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ABSTRACT  In the process of clinical diagnosis and treatment, the restricted mean 

survival time (RMST), which reflects the life expectancy of patients up to a specified time, 

can be used as an appropriate outcome measure. However, the RMST only calculates the 

mean survival time of patients within a period of time after the start of follow-up and may 

not accurately portray the change in a patient’s life expectancy over time. The life 

expectancy can be adjusted for the time the patient has already survived and defined as the 

conditional restricted mean survival time (cRMST). A dynamic RMST model based on the 

cRMST can be established by incorporating time-dependent covariates and covariates with 

time-varying effects. We analysed data from a study of primary biliary cirrhosis (PBC) to 

illustrate the use of the dynamic RMST model. The predictive performance was evaluated 

using the C-index and the prediction error. The proposed dynamic RMST model, which can 

explore the dynamic effects of prognostic factors on survival time, has better predictive 

performance than the RMST model. Three PBC patient examples were used to illustrate 

how the predicted cRMST changed at different prediction times during follow-up. The use 

of the dynamic RMST model based on the cRMST allows for optimization of 

evidence-based decision-making by updating personalized dynamic life expectancy for 

patients. 

Keywords: survival analysis; time-dependent covariates; conditional restricted mean 

survival time; dynamic prediction; nonproportional hazards 
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1. Introduction 

Time-to-event outcomes, such as overall survival or progression-free survival, are often 

used as the primary endpoint for clinical trials in many diseases. In this context, survival 

curves are estimated by the Kaplan-Meier method, and comparisons are performed by the 

log-rank test. The hazard ratio (HR) obtained from the Cox proportional hazards (PHs) 

regression model is used to quantify treatment effects. However, the Cox model must 

satisfy the PHs assumption that the HR is constant over time, which often fails during 

long-term follow-up1,2. Furthermore, as the ratio of hazard rates (or hazard functions) in the 

two groups, the HR is difficult to interpret and hard to translate into clinical benefits in 

terms of a prolonged survival time3-5. As an alternative, the restricted mean survival time 

(RMST) is a good summary of the survival distribution, and the treatment effect can be 

quantified by the difference in the RMST between two treatment groups6-8. 

Generally, after being diagnosed (such as at the time of diagnosis or after a period of 

treatment), one of the key questions that is often asked by patients is "How long will I 

live?". This question can be answered by estimating the mean survival time. For example, 

Fig. 1 shows the survival curve of patients with primary biliary cirrhosis (PBC) from a 

clinical trial9, and the area under the entire curve is their mean survival time. However, the 

mean survival time cannot be estimated unless follow-up is continued until each subject has 

experienced the event of interest (or in the presence of censoring, until the survival curve 

has reached zero)3. In Fig. 1, the follow-up time of this trial was actually 14.31 years, and it 

was impossible to observe survival after the end of follow-up. At this time, the area under 

the survival curve up to 14.31 years can be calculated, that is, the 14.31-year RMST. It is 

readily interpretable as the mean survival time or "life expectancy" between the start of 

follow-up and a specific time point ( 14.31)τ τ = 7,10,11. 

It is worth noting that patients may want to know their prognosis at any time during 

follow-up, which requires the continuous prediction of life expectancy at a different 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



4 
 

prediction times, represented by s. As shown in Fig. 2, a PBC patient started follow-up at 

0s s=  and underwent liver transplantation at 1s s= . The question "How long will I live?" 

is equally pressing at 1s s=  as it was at the start of follow-up ( 0s s= ). However, the 

patient’s life expectancy may vary at different prediction times. First, in the time between 

0s  and 1s , important events have taken place, such as surgical treatment, that may alter a 

patient’s life expectancy. Second, some variables that have an impact on the outcome may 

exhibit time-varying effects, resulting in a change in life expectancy as time progresses12-14. 

For instance, due to the possibility of postoperative infection and/or transplant rejection, the 

life expectancy of this patient will be reduced at 1s s=  but then greatly improved at 

2s s=  if the early postoperative period can be successfully survived. Third, some clinical, 

biochemical and histological indicators (e.g., coagulation indicators) are often measured in 

subjects at each follow-up visit; these response data give rise to time-dependent covariates 

(or longitudinal data). Changes in these indicators will also have an impact on life 

expectancy. 

In view of this, the continually updating life expectancy or mean survival time 

depending on the prediction time s is defined as the conditional restricted mean survival 

time (cRMST), represented by m(s,w), that is, 

( )
( , )

( )

s w

s
S t dt

m s w
S s

+

=  , 

where ( )S t  denotes the survival function, s is the prediction time (more precisely, the time 

of the prediction) and w is the time window. For example, m(0,5) represents the life 

expectancy of the patient in the next 5 years from the start of follow-up, which is equivalent 

to the 5-year RMST, while m(3,5) means the life expectancy in the next 5 years of a patient 

who had already survived for 3 years from the start of follow-up. The difference in 
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cRMSTs between groups is represented by md(s,w). This concept of obtaining/updating the 

life expectancy at different prediction times by considering time-dependent covariates and 

covariates with time-varying effects is called "dynamic prediction"15,16. 

To illustrate the clinical applicability of dynamic prediction based on the cRMST, we 

utilized a dataset from a well-known clinical study conducted at Mayo Clinic on the 

treatment of liver disease9. A dynamic prediction model (i.e., dynamic RMST model) was 

developed by landmarking15,17,18 to explore the dynamic effects of prognostic factors on 

survival time. Specific patient examples were used to illustrate how the predicted cRMST 

changed at different prediction times during follow-up. 

2.Methods 

2.1. Data sources 

This example comes from the PBC data collected by the Mayo Clinic from January 

1974 to May 1984. Follow-up was extended to April 30, 1988. A total of 312 patients 

participated in the study, of whom 158 (50.6%) were randomly assigned to receive 

D-penicillamine and 154 to receive a placebo. Patients had on average 6.23 visits, resulting 

in a total of 1945 observations. The outcome of this analysis was overall survival, which 

was calculated in years from the time of referral to death. 

There were nine baseline and time-dependent covariates that were included in the 

dynamic RMST model. Predictors measured at baseline were the drug (D-penicillamine, 

placebo), sex (female, male) and age (years). The time-dependent covariates were the 

serum bilirubin value (mg/dl), edema (yes, no), serum albumin value (g/dl), prothrombin 

time (seconds), histologic stage of disease (I/II, III, IV) and serum glutamic oxaloacetic 

transaminase (SGOT) level (U/ml). 
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2.2. Statistical analysis 

To obtain the dynamic prediction of the 5-year (w=5) cRMST, a set of landmark time 

points ( ls ) were chosen from the prediction times: in the current model, ( 0,1,...,25)ls l =  

were selected every 0.2 years from the start of follow-up. For each landmark time point ls , 

the corresponding landmark dataset lR  was constructed by selecting all patients still alive 

and undergoing follow-up at ls . Then, ˆ ( , )i lm s w , the estimator of the cRMST 

corresponding to each individual i (i=1,2,…, ln ) in lR , could be calculated (see 

Supplementary File S1) and used as a dependent variable for a generalized linear model 

(GLM): ˆ ( , | ( )) ( )T
l l l l lm s w Z s a Z s b= + . The intercept la  and coefficients 

1 2 9( , ,..., )l l l lb b b b=  are the parameters to be estimated, and 

1 2 9( ) ( ( ), ( ),..., ( ))l l l lZ s Z s Z s Z s=  are the values of the covariates at ls . All these models 

were then combined into a dynamic RMST model: ˆ ( , | ( )) ( ) ( )Tm s w Z s s Z sα β= + , where 

2
0 1 2( )s s sα α α α= + +  describes how the intercept changes over s and 1 2 9( , ,..., )β β β β=  

are the regression coefficients. The predictions of 5-year life expectancy are possible for 

any prediction time 0 25[ , ]s s s∈ . 

To test for time-varying covariate effects, interactions between covariates and s were 

then included in the dynamic RMST model: ˆ ( , ) ( ) ( ) ( )Tm s w s Z s sα β= + . The parameter 

function 1 2 9( ) ( ( ), ( ),..., ( ))s s s sβ β β β=  is a vector of functions that describes changes in 

the covariates’ effects, and 2
0 1 1( )j j j js s sβ β β β= + +  calculates the difference in cRMST 

resulting from a one-unit increase in the jth ( 1,2,...,9)j =  covariates at s (i.e., md(s,w)). 

Initially, all interactions were included in the model, after which the quadratic time 
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interactions were tested and removed if they had no significant effect. The covariates with 

nonsignificant quadratic time interactions were then tested for linear time interactions. 

Similarly, only the significant interactions were retained. For numeric stability, the 

prediction time was standardized using 0/ ( )Ls s s s= − . In addition, a "static" RMST 

regression model19 with 10τ =  years was established for comparison with the dynamic 

RMST model in application. 

The predictive performances of different models were evaluated by Harrell’s C-index20 

and the prediction error21. The C-index measures the probability of concordance between 

the predicted order and the observed order, while the prediction error is the difference 

between the predicted value and the observed value. A Monte-Carlo cross-validation was 

used to avoid overoptimism22. The data were divided into a training set (a 70% random 

sample) and a test set (the remaining 30%). Then, the dynamic RMST model was fitted to 

the training set and used to predict ( ,5)lm s  for these patients who were still at risk at ls  

in the test set. Performance measures (Harrell’s C-index and prediction error) were 

calculated separately for each ls . The above steps were repeated 200 times to obtain 

average C-index and prediction error values. 

All statistical tests were performed at a two-sided significance level of 0.05, and all 

analyses were performed using R software (version 3.6.1). The data underlying this article 

are open source and available in the R package 'JM'. Supplementary File S2 details the R 

code used to perform the process. 

3. Results 

The number of patients used for this analysis was 312, with a median follow-up of 6.30 

years (range: 0.11~14.31 years). During the follow-up period, 140 individuals (55.1%) died. 

The overall 5-year survival rate was 71.2% (95% CI: 66.3%-76.5%) and 10-year survival 
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rate was 47.9% (95% CI: 41.3%-55.4%). 

3.1. Effects of prognostic factors 

Table 1 shows the regression coefficients together with the standard error of the 

covariates included in the dynamic RMST model, and Fig. 3 shows the dynamic 

coefficients (i.e., difference in 5-year cRMST md(s,5) curves (w=5) with 95% confidence 

intervals). For reference, Table 2 describes the results of the RMST model. 

Drug was not statistically significant in the RMST model (Z=-0.554, P=0.579) in that 

only the patients’ referral or baseline (s=0) values for risk factors were used (Table 2). In 

contrast, in the dynamic RSMT model, patients treated with D-penicillamine had a lower 

5-year life expectancy than those taking the placebo. The dynamic coefficient of this 

covariate can be calculated by the following formula (Table 1): 

1 10 11( ) ( / 5) 0.004 0.272 ( / 5), [0,5]j s s s sβ β β= = + × = − − × ∈ , 

that is, the md(s,5) between the D-penicillamine group ( 1( ) 1Z s = ) and the placebo group 

( 1( ) 0Z s = ). The change in md(s,5) over time based on the drug is depicted in Fig. 3A. It 

can be seen that there was no significant difference (95% CI of md(0,5) contains 0) in 

5-year life expectancy between patients treated with different drugs when s=0, but the 

adverse effects of D-penicillamine increased with increasing prediction time s (the upper 

limit of the 95% CI was less than 0). This may be due to the serious side effects of 

D-penicillamine, resulting in an increased incidence of adverse events and an increased risk 

of death23. 

In addition, serum bilirubin was an important prognostic factor in PBC patients, and 

high serum bilirubin levels negatively affected the life expectancy of patients (Fig. 3B). 

Female patients had a longer life expectancy than male patients (Fig. 3C), which may be 

due to the relatively larger proportion of older patients (more than 60 years) among males 
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(42.9%) than females (15.2%). The occurrence of edema decreased the 5-year life 

expectancy, but the effect decreased with increasing prediction time s (Fig. 3D). High 

albumin levels appeared to have a protective effect with regard to the 5-year life expectancy, 

with the md(s,5) increasing from the start of follow-up (Fig. 3E). The prothrombin time 

also demonstrated a significant time-varying effect on the 5-year cRMST, with the md(s,5) 

decreasing from the start of follow-up but increasing 3 years after the time of referral (Fig. 

3F). As expected, advanced histologic stage (III and IV) were associated with a reduced 

5-year life expectancy compared with early stage (I/II). However, the md(s,5) between 

these groups decreased with increasing prediction time (Fig. 3G1-2). In contrast, the RMST 

model cannot reflect the time-varying effects of these covariates. Furthermore, age and 

SGOT level demonstrated time-constant effects on the 5-year cRMST in the dynamic 

RMST model, although the SGOT level was not statistically significant in the RMST model 

(Z=-1.826, P=0.068). 

3.2. Individual dynamic prediction 

In addition to exploring the dynamic effects of covariates on the 5-year cRMST, 

another important role of the dynamic RMST model is to provide individual dynamic 

predictions for patients. Three patients were selected from the dataset analyzed herein (see 

Table 3 for details). Fig. 4 (the solid lines) shows the 5-year cRMSTs of these patients at 

different prediction times, as derived from the dynamic RMST model. Patient A visited the 

clinic at the time of referral (s=0), that is, no time-dependent covariates were generated. 

The 5-year life expectancy of this patient remained basically unchanged (m(0,5)=2.66, 

m(5,5)=2.93), indicating that her condition was stable (Fig. 4A). Patient B visited the clinic 

two times (s=0 and s=0.665). In the time between 0 and 0.665 years, the observed values of 

some variables changed (i.e., time-dependent covariates were generated), which reduced 

the 5-year life expectancy of this patient (Fig. 4B). Patient C made annual visits to the 
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Mayo Clinic after her initial referral until her death. She had a total of 6 visits, and the 

observed values of the time-dependent covariates were different at each visit, which had an 

impact on the patient’s survival (Fig. 4C). 

The (s+5)-year RMSTs calculated by the RMST model are also shown in Fig. 4 

(dashed lines) (e.g., the horizontal axis s=0 corresponds to the 5-year RMST from the start 

of follow-up, and s=5 corresponds to the 10-year RMST from the start of follow-up). Since 

only the information at the start of follow-up (s=0) was considered, the trend in the changes 

in the RMST remains the same under different situations and does not reflect the change in 

life expectancy over prediction time. 

3.3. Model assessment 

The model assessment measures (Harrell’s C-index and prediction error) were obtained 

by the 5-year (w=5) cRMST in the dynamic RMST model from each landmark time point 

ls  (solid lines in Fig. 5). Meanwhile, the predictive performances of these corresponding 

RMST models ( ls wτ = + ) were also evaluated (dashed lines in Fig. 5). Compared with the 

RMST models, the advantages of the dynamic RMST model (a higher C-index and a lower 

prediction error) are more obvious with increasing prediction time s. 

4. Discussion 

Survival prediction is an indispensable integral part of current clinical practice; it can 

help determine optimal treatment strategies for individual patients and avoid overtreatment 

and the associated waste of medical resources. Compared with the survival rate, hazard rate 

and so on, the RMST is directly based on the concept of time, reflecting the life expectancy 

of patients up to the specified time, and therefore is a more appropriate evaluation 

measure24. In addition, the difference in the RMSTs measures the impact of different 
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treatments on survival and can be a practical and useful alternative to the HR7,25. 

However, the RMST only calculates the mean survival time of patients within a period 

of time after the start of follow-up (s = 0) and may not accurately portray the change in a 

patient’s life expectancy over time. Taking the perspective of a patient who has already 

survived a number of years, the cRMST, which is the measure proposed in this article that 

is based on the RMST, provides more relevant information by adjusting the life expectancy 

for the time the patient has already survived. In a sense, cRMST can also be understood as 

the restricted mean residual life26. 

Generally, after considering the concept of condition, the estimated value of measures 

(such as conditional survival and cRMST) will increase as the number of years survived 

increases. This relationship is usually even more obvious in patients with advanced-stage 

disease27,28. For example, in this dataset, the 5-year cRMST of patients with histologic stage 

IV disease was 3.44 years at the time of referral (i.e. m(0,5)=3.44). If the patient was still 

alive at 3 or even 5 years after referral, the 5-year cRMST would change to 3.93 

(m(3,5)=3.93) years and 4.07 (m(5,5)=4.07) years. This means an approximately 0.63-year 

increase in the 5-year life expectancy of patients who have been followed up for 5 years 

compared with those who have just been referred. This relationship actually reflects a 

natural selection effect29: due to the existence of individual differences in prognosis, 

patients with a high risk of death are very likely to experience their endpoint events in the 

initial years after the start of follow-up. Over time, as these patients expire, the surviving 

population becomes "healthier" and has a longer life expectancy. The concept of the 

cRMST is a way to quantify this phenomenon and make it easier for clinicians and patients 

to comprehend. Therefore, for patients who have been alive for a period of time, the 

cRMST provides valuable and relevant information on how their life expectancy develops 

over time. This knowledge can help motivate a patient to continue treatment, improve 

compliance, and ultimately improve survival. 
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In this paper, based on the cRMST, a dynamic RMST model was established by 

incorporating time-dependent covariates and allowing for time-varying effects, enabling the 

updating of the 5-year cRMST for PBC patients at any prediction time 0 25[ , ]s s s∈ . The 

continuous prediction of the cRMST during follow-up allows for the optimization of 

evidence-based decision-making and may improve the personalization of the treatment 

options for patients with progressive disease. In addition, compared with the RMST models 

that only use the patients’ baseline (s=0) risk factors, the dynamic RMST model has better 

predictive performance, as assessed by the C-index and prediction error. 

However, we must pay attention to several points when applying the dynamic RMST 

model. First, the time window w used depends on the severity of the disease. For severe 

diseases, w=1 or w=2 years is relevant, while for milder diseases with longer follow-up 

times, such as cirrhosis, w=5 or even w=10 years is reasonable. Second, the selection of 

landmark time points ls , which implicitly defines the weighting of the prediction time, is 

independent of the actual event time. The simplest approach is taking these points 

equidistantly in the selected interval ( 0 25[ , ]s s s∈ ). A number of time points between 20 and 

100 will be sufficient17. Finally, the functional form, such as the quadratic functions used in 

this study, of ( )sα  (how to interpret changes over s) and ( )sβ  (time-varying covariate 

effect) should be prespecified in practice. 

In summary, predicting patient survival is a complex decision-making process 

involving the patient's own factors, the disease itself, treatment programs, living 

environment and other factors. Although prediction models can help clinicians improve the 

accuracy of prediction, the prediction results cannot be blindly accepted. As Lau30 said, 

"every patient is unique, one can only observe and not determine the final journey". 
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Table 1. The results of the dynamic RMST model (w=5 years) 

Variable No. ( Deaths ) Time functiona Coefficient SE P 

(Intercept)  1 7.772 0.541 <0.001

 s/5 -13.624 2.047 <0.001

 (s/5)2 11.783 2.094 <0.001

Drug (ref: placebo) 154(69)     

D-penicillamine 158(71) 1 -0.004 0.047 0.925 

 s/5 -0.272 0.094 0.004 

Sex (ref: male) 36(26)     

Female  276(114) 1 0.221 0.124 0.075 

 s/5 1.738 0.689 0.012 

 (s/5)2 -2.353 0.726 0.001 

SerBilir (per 1 mg/dl) 312(140) 1 -0.118 0.010 <0.001

 s/5 -0.147 0.051 0.004 

 (s/5)2 0.164 0.055 0.003 

Edema (ref: no) 247(96)     

Yes 65(44) 1 -0.566 0.079 <0.001

 s/5 0.311 0.150 0.038 

Albumin (per 1 gm/dl) 312(140) 1 0.278 0.074 <0.001

 s/5 0.482 0.152 0.001 

Prothrombin(per 1 second) 312(140) 1 -0.261 0.043 <0.001

 s/5 0.997 0.182 <0.001

 (s/5)2 -0.945 0.188 <0.001

Histologic (ref: Ⅰ/Ⅱ) 83(22)     

Ⅲ 120(48) 1 -0.145 0.046 0.001 

 s/5 0.280 0.104 0.007 

Ⅳ 109(70) 1 -0.567 0.060 <0.001

 s/5 0.516 0.118 <0.001

Age (per 1 year) 312(140) 1 -0.021 0.002 <0.001

SGOT (per 10 U/ml) 312(140) 1 -0.011 0.002 <0.001

Abbreviations: RMST: restricted mean survival time; No: number; SE: standard error; 

SGOT: serum glutamic oxaloacetic transaminase. 

a: The effects for covariates are calculated by the following formula:  
2

0 1 2( ) ( / 5) ( / 5)j j j js s sβ β β β= + + , 

  and the intercept for this model is calculated as 2
0 1 2( ) ( / 5) ( / 5)s s sα α α α= + + . 
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Table 2. The results of the RMST model ( 10τ =  years) 

Variable Coefficient 95% CI Z P 
(Intercept) 13.888 (8.625, 19.151) 5.172 <0.001 

Drug (ref: placebo)     

D-penicillamine -0.153 (-0.693, 0.387) -0.554 0.579 

Sex (ref: male)     

  Female 1.041 (0.014, 2.068) 1.987 0.047 

SerBilir (per 1 mg/dl) -0.244 (-0.312, -0.175) -6.977 <0.001 

Edema (ref: no)     

Yes -0.659 (-1.443, 0.126) -1.646 0.100 

Albumin (per 1 gm/dl) 1.432 (0.685, 2.179) 3.758 <0.001 

Prothrombin (per 1 second) -0.707 (-1.057, -0.356) -3.947 <0.001 

Histologic (ref: Ⅰ/Ⅱ)     

Ⅲ -0.761 (-1.354, -0.168) -2.513 0.012 

Ⅳ -1.409 (-2.141, -0.677) -3.771 <0.001 

Age (per 1 year) -0.051 (-0.078, -0.023) -3.610 <0.001 

SGOT (per 10 U/ml) -0.056 (-0.116, 0.004) -1.826 0.068 

Abbreviations: RMST: restricted mean survival time; CI: confidence interval; SGOT: 

serum glutamic oxaloacetic transaminase. 
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Table 3. The definition of example patients 

Patient 
Variables 

Timea Drug SerBilir Sex Edema Albumin Prothrombin Histologic Age SGOT
A 0.000 D-penicil 1.4 female Yes 3.13 12.2 Ⅳ 77 86.8
B 0.000 D-penicil 2.4 male No 3.83 10.3 Ⅲ 35 127.0
B 0.665 D-penicil 3.0 male No 3.75 10.5 Ⅳ 35 161.0
C 0.000 placebo 5.2 female No 3.68 9.9 Ⅲ 52 165.9
C 0.545 placebo 6.6 female No 2.87 11.4 Ⅲ 52 196.9
C 1.035 placebo 5.8 female No 2.94 10.4 Ⅳ 52 210.8
C 2.029 placebo 6.0 female Yes 2.60 11.6 Ⅳ 52 207.7
C 2.984 placebo 9.0 female Yes 2.54 10.4 Ⅳ 52 241.0
C 3.926 placebo 16.2 female Yes 1.81 12.5 Ⅳ 52 241.0

Abbreviations: SGOT: serum glutamic oxaloacetic transaminase. 

a: The observation time. 

 
 
  

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 

The d

solid 

in w

demo

Fi

dashed part

part). The a

which the o

onstrates the

igure 1. Sch

t of the sur

area under t

orange area

e unobserve

hematic diag

rvival curve

the survival 

a is the 1

d survival.

20 

 

gram of rest

e is extrapol

curve repre

4.31-year R

tricted mean

lated from 

esents the (u

RMST ( τ

 

n survival ti

the actual o

unknown) m

14.31= ) an

 

ime. 

observed da

mean surviva

nd the blu

ata (the 

al time, 

ue area 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 

Each 

wind

indic

surviv

 

Fig

 line corres

ow, and ls

ates the sta

ved, and the

gure 2. Sch

sponds to th

( 0,1,2,...l l =

art of follow

e solid line i

ematic diag

he patient’s

., )L  represe

w-up. The 

is the life ex

 

21 

 

gram of the d

 different p

ents a serie

dotted line 

xpectancy o

dynamic pre

prediction si

es of landm

 (……) me

of w years m

ediction pro

ituations. H

mark time 

eans the tim

( , )lm s w . 

 

ocess. 

Here, w is th

points, wh

me the patie

he time 

here 0s  

ent has 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 
22 

 

 

 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 

Abbr

The l

levels

is, th

(md(s

 

 

Figure 3. D

reviations: c

letters A-G 

s of Histolo

he differenc

s,w)). The d

Differences 

confidence

cRMST: con

represent d

ogic variable

e in cRMS

dashed line (

of 5-year cR

e intervals in

nditional res

different var

e. The solid 

T resulting 

(---) represe

 

23 

RMST (dyn

n the dynam

stricted mea

riables, and

line represe

from a on

ents the 95%

namic coeffi

mic RMST m

an survival ti

d the numbe

ents the dyn

e-unit incre

% confidence

icients (j sβ

model (w=5 

ime; Coef: c

ers 1-2 repr

namic coeffi

ease in the j

e intervals. 

)s ) with 95%

years). 

coefficients

resent the d

icients (j sβ

jth covariat

 

% 

. 

different 

)s , that 

tes at s 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 

F

Abbr

surviv

Predi

repre

The 

exam

follow

Figure 4. Ind

reviations: c

val time. 

ictions are 

esent the 5-y

dashed line

mple, the ho

w-up, and s=

dividual pre

cRMST: con

shown for t

year cRMST

e represents

orizontal ax

=5 correspo

edictions wit

RMST

nditional res

three examp

T from s to

s the (s+5)-

xis s=0 cor

onds to the 1

24 

 

th the dynam

T model (τ =

stricted mea

mple patients

o s+5 years 

-year RMS

rresponds t

10-year RM

mic RMST m

5s= +  year

an survival 

s (described

predicted b

T calculate

to the 5-ye

MST from the

model (w=5

rs). 

time; RMS

d in Table 3

by the dynam

ed by the R

ear RMST 

e start of fol

5 years) and

ST: restricted

3). The soli

mic RMST 

RMST mod

from the s

llow-up. 

d the 

d mean 

id lines 

model. 

del. For 

start of 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155



 

Abbr

A hig

better

 
 

Figu

reviations: R

gher C-inde

r performing

ure 5. Land

RMST: restr

ex indicates

g model. 

dmark time-s

ricted mean 

s better per

25 

specific C-in

survival tim

rforming m

ndexes and 

me. 

model; a low

prediction e

wer predicti

errors. 

ion error in

 

ndicates 

Computer Methods and Programs in Biomedicine. 2021, 207: 106155




