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a b s t r a c t 

Background and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is 

associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on 

the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture 

of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false 

results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. 

Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the 

electrical atrial waves. 

Methods: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS 

complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the 

prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we 

measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the ob- 

tained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, 

for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. 

Results: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal 

rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the 

accuracy of 98 . 75% on the basis of both 8–channel and 2–channel signals of 12 s length. When the signals 

length was decreased to 6 s, the accuracy varied in the range of 95% − 97 . 5% depending on the number 

of channels and the dispersion measure applied. 

Conclusions: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of 

electrical atrial activity. The method can be applied to an early detection of the desease and can advanta- 

geously be used to decrease the number of false warnings in systems based on the analysis of the heart 

rate. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Stroke is the third cause of death in the world [1] , being a ma-

or problem associated to atrial fibrillation (AF), the most common 

ardiac arrhythmia, as it increases up to 5 times the probability 

f suffering a stroke [2] . AF is caused by irregular electrical acti- 

ations of the atria, which in turn causes an irregular ventricular 

ace. From the ECG, it can be diagnosed from irregular RR intervals 

nd the presence of a continuous and time-varying atrial fibrilla- 

ory signal instead of P-waves. 
� Fully documented templates are available in the elsarticle package on CTAN . 
∗ Corresponding author. 

E-mail address: jgiraldo@utb.edu.co (J. Giraldo-Guzmán). 
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Due to the importance of early detection, in the last years dif- 

erent approaches for automated detection of AF have been pro- 

osed, which can be mainly divided in three groups: analysis of 

he periodicity of the heart rate, characterization of the atrial ac- 

ivity and hybrid methods involving both strategies [3] . Methods 

ased on the heart rate focus on the analysis of the RR interval 

nd the quantification of its variability, using e.g.: standard devia- 

ion, turning point ratio, histogram, Poincar plots, entropy or spec- 

ral analysis of the RR series, among others [4–7] . In some publica- 

ions, the approach based on machine learning is proposed to per- 

orm classification using the features extracted from the RR series 

8,9] . The main limitations of these methods are related to their 

pecificity, specially in short recordings, as variations of the RR in- 

erval are not specific to AF. 

https://doi.org/10.1016/j.cmpb.2021.106167
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2021.106167&domain=pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/elsarticle
mailto:jgiraldo@utb.edu.co
https://doi.org/10.1016/j.cmpb.2021.106167
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Regarding the characterization of the atrial activity, some meth- 

ds perform spectral analysis, as the atrial fibrillatory wave present 

istinctive spectral features with respect to the P-wave [10] . These 

ethods require a previous step for QRS-T cancellation [11,12] . On 

he other hand, methods aiming to detect the lack of P-waves have 

een recently proposed, such as Gaussian mixture models trained 

rom morphological and statistical features of the atrial signal [13] . 

n general, methods based on the characterization of the atrial ac- 

ivity also present inherent limitations due to the low amplitude 

f the atrial signal. 

Hybrid methods combine information from both strategies, ex- 

racting frequency and time domain features to characterize the RR 

eries as well as the atrial signal, which further on, can be input to 

arious machine learning approaches for classification [14–16] . Hy- 

rid methods offer higher performance, and any improvement of 

he previous methods can be integrated into them. In some of the 

elatively recent publications, the use of convolutional neural net- 

orks (CNN) is proposed for extraction of the both types of infor- 

ation (related with the atrial activity and the ventricular rhythm) 

ithout the necessity of advanced signal processing [17–20] . In 

pite of the great progress in the development of approaches to 

F detection, they are not fully satisfactory yet. The main prob- 

em is still with the limited accuracy in the diagnostics of AF in 

arge groups of population, as they produce numerous false posi- 

ives which have to be verified by cardiologists [21] . Thus, due to 

he implications of massive screenings with the increase of work- 

oad for cardiology units, this operation may not be cost-effective 

et [22] . 

This work deals with developing a robust and reliable method 

egarding the second strategy mentioned above and, more specifi- 

ally, with the detection of presence/absence of P-waves. The pro- 

osed method performs a backward search within segments pre- 

eding QRS complexes to detect either P waves or some false peaks 

hen the wave does not exist. It is carried out by applying a 

patio–temporal filter [23] where candidate PQ distances are de- 

ermined and their dispersion assessed. These measures are used 

o detect the presence of P-waves and classify the recording as AF 

n case of P-wave absence. 

The paper is organized as follows. Next section describes the 

aterials and methods. Subsequently, the results are presented. 

hen, our main findings are thoroughly discussed before conclud- 

ng the paper with final remarks. 

. Materials and methods 

.1. Multilead ECG database 

Eighty ECG recordings were used in our study. Among them, 

0 continuous ECGs from AF patients were registered during an 

lectrical cardioversion (ECV) using a Prucka 12-lead ECG system. 

or all patients, excerpts of 12 s were extracted before the elec- 

rical shock, which were included in the AF group. Whenever ECV 

as successful and ECG data were available (which occurred in 12 

atients), excerpts of 12 s following successful ECV were included 

n the normal sinus rhythm (NSR) group (see Fig. 1 . More details 

bout this dataset can be found in [24] . The NSR group was com-

leted by including 28 ECGs from the PTB Diagnostic ECG Database 

rom Physionet [25] . All recordings where digitized at a sampling 

ate of 1 kHz and 16-bit resolution. 

.2. Spatio-temporal filtering. 

The operation of spatio-temporal filtering (STF) can be ap- 

lied to multi–channel recordings to enhance a weak de- 

ired signal of repeatable morphology embedded in high en- 

rgy noise. Lets denote the m –channel signal as vector x (k ) = 
2 
 x 1 (k ) , x 2 (k ) , . . . , x m 

(k )] T , where k is a time index. To express STF,

e form an extended spatio-temporal signal representation [23] : 

 

(k ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x 1 (k − Jτ ) 
... 

x m 

(k − Jτ ) 
x 1 (k − (J − 1) τ ) 

... 

x m 

(k − (J − 1) τ ) 
... 

x 1 (k + Jτ ) 
... 

x m 

(k + Jτ ) 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(1) 

ontaining 2 J + 1 time samples from m channels available (the 

ength of vector x (k ) is p = (2 J + 1) m ). 

The filtering operation can be expressed as 

 (k ) = h 

T 
x 

(k ) (2) 

ith h being a p-length STF template. To determine this template, 

e can specify the filter operation by providing a set of spatio–

emporal vectors that should be magnified and a set of vectors that 

hould be suppressed. Lets denote as 

m 

= { k i | i = 1 , 2 , . . . , I m 

} (3)

he set of time indices of the vectors to be magnified, and similarly 

s 

s = { k i | i = 1 , 2 , . . . , I s } (4)

he corresponding set related with the vectors to be suppressed. 

The filter should maximize energy of the responses to vectors 

 

(k ) indicated by �m 

( k ∈ �m 

) and minimize energy of the re- 

ponses to those indicated by �s . When the vectors to be mag- 

ified contain the repeatable desired component plus independent 

oise, red the latter can be reduced by averaging: 

¯  = 

1 

| �m 

| 
∑ 

k ∈ �m 

x 

(k ) (5) 

here | �| denotes cardinality of �. 

Then we can define an objective function Q whose maximiza- 

ion will allow to find the proper filter template h : 

( h ) = 

(h 

T x̄ ) 
2 

1 
| �s | 

∑ 

k ∈ �s 
(h 

T x 

(k ) ) 
2 

= 

h 

T x̄ ̄x 

T h 

h 

T C s h 

(6) 

here C s = 

∑ 

k ∈ �s 
x (k ) x (k ) T . 

Maximization of (6) leads to the well–known formula: 

 = C 

−1 
s x̄ (7) 

hich is widely applied for calculation of generalized matched fil- 

ers (GMF) [26] or common spatial patterns [27,28] . Similarly like 

MF, the STF responds with positive peaks to the occurrences of 

he repeatable desired pattern in the processed signals. 

.3. System for atrial fibrillation detection 

The system objective is to discriminate between NSR and AF 

rom the presence or absence of P-waves, respectively. As occurs 

n NSR, regular P-waves precede the ventricular response. Such a 

tate is characterized by a low dispersion of the PQ interval. As 
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Fig. 1. Continuous ECG recording during electrical cardioversion. Previous to the shock, the patient is in AF. During the electrical shock, the amplitude of the signal reaches 

the full scale of the Analog-to-Digital Converter, hence clipping the signal. If ECV was successful, the cardiac rhythm is converted to NSR. 
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his is no longer occurring in AF, the estimation of this dispersion 

s proposed as the core of the system. 

.3.1. Signal preprocessing and QRS onsets detection 

The preprocessing steps involve baseline wander suppression 

nd powerline interference cancellation. Then we perform QRS 

omplexes detection using a multi–channel extension of the Pan- 

ompkins algorithm [29] . The filters developed are applied to all 

hannels separately; subsequently, the enhanced signals undergo 

quaring and addition to form a single–channel one. This signal is 

nally smoothed by a double sequential application of a moving 

verage (MA) filter [31,30] . 

According to this, a QRS detection function is formed (see 

ig. 2 B), which is employed to estimate the QRS onset, i.e. the 

-wave. Assuming that the height of the detection function peak 

quals 1, we search for points A and B, where the detection func- 

ion crosses the values of 0.5 and 0.25 and thus, providing time 

nstants a and b, respectively ( Fig. 2 C). From A and B, we define

 straight line that, at its intersection with the x axis (which oc- 

urs at time instant c = 2 b − a ) can be estimated as the beginning

f the QRS complex. Since, however, the detection function peak is 

idened by the applied moving average, the filter length L ma must 

e added ( q = c + L ma ) to compensate for this effect. 

After processing a signal containing I QRS QRS complexes, we 

orm a set of their onsets ( � = { q i , i = 1 , 2 , . . . , I QRS } ). They are

sed to limit the search for the P-waves and calculate the PQ in- 

ervals variability. 

Spatio-temporal filtering for patterns detection within P-waves: 

he learning phase 

The STF learning phase, i.e. determination of the STF coefficients 

vector h ), is realized for each patient individually, the necessary 

umber of times, according to the following procedure. 

Since it is the dispersion of the PQ interval that is to be evalu-

ted, the exact instants of P-wave onset or offset are not required. 

hat is needed instead, is the position of some prominent and 

ore easily detectable signal spatio–temporal pattern (STP) within 

his wave. Hence, the dispersion of its distances to the succeed- 

ng Q waves can be equally regarded as the estimation of the PQ 

ispersion. 
3 
To this end, using set � of QRS onsets, we determine a family of 

ets: �l , l = 0 , 1 , . . . , L , indicating L + 1 different assumed positions

within each ECG beat) of the searched STPs: 

l = { k = q − � − l · δ | q ∈ �} , l = 0 , 1 , 2 , . . . , L, (8)

here � is the minimal distance between STP and the succeeding 

RS complexes, and � + L · δ is the maximal distance assumed (see 

ig. 2 ). In advance, we will call these distances as the assumed PQ 

istances. 

For each �l , we create a separate STF filter. To achieve it, we 

ust specify a set of spatio–temporal vectors to be magnified ( �l 
m 

) 

nd suppressed ( �l 
s ), respectively. Regarding ( �l 

m 

), and for each l, 

e define 

l 
m 

= 

⋃ 

k ∈ �l 

{ k ′ | | k ′ − k | ≤ �m 

} . (9) 

hich is a union of sets related with the respective ECG beats, each 

et comprising 2�m 

+ 1 time indices of the vectors to be magni- 

ed, surrounding the assumed position of the STP searched (see 

he illustration in Fig. 3 ). The goal is to magnify the prominent 

TPs from the P-waves while suppressing the other parts of ECG 

eats. Since the peaks formed by the filter cannot be extremely 

harp and narrow, we neglect the vectors that are close to those 

ndicated by �l and put the rest to �l 
s : 

l 
s = � −

⋃ 

k ∈ �l 

{ k ′ | | k ′ − k | ≤ �n } . (10) 

here � is the set of all time indices for which spatio-temporal 

ectors were constructed, 2�n + 1 is the number of vectors ne- 

lected (not suppressed by STF) within each ECG beat. The role of 

he respective parameters introduced is explained in Fig. 3 . 

.3.2. STF output interpretation 

Within a signal produced by an STF filter, we search for the 

axima located near the assumed positions of the patterns mag- 

ified. The range of the search is illustrated in Fig. 4 using the 

ed double sided arrow (in the experimental section, we assume 

L = 300 ms and �R = 100 ms, with the latter parameter much 

maller to avoid detection of QRS complexes). 

After finding the maxima, we calculate their distances to the 

ucceeding QRS complexes. This way for each �l , l = 0 , 1 , . . . , L
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Fig. 2. Detection of QRS onsets: A) the processed signal channels, plotted on each other, B) the formed detection function, C) stages of the detection function analysis, 

leading to the determination of an approximate position q of the Q wave. The position detected allows to establish the segment that should contain the P wave (presented 

using the blue rectangle). Detailed description of the respective variables, in the text. 

Fig. 3. Illustration of the role of the STF learning phase parameters: �, δ, L , �m , �n ( q i is the detected position of the i th Q wave). � + lδ, l = 0 , 1 , . . . , L are the assumed 

PQ distances; for a given value of l the i th searched spatio–temporal pattern is selected: x (q i −�−lδ) , whose entries are marked by red points distributed at the assumed 

distances around the time index considered; see definition (1). To calculate the STF, the neighboring vectors whose time indices belong to the blue segment (and are limited 

by �m ) are magnified, and those associated with the darkened segments are suppressed (the white segments limited by �n are neglected). The 3–channel signal used for 

this illustration is vertically separated for better visibility. 

4 



J. Giraldo-Guzmán, M. Kotas, F. Castells et al. Computer Methods and Programs in Biomedicine 208 (2021) 106167 

0.0 0.5 1.0 1.5
-0.2

0

0.2

0.4

0.6

0.0 0.5 1.0 1.5

-0.02

0

0.02

0.04

RL

Fig. 4. Analysis of the results of STF filtering for STPs detection within P waves. Red vertical lines indicate either QRS onsets or the assumed STP positions. Black vertical 

lines indicate the positions detected. The range of the search for STP is bounded by the red double sided arrow. The difference between the detected STP position and the 

QRS onset is regarded as the PQ interval. 
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and the corresponding STF filter developed), we obtain an indi- 

idual PQ series. 

.3.3. PQ dispersion assessment 

For each of the L + 1 PQ series determined, we calculate the 

hosen measures of dispersion. Since these measures depend not 

nly on the true PQ dispersion but also on the errors of the bor- 

er values determination, the smallest among the L + 1 values ob- 

ained (for each dispersion measure applied) can be regarded as 

he best estimate of the true one. 

Six dispersion measures have been applied: standard deviation 

STD), interquartile range (IQR), range (RNG), coefficient of varia- 

ion (CV), index of dispersion (ID) and median of absolute devia- 

ion (MAD) [32] . 

.3.4. Parameters of the system 

After some preliminary considerations and experiments, we set 

he following values of the respective parameters: 

• � = 150 ms and δ = 5 ms, used in (8) ; 
• �n = 50 , used in (10) ; 
• �L = 300 ms and �R = 100 ms, illustrated in Fig. 4 ; 
• τ = 4 ; see (1) ; 
• J = 4 for 8–channel STF and J = 15 for 2–channel STF; see (1) ; 
• �m 

= 15 for 8–channel STF and �m 

= 5 for 2–channel STF; see 

(10) . 

The most important parameter J decides on STF length ( 2 Jτ ), 

.e. mostly on the temporal information exploited by the filter. For 

–channel signals, the searched spatio–temporal patterns contain 

ignificant spatial information, and therefore J was set to a small 

alue. By contrast, for 2–channel signals, the searched STPs con- 

ain rather limited spatial information, and much higher value had 

o be chosen, resulting in STF length of 2 Jτ= 120 ms, covering ap-

roximately the P-wave. 

.3.5. Selection of independant channels 

As it has been described, the experimental database contains 

2s excerpts of 12–lead ECG recordings. The standard 12–lead ECG 
5 
ontains 6 limb and 6 precordial leads. Among the limb leads, 

here are only 2 linearly independant ones. Therefore, only 8 lin- 

arly independant channels are available and, if only the three 

lectrodes of the limb leads were used, 2 independant channels 

nly. Using channels that are linear combinations of the other ones 

oes not introduce new information and does not improve the 

roposed method operation. Consequently, we have applied the 

ethod to 8–channel signals (with lead I and lead II selected from 

mong the limb leads), and to 2–channel ones (again limb lead I 

nd II). Since 12–lead recordings are usually acquired in clinical 

nvironment, the latter experiment is aimed to show the proposed 

ethods potential advantages in more practical conditions. 

. Results 

The spatio–temporal filter operation is illustrated in Fig. 5 . We 

an observe significant peaks produced by the filter within the P 

aves of the NSR case. It means that at the assumed distance be- 

ore the successive QRS complexes (assumed PQ distance) the filter 

ound repeatable spatio–temporal patterns, was able to learn their 

hape, and started to respond to this shape with large peaks (STP 

eaks in the figure). The lack of repeatable STPs in the signal of an 

F patient prevented the filter from the similar operation, and no 

iscernible peaks can be observed. This results in almost random 

ositions of the detected STPs for this patient. 

The further stages of signal analysis are illustrated in Fig. 6 . For 

ll the assumed PQ distances, established using (8) , a PQ series is 

etermined and for each series its standard deviation is calculated. 

hey are presented in the right subplots of the figure. We found 

ignificant differences between the values obtained for the two 

lasses: for NSR, smaller than 20 ms, and for AF, reaching above 

00 ms. The smallest values, finally chosen to represent the es- 

imated measure of PQ dispersion are indicated with red arrows. 

n the left side, we can see the corresponding PQ series: rather 

mooth for the NSR case and, as expected, highly unpredictable 

nd variable for AF. 
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Fig. 5. Illustration of the STF operation on 8–channel signals. For the normal rhythm case, significant, correctly located peaks are elicited at the output of STF (STP peaks) 

near the positions expected. For AF, the STF filter is not able to produce such peaks and the detected STPs are not synchronized with QRS complexes. 
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The analogous values, obtained for all signals considered, using 

ll applied measures of dispersion, are presented in Fig. 7 . For 8–

hannel signals, the method proposed allows for a good discrim- 

nation between the classes considered. All the red circles except 

ne are above the border lines plotted (whose heights were estab- 

ished using a simple algorithm, assuring minimal number of er- 

ors and maximal margin between the two classes) and the blue 

nes, below. For most measures of dispersion, relatively wide mar- 

ins exist between the NSR and the AF cases (except from the out- 

ying one: #12). For 2–channel signals, each dispersion measure 

akes a wider range of values, and the NSR and AF cases are lo- 

ated closer. Nevertheless, even in such conditions the established 
6 
order values allow for only a few classification errors for all dis- 

ersion measures applied. 

The bluish segment of the figure discussed shows the indices 

btained for AF patients that were successfully treated using car- 

ioversion. For 8–channel signals, all cases are correctly recognized 

sing all the measures. For 2–channels only, three measures: IQR, 

DS and MAD, have also allowed to achieve the goal. 

The results displayed in Fig. 7 , have quantitatively been ex- 

ressed in the left side of Table 1 , using the number of false nega-

ives and false positives, and the corresponding accuracy of AF de- 

ection (false negatives correspond to AF cases classified as NSR, 

nd false positives vice versa). 
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Fig. 6. Results of PQ dispersion assessment for cases of normal rhythm and atrial fibrillation. On the left, we have a few selected PQ series, determined for the assumed PQ 

distances (positions of the magnified STPs). On the right, we can see standard deviation of the PQ series as the function of the PQ assumed. Red arrows indicate the minimal 

values, chosen as the final estimates of the PQ dispersion. 
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The right side presents the analogous results obtained when 

he experiment was repeated using shorter signal segments. We 

an notice that the accuracy of classification has never fallen be- 

ow 95%, irrespective of the dispersion measure, signal length and 

umber of channels, used. 

. Discussion 

.1. Comparison to other methods 

As we can notice in Table 1 , for 2–channel signals of 12 s it is

ore advantageous to use robust measures of dispersion (IQR and 
7 
AD), and for excerpts of 6 s, the non–robust ones (for 8–channel 

ignals, the results are quite similar). Therefore, we have selected 

QR for longer and STD for shorter signal excerpts (irrespective of 

he channels number used). Using the AF detectors selected, we 

ave performed an experiment according to the rules of a strat- 

fied 10-fold cross–validation. All signals have been divided in 10 

roups, each containing 4 AF and 4 NSR cases. Members of each 

roup were used as test signals while the rest, as the learning ones. 

he experiment has been repeated 100 times with random assign- 

ent of the signals to the respective groups (preserving the same 

umber of AF and NSR cases in each group). The results obtained 

re presented in Table 2 . For reference, we have gathered results 
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Table 1 

Results of AF detection corresponding to Fig. 7 : accuracy (ACC), 

number of false negatives (#FN) and number of false positives 

(#FP). 

The length of the analysed signal excerpts 

12 s 6 s 

Measure ACC #FP #FN ACC #FP #FN 

8-channels signals 

STD 98.75% 0 1 97.5% 1 1 

IQR 98.75% 0 1 97.5% 1 1 

RNG 98.75% 0 1 96.25% 2 1 

CV 98.75% 0 1 97.5% 1 1 

IDS 98.75% 0 1 97.5% 1 1 

MAD 98.75% 0 1 96.25% 0 3 

2-channels signals 

STD 96.25% 2 1 96.25% 1 2 

IQR 98.75% 0 1 93.75% 2 3 

RNG 96.25% 2 1 96.25% 1 2 

CV 96.25% 2 1 96.25% 1 2 

IDS 96.25% 1 2 96.25% 1 2 

MAD 98.75% 0 1 95% 1 3 
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f some other promising approaches to atrial fibrillation detection, 

eported in literature. 

Many methods perform analysis of the heart rate only [4,5,8,9] . 

nalysis of an electrocardiogram itself is proposed in [10,13] , in 

ybrid methods [15] or in methods based on convolutional neu- 

al networks [17–20] . In [10] a spectral analysis of the P waves is

erformed rather for prediction than detection of paroxysmal atrial 

brillation. It is publication [13] that (like our method) proposes AF 

etection based on the analysis of atrial activity only. 

The results presented are not directly comparable because of 

ifferent experiments performed and data employed. However, we 

an notice that our method has particularly high specificity, and 

ccuracy comparable to the reference methods. Its disadvantage is 

he need to process signals of at least 2 channels. On the other 

and, it is fast, and allows to detect AF on the basis of very short

ignal intervals (similarly like the method published in [13] and 

s the recent CNN based ones). An important benefit of using this 

ethod is its good interpretability; by contrast, using CNN, we do 

ot know what is the major reason of a decision chosen. 
Table 2 

Overview of different approaches (APP) to AF detec

(AA) or hybrid (HR/AA) analysis, or on application o

segments. For AA and CNN approaches, we have pro

(#CH); WL denotes the length of the analysed signal 

Pub. Year WL #

Zhou et al. [4] 2015 127 beats -

Islam et al. [5] 2016 70 beats -

Ebrahimzadeh et al. [8] 2018 5 min -

Buscema et al. [9] 2020 21 beats -

Czabanski et al. [6] 2019 21 beats -

Alcaraz et al. [10] 2015 60 min 1

Ladavich et al. [13] 2015 7 beats 1

Babaeizadeh et al. [15] 2012 n.p. 2

Couceiro et al. [16] 2008 60 sec 2

Purerfellner et al. [14] 2014 2 min 2

He et al. [17] 2018 5 beats 1

Xia et al. [18] 2018 5 sec 1

Shi et al. [19] 2020 10 sec 1

Yildirim et al. [20] 2020 10 sec 1

This study: MAD{PQ} 2021 12 sec 8

This study: MAD{PQ} 2021 12 sec 2

This study: STD{PQ} 2021 6 sec 8

This study: STD{PQ} 2021 6 sec 2

8 
.2. Sources of AF detection errors 

Watching the upper part of Fig. 7 (results for 8 channels), we 

an see wide margins between the two classes, and one red outlier 

n each subplot. This means that the method allows for very effec- 

ive detection of AF, and in one case only, it fails completely. To 

ee the reason, we have plotted the corresponding signal in Fig. 8 . 

t appears that the signal contains exceptionally wide QRS com- 

lexes. Our algorithm for QRS onset detection finds the beginning 

f the most prominent wave, and in the example considered, it is 

ecessary to find the smaller waves, preceding the largest one. Be- 

ause of such an inadequacy of the algorithm, the assumed STP po- 

ition is too close to the beginning part of the QRS. Consequently, 

he filter magnifies these parts of the respective complexes, and 

he detected peaks are well synchronized with them. It unavoid- 

bly leads to the decreased PQ dispersion, and the signal misinter- 

retation. In our future research, we aim to overcome this prob- 

em by replacing the applied algorithm for QRS onset localization 

ith more advanced approach to the Q wave detection, proposed 

n [33] . 

Because of a good synchronization between the P waves and 

he succeeding QRS complexes (in NSR cases), it seems possible 

o achieve good P wave enhancement using the method of peri- 

dic component analysis [34,35] (which was applied e.g. to the en- 

ancement of so tiny signal components as the T wave alternans 

36] ). The study of this issue will also be the subject of our future

esearch. 

The second problematic case, indicated by a red arrow in 

ig. 7 corresponds to a signal that belongs to the NSR class, for 

hich a significantly increased PQ dispersion was obtained. The 

ignal has been presented in Fig. 9 . It appears that the PQ dis- 

ersion was raised by an occurrence of a premature atrial con- 

raction (PAC). Actually, within an interval of 12 s the signal con- 

ains two PACs. For the corresponding beats, the PQ distance can 

eviate from the other values, measured. Consequently, all classi- 

al non–robust measures of PQ dispersion have discernibly been 

aised (see the case #48 in Fig. 7 ). However, application of robust 

easures: IQR and MAD, has allowed to prevent this inconvenient 

henomenon. 

In table I, we can notice that, irrespective of the measure ap- 

lied, for 8–channel signal of 12 s length, the case was correctly 

lassified (for all measures #FP = 0). For 2–channel signals of the 

ame length, however, only the robust measures have allowed to 
tion: based on heart rate (HR), atrial activity 

f convolutional neural networks (CNN) to ECG 

vided the number of signal channels analysed 

segments (windows): n.p. means not provided. 

 CH APP Se(%) Sp(%) Acc(%) 

 HR 97.37 98.44 97.99 

 HR 96.39 96.38 96.38 

 HR 100 95.55 98.21 

 HR 96.55 93.74 95.15 

 HR 98.94 98.39 98.66 

 AA 99.27 - 88.07 

 AA 98.09 91.66 93.12 

 HR/AA 94 99 n.p. 

 HR/AA 93.80 96.09 n.p. 

 HR/AA 96 90 97.8 

 CNN 99.41 98.91 99.23 

 CNN 98.79 97.87 98.63 

 CNN 100 - 97.53 

 CNN 95.43 98.71 96.13 

 AA 100 97.90 98.95 

 AA 100 97.42 98.71 

 AA 97.88 97.36 97.62 

 AA 97.92 95.58 96.75 
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Fig. 7. Plots of the calculated indices of the PQ series dispersion. The AF cases are marked with red circles and the NSR ones, with blue stars. 24 cases placed within 

the bluish segment: from #39 to #62, correspond to 12 AF patients who underwent cardioversion and successfully regained the sinus rhythm. Red arrows indicate two 

troublesome cases that led to detection errors: #12 and #48. For robust measures (IQR, MAD), the latter case disappears. 
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chieve the goal (IQR and MAD). For 8 channels and the limited 

ime excerpts (of 6 s) only application of MAD has allowed to pre- 

ent the false recognition of this NSR case as the AF one (#FP = 0),

t the expense, however, of low detection sensitivity (increased 

umber of false negatives, #FN = 3). Consequently, we can expect 

he method proposed to be able to overcome successfully the cases 

ith limited numbers of atypical beats. This, however, depends on 

he dispersion measure, signal length, and number of channels, ap- 

lied. 
9 
Although the method proposed has good ability to distinguish 

he two classes considered (what results mostly from the high per- 

ormance of STF filtering), it also has an obvious limitation. If a 

ignal processed does not contain P waves, what happens not only 

or atrial but also for other arrhythmias, e.g. ventricular ones, the 

ethod will recognize this, and the lack of P waves can mistakenly 

e considered as the AF case. We can thus conclude that at its cur- 

ent form, the method should not be used for discrimination be- 

ween AF and all other types of cardiac rhythms. Some kind of ini- 
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Fig. 8. The case of a signal with exceptionally wide QRS complex ( #12 in Fig. 7 ). The automatically calculated QRS onset is far from the true one, and the assumed position 

of the STP to be magnified is too close to this onset. Consequently, STF produces easily discernible peaks, well synchronized with the succeeding complexes. It results in the 

decreased PQ dispersion (see the red outlier in Fig. 7 ). 

Fig. 9. The case of a premature atrial contraction (PAC), with the P wave overlapping with the preceding T wave. This overlapping spoils the signal spatio–temporal structure, 

and prevents the STF filter from producing a peak near the position expected (assumed). However, in the case illustrated, the filter produces the peak less than 100 ms before 

this position. Nevertheless, even this limited error can have a damaging influence on the indices of PQ variability (see Fig. 7 ). 
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ial classification of the signals analysed should be accomplished. 

herefore, in our future experiments, we will try to precede the 

escribed analysis with application of unsupervised clustering of 

he ECG beats, either hierarchical [37] or based on criterion func- 

ion minimization [38] . This should improve the proposed method 

bility to deal with different types of arrhythmias. 

Considering possible applications of this method, we can be- 

in with the most straightforward one, associated with systems for 
10 
utomated ECG interpretation, at the final stage of atrial activity 

lassification. However, the most promising one results from the 

ost disadvantageous feature of existing systems for AF detection, 

.e. their low specificity. It seems that the ability to check if the P 

ave is present, after a system warns about possible AF, could help 

o reduce the number of unnecessary warnings. For both types of 

he systems, however, it can be particularly beneficial to exploit 

he proposed method ability for an early detection of AF. 
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.3. Atrial fibrillation vs. atrial flutter 

The proposed approach was specifically designed for AF detec- 

ion. However, this algorithm would not work properly for the de- 

ection of macroreentrant atrial tachycardia (commonly known as 

trial flutter), which could be undetected. Although both atrial ar- 

hythmias present a continuous atrial wave instead of P-waves, in 

he case of atrial flutter, the atrial wave is regular in shape and 

eriod, as a result of a stable macroreentrant circuit within the 

tria. Moreover, the ventricular activity is coupled —and therefore, 

ynchronized— with the atrial activity. According to these features, 

Q distance would exhibit low dispersion. Therefore, other fea- 

ures, specific to atrial flutter, should be exploited to detect this 

trial arrhythmia. 

. Conclusion 

We introduce a concept of the PQ interval dispersion estimation 

or atrial fibrillation detection. Applying the noise immune method 

f spatio–temporal filtering to the detection of repeatable patterns 

ithin the successive P waves of the multi–channel ECG signals, 

e are able to estimate the dispersion of the PQ interval. This in- 

ex was successful for the discrimination of AF from NSR, as long 

s in the case of AF, P-waves are replaced by a continuous and ir- 

egular fibrillatory wave which, in addition, is no longer coupled 

ith the ventricular rhythm. 

The method allows for an early detection of atrial fibrillation 

nd can advantageously be used to decrease the number of false 

arnings in systems based on other features of the cardiac signals. 

n the experiments performed, using 8–channel and 2–channel sig- 

als, the method has allowed for almost faultless discrimination 

etween atrial fibrillation and normal sinus rhythm. 
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