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Abstract—Beamforming in plane-wave imaging (PWI) is an
essential step in creating images with optimal quality. Adaptive
methods estimate the apodization weights from echo traces
acquired by several transducer elements. Herein, we formulate
plane-wave beamforming as a blind source separation problem.
The output of each transducer element is considered as a non-
independent observation of the field. As such, beamforming can
be formulated as the estimation of an independent component out
of the observations. We then adapt the independent component
analysis (ICA) algorithm to solve this problem and reconstruct
the final image. The proposed method is evaluated on a set
of simulation, real phantom, and in vivo data available from
the PWI challenge in medical ultrasound. The performance
of the proposed beamforming approach is also evaluated in
different imaging settings. The proposed algorithm improves
lateral resolution by as much as 36.5% and contrast by 10%
as compared to the classical delay and sum. Moreover, results
are compared with other well-known adaptive methods. Finally,
the robustness of the proposed method to noise is investigated.

Index Terms—Plane-wave imaging, adaptive beamforming,
ICA, image quality.

I. INTRODUCTION

ULTRASOUND imaging experienced a revolution with
the introduction of Plane-Wave Imaging (PWI) in which

frame-rate can reach several thousands per second. In contrast
to other techniques, PWI fires all elements of the probe
simultaneously to form a flat wavefront and span the whole
region of interest in a single shot. This technique has been
successfully applied to different applications such as imaging
of shear waves, contrast imaging, and Doppler imaging of
blood flow [1]. Having a non-focused transmitted beam, how-
ever, leads to poor resolution and low contrast in PWI. This
drawback was addressed by coherent compounding of images
obtained by several insonifications of different angles [2].
Consequently, there is always a trade-off between image
quality and frame-rate. Hence, beamforming is witnessing a
growing attention in order to enhance the quality of images
without sacrificing the frame-rate.

In PWI, beamforming mainly refers to the method of merg-
ing the outputs of different crystal elements. More specifically,
it is a weighting function across the probe which is referred
to as apodization. It can also be used during transmission.
Delay-and-sum (DAS) is a classical nonadaptive beamforming
method in which apodization weights for different pixels of
the image are assigned based on the F-number as well as a
predefined window shape. As known from spectral estimation,
there is often a trade-off between the width of main lobe and
energy of side lobes of the apodization window. When mea-
sured backscattered signals are directly used to optimize the

apodization weights, the beamforming method is considered
adaptive.

Capon or minimum variance (MV) is a well-known adap-
tive method in which apodization weights are estimated to
minimize the variance of output while preserving the unity
gain in the steering direction [3]. Asl and Mahloojifar [4]
extended eigenspace-based MV (EMV) to better suppress off-
axis signals. The main issue with MV is the estimation of
covariance matrix of data, which is time consuming and limits
its real-time applications [5], [6].

Matrone et al. [7] proposed Filtered-delay multiply and sum
(F-DMAS). The pipeline of algorithm contains the multipli-
cation of delayed radio-frequency (RF) signals followed by
summation of signed square roots. Finally, the beamformed
signal is achieved by bandpass filtering to remove the DC
component.

A family of adaptive beamforming algorithms are based on
phase coherence. First, coherence factor (CF) is defined as the
ratio between the coherent and incoherent energy across the
aperture [8] and then used as an adaptive weight following
the DAS beamformer to enhance the image quality [9]. CF
was generalized to be computed from Fourier spectra over
the aperture of the delayed channel data and in a range of
low spatial frequency region [9]. Subsequently, Camacho et
al. [10] used phase information of aperture data to compute
the adaptive correction weight and proposed phased CF (PCF).
However, the estimated correction weights of CF methods can
be affected by speckle noise.

More recently and more specifically for PWI, the MV
approach was applied in [11], [12]. Nguyen and Prager [13]
proposed extensions to MV for coherent plane-wave com-
pounding (CPWC). Beamforming based on compressive sens-
ing for PWI was introduced in [14], [15], [16], [17]. Dei
et al. [18], [19] investigated the performance of their beam-
forming method entitled aperture domain model image recon-
struction (ADMIRE) on PWI. Beamforming in Fourier domain
on PWI was introduced in [20]. This was further developed
to incorporate coherent compounding and angular weighting
in [21]. Beamforming as a regularized inverse problem was
introduced in [22] and applied at each depth separately. This
point of view was extended in [23] to solve inverse problem for
all image depths jointly. Recently, a statistical interpretation of
beamforming entitle iterative maximum-a-posteriori (iMAP)
was introduced in [24].

Herein, we propose a new framework for adaptive plane-
wave beamforming wherein apodization weights are estimated
through independent component analysis (ICA). In the field of
US imaging, ICA has been mainly used for clutter filtering and
noise suppression [25], [26], [27], [28], [29], [30]. Recently,
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Fig. 1: Geometrical illustration of the PWI. Notation α is the
steering angle of the incidence wave.

ICA was used as a dimensionality reduction technique to speed
up ADMIRE beamforming [31].

What motivates us to make use of ICA is a principal
physical limitation which is brought about by wave propaga-
tion. More specifically, the backscattered waves from sources
at the same time, leading to a single sensory data at the
resulting RF signal. Fortunately, this distance is not the same
for other elements and, therefore, a group of distinct sources
are indistinguishable from the output of each piezoelectric
element. Our approach considers the output of all piezo-
electric elements as a set of non-independent observations
of the field and then uses beamforming to extract indepen-
dent components. As such, we reconstruct the whole image
simultaneously. The performance of the proposed adaptive
plane-wave beamforming is evaluated and compared to other
methods on a set of simulation, phantom, and in vivo data
provided by PWI challenge in medical ultrasound (PICMUS)
2016 [32]. Moreover, we run the algorithm on another set of
publicly available phantom data recorded with an Alpinion
ultrasound machine (Bothell, WA) to test its performance on
images recorded with different settings. Finally, the robustness
of proposed approach is compared to other methods in the
presence of noisy observation.

II. METHODS
Consider a linear array of n elements, symmetrically dis-

tributed on the x-axis, transmitting along the positive z-axis
(Fig. 1). Let us assume a plane-wave with angle α spans the
domain with a sound speed of c. The backscattered signals
received by element i located at xi is denoted by hi(t).
Without any loss of generality, zcos(α) + xsin(α) is the
transmission distance dt from the origin of the transmitted
plane-wave to an arbitrary point (x, z) in the region-of-interest
(ROI) and

√
(x− xi)2 + z2 is the receiving distance dr from

(x, z) to the location of element i. The RF data corresponding
to (x, z) in hi(t) can be found by applying the associated
propagation delay as follows (hereafter, capital and bold font
variables represent matrices and vectors, respectively):

τ =
dt + dr

c
=⇒ Ri(x, z) = hi(t) |t=τ , (1)

where R is the matrix containing RF data received by the
entire transducer array. Each point (x, z) of the final image
can be obtained through the following weighted summation:

R(x, z) =

n∑
i=1

w(i)Ri(x, z), (2)

where w is the apodization window of length n. In practice,
however, we utilize dynamic beamforming where the F-
number (F) is fixed for the entire image. Therefore, the number
of elements considered for the reconstruction of each depth of
the image l is calculated as follows:

F = z/l. (3)

Our goal is to estimate the apodization window using ICA.

A. Independent Component Analysis

ICA is a framework used to separate signal components
mixed in observations recorded at different transducer ele-
ments [33]. Assuming an n-dimensional signal space, i.e., an
n-dimensional observed data x, n-dimensional independent
sources s, and a square transformation matrix W of size n×n,
the mixing model can be written as follows [33]:

s = Wx. (4)

With the assumption of having independent and non-Gaussian
sources (at the most one independent Gaussian source is
allowed), both of W and s can be estimated using the
ICA algorithm. In practice, the objective function for ICA
estimation can be formulated using different measures of
non-Gaussianity such as kurtosis, negentropy, and mutual
information. Moreover, it is very useful to center and whiten
the observations before applying ICA. One of the most famous
algorithms of ICA implementation is FastICA, where a unit
vector w is computed such that the dot product wTx maxi-
mizes negentropy. FastICA algorithm can be summerized in
four steps as follows [33]:

1) Random initialization of vector w.
2) wnew = E{xg(wTx)} − E{g′(wTx)}w
3) w = wnew/‖wnew‖
4) Return to step 2 until the direction of w does not change.

where E denotes the expectation operation. g and g′ are first
and second derivatives of a nonquadratic nonlinear function
f , respectively. It was shown that either of the two functions
f is robust for negentropy estimation [34]:
f(u) = 1

a1
log cosh a1u or f(u) = − exp(−u2/2)

where 1 ≤ a1 ≤ 2.
As discussed in [33], ICA can be considered as a variant

of the projection pursuit algorithm [35], which enables one-
by-one estimation of the independent components. This is an
important feature since the computational load of the method
substantially decreases in our case wherein only one of the
independent components is required. The aforementioned al-
gorithm can be easily extended to estimate several independent
components. More details regarding the FastICA algorithm can
be found in [33].

B. Beamforming Using ICA

In general, our goal is to reconstruct a high-quality spatial
map of target echogenicity. More specifically, what we do is
discretizing the map of scatterers that leads to pixels. Each
pixel corresponds to an averaged tissue reflectivity function
over the extent of the pixel. According to the central limit
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Fig. 2: Steps 1 and 2 of the proposed ICA beamforming. (a)
From all crystal elements, RF data of each pixel (Ri(x, z))
is extracted by applying the propagation delays to received
backscattered signals (hi(t)). (b) Central pixels of the image
around which the crystals are symmetric are cropped from
each Ri(x, z). (c) The matrix of observation X is constructed
by stacking r̄i.

theorem, such a pixel has a Gaussian distribution if the number
of diffusion scatters in the medium is significantly high [36].
Therefore, ICA may appear not suited because it finds inde-
pendent components that maximize non-Gaussianity. However,
it is shown in [33] that the ICA can still be used even if only
one of the independent components is Gaussian. Therefore,
we look for the discretized tissue reflectivity function (i.e. the
map of scatterers) as the only independent Gaussian source.

When the RF data corresponding to each pixel of the final
image is extracted from the output of each element, there is
also the possibility of source ambiguity. More specifically, the
backscattered waves of at least two different scatterers arrive
simultaneously. Without loss of generality, when α = 0, the
backscattered waves of two distinct scatterers (with indices 1
and 2) arrive at the same time in element i if and only if they
have the same propagation delay τ . Form Eq. (1) and if the
first scatterer is in the lateral position xi, it can be written that:

τ1 = τ2 =⇒ 2z1 = z2 +
√

(x2 − xi)2 + z22 . (5)

Simplifying (5) gives:

z2 = z1 −
(x2 − xi)2

4z1
. (6)

So, for z2 < z1, there are a bunch of scatterers located on an
ellipse, whose reflections arrive at the same time with scatterer
1. In the continuous case, this problem is fully addressable. In
the discrete case, however, there is the error of quantization as
well. Although this problem was shown for the specific case
of α = 0, the concept can be extended for different angles.

As can be seen from Eq. (6), the group of scatterers from
whom their reflections arrive simultaneously are not the same
for each crystal element. This point provides the opportunity of
source separation. Herein, the task is to extract an independent
RF signal out of a set of non-independent observations. In
the ideal case, the desired independent RF signal contains the
trace of only one distinct scatterer in each sample. It has to
be mentioned that in practice, the axial and lateral resolution
are based on the sampling frequency of the system, the center
frequency of the transmitted wave, and the transducer design.
So, when we refer to one scatterer, it means one pixel of the
final image.

In ultrasound beamforming, an issue is that the apodization
window is not fixed throughout the image. More specifically,
ICA works with a fixed transformation matrix W in Eq. (4).
In ultrasound images, however, the apodization weight is not
spatially invariant, rendering a different set of values of W
for different pixels. Two points make the apodization weight
spatially variant. First, for pixels lying at the two lateral ends
of the image, there are crystal elements predominately lying
along one side. Second, as explained in section II, pixels
of different depths of the image are reconstructed using a
different number of elements to hold F-number fixed in the
entire image. Hence, if we do not consider these points, ICA
fails to estimate the source and apodization windows, leading
to images that are even lower in quality than DAS.

To solve the aforementioned problem, we consider only
the central pixels of the image around which the crystals are
symmetric as the input to the ICA algorithm. In this way,
the cropped portion of Ri (Eq. 1) is used to construct the
observation matrix X . In our ICA formulation, therefore, the
observations are RF data corresponding to central pixels of
final image that are recorded by all crystal elements of the
probe.

Our proposed beamforming algorithm for PWI using ICA
includes the following steps:

1) The propagation delay is applied to all channels of data
in order to generate Ri, i = 0, ..., n− 1.

2) Each Ri is considered as an observation of the field
(Fig. 2,). First, it is cropped (denoted by R̄i(x̄, z)) and
then vectorized in a row vector (r̄i). Consequently, the
observation matrix X is constructed by stacking the
row vectors (r̄i). Finally, matrix X is centralized and
whitened before running ICA.

3) The independent source and corresponding mixing vec-
tor are estimated using the FastICA algorithm [37]
by maximizing Negentropy as the measure of non-
Gaussianity.

4) The apodization window (the estimated transformation
matrix in the last step) is applied throughout the image
based on a predefined F-number.

III. EXPERIMENTS

A. Dataset

Herein, we use a publicly available PWI dataset, entitled
PICMUS, which was provided by the IEEE International
Ultrasonics Symposiun (IUS 2016) in order to benchmark
novel beamforming methods [32]. The PICMUS data utilized
in this work include:

1) Simulation resolution (SR): a simulated ultrasound im-
age containing point targets distributed vertically and
horizontally over an anechoic background designed to
assess the performance of beamforming methods in
terms of spatial resolution.

2) Simulation contrast (SC): a simulated ultrasound image
containing anechoic cysts distributed vertically and hori-
zontally over fully developed speckle designed to assess
the performance of beamforming methods in terms of
contrast.
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3) Experimental Resolution (ER): an experimental ultra-
sound image was recorded on a CIRS Multi-Purpose
Ultrasound Phantom (Model 040GSE) in the regions
containing several wires against speckle background
to assess the performance of beamforming methods in
terms of spatial resolution.

4) Experimental contrast (EC): an experimental ultrasound
image was recorded on the same phantom as ER but
in the regions containing two anechoic cysts against
speckle background to assess the performance of beam-
forming methods in terms of contrast.

In addition, PICMUS dataset also contains two in vivo ultra-
sound images, showing cross-sectional and longitudinal views,
recorded on the carotid artery of a volunteer. All of the
phantom and in vivo data were collected using a Verasonics
Vantage 256 research scanner and a L11 probe (Verasonics
Inc., Redmond, WA). The simulation settings were selected to
be as similar as possible to the experimental setup.

For each of mentioned groups, a collection of received
prebeamformed data corresponding to 75 steered Plane-Waves
covering the angle span from −16◦ to 16◦ was provided. Both
RF and IQ (phase quadrature) formats of data were provided.
The proposed algorithm works on the RF version of data. More
details regarding PICMUS dataset can be found in [32].

Another publicly available dataset on PWI is used to in-
vestigate the performance of the proposed method on data
collected with other imaging settings. In this database, two
datasets of CPWC recorded using an Alpinion scanner with a
L3-8 probe from a CIRS phantom are used. These data sets
are available through the ultrasound toolbox [38], a MATLAB

toolbox for processing ultrasonic signals. The first dataset
was recorded from regions containing hyperechoic cyst and
points scatterers, and the second one recorded from regions
containing hypoechoic cyst. Imaging setting such as probe
geometry, transmit frequency, sampling frequency, and etc. are
completely different from PICMUS. More details regarding
this data can be found in https://www.ustb.no/.

B. Evaluation Metrics

Contrast and resolution are considered for the sake of
evaluation. More specifically, resolution is estimated as the
full width at half maximum (FWHM) both in axial and lateral
directions. The average value of FWHM among all scatterers
in the image is reported. As for contrast, the contrast to noise
ratio (CNR) is calculated as follows [32]:

CNR = 20 log10(
| µin − µout |√
(σ2
in + σ2

out)/2
), (7)

where µ and σ are the mean gray level and the gray level
standard deviation. Subscribes .in and .out refer to inside and
outside of the anechoic cystic region, respectively. Indexes are
calculated on B-Mode images. In order to unify the compar-
ison, we use the codes provided by PICMUS to compute the
indexes.

C. Implementation Details

As explained in Section ??, the FastICA algorithm is used
to estimate the apodization window. The maximum number
of iterations is set to 100 and the stopping criterion is set
to be ε = 10−6. The weights are initialized with random
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Fig. 3: Beamforming results on the single 0◦ plane wave. Columns indicate different image data sets while rows correspond
to beamforming methods.

https://www.ustb.no/
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TABLE I: Quantitative results in terms of CNR and FWHM
indexes for simulation and real phantom experiments.

dataset SR ER SC EC

index FWHMA FWHML FWHMA FWHML CNR CNR

1 PW DAS
ICA

0.4 0.82
0.39 0.52

0.57 0.88
0.57 0.81

9.95
10.67

8.15
8.9

11 PW DAS
ICA

0.4 0.54
0.4 0.41

0.56 0.54
0.56 0.51

12.48
12.6

11.25
11.4

75 PW DAS
ICA

0.4 0.56
0.4 0.42

0.56 0.56
0.56 0.53

15.55
15.96

12
12.1

numbers extracted from standard distribution. The reduction
of dimension through PCA is not used and the best results
which are most reproducible are attained by considering all
eigenvalues in the estimation procedure. We use the Matlab
implementation of the Fixed point ICA, the main algorithm of
FastICA, which is publicly available online http://research.ics.
aalto.fi/ica/fastica/code/dlcode.shtml.

Throughout the results section, we consider F = 1.75 and
use Tukey (tapered cosine) window with constant parameter
set to 0.25 for DAS and other adaptive methods on top of
DAS.

It is not possible to theoretically prove the convergence of
FastICA algorithm with the mentioned parameters. In practice,
however, we set the maximum number of iterations equal
to 100 and observe that for all of data sets, the algorithm
converges in a lower number of iterations.

IV. RESULTS

A. Simulated and Experimental Data

The results of DAS beamforming versus our proposed
method based on ICA on a single 0◦ plane wave of simulated
and experimental data are illustrated in Fig. 3. As seen from
this figure, the proposed beamforming method outperforms
DAS and improves the resolution as well as contrast on
both simulated and experimental phantom data. In order to
better investigate the amount of improvement, the quantitative
indices are reported in Table I. What causes the improvement
is the window used for apodization. So, as Table I confirms,
improvement in resolution can only be acquired in the lateral
direction. The highest improvement in lateral FWHM is 36.5%
on simulated plane-wave data of only one single transmission.
In terms of CNR, approximately 10% of improvement is
achieved on the simulated cyst data of a single transmission
while boarders of the cyst are also sharper.

In order to investigate the effect of CPWC, the results of
the proposed method on higher number of plane waves are
illustrated in Fig. 4. The indexes of Table I as well as Fig. 4
confirm that CPWC improves the image quality. As for CPWC,
we do not repeat beamforming for each angle and use the
apodization weights of 0◦ plane wave for the remaining angles.
Moreover, we do not apply any angular apodization weights to
limit the sources of achieved improvement. In fact, our main
focus is on beamforming of the received signals.
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Fig. 4: ICA beamforming using 1, 11, and 75 plane waves. Columns indicate different image data sets and rows correspond
to the number of transmitted plane waves.

http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
http://research.ics.aalto.fi/ica/fastica/code/dlcode.shtml
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To better understand the effect of proposed method, Fig. 6
shows a comparison between Tukey25 window used in DAS
and the apodization weights estimated by ICA on ER dataset.
The estimated window has a lower leakage factor as well as
a relative side lobe attenuation while its main lobe is wider.
The estimated window is of a different shape which can not
be found among predefined common windows. So, this point
confirms the necessity of estimating the apodization window
from the received data.

Fig. 5 demonstrates qualitative improvements with ICA
using fewer angles than needed with DAS. As can be seen in
Fig. 5, the proposed approach achieves similar image quality
with 11 plane waves compared with DAS using 75 angles.
Therefore, it is possible to reduce the number of plane wave
transmits needed to achieve image quality similar to a fully
sampled transmit.

B. In vivo Data

In real ultrasound tissues, there are more sources of degra-
dation in image quality. In order to make sure that the
proposed method also works on in vivo data, the results of
beamforming on real carotid images of PICMUS dataset are
provided in Fig. 7. Visual comparison of beamformed images
with different number of angles reveals that ICA outperforms
classical DAS in both cross as well as longitudinal sections.
Furthermore, ICA results in sharper images with a better
contrast.

C. Results on Alpinion Scanner

We investigated the performance of our method on
data collected with Alpinion Scanner thanks to ultrasound
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Fig. 6: Comparison of apodization window estimated using
ICA (second row) and Tukey25 (first row) used in DAS.
Windows are shown in both space and frequency domains.

toolbox [38]. Fig. 8 illustrates the result of proposed method
on images of cyst regions and points scatterers recorded
on an Alpinion scanner with a L3-8 probe from a CIRS
phantom. The ICA results in Fig. 8 obviously have a better
quality as compared to DAS results in terms of resolution and
contrast. As illustrated in Fig. 8, point targets in the image
beamformed with ICA are finer in ER dataset, and contrast
of cyst regions in EC dataset is noticeably improved. As we
do not have the exact location of cysts and point targets in
this dataset, quantitative comparison is not possible.
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Fig. 5: Comparison of beamforming results using different number of plane waves. Rows indicate beamforming methods while
columns correspond to the number of transmitted plane waves.
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Fig. 7: Beamforming results on in vivo data using 1, 11, and 75 plane waves. Two columns in left indicate cross-section images
while left two columns correspond to longitudinal-section. Rows denote different number of transmitted plane waves used in
beamforming.
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Fig. 8: Beamforming results on the single 0◦ plane wave data
collected with Alpinion Scanner. Columns indicate different
image data sets while rows correspond to beamforming meth-
ods.

D. Comparison with Other Adaptive Methods

As mentioned before, our focus in current study is on
beamforming of the received signals. So, comparison with
other adaptive approaches is of crucial importance. In this way,
we present the results of five well-known approaches, namely
MV [3], EMV [4], CF [9], generalized CF (GCF) [9], and
PCF [10]. The comparison with these methods was not possi-
ble without using codes provided by Rindal et al. [39] in ul-
trasound toolbox repository ( http://www.ustb.no/publications/
dynamic range/). As for comparison with F-DMAS method,
the sampling frequency of the PICMUS data was not large
enough to apply the method with filtering around 2 times
the center frequency. Fig. 9 shows the result of different
adaptive beamforming algorithms on a single 0◦ plane wave of
simulated and experimental data. The quantitative comparison
is provided in Table II. The EMV method outperforms all
other methods, even our proposed method, in terms of indices.
However, methods based on the MV are very time consuming
and are not practical for online applications. More specifically,
the run time of our proposed method is in order of millisecond
while EMV takes a few minutes. Furthermore, as it can be
seen in Fig. 9, the EMV method destroys the image texture
and its results are not visually appealing. Other approaches
based on CF outperform the proposed approach in terms of
FWHM index while are worse in terms of contrast.

http://www.ustb.no/publications/dynamic_range/
http://www.ustb.no/publications/dynamic_range/
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Fig. 9: Results of other adaptive beamforming methods on the single 0◦ plane wave. Columns indicate different image data
sets while rows correspond to different adaptive beamforming methods.

E. Robustness to Noise

In order to further demonstrate the superiority of our
proposed method, the quality of beamforming approaches is
investigated when some of the receiving channels are noisy.
More specifically, we add independent Gaussian noise with
different levels of signal to noise ratio (SNR) to different
number of channels of ER dataset to see how noise affects
the performance of different methods.

The first three rows of Fig. 10 illustrate the results for
additive Gaussian noise with −10, −20, and −40dB SNR
levels with noise added to channel 64 (the total number of
channels is 128). As seen in Fig. 10, other adaptive methods
and DAS fail to reconstruct the affected region with noise
while the proposed beamforming algorithm is completely
robust. The fourth and fifth rows of Fig. 10 correspondingly
show the results when −40dB additive noise is added to 3
and 5 of crystal elements. As the number of noisy channels
with a bad SNR goes up, the quality of ICA starts to decrease.
However, it still outperforms other approaches.

V. DISCUSSION
Using a part of samples of each channel which only

correspond to the middle part of the final image is important
from two aspects. First, it removes the effect of incomplete
data of borders on the ICA performance. Second, the FastICA
algorithm converges faster as it works with a lower amount

of data. Note that the estimated apodization weights and its
specifications such as width of main lobe or the amount of
side lobe attenuation in each dataset are different. So, it can
be concluded that there is not a unique solution that works for
all data.

The algorithm can be applied for each angle separately.
However, the estimated weights for different insonification
angles are not totally different and the improvement is neg-

TABLE II: Quantitative results of other adaptive beamforming
methods in terms of CNR and FWHM indexes for simulation
and real phantom experiments.

dataset SR ER SC EC

index FWHMA FWHML FWHMA FWHML CNR CNR

1 PW

MV
EMV
CF

GCF
PCF

0.41 0.1
0.39 0.09
0.32 0.44
0.32 0.43
0.29 0.37

0.59 0.43
0.58 0.33
0.48 0.47
0.48 0.47
0.46 0.41

11.1
14
8.2
8.1
6.9

7.95
10.5
6.3
6.3
5.2

11 PW

MV
EMV
CF

GCF
PCF

0.43 0.1
0.4 0.09

0.37 0.37
0.38 0.36
0.37 0.3

0.59 0.29
0.56 0.28
0.55 0.37
0.55 0.37
0.55 0.31

11.4
15.2
11.9
11.8
11

9.8
11.5
10.2
10.2
9.05

75 PW

MV
EMV
CF

GCF
PCF

0.43 0.1
0.4 0.09
0.4 0.38
0.4 0.38
0.39 0.29

0.58 0.31
0.56 0.29
0.56 0.38
0.56 0.38
0.56 0.32

14.7
17

14.05
13.9
14.13

11
10.4
10
10

10.3
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Fig. 10: Results of beamforming methods on the single 0◦ plane wave of noisy ER dataset. Columns indicate different
beamforming methods while three first rows correspond to different levels of noise added to channel 64. Rows 4 and 5
correspondingly depict the results when we have 3 and 5 noisy channels with −40dB SNR.

ligible while the processing time is multiplied corresponding
to the number of angles. The angular apodization can also be
performed using ICA for CPWC. However, the main focus of
this study was apodization of the received signals. The angular
weights are not used to limit the sources of improvement,
which make the comparison with other approaches possible.

As each adaptive beamforming method alters the dynamic
range of the final image differently, we normalized the range

of final outputs to plot the results in a uniform manner and
make the visual comparison possible.

Robustness of the proposed method to noise can be ex-
plained as the ability of ICA in extracting independent com-
ponents and discarding noise. This aspect of the proposed
beamforming algorithm is very important in practice when we
have a missing or noisy channel. Although a malfunctioning
element affects both transmit and receive, the available data
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does not give us the chance of a perfect simulation of this
case. In future, we plan to test the performance of the proposed
method for the case of having broken channels in both transmit
and receive.

VI. CONCLUSIONS

We have proposed a new beamforming approach for ultra-
sound plane-wave imaging based on ICA. Beamforming has
been formalized as the estimation of one independent image
out of several non-independent observation and the apodiza-
tion weights have been estimated based on collected data.
The images of one single plane-wave transmission as well
as multiangle plane-wave acquisitions have been successfully
reconstructed. Moreover, the performance of the algorithm
has been demonstrated on different imaging settings. Results
show that the proposed method simultaneously improves the
resolution and contrast while the resulting image is also
visually appealing. Furthermore, the proposed algorithm is
strongly robust when some of channels are noisy.
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