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Abstract 

Background and Objective: Electrocardiogram (ECG) is widely used for the detection and diagnosis of cardiac 

arrhythmias such as atrial fibrillation. Most of the computer-based automatic cardiac abnormality detection algorithms 

require accurate identification of ECG components such as QRS complexes in order to provide a reliable result. 

However, ECGs are often contaminated by noise and artifacts, especially if they are obtained using wearable sensors, 

therefore, identification of accurate QRS complexes often becomes challenging. Most of the existing denoising 

methods were validated using simulated noise added to a clean ECG signal and they did not consider authentically 

noisy ECG signals. Moreover, many of them are model-dependent and sampling-frequency dependent and require a 

large amount of computational time. 

Methods: This paper presents a novel ECG denoising technique using the variable frequency complex demodulation 

(VFCDM) algorithm, which considers noises from a variety of sources. We used the sub-band decomposition of the 

noise-contaminated ECG signals using VFCDM to remove the noise components so that better-quality ECGs could 

be reconstructed. An adaptive automated masking is proposed in order to preserve the QRS complexes while removing 

the unnecessary noise components. Finally, the ECG was reconstructed using a dynamic reconstruction rule based on 

automatic identification of the severity of the noise contamination. The ECG signal quality was further improved by 

removing baseline drift and smoothing via adaptive mean filtering. 



Results: Evaluation results on the standard MIT-BIH Arrhythmia database suggest that the proposed denoising 

technique provides superior denoising performance compared to studies in the literature. Moreover, the proposed 

method was validated using real-life noise sources collected from the noise stress test database (NSTDB) and data 

from an armband ECG device which contains significant muscle artifacts.  Results from both the wearable armband 

ECG data and NSTDB data suggest that the proposed denoising method provides significantly better performance in 

terms of accurate QRS complex detection and signal to noise ratio (SNR) improvement when compared to some of 

the recent existing denoising algorithms. 

Conclusions: The detailed qualitative and quantitative analysis demonstrated that the proposed denoising method has 

been robust in filtering varieties of noises present in the ECG. The QRS detection performance of the denoised 

armband ECG signals indicates that the proposed denoising method has the potential to increase the amount of usable 

armband ECG data, thus, the armband device with the proposed denoising method could be used for long term 

monitoring of atrial fibrillation. 
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1. Introduction

The electrocardiogram (ECG) has been widely used for detection and classification of different life-threatening 

cardiac arrhythmias. For accurate detection of cardiac abnormalities, ECG signals must retain their morphological 

components in order to provide reliable and essential information about cardiac activity. However, ECGs are most 

often contaminated by a wide variety of noise sources including motion artifacts, bad electrode contact to the skin, 

and muscle and power line interference that can distort the ECG morphologies and lead to misdetection of cardiac 

arrhythmias. Noise is more acute in ECGs from wearable devices simply because of movement artifacts. Therefore, it 

is very important and necessary to remove noise and artifacts from ECG signals in order to increase the usability of 

ECGs.  However, denoising ECG signals is very challenging, especially if the noise frequency overlaps with the 

signal’s frequency. There have been several denoising methods proposed in the literature in the last few decades. The 

most well-developed methods are based on discrete wavelet transform (DWT) decomposition [1]–[3], adaptive 



filtering [4], [5], empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) [6]–

[9], FIR filtering [10], [11], Kalman filtering [12], principal component analysis (PCA) [13], independent component 

analysis (ICA) [14], nonlocal means (NLM) [15], and neural networks [16], [17]. While many methods showed 

promising denoising performance, they have their own advantages and disadvantages. 

The wavelet-based approaches [1]–[3] use soft and hard thresholding, which are popular for denoising non-

stationary signals. However, wavelet-based methods cannot preserve the edges and are sensitive to intra-subject and 

inter-subject variations. Adaptive filtering approaches [4], [5] are often used for removing electromyogram (EMG) 

and motion artifacts. The main drawback of an adaptive filtering approach is that it requires a reference signal which 

is not often available. 

The EMD-based approaches [6], [7] performed better when compared to wavelet-based thresholding methods, but 

they cannot completely remove noise. An adaptive switching mean filtering was proposed with EMD and DWT in [8] 

and a better result was shown when compared with previous EMD-based approaches. However, this approach needs 

an external QRS detector to preserve the QRS complexes. In addition, the EMD has a mode mixing problem [18]; as 

a result, the intrinsic mode functions (IMFs) extracted can be incorrect, decreasing the denoising performance. 

The Kalman filtering approaches for denoising [12] are effective in preserving the edges of the signal. However, 

they require manual initialization of the parameters that are associated with the amplitude, width, and phase of the 

components of a complete ECG cycle. The PCA [13] and neural network [16] approaches require multiple leads to 

obtain better denoising performance using correlation. However, their performance is suboptimal for a single lead 

ECG. For ICA-based denoising [14], visual inspection of the independent components is essential, but this is not 

feasible for long-term applications. The non-local means (NLM) [15] method is a popular denoising technique that 

provides improvements in SNR. The main disadvantage of this approach is that its performance depends on the choice 

of a parameter’s bandwidth, which depends on the noise standard deviation that might not be available in real time. 

Some new ECG denoising techniques have been proposed in recent years such as the variational mode 

decomposition (VMD) method [19] and adaptive Fourier decomposition (AFD) [20]. An eigenvalue decomposition-

based denoising is proposed in [21], where eigenvalue decomposition of the Hankel matrix approach is used for the 

baseline drift and powerline interference removal. A multi-lead model-based ECG signal denoising with an adaptive 

guided filter is proposed in [22]. Finally, convolutional encoder-decoder approaches were proposed in [17], [23]. 



However, the performance of these methods has not been compared with existing methods. Moreover, the deep 

learning-based approaches function as a black box, which requires more data for training and can be computationally 

expensive. Therefore, deep learning based denoising may not be suitable in real time scenarios, especially for wearable 

device applications.  

Most of the previously developed denoising methods were not validated using the realistic scenario of motion 

artifacts and muscle noise data; rather, they were tested on synthetically generated additive white Gaussian noise 

(AWGN) or random noise that were added to clean ECG signals.  

In this paper, we propose a novel ECG denoising technique using the variable frequency complex demodulation 

(VFCDM) decomposition algorithm [24]. While a preliminary study of this method was published in the IEEE EMBC 

conference proceedings [25], this paper contains detailed results with a slight modification of parameters.  We used 

the sub-band decomposition of a noisy ECG signal via the VFCDM to reconstruct a cleaner ECG signal by removing 

subcomponents that are associated with noise dynamics. Finally, we removed the baseline drift and abrupt noise 

components to achieve the final desired denoised signal. The performance of the proposed denoising technique was 

validated on the MIT-BIH arrhythmia database and the noisy ECG data obtained using a wearable armband device 

which was developed in the Chon lab [26]. We considered different types of noise sources both real and simulated to 

validate the proposed denoising technique. The simulated noises were used to compare the denoising performance 

with the existing denoising techniques since most of the denoising methods were validated using simulated noise. We 

used additive Gaussian white noise (AWGN), colored noise (blue, pink and violet), and powerline interference (PLI) 

to contaminate the ECGs and compared denoising performances of the proposed method with some of the existing 

denoising techniques. Moreover, the proposed method was tested using different real-life noisy conditions such as 

baseline wander, muscle noise, and electrode noises collected from the noise stress test database (NSTDB) [27]. 

Finally, the proposed method was successfully applied on the wearable armband ECG data corrupted by substantial 

amount of muscle artifact and the algorithm’s performance was compared with some of the existing denoising 

techniques.  

The rest of the paper is organized as follows: in the Materials and Methods section, we describe our dataset and 

present our proposed denoising algorithm. The performance of the proposed denoising technique is discussed in the 

Results section and perspective is provided in the Discussion section. Finally, a summary of the outcomes of our work 

is provided in the Conclusions section. 



2. Materials and Methods

2.1. Description of Datasets 

We considered ECG recordings from MIT-BIH arrhythmia database (MITDB), and our own wearable armband 

ECG database [26] to validate our proposed denoising technique. In addition, we collected the real noise sources from 

MIT-BIH noise stress test database (NSTDB) to contaminate the ECG records. The datasets are described below. 

A) MIT BIH Arrhythmia Database

The MIT-BIH arrhythmia database is a well-known publicly available database.  It consists of 48 half-hour long 

datasets of two-channel ambulatory ECG recordings which were obtained from 47 different subjects [27], [28];  25 

out of the 47 patients were male aged 32 to 89, and 22 were female aged 22 to 89. This database contains ECGs with 

a variety of waveforms and different abnormalities such as complex ventricular, junctional, and supraventricular 

arrhythmias and conduction abnormalities. The ECG recordings were digitized with a sampling frequency of 360 Hz 

and resolution of 11 bits over an 11mv range. Each recording consists of two leads, one of which is modified limb 

lead II and the other was any of the following: V1, V2, V4, or V5. 

B) Wearable Armband ECG Data

The armband ECG data were collected using a wearable armband device which has been developed in our lab at 

the University of Connecticut [26], [29]. This device has three pairs of hydrophobic electrodes, also developed in our 

lab [30], which are sequentially arranged for recording three different ECG channels. Because of the hydrophobic 

electrodes and the ease of wearability, this device is more comfortable than a typical Holter monitor that uses obtrusive 

leads and wet electrodes which are known to cause skin irritation. ECGs were obtained continuously for 24 hours with 

the armband worn on the upper left arm. The database contains 24 hours of continuous ECG recordings from each of 

the 16 healthy subjects aged 27.56±8.82 years (mean ± standard deviation). The subjects were instructed to carry out 

their regular activities but without any intense exercise. In addition to the armband ECG, a simultaneous reference 



ECG was recorded with a very widely available Holter monitor (Rozinn RZ 153+, Glendale, NY, USA). All ECGs 

were obtained at a sampling frequency of 1000 Hz which were then down-sampled to 256 Hz. 

(C) The MIT-BIH Noise Stress Test Database

The MIT-BIH Noise Stress Test Database consists of 12 half hour ECG recordings and 3 half-hour recordings of 

noise in typical ambulatory ECG recordings [27], [28]. The noises include baseline wander, muscle artifact and 

electrode motion artifact which were made using physically active volunteers and standard ECG recorders, leads, and 

electrodes; the electrodes were placed on the limbs in positions in which subjects’ ECGs were not visible. Calibrated 

amounts of different levels of noise were added to the two clean ECG recordings (118,119) from the MIT-BIH 

Arrhythmia Database. Different levels of noise were added to each of the recordings to make 6 different signals with 

different signal-to-noise ratios (SNRs) (24, 18, 12, 6, 0, and 6 dB). All the ECG signals were sampled with a sampling 

frequency of 360 samples per second. 

2.2. VFCDM Decomposition of Noisy ECG Signals 

VFCDM is a high-resolution time-frequency analysis technique [24] that has been used for a variety of 

physiological signal processing [31]–[33]. While providing a high-resolution time-frequency spectrum (TFS), 

VFCDM also retains accurate amplitude distribution of the signal. Using VFCDM, we decomposed the noisy ECG 

𝑌𝑛(𝑡) =  ∑ 𝐶𝑖(𝑡)  (1)
𝑁𝑐
𝑖=1  

In this equation, 𝑌𝑛(𝑡) is the noisy ECG signal, 𝐶𝑖 represents the 𝑖𝑡ℎ frequency component, and 𝑁𝑐 is the total

number of subbands components (here, 𝑁𝑐 = 12). In this study, we decomposed the noisy ECG signal into 12 non-

overlapping frequency bands using VFCDM. Given that the sampling frequency of the ECG was 360 Hz, the sub-

band frequencies were equally spaced between 0 and 180 Hz. 

into 𝑁𝑐  (= 12) number of modes or subbands.



2.3. Signal Reconstruction 

Fig. 1 shows an ECG segment of 2000 samples on which additive Gaussian white noise (AWGN) with a 20 dB 

signal-to-noise ratio level was superimposed, and its 12 VFCDM sub-band components. As can be seen from the 

𝑌̌

𝑟 =
∑ 𝑥𝑖𝑦𝑖
𝑁
𝑖=1

∑ 𝑦𝑗
𝑁
𝑗=1

 (3) 

where xi  is the signal magnitude, yi is the distribution value of the signal, and r is the centroid of the histogram.

Based on the centroid, we define a threshold, 𝑡ℎ = 𝛼𝑟, where 𝛼 is a multiplying factor (in this paper we used 𝛼 = 1). 

Once the threshold is calculated, we determine all local maxima that satisfy the threshold criterion. As mentioned in 

figure, the frequency components after the 4𝑡ℎ sub-band are noisy, with low amplitudes. It is also observable from 

Fig. 1 that most of the ECG components, especially the P and T waves, are retained in the first component 𝐶1.

However, the QRS complex is attenuated and relatively wider than in the original ECG shown in Fig. Therefore, 

higher-frequency components (2-4) mostly contribute to the QRS complexes. We used only the first 4 components 

for our signal reconstruction. 

To summarize again, the first component 𝐶1 preserves most of the ECG information and components 2 to 4

contribute to the morphology of the QRS complex. To reconstruct the de-noised signal, we compute an automated 

mask that preserves the values around only a small window of the QRS complex. We multiply components 2 to 4 by 

that mask to add them to the first component to obtain the final reconstructed signal. We start with reconstructing an 

intermediate signal,  𝑌̌(𝑡), using the first two components. We perform a soft thresholding-based wavelet [2] denoising 

on the second component and added it to the first component to obtain an intermediate ECG signal, 𝑌̌(𝑡). 

(𝑡) = C1(𝑡) +  𝐶2̃(𝑡)                                                               (2)

𝐶2̃(𝑡)   represents the wavelet-denoised C2(𝑡). Next, we compute an automatic threshold using an approach similar

to the one described in [34], [35]. A histogram is computed from the local maxima of  𝑌̌(𝑡), from which the centroid 

is calculated using the following equation: 



[35], these local maxima correspond to the QRS complex peaks. The QRS complex peaks are then used to create a 

mask,  𝑚(𝑡), which is defined as follows: 

𝑚(𝑡) = {
𝑇𝑢𝑘𝑒𝑦(𝑁, 𝛾),  𝑅(𝑖) − 𝜖 ≤  𝑡 ≤ 𝑅(𝑖) + 𝜖

0,  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 (4) 

where 𝑇𝑢𝑘𝑒𝑦(𝑁, 𝛾) stands for a tapered Tukey window of length 𝑁 (= 50 ) with the tapering parameter 𝛾, 𝑅(𝑖) 

represents the 𝑖𝑡ℎ QRS complex position, 𝑖 varies from 1 to the total number of QRS complexes (𝑁𝑅), and the 𝜖

determines the spread of the Tukey window from the R peak. Depending on the noise level, the 2nd component 𝐶2(𝑡)

of VFCDM can be either noisy or clean. In the case of a less-noisy ECG signal, 𝐶2(𝑡) will also be mildly affected by

noise, hence, we want to use the entire 𝐶2(𝑡). On the other hand, for a noisy ECG signal, 𝐶2(𝑡) is also noisy,

consequently, we want to use only the QRS contribution to 𝐶2(𝑡). In order to resolve this issue of using either the

entire component or only the QRS part of 𝐶2(𝑡), we define a power ratio 𝑃𝑟  as follows:

Fig. 1.  VFCDM decomposition of a noisy ECG segment: a noisy ECG signal with a 20 dB SNR (record 106m from MITDB) 

(black line),  VFCDM subcomponents: 1 to 12 (red lines). 



𝑃𝑟 = 
𝑃𝑜𝑤𝑒𝑟 𝑜𝑓(𝐶2(𝑡) × 𝑚(𝑡))

𝑃𝑜𝑤𝑒𝑟 𝑜𝑓(𝐶2(𝑡))
 .  (5) 

Based on the power ratio we use the following scheme for reconstruction of the signal: 

𝑌𝑟(𝑡) =

{

𝐶1(𝑡) +∑𝐶𝑖(𝑡) × 𝑚(𝑡),  𝑃𝑟 < 0.9

4

𝑖=2

𝐶1(𝑡) + 𝐶2(𝑡) +∑𝐶𝑖(𝑡) × 𝑚(𝑡) ,    𝑃𝑟 > 0.9 

4

𝑖=3

. (6) 

A higher power ratio means most of the power of 𝐶2(𝑡) is concentrated around the QRS complex, so we use the

entire 𝐶2(𝑡) in the reconstruction. On the other hand, a lower power ratio implies that 𝐶2(𝑡) has a substantial amount

of power in the masked region, which is the case when 𝐶2(𝑡) is noisy. Therefore, we use masked 𝐶2(𝑡) when the

power ratio is low. Figure 2 shows the denoising steps performed, where the mask itself (m(t) in panel d) and the 

masked VFCDM components (in the panels e-g) are plotted in red to make them more distinguishable.  

3. Results

The performance of the proposed denoising method was validated on the MIT-BIH arrhythmia database and the 

wearable armband ECG data obtained in our laboratory [26]. The performance of our proposed denoising technique 

on the MIT database will be compared with three other existing methods, namely NLM [15], wavelet soft thresholding 

[2], and EMD ASMF [8]. We define three performance metrics: SNR improvement (𝑆𝑁𝑅𝑖𝑚𝑝), percentage root



mean square difference (PRD), and mean square error (MSE), as these have been used as to evaluate other algorithms’ 

performance [6], [8], [15]. The performance parameters are defined as follows: 

𝑆𝑁𝑅𝑖𝑚𝑝 = 10 log10
∑ (𝑌𝑛[𝑛] − 𝑌[𝑛])

2𝑁
𝑛=1

∑ (𝑌𝑑[𝑛] − 𝑌[𝑛])
2𝑁

𝑛=1

 (7) 

𝑃𝑅𝐷 =  √
∑ (𝑌𝑑[𝑛] − 𝑌[𝑛])

2𝑁
𝑛=1

∑ 𝑌2[𝑛]𝑁
𝑛=1

× 100  (8) 

𝑀𝑆𝐸 = 
1

𝑁
∑(𝑌𝑑[𝑛] − 𝑌[𝑛])

2

𝑁

𝑛=1

 (9) 

where 𝑌𝑛[𝑛] denotes noisy ECG, 𝑌[𝑛] stands for the original ECG, 𝑌𝑑[𝑛] represents the denoised ECG, and N is

the length of the ECG signal. However, these performance metrics cannot be used to evaluate the denoising 

Fig. 2.  Denoising steps: (a) original ECG (subject 105) (b) ECG with AWGN noise at 10 dB SNR (c) first component of VFCDM 

decomposition (d) mask (𝑚(𝑡)) (e-g) masked VFCDM components 2 to 4 (h) final reconstructed signal 



performance on the armband ECG data since we did not add noise by ourselves, rather, the armband’s ECG contains 

the subject’s muscle artifacts.   

3.1.  Results on MIT-BIH Arrhythmia Database 

In order to conform with most of the existing denoising methods [6], [8], [15], we considered ECG recordings 

100m, 101m, 103m, 105m, 106m, 115m, 215m, and 230m from the MIT database for denoising performance 

comparison. We simulated different noise sources such as Gaussian white noise, powerline interference, and different 

colored noises (pink, blue, violet, and red) at 5 different SNR levels (-5 decibels (dB), 0 dB, 5 dB, 10 dB, 15 dB, and 

20 dB). The powerline noise was simulated by producing a sinusoidal signal of 50 Hz using the approach described 

in [1] and the colored noise was generated using the method presented in [36]. 

Fig. 3.  Blue noise removal in ECG: (a) original signal (record 101m from MIT database) (b) ECG with blue noise added at 

0 dB SNR, and denoised ECG using (c) wavelet soft thresholding (d) NLM (e) EMD-ASMF (f) proposed method 



A) Qualitative Analysis

We evaluate the quality of the denoised signal. Fig. 3 shows the denoised ECG signal using different methods on 

record 101m corrupted with blue noise at 0 dB SNR. Panel (f) of this figure reveals that the proposed denoising method 

provides discernible ECG waveforms while preserving ECG morphologies (i.e. P wave, T wave, and QRS complex) 

even at a low SNR.  Note that in some cases, P and T waves can be of low amplitude. Even in those cases, the low-

amplitude waves can be recovered, albeit this depends on the original state of the ECG morphology. A second 

denoising example is shown in Fig. 4, The ECG record 103m was corrupted with power line noise at -5 dB SNR. It 

can be observed that even at a very low SNR, the proposed method is able to obtain a relatively noise-free ECG 

segment while the EMD-ASMF method [8] shown in the panel (c) is unable to remove noise, and it distorts the QRS 

complexes at several time points. 

In addition to adding synthetic noise, we also evaluated the proposed method with often-encountered noise artifacts 

such as baseline wander, muscle noise, and electrode noise, which are all found in the NSTDB.  As can be seen from 

Fig. 5, the proposed method can effectively remove the baseline drift and muscle artifacts even at very low SNR (i.e. 

-5 dB). The performance of the method even on electrode noise is also reasonably good, given that electrode noise is

considered to be one of the most difficult to remove. 

Fig. 4.  Power line interference removal: (a) original signal (record 103 from MITDB) (b) ECG with added PLI at -5 dB 

SNR (c) denoised ECG using EMD-ASMF (d) denoised ECG using the proposed method 



The efficacy of the proposed method on ECG segments with arrhythmia is also visible from Fig. 5, which shows 

premature ventricular contraction (PVC) with bigeminy and trigemini patterns, and atrial flutter/fibrillation.  All ECG 

records with these arrhythmias were corrupted by AWGN at 0 dB SNR and then the proposed denoising was applied. 

As shown in Fig. 5, in each case the denoised and original ECG (prior to AWGN contamination) nearly overlap, 

which illustrates that the proposed denoising technique is also effective even for ECGs with arrhythmias. 

Fig. 5.  Proposed denoising applied on arrhythmic ECGs: (a) PVCs with bigeminy (record 106 from MITDB) (b) PVC 

with ventricular trigeminy (record 201 from MITDB) (c) Atrial Flutter/fibrillation (record 222 from MITDB) 



B) Quantitative Analysis

For quantitative analysis, we used the performance metrics defined in Eqs. (7-9). At a particular SNR level, a better 

denoising method is expected to provide higher 𝑆𝑁𝑅𝑖𝑚𝑝, and lower PRD and MSE.

Fig. 6 shows the 𝑆𝑁𝑅𝑖𝑚𝑝 for all methods, at different SNR levels of added GWN, for the ECG records considered.

It can be observed that the proposed denoising technique provided better 𝑆𝑁𝑅𝑖𝑚𝑝 at almost all SNR levels. Figs. 7

and 8 present a comparison of PRD and MSE results, respectively, for different denoising methods when GWN was 

added. These plots indicate that the proposed denoising method provides lower PRD and MSE than do the other 

methods considered.  

As mentioned earlier, the proposed method performed well in removing power line interference. This is also visible 

from the performance metrics as well. Figs. 9 and 10 show 𝑆𝑁𝑅𝑖𝑚𝑝 and PRD results, respectively, using different

denoising methods at different levels of power line noise. These figures show that the proposed denoising method has 



significantly higher 𝑆𝑁𝑅𝑖𝑚𝑝 and lower PRD when compared with the other denoising techniques. Fig. 11. shows a

comparison of MSE results using different denoising methods for different levels of power line noise. It should be 

Fig. 6.  Comparison of 𝑆𝑁𝑅𝑖𝑚𝑝 for different denoising

methods with Gaussian white noise contamination. 

Fig. 7.  Comparison of 𝑃𝑅𝐷 for different denoising 

methods with Gaussian white noise contamination. 

Fig. 8.  Comparison of 𝑀𝑆𝐸 for different denoising 

methods with Gaussian white noise. 

Fig. 9.  Comparison of 𝑆𝑁𝑅𝑖𝑚𝑝 with different denoising

methods for removal of power line    interference. 

Fig. 10.  Comparison of 𝑃𝑅𝐷 with different denoising 

methods for removal of power line interference. Fig. 11.  Comparison of 𝑀𝑆𝐸 of different denoising methods 

for power line interference. 



noted that the figure compares only two methods (the proposed and EMD-ASMF). The other methods were not used 

because of their high MSE values. 

TABLE I 

SNR IMPROVEMENT USING THREE DIFFERENT TYPES OF ADDITIVE COLORED NOISE 

SNR in DB 

Methods  Blue Noise 

20 15 10 5 0 -5

Proposed work 5.0944 9.3574 12.7024 14.8720 16.4165 18.4695 

EMD-ASMF 2.3103 6.7723 10.9340 14.2621 16.3226 17.2903 

NLM 4.6744 5.8900 6.8032 7.8960 9.3034 10.3026 

DWT 2.1952 5.0942 7.5028 9.6625 11.8605 14.2818 

Pink Noise 

Proposed work 0.4829 0.9825 3.4747 5.2371 6.4866 7.6391 

EMD-ASMF -1.0678 0.4826 1.1685 1.4352 1.5253 1.5213 

NLM 1.5708 2.1777 2.9078 3.6712 4.2021 4.1623 

DWT -1.6188 -0.5260 0.1608 0.6376 0.9905 1.2164 

Violet Noise 

Proposed work 5.4434 10.2839 14.8359 18.7309 21.5255 23.2784 

EMD-ASMF 2.4810 7.1487 11.8377 16.3480 20.1929 22.8851 

NLM 4.4247 5.5835 6.4479 7.4529 8.7023 9.5548 

DWT 3.5503 7.1352 10.2412 12.8445 15.1321 17.6662 

TABLE II 

PRD USING THREE DIFFERENT TYPES OF ADDITIVE COLORED NOISE 

SNR in dB 

Methods  Blue noise 

20 15 10 5 0 -5

Proposed work 6.3162 6.6447 7.6078 10.0169 15.2195 20.9380 

EMD-ASMF 7.8622 8.3507 9.1443 10.9798 15.3075 24.3119 

NLM 6.1321 9.0661 14.4856 22.7010 34.4293 55.1862 

DWT 8.0125 10.0851 13.5351 18.8132 25.9923 34.8458 

 Pink Noise 

Proposed work 10.8961 16.3299 21.4156 30.6806 47.5306 74.1099 

EMD-ASMF 11.8464 17.2420 27.6528 47.9171 84.0416 149.2678 

NLM 9.3620 14.2122 22.6752 36.9512 61.8522 110.3761 

DWT 12.1424 18.9401 31.0743 52.2812 89.2512 154.6188 

Violet Noise 

Proposed work 6.1790 6.2344 6.4198 6.9632 8.4366 11.8962 

EMD-ASMF 7.7177 8.0254 8.3177 8.7559 9.9083 12.8178 

NLM 6.0433 9.3884 15.0879 23.8854 36.8617 59.9528 

DWT 6.9331 8.0521 9.9215 13.0995 17.8841 23.9432 



Finally, we considered three different colored noise scenarios, namely blue, pink, and violet to contaminate the 

ECG signals at different SNR levels and evaluated the denoising performance of the all methods considered. The 

detailed results are shown in Tables I, II, and III, respectively. Table I presents the 𝑆𝑁𝑅𝑖𝑚𝑝 for all the denoising

techniques, at different levels of colored noise. It can be observed from Table I that for blue and violet noise, most of 

the denoising techniques performed well and provided higher 𝑆𝑁𝑅𝑖𝑚𝑝. The proposed method has the highest SNR

improvement at almost all SNR levels. In the case of pink noise, most of the methods failed to provide good denoising 

performance, which can be observed from the 𝑆𝑁𝑅𝑖𝑚𝑝 values. The table shows that even in the case of pink noise, the

proposed method provided reasonably higher 𝑆𝑁𝑅𝑖𝑚𝑝.The same conclusion can be drawn from Tables II and III,

which show the PRD and MSE values, respectively. The proposed method provided significantly lower PRD and 

MSE values when compared with the other existing techniques.  

diagnostic distortions (WEDD) metric, as proposed in [37].  WEDD is a standard and popular diagnostic distortion 

measure that has been used previously in a recent ECG denoising literature[38]. The lower the WEDD, the better the 

denoising performance. According to the criteria given in [37], the denoising performance can be ranked as (1) 

excellent (WEDD < 4.517%), (2) very good ( WEDD is within 4.517% - 6.914%), (3) good (WEDD is within 6.914% 

TABLE III 

MSE (× 10−3) ON THREE DIFFERENT ADDITIVE COLORED NOISE TYPES 

SNR in dB 

Methods  Blue Noise 

20 15 10 5 0 -5

Proposed work 0.058 0.063 0.079 0.130 0.259 0.508 

EMD-ASMF 0.067 0.075 0.089 0.129 0.253 0.643 

NLM 0.047 0.089 0.227 0.566 1.290 3.310 

DWT 0.071 0.110 0.197 0.381 0.731 1.310 

Pink Noise 

Proposed work 0.137 0.291 0.497 1.040 2.460 5.880 

EMD-ASMF 0.139 0.307 0.834 2.490 7.720 24.500 

NLM 0.095 0.278 0.566 1.500 4.200 13.400 

DWT 0.16 0.389 1.050 2.980 8.700 26.200 

Violet Noise 

Proposed work 0.054 0.057 0.060 0.068 0.096 0.177 

EMD-ASMF 0.064 0.069 0.075 0.083 0.105 0.176 

NLM 0.040 0.095 0.247 0.626 1.480 3.900 

DWT 0.055 0.072 0.107 0.185 0.344 0.623 

In addition to 𝑆𝑁𝑅𝑖𝑚𝑝 , 𝑃𝑅𝐷, and 𝑀𝑆𝐸 as performance metrics, we have also used the wavelet energy

- 11.125% ),  (4) not bad (WEDD is within 11.125% - 13.56%), (5) Bad (𝑊𝐸𝐷𝐷 >  13.56%),).



Table IV shows the denoising performance comparison in terms of WEDD at different levels of SNR. It can 

be seen from the table that the proposed VFCDM-based denoising results in smaller WEDD in most of the SNR cases 

(especially at higher SNR).  At 20 dB, the NLM has slightly lower WEDD than the proposed denoising method. 

However, this smaller WEDD is insignificant since the signal at 20 dB is not considered to be noisy. The proposed 

denoising method was able to remove the power line interference noise even at a very low SNR level (e.g. < 0 dB). 

In terms of WEDD, the proposed denoising method performs excellently at 20 dB, very good at 15 dB, 10dB, 5 dB, 

and 0 dB, and good at -5 dB, according to the defined criteria [37]. 

Finally, we analyzed the performance of the proposed denoising method on MIT-BIH’s NSTDB.  This database 

contains three different types of noise sources commonly encountered in practice, namely, baseline wander (BW), 

muscle noise (MN), and electrode motion artefact (EM) [27]. We added these three noise sources at 6 different SNR 

levels to the ECG records from the MITDB.  The performance of the proposed denoising method was evaluated in 

performance is shown in Table V.  As shown, the proposed method was able to remove the baseline wander even at 

which still falls in the “good” range (6.914% - 11.125%).  The proposed denoising method showed promising results 

in removing muscle noise as well. It should be noted that many of the previous studies [8], [39] simulated muscle 

noise using random noise generation, however, in this study, we used true muscle noise data.  Removing electrode 

noise is considered the most troublesome since it can mimic the appearance of ectopic beats and the noise frequency 

components’ dynamics significantly overlap with the ECG components [10]. The proposed denoising technique 

performed satisfactorily in removing electrode noise, as also shown in Table V. 

TABLE IV 

DIAGNOSTIC DISTORTION COMPARISON (WEDD) 

SNR in dB 

Methods AWGN 

20 15 10 5 0 -5 

Proposed work 
5.01% 6.79% 11.01% 15.28% 22.41% 43.21% 

EMD-ASMF 
6.87% 8.63% 12.34% 19.64% 33.27% 58.51% 

NLM 
4.68% 6.90% 11.21% 17.27% 25.74% 47.99% 

DWT 
8.51% 10.79% 18.08% 24.58% 38.79% 59.68% 

Power line interference (PLI) 

Proposed work 
4.13% 5.76% 5.78% 5.90% 6.28% 7.31% 

EMD-ASMF 
5.85% 6.00% 6.44% 7.57% 10.17% 15.57% 

terms of both non-diagnostic distortion (𝑆𝑁𝑅𝑖𝑚𝑝, 𝑃𝑅𝐷) and diagnostic distortion (WEDD).  The proposed method’s

very low SNR, providing higher 𝑆𝑁𝑅𝑖𝑚𝑝, and lower PRD and WEDD values.  The worst WEDD is 9.05% (at -5 dB)



TABLE V 

PERFORMANCE ON NSTDB 

SNR in dB 

Parameter Baseline wander 

20 15 10 5 0 -5

3.8918 7.8178 12.4083 16.5442 20.0098 22.44 

PRD 5.04% 6.77% 7.58% 8.37% 9.99% 11.43% 

WEDD 4.81% 5.01% 6.31% 6.83% 7.13% 9.05% 

Muscle Noise 

SNR_imp 4.1701 7.5015 9.7676 10.8946 12.5031 13.9935 
PRD 5.79% 7.44% 10.93% 15.71% 23.82% 41.05% 

WEDD 4.82% 6.52% 8.94% 13.72% 20.32% 35.67% 
Electrode Noise 

SNR_imp 3.8092 6.9039 7.8119 8.8452 9.3541 9.9778 
PRD 7.01% 9.81% 12.01% 21.09% 32.57% 56.91% 

WEDD 5.36% 8.61% 11.07% 19.85% 29.71% 48.67% 

The overall results suggest that the proposed method has superior denoising performance in almost all noisy 

conditions. The NLM [15] method is quite effective in removing GWN but it does not work well on other noise types 

such as PLI and colored noise. On the other hand, the EMD-ASMF [8] works well in removing power line noise, but 

its performance is poor with pink noise. DWT-based denoising [2] could not fully remove the noise when the ECG 

signal was highly corrupted.  Note that all of these compared methods performed poorly on NSTDB noise, which is 

why their results were not included in Table V. 

3.2. Results on the Armband ECG Data 

In order to evaluate the performance of the proposed denoising technique on the armband ECG, we randomly chose 

40 ten-second segments of both noisy and clean ECG channels from the armband ECG database [26].  Adjudication 

of clean versus noisy ECG data was determined visually by three of the authors (N.R., K.H.C., and J.L.) based on the 

presence of P, Q, R, S, and T waves in the ECG segments.  The denoising performance on the ECG segments was 

evaluated and compared in terms of accurate R peak detection and SNR improvement.  For R peak detection, we used 

the Pan and Tompkins R-peak detection algorithm [40] on the denoised sequences. Detected R peaks were visually 

inspected by three independent experts and the majority vote was taken as the correct decision. SNR improvement 

was calculated by subtracting the noisy signal SNR from the denoised signal SNR, as described in [23]. 

QRS complex detection on the representative segments of noisy armband and denoised armband ECG signals is 

shown in Fig. 12.  It can be observed that due to excessive EMG noise artifacts, there are several R peak misdetections 

𝑆𝑁𝑅_𝑖𝑚𝑝 



and false positives in the noisy armband data (upper panel), which are avoided in the denoised armband ECG (bottom 

panel). The summary of the denoising performance and comparison on the armband ECG data is provided in Table 

VI. As we can see from the table, the proposed denoising method provides the highest percentage (92.9577%) of

correctly detected R peaks. EMD-ASMF provides nearly the same percentage of correctly detected R peaks. However, 

this method requires an external QRS complex detector in order to preserve them in the process of denoising, and 

hence, the performance of EMD-ASMF is quite dependent on QRS complex detection algorithm. Table VI also shows 

that the proposed denoising method provides significantly higher SNR improvement (1.4595) when compared to that 

of the DWT and EMD-ASMF denoising methods. As stated earlier, the NLM has a parameter bandwidth which is 

dependent on the noise standard deviation, which is unknown in the noisy ECG data. Therefore, we could not compare 

the proposed denoising method with NLM for the armband ECG data. 

Figure 12.  QRS complex detection on (a) armband ECG segment with muscle artifact (b) the same segment, denoised. 

TABLE VI 
QRS DETECTION PERFORMANCE COMPARISON 

Denoising Method   Correctly detected R peaks 

DWT 79.4871% 

EMD-ASMF 92.8826% 

Proposed method 92.9577% 

𝑆𝑁𝑅𝑖𝑚𝑝 (𝑚𝑒𝑎𝑛 ± 𝑠𝑑) 

0.0569 ±  0.0376 

1.0568 ± 0.6342 

1.4595 ±  0.6326 



4. Discussion

The results presented in this paper demonstrate that the proposed denoising method provided better denoising 

performance when compared to other denoising techniques in a variety of noise-corrupted scenarios. We showed that 

the VFCDM-based subband decomposition of noisy ECG signals was more effective than EMD or wavelet-based 

denoising techniques in separating noisy components from the clean ECG. The proposed denoising method provided 

cleaner ECG segments and also retained ECG morphologies (i.e. P wave, T wave, and QRS complexes). 

We considered ECG signals corrupted with different types of noise at different levels of SNR to evaluate the 

denoising performance on a variety of noisy conditions. The results in this paper indicate that most of the existing 

methods considered in this paper did not perform adequately in removing noise from a wide range of sources. For 

example, NLM [15] provided good denoising performance in  AWGN noise but its performance on removing PLI and 

colored noise was found to be poor. The EMD-ASMF [8] technique provided poor denoising performance on ECG 

signals corrupted with pink colored noise while the wavelet soft thresholding method [2] could not remove noise 

entirely in most of the cases. 

The qualitative and quantitative analysis of the denoising results indicate that the proposed denoising technique can 

provide better-quality denoised ECG with higher SNRimp as well as lower PRD and MSE values than the existing

denoising techniques considered. In ECGs contaminated with AWGN, the proposed denoising method provided 

higher SNR_imp, and lower PRD and MSE at almost all SNR levels than NLM, EMD-ASMF and DWT-based 

techniques. At 20 dB SNR, the SNR improvement using the NLM method [15] was slightly higher than our proposed 

method, however, this improvement was not significant because it had negligible effect on the ECG quality. The same 

was true for PRD and MSE as well.  

The denoising performance of our proposed method on the PLI-corrupted ECG signals was found to be better than 

any of the methods compared. The sub-band decomposition of the noisy signals enabled the noise-free reconstruction 

of the ECG at a low SNR level. The SNRimp resulting from the proposed denoising method was significantly larger

than that of the existing methods. Moreover, the PRD and MSE values were almost constant across different levels of 

SNR, which indicates that the proposed method can remove PLI noise almost equally good at different levels of SNR. 



Even though the EMD-ASMF method can remove PLI to a great extent, this method failed to retain the QRS 

amplitudes, especially at lower input SNR levels. Moreover, it was not able to remove noise components, especially 

at low SNR levels. 

Similar to the AWGN and PLI cases, the proposed method also showed superior denoising performance on ECGs 

corrupted with colored noise, when compared to the existing denoising techniques. While the other methods showed 

low SNRimp and higher PRD and MSE values for the ECGs contaminated with pink noise at low input SNR levels, in

this case the proposed method provided sufficient SNRimp, and reasonable PRD and MSE values.

The major advantage of the proposed method is that it has been tested using different noise sources that are often 

observed in practice, such as baseline wander, muscle noise, and electrode noise, whereas most of the existing 

denoising methods were evaluated using synthetic noise. The proposed method was shown to remove baseline wander 

even at very low SNR levels without any significant distortion of the ECG morphologies (WEDD is a maximum of 

9.05% at -5 dB SNR). Sufficiently good results were obtained in the case of muscle noise as well.  Moreover, the 

application of the proposed denoising algorithm on the wearable armband ECG data which are contaminated with 

muscle artifacts showed significantly better performance when compared to the other methods considered in this study. 

The proposed method showed a moderate performance in the case of electrode noise situations. This is because 

electrode noise can mimic the appearance of ectopic beats and the dynamics of the noise are highly overlapped with 

the ECG components. Thus, removing electrode noise is known to be difficult. 

Finally, the application of the proposed denoising method on the noisy armband ECG data did improve the QRS 

complex detection accuracy. This result indicates that the proposed denoising method can significantly enhance the 

accuracy of R-R interval based cardiac arrhythmia (e.g. atrial fibrillation (AF) [41]) detection. 

5. Conclusions

We presented a novel ECG denoising technique using a high time-frequency resolution method. The proposed 

method was validated on the standard MIT-BIH arrhythmia database with a variety of noise (i.e. AWGN, colored 

noise (blue, pink, and violet), PLI, baseline wander, electrode noise, and muscle artifacts) at different SNR levels, and 

its performance was compared with three other existing denoising methods. In most of the noisy scenarios, the 



proposed method showed better denoising performance over the other methods. The application on the arrhythmic 

ECGs suggest that the proposed denoising method is equally applicable for both regular and arrhythmic ECGs. 

Finally, the proposed method was successfully applied to the armband ECG signals and it was able to remove 

significant EMG artifacts, consequently providing more accurate R-peak detection.  The QRS complex detection 

results on the denoised armband data demonstrate that the proposed denoising method could significantly enhance the 

potential of the armband device to be used for continuous monitoring of AF, and without the skin irritation that has 

been a problem for Holter monitors because of their hydrogel electrodes. 
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