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Abstract 

Background and Objective: Accurate detection of breast masses in mammography images 

is critical to diagnose early breast cancer, which can greatly improve the patients’ survival 

rate. However, it is still a big challenge due to the heterogeneity of breast masses and the 

complexity of their surrounding environment.  

Methods: To address these problems, we propose a one-stage object detection architecture, 

called Breast Mass Detection Network (BMassDNet), based on anchor-free and feature 

pyramid which makes the detection of breast masses of different sizes well adapted. We 

introduce a truncation normalization method and combine it with adaptive histogram 

equalization to enhance the contrast between the breast mass and the surrounding 

environment. Meanwhile, to solve the overfitting problem caused by small data size, we 

propose a natural deformation data augmentation method and mend the train data dynamic 

updating method based on the data complexity to effectively utilize the limited data. Finally, 

we use transfer learning to assist the training process and to improve the robustness of the 

model ulteriorly.  

Results: On the INbreast dataset, each image has an average of 0.495 false positives whilst 

the recall rate is 0.930; On the DDSM dataset, when each image has 0.599 false positives, 

the recall rate reaches 0.943.  

Conclusions: The experimental results on datasets INbreast and DDSM show that the 

proposed BMassDNet can obtain competitive detection performance over the current top 

ranked methods. 

 

Keywords: Breast mass detection; anchor-free architecture; image enhancement method; 

data augmentation method; training method. 



 

 

1 Introduction  

Breast cancer is currently the most common cancer in the global female population [1]. 

According to statistics, in 2018, the number of cancer patients worldwide exceeded 18.1 

million, of which the number of breast cancer patients achieved 3.8 million, accounting for 

11.6% in total [2]. Clinical experience has shown that the diagnosis of early breast cancer 

is critical for improving the patients’ survival rate [3–5]. Because of the clear imaging and 

sensitivity to early breast masses, mammography images have become the preferred 

imaging diagnostic method [6]. However, current examination of mammography images is 

mainly dependent on the subjective experience of physicians, which would lead to the 

missed detection and misdetection due to visual fatigue and loss of attention [7–9]. To 

effectively avoid the cumbersome manual labeling and the variability of detection results, 

the development of a robust breast mass automatic detection system has important clinical 

significance [10]. 

However, the heterogeneity of the breast mass and its similarity to the visual 

characteristics of surrounding tissue, is very detrimental to the development of a robust 

detection model. As shown in Fig. 1, breast mass (BMass) presents a great differences in 

either size, shape, or intensity in different cases. For example, the BMass’s size in Fig. 1(d) 

is very large, the BMass in Fig. 1(b) has large intensity, whilst the size and intensity of 

BMass in Fig. 1(a, e) are relatively small. Furthermore, from Fig. 1 (c, e), it can be found 

that the BMass and other tissues, as the nipple of Fig. 1 (c), or the background in Fig. 1 (e) 

have similar visual features. It should be noted that since the original mammogram is very 

large, in order to better observe the BMass region, only the rectangular region corresponding 

to the breast is shown here. 

To solve the above problems, we conduct BMass detection based on the one-stage 

object detection architecture FSAF [11] proposed by Zhu et al. in 2019, which is called as 

the Breast Mass Detection Network (BMassDNet). Although BMassDNet does not make 

significant improvements in the network architecture, based on the characterization of 

BMass in the mammography image, we proposed a normalization method and a data 

augmentation method to improve the detection performance. Also, to make better use of 

limited training data, we have proposed a training method for data dynamic updates during 

training process. In general, BMassDNet can detect different types of BMass lesions and 

obtain excellent detection performance. Our technical contributions in this work can be 

concluded into the following four aspects. 



 

 

(1) To the best of our knowledge, this paper is the first to apply FSAF structure to 

breast mass detection. Besides, we have further improved the FASF architecture through 

horizontal connection and upsampling. 

(2) To alleviate the problem that the BMass is similar to the intensity of the surrounding 

tissue, we propose a new normalization method and image enhancement method. They are 

combined to stretch the intensity on original image so as to make the BMass border clearer. 

(3) Due to the limitation of the size of data set, it is difficult for the trained model to 

detect difficult samples. Thus, we propose a new data augmentation method by simulating 

the irregular change process of the diseased tissue. 

(4) To make more effective use of limited training data, we propose a dynamic update 

training method based on the sample complexity. Moreover, to further improve the 

generalization ability of the model, we also adopted a transfer learning method to assist the 

model training. 

(a) (e)(b) (c) (d)

 

Fig. 1. Several typical examples of BMass, where the red box indicates BMass lesions and the yellow 

box indicates non-BMass tissues. 

2 Related work 

As early as the end of the 1960s, relevant personnel researched the detection and 

diagnosis of breast cancer [12]. With the development of medical image digitization 

technology and the continuous improvement of computer performance, from the early 1990s, 

academic and business circles have set off a research climax of computer-aided detection 

and diagnosis technology for breast cancer [13,14]. We roughly divide these breast mass 



 

 

detection methods into two categories, one is the traditional detection method, and the other 

is the deep learning-based detection method. 

Although the traditional BMass detection method has certain limitations, it has made 

some progress [15–18]. For example, based on threshold segmentation [14], region growing 

[19,20], watershed [20,21], edge detection [22,23]. Specifically, Dubey R B et al. used a 

horizontal image set and a watershed two traditional image segmentation algorithms to 

segment the BMass, achieving an accuracy of 82% [21]. Xu et al. first preprocessed the 

mammography image, then extracted the boundary using the canny operator, and finally 

used the dynamic contour algorithm to post-process the boundary. Although the detection 

effect has improved, the time consumption is more obvious [22]. De Sampaio W B et al., 

considering the difference between dense and non-dense breast images, an adaptive 

algorithm is proposed to distinguish them, and then the genetic algorithm is used to segment 

BMass [24]. 

With the rapid development of deep learning in recent years, many CNN-based 

methods have also achieved good results in breast mass detection [25–29]. For example, 

Ribli D et al. first segmented the breast from the mammography image and then used the 

two-stage object detection algorithm Faster RCNN for BMass detection [30]. Akselrod-

Ballin A et al. first preprocessed the image, then divided the dataset into three groups, benign 

BMass, malignant BMass, and others, and then used three modified Faster RCNN models 

to detect them separately [31]. Carneiro N D G et al. considered the problem of the large 

difference in the size of breast mass, proposed a multi-scale deep belief network to perform 

coarse detection on BMass, and used the Gaussian mixture model to classify candidate 

regions to reduce false positives [32]. To adapt to the smaller BMass lesions in the breast, 

Jung H et al. used RetinaNet, which is excellent for small object detection on ImageNet, as 

the basic model. Then, through various data augmentation methods such as rotation, flipping, 

and trimming, the detection performance of the small BMass is improved [33]. 

The detection method used in this paper has the following differences from the 

previous methods. 1) Adopting the new detection architecture FSAF based on anchor-free; 

2) Proposing a new normalization method and combining it with the adaptive histogram 

equalization method to improve the contrast between BMass and surrounding tissue; 3) For 

the BMass detection task, we propose a new data augmentation method; 4) To make better 

use of limited training data, an effective new training method is proposed. 

3 Methods  



 

 

The BMassDNet detection architecture proposed in this paper is divided into three 

modules, namely image preprocessing, data augmentation, and BMass detection. The 

workflow is shown in Fig. 2. In general, preprocessing of the original image is necessary 

because of the large amount of black background in the mammography image and the low 

contrast between the tissues in the breast. Then, the preprocessed image is sample-expanded 

by the proposed data augmentation method to solve the overfitting problem caused by the 

small dataset. Finally, the object detection method based on the FSAF architecture is used 

to detect the BMass to improve the robustness of the detection system. 

 
Fig. 2. Schematic diagram of the workflow for BMass detection. 

3.1  Image preprocessing method 

Fig. 3(a) and Fig. 3(b) show representative examples of the two datasets, INbreast and 

DDSM, respectively. The lower right corner is a partial enlarged image of the BMass region 

and a corresponding BMass mask image. Through observing the dataset, it can be found 

that there are many BMass lesions embedded in the glandular tissue or dense block of the 

breast, and BMass is very similar to these tissues, resulting in the BMass boundary being 

extremely unclear. 

To solve the above problem, we first need to segment the breast and then normalize the 

rectangular region (ROI) where the breast is located by the proposed truncated 

normalization method. Thereafter, the ROI image is intensity stretched using adaptive 

histogram equalization to increase the contrast between BMass and other tissues. However, 

since adaptive histogram equalization is a nonlinear transformation method, it will change 

the original distribution of the image, which will have a certain impact on the learning of 

the model. To avoid this problem, we use the normalized and intensity stretched images 



 

 

together as input to the deep learning model. 

Dense block
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Fig. 3. Original mammographic images of INbreast and DDSM. 

3.1.1  Segmentation of the breast 

Since the boundary between the breast region and the black background region is very 

obvious in the mammography image, only a simple threshold method is enough to segment 

the breast. Specifically, we first perform Gaussian filtering on the original image; then 

segment the breast using the OTSU threshold method [34]. Finally, due to the existence of 

information such as nameplates, the image after OTSU segmentation may contain multiple 

connected regions, but since the area of the breast is generally the largest, we choose the 

largest connected region as the mask image of the breast. 

3.1.2  Truncation normalization method 

Although we removed most of the black background, the ROI image still has the 

problem of polarization of the intensity distribution. As shown in Fig. 4, the ROI image still 

has some black background, and the intensity of the truly effective breast region is 

compressed to less than one-third of the total distribution interval. Therefore, if the ROI 

image is directly normalized, it is likely to have an adverse effect on the detection of BMass. 
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Fig. 4. Intensity histogram of ROI image. 

To solve this problem, this paper proposes an adaptive normalization method called 

truncation normalization. Its basic idea is: according to the intensity histogram of the ROI 

image, select a pair of effective maximum intensity and minimum intensity, and then use 

them to cut off the intensity of the image, and then perform normalize operating. This will 

ensure that the breast region has a sufficient range of intensity distribution. 

The specific steps of the method are as follows: 

(1) Obtain the mask of the breast, and the method in Section 3.1.1 can be used directly 

here. 
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Fig. 5. The intensity distribution of a breast image without a background. 

(2) Use the breast mask to extract the intensity image corresponding to the breast region, 

and then find the intensity distribution, as shown in Fig. 5. It can be seen that although we 



 

 

have removed all non-breast regions, there are still a few pixels with very small intensities. 

Moreover, the intensity range of the breast region still occupies less than one-half of the 

distribution interval. 

(3) Sort the intensity of the breast, and then select 5% at the small end position as the 

minimum intensity Pmin, and select 1% of the large value end position as the maximum 

intensity Pmax. Then, the intensity P of each pixel in the image is subjected to the truncation 

processing as shown in Eq. (1). In this way, the influence of noise and a few abnormal values 

in the breast image can be avoided to a certain extent, and the original intensity distribution 

of the effective breast region is retained to the greatest extent. 

min,        min        

,      ,        min max

max,        max

P if P P

P P if P P P

P if P P




  
 

 (1) 

(4) The intensity of each pixel of the truncated breast image is normalized, and the 

calculation formula is as shown in Eq. (2). 

𝑃 =
𝑃 − 𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
 (2) 

Fig. 6 shows the effect of truncation normalization, in which Fig. 6(c) and Fig. 6(a) are 

the normalized image and its intensity distribution, respectively, and Fig. 6(b) is the original 

image. It can be seen from Fig. 6 that after the truncated normalization process, the intensity 

of the breast region has covered the entire interval, and the boundary of the BMass becomes 

clearer than the original image. 
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Fig. 6. The effect of truncating normalization. Among them, Fig. 6(c) and Fig. 6(a) are the normalized 

image and its intensity distribution, respectively, and Fig. 6(b) is the original image. 



 

 

3.1.3  Image enhancement method 

Both the traditional lesion detection method and the deep learning-based lesion 

detection method require significant differences between the object and the background, 

that is, the object has a clear boundary. Due to the adhesion of some of the BMass to the 

dense block or glandular tissue in the mammography image, their boundaries are very 

blurred. The main purpose of our prior use of truncated normalization is to preserve the 

intensity difference of the breast region to the greatest extent. It can only alleviate the 

problem of unclear boundaries to some extent. Therefore, in addition to the truncating 

normalization of ROI images, we also need to use more effective image enhancement 

methods to improve the contrast between BMass and other tissues. 

Adaptive Histogram Equalization (AHE) algorithm can achieve good results in both 

natural image and medical image enhancement, but the AHE algorithm has such a problem. 

That is, when the intensity of a certain region is relatively uniform, the histogram of the 

region will have an intensity peak, and after the equalization, the intensity originally in a 

narrow interval will be stretched to the entire intensity range, thereby introducing noise. 

This is not what we expected. Therefore, this paper uses AHE's improved algorithm, 

Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm [35] to enhance 

ROI images. 

(a) (b) (c) (d) (e)

 

Fig. 7. The comparison of the original image, the truncated normalized image, and the enhanced image. 

The lower right corner of the image is the intensity histogram corresponding to the breast region, where 

(a) represents the original image; (b) represents the image after truncation normalization; (c, d) represents 

the enhanced image when the clip-limit is 0.01 and 0.02, respectively. (e) represents the synthesized 

images of (b), (c) and (d). 



 

 

Fig. 7 shows the original image, the truncated normalized image, and the enhanced 

image, respectively. It can be seen that the BMass boundary is very blurred in the original 

image, especially the lower side of BMass shows almost an inseparable state with the 

glandular tissue. The truncated normalized image improves the problem to some extent. The 

upper boundary of BMass becomes clearer, but the lower boundary is still blurred. The 

clarity of the boundary of the BMass enhanced by CLAHE has been further improved. To 

ensure that the model can fully extract effective features, we use (b), (c), and (d) as three 

channels of the color image to synthesize the color image shown in (e) and use it as the input 

image of the deep learning model. 

3.2  Natural deformation data augmentation method 

Data is the key to deep learning models, that is, the performance of deep learning 

models is largely dependent on the size and diversity of the dataset. Medical images have 

very limited access to data compared to natural images. Moreover, the label needs to be 

labelled by a professional radiologist, and even a biopsy is needed to give an accurate label, 

so the size of the medical image dataset is generally small. In particular, the distribution of 

lesions in medical images is sparse, resulting in an imbalance in the number of positive and 

negative samples in the data set. Therefore, increasing the number and diversity of positive 

samples has become a key to deep learning models in medical imaging applications. 

Algorithm 1: natural deformation data augmentation method 

Input: Original image and mask image of BMass 

Output: The deformed image. 

Step1： The original image is decomposed into a BMass image and a background image 

according to the BMass mask. 

Step2： The same random deformation is performed on the BMSs image and the 

background image, respectively, using the elastic deformation algorithm [36]. 

Step3： The deformed BMass image is filled into the original background image, and the 

mask of the residual region is calculated. 

Step4： The corresponding region image (ResImg) is extracted from the deformed 

background image according to the mask of the residual region, and ResImg is filled 

to the corresponding position of the output image of Step3. 

Step5： Use the stain filling algorithm [37] to repair the BMass edge to get the output image. 

Traditional data augmentation methods include random rotation, random translation, 

mirroring, and random clipping. Such methods can expand the sample size of the dataset to 



 

 

a certain extent, but cannot alleviate the problem of sparse positive samples in medical 

images. Therefore, this paper proposes a data augmentation method based on local elastic 

deformation, which we call the "natural deformation data augmentation method". The main 

idea is that for an image containing BMass, only the BMass is elastically deformed to 

simulate the natural change of BMass, and the local background region in contact with 

BMass also changes. The algorithm flow of natural deformation is shown in Algorithm 1. 

As shown in Fig. 8, the processing results of the respective steps of Algorithm 1 are 

given. Since the resolution of the mammography image is high, only the image of the region 

near the BMass is shown here. 

Input image Mass mask Background (BG) image Mass image Deformed BG image Deformed mass image

Output image Deformed mass mask Step4 output Residual region image Step3 output Residual region mask  

Fig. 8. Results for each step in Algorithm 1. 

Fig. 9 shows the effect of natural deformation of several images randomly selected from 

the dataset, where O1-O6 is the original image and D1-D7 is the natural deformed image. 

It can be seen from Fig. 9 that the image that has undergone natural deformation is relatively 

natural, and there is no obvious trace of deformation, which achieves the intended purpose. 

O1 O2 O3 O4 O5 O6

D1 D2 D3 D4 D5 D6

 

Fig. 9. Visual representation of natural deformation. 



 

 

 Though the subtle change in such local deformation is difficult to discern by the human 

eye, it may be easily recognized by the computer. In the process of data augmentation, we 

not only apply Algorithm 1 to the region where BMass is located but we also randomly 

apply it to other regions on the breast. In this way, during the continuous learning process, 

the machine will think that the change caused by this deformation is inherent to the real 

sample, not artificial, which will indirectly make the expanded sample more natural and real. 

Also, we will also verify the necessity of this practice through experiments. See Section 4.4 

for specific experiments. 

3.3  Detection of breast mass 

At present, the methods of deep learning in the field of object detection are mainly 

divided into two categories: two-stage and one-stage. The two-stage object detection 

method first uses a region proposal network (RPN) to extract the suspicious target region 

and then extracts the ROI corresponding to the suspicious region from the feature map for 

classification and regression. The one-stage object detection method does not use RPN to 

extract the ROI of the suspect region, but each feature value on the original feature map is 

classified and regressed. Among them, the range of images that can be seen by each feature 

value is determined by the receptive field of the model. 

The BMass detection based on mammography images studied in this paper is different 

from the target detection in natural images. Specifically, in the natural image, the object and 

the background are independent of each other, and the carcinogenesis of BMass in the 

mammography image is bound to cause lesions in the surrounding tissue. That is, the 

background information around the BMass can provide additional features to help the model 

categorize more accurately. If a two-stage detection architecture is used, the ROI extracted 

by the first stage RPN will limit the effective range of the second stage feature extraction 

and will lose the spatial position information of BMass in the breast. This makes it difficult 

to distinguish between lymph nodes, dense blocks, and the like that are morphologically 

similar to BMass. Therefore, we believe that the one-stage object detection method is more 

suitable for BMass detection tasks. 

3.3.1  Micro-modified FASF architecture 

There are two difficulties in using the convolutional neural network for object detection. 

Firstly, the classification of objects requires abstract deep features, but the location 

information of deep features is not accurate. Secondly, the size of the object in the image 

varies. This paper uses the one-stage object detection architecture FSAF with a feature 

pyramid network (FPN) structure to solve the above problems. The FSAF [11] detection 



 

 

architecture proposed by Zhu et al. is an improved version of the current popular RetinaNet 

[38] detection architecture. It is mainly composed of feature extraction network, FPN, 

anchor-based classification regression network, and anchor-free feature selection module. 

 

Fig. 10. Network architecture diagram of the micro-modified FSAF detection model 

 Fig. 10 shows a network architecture diagram of the FSAF detection model used herein. 

Among them, {C1~C7} represents the output feature map of each convolution operation in 

the feature extraction network; {F3~F7} represents the feature map in the FPN; {P3~P7} 

represents the input of the anchor-based branch and the anchor-free branch. Different from 

the original FSAF detection architecture, we did not directly output {C6, C5}, but generated 

{P6, P5} according to the generation method of {P3~P4}. That is, we combine low-level 

features and high-level features to better detect objects using horizontal connection and 

upsampling. 



 

 

3.3.2  Dynamic update training method 

Due to the limited number of samples in the training set, it is difficult to train a robust 

detection model. Therefore, we use the idea of transfer learning to alleviate this problem. In 

other words, this paper uses the parameters trained on ImageNet by the ResNet101 classifier 

as the initialization parameters of the FSAF feature extraction network. Among them, the 

FPN and classification regression networks of the FSAF detection architecture do not have 

pre-training weights and need to be trained from the beginning. 

Besides, to make better use of limited training data, we need an efficient training 

method. We know that the validation set is generally used to reflect the performance of the 

model during training, so as to guide the setting of the relevant hyper parameters, it is not 

directly involved in the training of the model. For the medical image field, where data size 

is scarce, this approach is very extravagant. To solve the above problems, Jiao Z et al. 

proposed a dynamic update training strategy [39]. Its main idea is to add the samples of the 

detection errors (hard samples) in the validation set to the training set, and randomly select 

the same number of samples from the training set into the validation set, and then iterate 

until the performance of the validation set is no longer improved. However, there is a 

problem with this strategy, that is, when updating the dataset, all the hard samples are added 

to the training set, resulting in too many hard samples in the training set, and the validation 

set is almost all simple samples. This makes the validation set not well reflect the 

performance of the model, resulting in instability of the training process. 

 

Hard sample

Random selection

Train Set
validation 

set

difficulty level
High Low

Sort

 
Fig. 11. Schematic diagram of the work of the dynamic update training method based on the difficulty 

level of the sample. 



 

 

Given the above problems, this paper proposes a dynamic update training method based 

on the difficulty level of the sample. The basic idea is that, at each iteration, the hard samples 

in the validation set are sorted according to the degree of difficulty, and then a certain 

number of hard samples are selected and exchanged with the samples in the training set. Fig. 

11 shows a workflow diagram of the proposed training method. 

As shown in Fig. 11, in the training process of the model, the training data is first 

divided into a training set and a validation set according to a certain ratio, and then iterative 

training is started. Then, according to the loss value of the hard samples, the values are 

sorted from small to large, and the three samples with the highest loss value are selected to 

join the training set, and three samples are randomly selected from the training set to be 

added to the validation set. The condition for the end of the iteration is to stop the update of 

the data when no hard samples are found in the validation set. Finally, all the samples in the 

validation set are added to the training set, and the training will continue for ten epochs with 

a smaller learning rate (10% of the initial learning rate) to complete the final training of the 

model. 

4 Experiment and results 

Below we will explain the data used, evaluation criteria, and experimental details. 

4.1  Data 

The experiments carried out in this paper are mainly based on the high-quality public 

dataset INbreast [40]. The INbreast dataset is from the Porto Breast Central Hospital in 

Portugal and contains 115 female mammography images. Since a breast generally 

corresponds to two views, an MLO (mediolateral oblique) view, and a CC (craniocaudal) 

view, the theoretical INbreast dataset should contain 460 images. But since 25 of the 115 

women had undergone mastectomy, which resulted in only two images for these individuals, 

the INbreast dataset had only 410 images. A total of 107 images of the 410 images contained 

BMass lesions, of which 35 were BMass malignant lesions, and 72 were BMass benign 

lesions. Also, to verify the robustness of the model, we conducted related comparison 

experiments on the CBIS-DDSM dataset [41]. Finally, we use a 2-fold cross-validation 

method to evaluate the performance of the model based on the number of views for each 

breast. 



 

 

4.2  Evaluation criteria 

To quantitatively measure the performance of the proposed BMass detection method, 

the true positive rate (TPR) and the number of the false positive per image (FPPI) were used 

as the evaluation indicators of the detection model. 

For the detection task of BMass, the predicted value of the model is the bounding box 

and confidence (Conf) of all suspicious lesions, the bounding box indicates the position of 

the suspected lesion in the image, and the confidence indicates the probability that the lesion 

belongs to BMass. In addition, this paper determines whether the prediction box given by 

the model can be accepted according to the judgment criteria given in Table 1. Among them, 

IOU (Intersection Over Union) indicates the accuracy of detection, Conf_TH indicates the 

minimum value of Conf when the model considers that the current lesion belongs to BMass, 

and IOU_TH indicates the minimum value of IOU when the model considers that the 

detection is correct. Note that the IOU_TH is fixed at 0.5 in the experiment. If the Conf of 

the prediction box is greater than or equal to Conf_TH, and the IOU of the prediction box 

and the GT (Ground True) is greater than or equal to IOU_TH, the prediction box is 

determined to be true positive (TP). Similarly, FP indicates a false positive, FN indicates a 

false negative, and TN indicates a true negative. 

 
Table 1. Decision table for the correctness of the prediction box. 

 IOU ≥ IOU_TH IOU < IOU_TH 

Conf ≥ Conf_TH TP FP 

Conf < Conf_TH FN TN 

The calculation formulas for TPR and FPPI are as shown in equations (3) and (4). 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

𝐹𝑃𝑃𝐼 =
𝐹𝑃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠
 (4) 

4.3  Experimental details 

The detection task of the lesion in the medical image generally requires the model to 

have a high recall rate. Therefore, in the training of the BMass detection model, only the 



 

 

image containing BMass is selected. To alleviate the model over-fitting problem, in addition 

to using the proposed natural deformation data augmentation method, we also use six 

traditional data augmentation methods such as random rotation (-0.1o~0.1o), random 

translation(0~0.1), random shear (-0.1o~0.1o), random scaling (0.9~1.1), horizontal flip, and 

vertical flip.  

Since FSAF is a fully convolutional neural network, the size of the input image is not 

fixed. In training and testing, we first scale the shorter side of the image to 800 pixels; then 

scale the long side to the corresponding size according to the aspect ratio of the original 

image, while limiting the size of the long side to no more than 1333 pixels. The other hyper 

parameters during training are set, the total number of training epoch is 50; since the size of 

the input data varies, the batch size is set to 1; the initial learning rate is 1e-5, and if the loss 

values of two consecutive generations are not decreased, the learning rate is reduced to the 

original 10%; Adam optimizer has a gradient cutoff of 0.001. 

4.4  Overall performance 

To more intuitively observe the overall performance of the proposed breast mass 

detection method, as shown in Fig. 12, we plotted the FROC curve corresponding to 

BMassDNet on the INbreast and DDSM datasets.  

 

Fig. 12. FROC curve of BMassDNet on INbreast and DDSM. 

By observing Fig. 12, it is found that when the number of false positives of each image 

is close to 0, the performance of BMassDNet on the INbreast dataset is better than DDSM. 



 

 

When the number of false positives per image exceeds 0.25, the true positive rate of 

BMassDNet on both datasets reaches 90%. Besides, with the increasing number of false 

positives per image, the performance of BMassDNet on INbreast has almost stabilized, but 

the performance on DDSM is still slowly improving. Overall, the breast mass detection 

network based on the anchor-free architecture can be adapted to the breast mass detection 

task to a certain extent. 

5 Discussion 

Below we will explain the ablation study, and an empirical comparison. 

5.1  Ablation study 

To verify the effectiveness of the components in the BMassDNet detection architecture 

proposed in this paper, we designed the ablation experiments as shown in Table 2. Table 2 

shows the results of removing only one component on the final used BMassDNet 

architecture. Overall, the data comparison of the first eight rows (except the header) in Table 

2 verifies the effectiveness of the components in the BMassDNet architecture. The 

comparison of the data in the last four rows of Table 2 can intuitively explain the reason for 

choosing FSAF instead of using other one-stage object detection networks. The details are 

as follows. 

(1) The effectiveness of the TNM 

By comparing the first two sets of data in Table 2, it can be found that after removing 

the TNM, the TPR is reduced by nearly one point, and the FPPI is also increased by nearly 

four times. This result shows that we validate the effectiveness of the proposed truncation 

normalization method from an experimental point of view. 

(2) The effectiveness of the IEM 

Comparing the data of the first and third sets of Table 2, it can be seen that after removing 

the IEM, the TPR is reduced by 0.9% and the FPPI is increased by 0.42. That is, the overall 

performance of the model has decreased, which illustrates the necessity of intensity 

stretching of the original image. 

(3) The effectiveness of the NDDA 

Comparing the data of the first and fourth groups of Table 2, it can be seen that after 

removing the NDDA-expanded sample, the TPR is significantly reduced and the FPPI is 



 

 

greatly increased, which fully reflects the effectiveness of the NDDA. That is, it can 

significantly improve the generalization performance of the model. 

(4) The effectiveness of the NDDA_NMR 

By comparing the data from the first and fifth sets, it can be found that although the 

natural deformation in the non-BMass region has little effect on the TPR, the FPPI is 

reduced by 0.493. This confirms our analysis in Section 3.2 that natural deformation in the 

non-BMass region facilitates model learning. It should be noted that when Algorithm 1 is 

executed in the non-BMass region, the input mask is a local region that needs to be specified 

for natural deformation. 
 

Table 2. Ablation experiment. Note that, "TNM" indicates the truncation normalization method; "IEM" 

indicates image enhancement method; "NDDA" indicates the natural deformation data augmentation 

method; "NDDA_NMR" indicates that natural deformation is performed only in the local region where 

BMass is located, and natural deformation is not performed in the non-mass region.; "DUTM" indicates 

the dynamic update training method; "PreWeight" indicates the weight of training on ImageNet during 

transfer learning; "NMS" represents the non-maximum suppression. 

(5) The effectiveness of the DUTM 

Comparing the data of the first and sixth groups, the proposed DUTM not only increases 

the TPR by 2.6% but also reduces the FPPI by 0.21, which is a good proof of the 

effectiveness of the proposed training method. 

Methods TPR FPPI 

BMassDNet 0.913 0.256 

BMassDNet – TNM 0.904 1.009 

BMassDNet – IEM 0.904 0.676 

BMassDNet – NDDA 0.861 1.493 

BMassDNet – NDDA_NMR 0.913 0.749 

BMassDNet – DUTM 0.887 0.466 

BMassDNet – PreWeight 0.652 3.546 

FSAF [11] 0.913 0.512 

YOLO [42] 0.800 0.358 

RetinaNet [38] 0.913 0.524 

FCOS [43] 0.904 0.480 



 

 

(6) The effectiveness of the PreWeight 

Comparing the data of the first and seventh groups, it can be seen that loading the 

weights already trained on ImageNet can greatly improve the performance of the detection 

model. Specifically, the TPR increased by 0.261 and the FPPI decreased by 3.29. 

(7) The effectiveness of the Micro-modified FASF 

Comparing the data of the first and eighth sets, we can see that our modification of the 

original FASF architecture is beneficial to the detection of BMass. Although the TPR has 

not improved, the FPPI has been reduced by half, which explains to some extent that our 

revision of the FSAF architecture is correct. 

(8) The reason for choosing the FSAF structure. 

In Section 3.3, we explain why we chose a one-stage object detection network. Here, 

we will explain the reasons for choosing the FSAF architecture through experimental 

comparison. Specifically, in addition to the FSAF architecture, we have implemented three 

popular one-stage object detection architectures, namely YOLO, RetinaNet and FCOS. By 

comparing the last four lines of data, the detection based on the FSAF architecture is the 

best. Although YOLO has the lowest FPPI, its corresponding TPR is also relatively low, 

which is not desirable in medical applications. For the sake of fairness, the last four lines 

are identical except for the network architecture. 

5.2  Experimental comparison 

To verify the superiority of the proposed BMassDNet, we compared it with the BMass 

detection method published in recent years. Table 3 shows the experimental comparison of 

BMassDNet on the two datasets of INbreast and DDSM. It is not difficult to see from Table 

3 that since the INbreast data set is publicly available in 2012, and deep learning is beginning 

to flourish at this time, the BMass detection method developed on INbreast is rarely based 

on traditional methods. By comparing the experiments on the INbreast dataset, we have 

proposed the BMassDNet method, which shows excellent performance regardless of 

whether the sample being evaluated contains normal samples. Here, we will further verify 

by experiment, for the detection of BMass, the one-stage detection method is better than the 

two-stage detection method. Specifically, the methods proposed by Ribli et al. and 

Akselrod-Ballin et al. are based on the most typical two-stage detection method, Faster 

RCNN, but the performance of BMassDNet is somewhat superior to them. That is, in the 

case where the Recall is almost the same, the FPPI is five points lower than them. 
 



 

 

Table 3. A comparison on the quantitative results of various mass detection methods. Please note that, 

"TM" indicates the traditional method, "DL" indicates the deep learning. 

 

However, since the DDSM dataset is publicly available for very early time, most of the 

BMass detection methods developed on it are based on traditional methods. Experiments 

conducted on the DDSM dataset show that although the traditional BMass detection method 

can have a better performance in a carefully selected dataset, its generalization ability is 

poor. In addition, since the traditional method requires artificial design of features, the 

limitations thereof are large. The deep learning-based approach does not have these 

limitations, and it automatically learns the relevant features. For example, the CNN-based 

BMass detection method proposed by Bandeira Diniz et al. can achieve good performance. 

Datasets Types Methods Images TPR FPPI 

INbreast 

DL Amit et al. [25] 107 0.870 1.423 

DL Dhungel et al. [32] 410 0.870 0.800 

DL Wu et al. [26] 107 0.880 0.750 

DL Ribli et al. [30] 410 0.900 0.300 

DL Jung et al. [33] 410 0.910 1.300 

DL Agarwal et al. [27] 410 0.920 2.594 

DL Akselrod-Ballin et al. [31] 100 0.930 0.560 

DL Agarwal et al.[29] 410 0.870 0.250 

DL BMassDNet (Conf=0.2) 107 0.930 0.495 

DL BMassDNet (Conf=0.6) 410 0.913 0.256 

DDSM 

TM Tai et al. [15] 358 0.900 4.800 

TM Sampaio et al. [24] 678 0.837 0.190 

TM Nazaré Silva et al. [16] 599 0.923 1.120 

TM Anitha et al.[17] 300 0.925 1.060 

TM Vikhe et al. [18] 90 0.939 0.740 

DL Bandeira Diniz et al. [28] 266 0.904 0.878 

DL BMassDNet (Conf=0.3) 890 0.943 0.599 

 DL BMassDNet (Conf=0.6) 890 0.843 0.197 



 

 

The detection performance of FSAF-based BMassDNet proposed in this paper has been 

further improved. Specifically, BMassDNet is superior to the method proposed by Vikhe et 

al., although the TPR is not much improved, the FPPI is reduced by 0.141. Also, when Conf 

took 0.6, BMassDNet also achieved similar performance to Sampaio et al. 

6 Conclusion 

In this study, we propose a BMass detection method based on FSAF network 

architecture, which not only can lighten the visual fatigue for physicians but also can raise 

the detection accuracy of BMass. Specifically, due to the large number of unrelated 

backgrounds in the mammography image and the blurring of the boundaries of the BMass, 

this poses certain difficulties for the training of the model. To solve this problem, we use the 

proposed truncation normalization method to preprocess the image and combine it with the 

adaptive histogram equalization algorithm to improve the contrast of the image. This 

ensures that the BMass has a clear boundary and maintains the data distribution of the 

original image. In addition, to alleviate the over-fitting problem caused by the small scale 

of the dataset, this paper proposes a natural deformation data augmentation method. This 

method can simulate the various forms of BMass irregular growth in the breast, so as to 

increase the diversity of training data. Meanwhile, in order to effectively use limited data, 

we propose a dynamic update training method based on the degree of sample difficulty. This 

training method makes our training process more stable and can more effectively mine hard 

samples. In terms of network structure, we have made appropriate improvements to the 

FSAF detection architecture, that is, we also use the last two layers of the feature extraction 

network for combination with low-level features in order to better adapt to the problem of 

different sizes of BMass. Finally, from the experimental point of view, through the ablation 

study and experimental comparison, the various components and overall performance of the 

proposed BMass detection method are verified. According to the experimental results shown 

in Table 3, we obtained the optimal performance compared to other existing methods. 

It should be pointed out that although the method proposed in this paper has achieved 

good results, there are still some shortcomings. For example, the proposed natural 

deformation data augmentation method is slower to calculate and needs further optimization 

to speed up its operation. 
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