optimization on GPU381

hardware that seems not so immediate with the classical formulation. Specifically,382

source data for Eq. (12) is sufficiently small so as to be held within GPU com-383

pute unit shared memories —aka as local memory—, if appropriately distributed384

among them, so that each compute unit uniquely sees its relevant neighborhood.385

This memory is typically one or two orders of magnitude faster than the GPU’s386

main memory —aka as global memory—[46]. In contrast, Eq. (2) apparently387

needs access to the whole volume at once, which would not fit in the shared mem-388

ory of any GPU we are aware of (a typical, current GPU has 5-70 compute units389

with 32-64 KB of shared memory each). Although source data for Eqs. (13)-(14)390

will likely not fit within current GPUs shared memories, it may be arranged so391

that accesses to main memory are contiguous for neighbor workers, which allows392

for GPU bus utilization to be maximized [46]. As evaluation of Eq. (2) needs to393

traverse source data along the three dimensions for any given voxel, combining394

memory accesses poses a more difficult problem at the least.395

5. Conclusions396

This paper proposes a highly efficient implementation for the FFD. B-spline397

based FFD models are reformulated by means of 1D convolutional operations.398

This simple modification allows us to substantially alleviate computational time399

in registration algorithms, since convolution operation has been extremely opti-400

mized on different development environments. Our proposal is especially use-401

ful to deal with high resolution 3D images, i.e. registration problems with large402

datasets. In this work, the new convolutional implementation of FFD has been403

tested in a 4D GW registration approach applied to cardiac cine MRI and thoracic404

CT data. The experiments show a reduction in the execution time above 90%, both405

18



in CPU and GPU executions. Note that the proposed implementation only affects406

the evaluation of deformations and gradients during the optimization process of407

image registration, therefore, it is independent of the registration metric used. In408

addition, it can also be adapted to multi-resolution registration strategies.409
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Appendix A. Gradient Evaluation416

The evaluation of the cost function gradient is detailed here. The parameters417

that define the set of transformations are ⇥ = {✓1, . . . ,✓n, . . . ,✓N}, with each418

✓n = {✓n1, . . . ,✓nu, . . . ,✓nK}, and ✓nu = (✓nu1 , ✓nu2 , ✓nu3) = ✓nul. Then, from419

expression in Eq. (16), the gradient of the cost function is defined as:420

@C(⇥)

@✓nul

=

Z

X

✓
@V⇥(x)
@✓nul

+
@R⇥(x)
@✓nul

◆
dx (A.1)

Here, we focus on the gradient of the function V⇥. For more details about gradient421

of the regularization term R⇥, refer to [40]. Thus, from the expression in Eq. (17)422

by applying the chain rule, we can write:423

@V(x)⇥
@✓nul

=
NX

n0=1

@V⇥
@mn0

NX

n00=1

3X

l0=1

@mn0

@x0
n00l0

@Tn00l0(x)

@✓nul

=
@V⇥
@mn

· @mn

@x0
nl

@Tnl(x)

@✓nul

=

=
@V⇥
@mn

· @mn

@x0
nl| {z }

Vnl(i,j,k)

·

B3

✓
i� pu1

�1

◆
B3

✓
j � pu2

�2

◆
B3

✓
k � pu3

�3

◆�

(A.2)

where x0
nl = Tnl(x), i.e., the l-th component of the transformation of point x in424

the common reference to the n-th image, and425

Vnl(x) = Vnl(i, j, k) =
2

N

⇣
mn(x

0
n)�m⇥(x)

⌘ @mn(x0
n)

@x0
nl

(A.3)
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Therefore,426
Z

X

@V⇥(x)
@✓nul

dx ⇡
X

i,j,k

Vnl(x)
⇥
B�1(i� pu1) · B�2(j � pu2) · B�3(k � pu3)

⇤

(A.4)
Moreover, due to the compact support of B-spline functions427

Z

X

@V⇥(x)
@✓nul

dx ⇡
S12X

i=S11

B�1(i� pu1)
S22X

j=S21

B�2(j � pu2)
S32X

k=S31

B�3(k � pu3) ·Vnl(i, j, k)

| {z }
⌥
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=
S12X

i=S11

B�1(i� pu1)
S22X

j=S21
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| {z }
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=

=
S12X

i=S11

B�1(i� pu1) · ⇣(i, pu2 , pu3)

| {z }
⌦

(A.5)

(A.6)

where Sl1 = pul
� Rl, and Sl2 = pul

+ Rl; with Rl the influence radius of the428

control points. Once again, functions ⌥, ⇣ and ⌦ are the results of 1D convo-429

lutions at the control point locations, each of which along a different spatial di-430

mension. This reformulation is of special interest because it allows us to evaluate431

the gradient with respect to the whole parameter set ⇥ very easily. Specifically,432

at each iteration of the optimization process, we define the five-dimensional ar-433

ray V(x) = {V1, . . . ,Vn, . . . ,VN}, with each Vn = {Vn1,Vn2,Vn3} and Vnl
434

defined as Eq. (A.3) indicates. Then, we proceed as follows:435

1. 1D convolution along k-axis and selection of all points corresponding to436

control point positions at the third dimension:437

⌥(i, j, k, n, l) = B�3(k) ⇤V(i, j, k, n, l)

⌥(i, j, u3, n, l) = ⌥(i, j, pu3 , n, l) (A.7)

2. 1D convolution along j-axis and selection of all points corresponding to438

control point positions at the second dimension:439

⇣(i, j, u3, n, l) = B�2(j) ⇤⌥(i, j, u3, n, l)

⇣(i, u2, u3, n, l) = ⇣(i, pu2 , u3, n, l) (A.8)
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3. Finally, 1D convolution along i-axis and selection of all control point posi-440

tions at the first dimension:441

⌦(i, u2, u3, n, l) = B�1(i) ⇤ ⇣(i, u2, u3, n, l)
@V⇥
@⇥

= ⌦(u1, u2, u3, n, l) = ⌦(pu1 , u2, u3, n, l) (A.9)
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