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Abstract 

Background and Objectives 

The growing integration of healthcare sources is improving our understanding of diseases. Cross-

mapping resources such as UMLS play a very important role in this area, but their coverage is 

still incomplete. With the aim to facilitate the integration and interoperability of biological, 

clinical and literary sources in studies of diseases, we built DisMaNET, a system to cross-map 

terms from disease vocabularies by leveraging the power and intuitiveness of network analysis. 

Methods  

First, we collected and normalized data from 8 disease vocabularies and mapping sources to 

generate our datasets. Next, we built DisMaNET by integrating the generated datasets into a 

Neo4j graph database. Then we exploited the query mechanisms of Neo4j to cross-map disease 

terms of different vocabularies with a relevance score metric and contrasted the results with some 

state-of-the-art solutions. Finally, we made our system publicly available for its exploitation and 

evaluation both through a graphical user interface and REST APIs. 

Results  

DisMaNET contains almost half a million nodes and near nine hundred thousand edges, including 

hierarchical and mapping relationships. Its query capabilities enabled the detection of connections 

between disease vocabularies that are not present in major mapping sources such as UMLS and 

the Disease Ontology, even for rare diseases. Furthermore, DisMaNET was capable of obtaining 

more than 80% of the mappings with UMLS reported in MonDO and DisGeNET. Our tool was 

used successfully to complete the missing mappings in DISNET, a web-based system designed 

to extract knowledge from signs and symptoms retrieved from medical databases. 

Conclusions 

DisMaNET is a powerful, intuitive and publicly available system to cross-map terms from 

different disease vocabularies. Its completeness and the potential of network analysis make it a 

competitive alternative to existing mapping systems. Expansion with new sources, versioning and 

the improvement of the search and scoring algorithms are envisioned as future lines of work. 

Keywords 

Disease vocabularies, data interoperability, disease cross-mapping, graph database, network 

analysis 
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1. Introduction 

The increasing availability of large-scale biological, clinical and literary databases combined with 

the advances in computational methods are contributing to improve our understanding of diseases. 

However, the integration and interoperability of these sources pose a major challenge, particularly 

due to the use of different vocabularies and codifications of diseases [1]. This variety is explained 

because each vocabulary was originally created to meet a specific need. International Statistical 

Classification of Diseases (ICD) codes, for instance, are used by doctors, health insurance 

companies, and public health agencies across the world to represent diagnoses. In contrast, the 

Medical Subject Headings (MeSH) vocabulary is especially employed for the purpose of indexing 

journal articles and books in life sciences. A newer alternative to ICD and MeSH is the 

Systematized Nomenclature of Medicine – Clinical Terms (SNOMED CT). It cross-maps to 

several revisions of ICD and has a considerably broader scope than just diseases. Other widely 

used disease classification systems, although of more specific use, are OMIM (genetic disorders), 

Orphanet (rare diseases) or NCI (carcinogenic diseases) [2–4]. 

For years, disease classifications evolved independently, making their interrelation difficult. 

However, the growing number of disease studies based on the integration of multiple biological 

and literary sources entailed the need to cross-map them. One of the most notable efforts in this 

direction is the Unified Medical Language System (UMLS). Created in 1986 and maintained by 

the National Library of Medicine (NLM), UMLS provides through its Metathesaurus a mapping 

structure of many controlled vocabularies in the biomedical sciences. As a result, numerous 

studies and tools have used UMLS as an authentic Rosetta stone of disease terms. Still, due to the 

disparity of scopes and the granularity of the disease vocabularies, the annotation and mapping of 

UMLS terms is a complex and unfinished task.  

In the last decades, several initiatives have tried to improve and complete disease mappings by 

diverse methods. Already in 1998, a study by Bodenreider et al. proposed to use the semantic 

relationships between concepts to map terms of different vocabularies in UMLS with MeSH [5]. 

A later investigation contemplated the use of drug prescriptions to complete the mapping between 

MeSH and ICD-10-CM terms extracted from the UMLS Metathesaurus [6]. In 2017, Raje et al. 

leveraged the rich set of synonyms provided by the UMLS to identify lexical mappings for those 

concepts in the Disease Ontology (DO) without any mappings to SNOMED CT [7]. More 

recently, the emergence of massive source integration projects has driven the search for solutions 

to unify concepts. One remarkable example is the Monarch Merged Disease Ontology (MonDO), 

created by the Monarch Initiative to integrate multiple human disease resources into a single 

ontology by using a Bayes merging algorithm [8]. In the same line, MalaCards created a human 
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disease database from existing categorization systems and applied a semantic algorithm to 

connect diseases from different sources [9].  

As an alternative to automated mapping techniques, expert-curated sources can be exploited to 

complete disease mappings, avoiding error propagation and the need for additional validation [10, 

11]. The authors applied this approach in a previous research, with the aim of facilitating the 

integration of data extracted from PubMed with other sources [12]. The present study continues 

this line of work, introducing a network-based methodology that allows researchers to cross-map 

disease terms when integrating heterogeneous sources. Network analysis has proven as an 

intuitive and powerful method to extract new knowledge out of previously existing information. 

Over the last decades, network-based methodologies have been applied to discover connections 

among apparently unrelated biomedical entities such as diseases, physiological processes, 

signaling pathways, and genes [1]. Following the same reasoning, our study proposes to apply 

network analysis in the detection of disease term mappings. To illustrate and evaluate this 

methodology, we developed DisMaNET, a network-based tool to cross map disease vocabularies. 

2. Materials and methods 

This section describes the implementation of DisMaNET. First, we give a detailed description of 

the vocabularies and mapping sources used to generate the datasets. Next, we integrate the 

datasets into a graph database and outline the parameters of the resulting disease term network. 

Then we exploit network analysis mechanisms to obtain mappings between disease terms in 

different vocabularies and contrast the results with other mapping projects. Finally, we explain 

how to access DisMaNET. Figure 1 summarizes the process. 



 
 

5 
 

 

Figure 1. Block diagram with the implementation of DisMaNET.  

2.1. Data sources 

As a preliminary step to building our mapping tool, we collected data from several disease 

vocabularies. For the sake of comparability with previous results, the 2018 version of the data 

was used, when available. MeSH files were downloaded from NLM1. For descriptors, we 

considered only terms under categories C (Diseases) and F03 (Mental Disorders) [13–15]. To 

facilitate their connection with other vocabularies, we also included MeSH SCR of Class 3 

(diseases). SNOMED CT (United States) 2018 version was downloaded from NLM2. In this case, 

we only considered concepts under the “Clinical Finding” top-level hierarchy. As for ICD-10-

CM, the files containing the 2018 version of the code descriptions for this vocabulary were 

downloaded from the website of the Centers for Medicare & Medicaid Services3. In order to 

extend the set of disease vocabularies used in our previous research, for the present study we 

incorporated the OMIM4 and Orphanet5 as data sources. Both datasets were downloaded in June 

2019. The UMLS Metathesaurus (version 2018AB) was used as the main source of disease code 

mappings. To obtain the UMLS concepts associated as synonyms with the terms of the other 

vocabularies in the study (i.e. share the same unique identifier in the Metathesaurus), we exploited 

the Search REST API of the UMLS Terminology Services6. The map of SNOMED CT and ICD-

 
1 ftp://nlmpubs.nlm.nih.gov/online/mesh/2018/xmlmesh 
2 https://www.nlm.nih.gov/healthit/snomedct/archive.html 
3 https://www.cms.gov/Medicare/Coding/ICD10/2018-ICD-10-CM-and-GEMs.html 
4 https://www.omim.org/downloads 
5 http://www.orphadata.org/cgi-bin/rare_free.html 
6 https://documentation.uts.nlm.nih.gov/rest/home.html 
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10-CM codes (September 2008 version) was downloaded from NLM7. Finally, the concepts of 

the DO, which contain mappings to 24 disease vocabularies, were downloaded from the code 

repository of the project8 (version tag v2018-03-02).  

Of the eight mined sources, four of them contain relationships with other vocabularies: UMLS, 

DO, Orphanet and SNOMED CT. For this reason, throughout the study we will refer to them as 

“mapping sources”. Their mapping information will be helpful to connect the terms across 

different vocabularies. Additionally, in order to relate terms within each vocabulary, we also 

obtained data about their hierarchy, when available. Figure 2 depicts the data sources used in the 

study and the connections among them. Vocabularies and mapping sources provide information 

in different formats, ranging from XML to OBO or CSV. Therefore, in addition to the data 

extraction, as part of the dataset generation we had to standardize the format to CSV. The resulting 

dataset is publicly available in the project repository, where additional information on the data 

structure is provided9.  

 

Figure 2. Data sources used in the study and the connections between them. The arrow indicates the direction of the 
relationship. For example, UMLS contains mappings to the SNOMED CT vocabulary, and SNOMED CT contains 
mappings to ICD-10-CM (via the IHTSDO project). MeSH descriptors point to their parent MeSH descriptor through 
a hierarchical connection. 

2.2. Building DisMaNET 

The next step to build our network-based mapping tool was to integrate the collected data into a 

graph database (GDB). Relationships can be intuitively visualized using GDBs, making them 

 
7 https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html 
8 https://github.com/DiseaseOntology/HumanDiseaseOntology 
9 https://github.com/dismanet/paper/tree/master/data 
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useful for heavily interconnected data [16]. Additionally, GDBs are often faster than relational 

databases for associative data sets and map more directly to the structure of object-oriented 

applications [17]. To implement our GDB of disease vocabularies we chose Neo4j10 (v3.4.7), an 

open source solution which has been extensively used in network-based studies on diseases [18–

20]. 

For each disease vocabulary, we imported its concepts into Neo4j as nodes, labeled with the 

vocabulary name. Each node contains the name and the ID of the disease, as unique properties. 

The connections between the diseases were imported as relationships with type MAP (for disease 

mappings across different vocabularies) or IS_A (for hierarchical links within the same 

vocabulary). Associations of MeSH descriptors and SCR were represented with the relation type 

HAS_DESCRIPTOR. All the relationships are directional: MAP points from the mapping source 

to the vocabulary term; IS_A, from the descendant to the ancestor; and HAS_DESCRIPTOR, 

from the SCR to the descriptor.  

2.3. Querying DisMaNET  

Once the collected datasets were integrated into the graph database, we leveraged network 

analysis to discover new mappings between diseases. By definition, two terms in DisMaNET are 

directly connected (distance 1) through a MAP type relationship if at least one of them belongs 

to a mapping source that contains this association. Alternatively, two terms that do not belong to 

any mapping sources may be connected with distance 2 through a third term of a mapping source. 

Up to this point, all mappings found through the analysis of our network are known, as there is at 

least one mapping source that contains these associations. However, by increasing the distance 

we can detect further indirect relationships, which involve the connection of two terms through 

two or more additional terms (distance 3 or more). These associations do not exist expressly in 

any mapping source, and therefore constitute new knowledge. Figure 3 illustrates this concept 

with an example.  

 
10 https://neo4j.com/ 
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Figure 3. Finding new mappings of MeSH descriptors by exploring MAP relationships in the network. The distance 
(d) between two nodes connected via MAP relationships is 1 when (at least) one of the concepts belongs to a mapping 
source (e.g. UMLS maps C3837219 “Hoarding Disorder” with MESH D00067836 “Hoarding Disorder); d = 2 when 
two nodes are connected through a mapping source, but they might not belong to a mapping source themselves (e.g. 
the map between MESH and ICD-10-CM F42.3 “Hoarding disorder” is provided by UMLS); d = 3 when two nodes 
are connected through two sources (e.g. MeSH and SNOMED CT 248025009 “Hoarding”). 

We used Cypher11, the graph query language of Neo4j, to find these indirect relationships and fill 

in the gaps in the mapping sources. For instance, the following query retrieves all related MeSH 

and SNOMED CT disease codes and names through a maximum of 3 MAP connections (i.e. 

distance 3), which are not listed in the UMLS mapping source: 

MATCH (origin:MeSH)-[:MAP*1..3]-(target:SNOMEDCT)  
WHERE NOT(origin:MeSH)-[:MAP]-(:UMLS)-[:MAP]-(:SNOMEDCT)  
return distinct(origin.diseaseId), origin.diseaseName, target.diseaseId, target.diseaseName; 

Likewise, to find any mappings between a specific term in a vocabulary with another source 

through the fewest relationships, we used Dijkstra’s Shortest Path algorithm, included in Neo4j. 

For example, the query below returns the connections of the MeSH term "Hoarding Disorder" 

with any concept of SNOMED CT up to a distance of 3, following the path represented in Figure 

3: 

MATCH p=shortestPath((:MeSH{diseaseId:'D000067836'})-[:MAP *1..3]-(:SNOMEDCT))  
RETURN * 

These queries are easily generalizable, by adjusting the maximum distance value and replacing 

the labels of the origin and target vocabularies, and of the mapping source. Section 3 presents the 

results of applying these queries to all mapping sources. 

 
11 https://neo4j.com/developer/cypher/ 
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2.4. DisMaNET relevance metric 

As previously stated, our disease cross-mapping approach is based on the aggregation of reliable 

sources and their exploitation through network analysis. While this implies that the mappings 

obtained by querying DisMaNET have a solid base, for their correct assessment we must consider 

certain aspects. First, the main drawback of methods based on minimal paths is that their number 

grows quickly with the size of the system. For large networks, the increase of the number of paths 

leads to a combinatorial explosion [21]. Another network characteristic that may impact the 

quality of our approach is the fact that the strength of an indirect tie in a graph decreases with its 

length [22, 23]. Finally, to evaluate the obtained mappings, we must take into account the disparity 

in size, granularity and purpose of each source.  

In the view of the above considerations, and with the aim of facilitating the assessment of 

DisMaNET results, we propose the following metric to score the relative relevance of a mapping 

between terms a and b: 

𝑠𝑐𝑜𝑟𝑒௔௕ =
1

2
൬𝑠𝑖𝑚௔௕ +

1

𝑑௔௕
൰ 

In the formula, sim is the cosine similarity of the terms, computed as: 

𝑠𝑖𝑚௔௕ =
𝐴 · 𝐵

‖𝐴‖‖𝐵‖
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∑ 𝐴𝑖𝐵𝑖
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ඥ∑ 𝐴𝑖
2𝑁

𝑖=1 ඥ∑ 𝐵𝑖
2𝑁
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where A and B are the vector representation of terms a and b, respectively [24]; and d is the 

distance (number of relationships) between the terms. The similarity measures the relevance of 

the relationship at a semantic level, while the inverse of the distance reflects the strength of the 

connection at a network level. Thus, a mapping between two nodes with short distance and high 

similarity will be more relevant in relative terms, compared to other relationships with greater 

distance and/or less similarity. Section 3 compares the mappings obtained with different 

thresholds of the score, while Section 4 addresses the interpretability of this metric with some 

examples.  

2.5. Evaluation 

In order to evaluate the capacity of our system to cross-map disease codes, we measured how 

many of the mappings between UMLS identifiers and other vocabularies in MonDO and 

DisGeNET were obtained through DisMaNET. We downloaded the MonDO ontology (v2019-



 
 

10 
 

10-25) from the Monarch Initiative repository12. Only 13,043 out of 23,146 concepts in the 

ontology contain an association between an UMLS concept and at one term in DisMaNET. As a 

result, 31,308 mappings between UMLS and other vocabularies in MonDO were used for the 

evaluation. As for DisGeNET, we obtained the file with the mappings of UMLS CUIs to other 

disease vocabularies from the project website (v6.0)13. DisGeNET contains 22,201 unique CUIs, 

but only 17,921 have mappings to at least one vocabulary available in DisMaNET. OMIM 

identifiers starting with MTHU were excluded, as they do not represent exact matches. Overall, 

37,916 mappings between UMLS and other vocabularies in DisGeNET were used for the 

evaluation. Section 3 presents the results of the evaluation. 

2.6. Access to DisMaNET 

DisMaNET is available for use by any researcher under the DISNET14 project. Users must 

previously request a username and password at no cost, to keep a record of usage for statistical 

purposes. Once registered, they can query DisMaNET either via Neo4j’s graphic user interface15, 

or through its transactional HTTP API16. With the aim of abstracting DisMaNET users from the 

knowledge of the Cypher query language, we have developed and deployed a Spring Boot service 

to expose a simplified REST API17. Given a code and the label of its vocabulary in DisMaNET, 

this API returns all the mappings with other vocabularies, sorted by their score in descending 

order. The service leverages Neo4j Java driver18 to query the database using the Shortest Path 

algorithm with MAP and HAS_DESCRIPTOR relationships, only. See the Supplementary 

Material for additional information.  

3. Results 

Table 1 contains the number of nodes and relationships in DisMaNET. In the case of relationships, 

in addition to the total, a distinction is made between those of hierarchical type (IS_A, 

HAS_DESCRIPTOR) and mapping type (MAP).  

 
12 https://github.com/monarch-initiative/mondo 
13 https://www.disgenet.org/downloads 
14 http://disnet.ctb.upm.es 
15 http://disnet.ctb.upm.es/dismanet-neo4j 
16 http://disnet.ctb.upm.es/dismanet-neo4j/db/data/transaction/commit 
17 http://disnet.ctb.upm.es/dismanet-api/mappings/ 
18 https://neo4j.com/developer/java/ 
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Vocabulary Label Nodes Relationships Hierarchical Mapping 

MeSH MeSH 4,903 36,275 23,715 12,560 

MeSH SCR MeSHSCR 6,483 19,971 11,783 8,188 

ICD-10-CM ICD10CM 92,417 322,296 80,428 241,868 

SNOMED CT SNOMEDCT 150,352 607,679 368,746 238,933 

Orphanet ORPHANET 8,246 30,537 7,147 23,390 

OMIM OMIM 8,916 22,293 0 22,293 

UMLS UMLS 207,409 245,751 0 245,751 

DO DO 8,512 36,275 8,702 26,623 

Total 

 

487,238 898,541 488,738 409,803 

Table 1. Nodes and relationships per vocabulary source in DisMaNET. In addition to the total count, the relationships 
are broken down by mapping and hierarchical type. 

3.1. Finding missing mappings with DisMaNET 

Thanks to the completeness of the database and the query capabilities described in Section 2, we 

could quantify the connections between disease vocabularies that are missing in the mapping 

sources.  Table 2 contains the number of unique MeSH descriptors that are not related with terms 

of other vocabularies through the mapping sources. The number of MeSH descriptors not mapped 

with ICD-10-CM and SNOMED CT codes in UMLS coincide with those of the previous study 

[12]. 

Vocabulary UMLS DO Orphanet 

ICD-10-CM 2,458 3,395 4,228 

SNOMED CT 702 2,606 4,903 

OMIM 4,117 4,253 4,497 

Orphanet 4,903 4,697 4,136 
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Table 2. Number of unique MeSH descriptors with missing mappings to the target vocabulary (first column) in each 
mapping source (header). As Orphanet is both a vocabulary and a mapping source, the Orphanet-Orphanet cell contains 
the number of missing MeSH descriptors in this source. 

Table 3 contains the number of unique MeSH descriptors for which new mappings to other 

vocabularies were found through alternative sources, as described in Section 2. Again, these 

results are consistent with those obtained by the equivalent methods in the previous study. 

Additionally, they suggest that it is possible to complete mapping sources with the data extracted 

from others. However, it is noteworthy that the figures are considerably lower when we set a 

relevance threshold of 0.5. We analyze the significance of the score in Section 4.   

 Total score >0.5 

Vocabulary UMLS DO Orphanet UMLS DO Orphanet 

ICD-10-CM 1,663 2,600 3,433 138 696 1,155 

SNOMED CT 134 2,038 4,335 19 1,281 2,907 

OMIM 1,219 1,355 1,599 227 274 400 

Orphanet 1,318 2,378 2,584 126 821 965 

Table 3. Number of unique MeSH descriptors for which new mappings to other vocabularies (first column) were found 
by querying DisMaNET, for a maximum distance of 4 MAP relationships between the MeSH node and the target 
vocabulary node. The vocabulary header refers to the mapping source in which the retrieved mappings are not available.  

3.2. Interpretable cross-mappings of vocabularies 

The previous results provide quantitative evidence of the power of DisMaNET to resolve missing 

mappings. However, in practice what researches need is to find the equivalent concept in a target 

vocabulary for a given concept in an origin vocabulary, with the closest relationship. Additionally, 

for indirect relationships it is essential to understand how they have been established and ensure 

that the result is valid for their investigation. To address this need, we used Neo4j’s Shortest Path 

algorithm as described in Section 2. For example, the following query computes the shortest path 

between the MeSH descriptor D008577 (“Meningeal Neoplasms”) and the ICD-10-CM 

vocabulary with a maximum of two relationships: 

MATCH p=shortestPath((:MeSH{diseaseId:'D008577'})-[:MAP*1..2]-(:ICD10CM)) 
RETURN * 

Figure 4 shows the result of the query in graph mode, when varying the maximum distance 

between 2 and 4. 
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Figure 4. Connections between the Meningeal Neoplasms MeSH descriptor and ICD-10-CM concepts, obtained by 
using the Shortest Path algorithm with a maximum distance (d) of 2, 3 and 4 MAP relationships. Only MAP 
relationships are represented. 

Thanks to the integration of OMIM, Orphanet and MeSH SCR in DisMaNET, we can use the 

same method to map rare diseases across different vocabularies. For instance, the following query 

retrieves the connections between “Osteopetrosis-hypogammaglobulinemia syndrome”, an 

extremely rare primary bone dysplasia encoded in Orphanet as “178389”, and MeSH descriptors 

by using not only MAP, but also HAS_DESCRIPTOR relationships [25]: 

MATCH p=shortestPath((:ORPHANET{diseaseId:'178389'})-
[:MAP|:HAS_DESCRIPTOR*1..3]-(:MeSH))  
RETURN * 

Figure 5 shows the result of the query in graphical mode. Hierarchical IS_A relationships are also 

included for better interpretability. Section 4 describes how these graphs help to interpret the 

results. 
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Figure 5. Connections between the rare disease Osteopetrosis-hypogammaglobulinemia in the Orphanet vocabulary 
and MeSH descriptors, obtained by using the Shortest Path algorithm with a maximum distance of 3 MAP relationships. 

3.3. Evaluation 

Table 4 contains the results of the evaluation of DisMaNET with MonDO. Of the 31,308 

comparable mappings in this source, 27,349 (87.36%) were found by querying DisMaNET using 

the Shortest Path algorithm, as described previously. Filtering the results by their relevance, 

85.17% and 53.88% of the comparable mappings had a score greater than 0.5 and 0.9, 

respectively. These results demonstrate that DisMaNET is capable of solving these mappings with 

a performance comparable to that of MonDO, where a semi-automatic approach is used. In 

addition to the matching mappings, 192,106 connections between UMLS concepts and other 

vocabularies that are not available in MonDO were obtained through DisMaNET. Of these, 

31.58% had a high relevance (score > 0.5) and 0.80% a very high relevance (score > 0.9). For 

instance, MONDO:0005253 (“High output heart failure”) was mapped to the homonymous ICD-

10-CM code I50.83 with score 1.  
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Existing in 

MonDo 

Missing in 

DisMaNET 

MonDO and DisMaNET New in DisMaNET 

Vocabulary 

  

Total s>0.5 s>0.9 Total s>0.5 s>0.9 

DO 7,083 545 

 

6,538 

 

6,498 

 

5,151 

 

12,487 

 

6,264 

 

28 

 

ICD-10-CM 1,121 102 

 

1,019 

 

808 

 

629 

 

10,229 

 

4,794 

 

584 

 

MeSH 6,107 92 

 

6,015 

 

5,967 

 

3,229 

 

47,576 

 

9,619 

 

249 

 

OMIM 6,062 2,339 

 

3,723 

 

3,702 

 

2,256 

 

25,478 

 

18,221 

 

83 

 

Orphanet 4,519 349 

 

4,170 

 

4,049 

 

3,137 

 

25,795 

 

6,710 

 

62 

 

SNOMED CT 6,416 532 

 

5,884 

 

5,643 

 

2,468 

 

70,541 

 

15,064 

 

532 

 

Total 31,308 

 

3,959 

 

27,349 

 

26,667 

 

16,870 

 

192,106 

 

60,672 1,538 

 

Table 4. Number mappings between UMLS concepts in MonDO and other vocabularies (first column) found by 
querying DisMaNET, for different relevance scores (s) 

On the other hand, Table 5 contains the results of the evaluation with DisGeNET. In this case, 

31,036 of the 37,916 comparable mappings in this source (81.86%) were found in DisMaNET. 

Connections with a score higher than 0.5 and 0.9 were found for 65.92% and 31.34% of the 

mappings, respectively. These results are comparable to those obtained by MalaCards [26]. Of 

the 279,932 new mappings between UMLS concepts in DisGeNET and other vocabularies in 

DisMaNET, 34.31% and 2.67% had high or very high relevance, respectively. It is worth 

mentioning that this large result set is due to the fact that mappings for vocabularies not available 

in DisGeNET, such as ICD-10-CM, Orphanet and SNOMED CT, are included. For instance, 

UMLS CUI C0409495 (“Protrusio acetabuli”) was mapped to the homonymous terms in ICD-10-

CM (M24.7) and SNOMED CT (59606006). These results have been shared in the project 

repository19. 

 
19 https://github.com/dismanet/paper/tree/master/results 
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Existing in 

DisGeNET 

Missing in 

DisMaNET 

DisGeNET and DisMaNET New in DisMaNET 

Vocabulary 

  

Total s>0.5 s>0.9 Total s>0.5 s>0.9 

DO 15,675 
 

1,465 
 

14,210 8,227 
 

2,456 
 

13,079 
 

3,313 
 

160 
 

ICD-10-CM N/A N/A N/A N/A N/A 17,369 7,934 1,511 

MeSH 10,064 
 

142 
 

9,922 
 

9,902 
 

5,183 
 

62,980 
 

14,931 
 

8 

OMIM 12,177 5,273 
 

6,904 
 

6,867 
 

4,245 
 

40,689 
 

28,068 
 

36 

Orphanet N/A N/A N/A N/A N/A 34,608 
 

12,299 
 

1,922 

SNOMED CT N/A N/A N/A N/A N/A 111,207 
 

29,494 
 

3,817 

Total 37,916 6,880 
 

31,036 
 

24,996 
 

11,884 
 

279,932 
 

96,039 
 

7,454 
 

Table 5. Number mappings between UMLS concepts in DisGeNET and other vocabularies (first column) found by 
querying DisMaNET, for different relevance scores (s). 

3.4. Contribution to DISNET 

The DISNET database integrates phenotypic and genetic-biological characteristics of diseases 

and information on drugs from several sources [27]. In the case of Wikipedia, one of its textual 

sources, disease articles usually include a list of "Medical Resources" with the codes of disease 

vocabularies associated to the term. However, these resources do not include UMLS codes20, 

making it difficult to integrate this source of phenotypic data with the biological layer in DISNET. 

To address this problem, we used DisMaNET to resolve the mappings missing in DISNET (as of 

January 2020) with UMLS and other vocabularies. The results are shown in Table 6. Mappings 

with the highest scores were contributed to Wikipedia, resulting in 950 disease articles extended 

with new medical resources21. 

  

 
20 https://en.wikipedia.org/wiki/Template:Medical_resources 
21 https://en.wikipedia.org/wiki/Special:Contributions/Eduardo_P._Garc%C3%ADa_del_Valle 
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Existing in DISNET New in DisMaNET 

Vocabulary 

 

Total s>0.5 s>0.9 

DO N/A 5,668 

 

4,163 

 

1,778 

 

ICD-10-CM 4,949 6,055 

 

1,864 

 

95 

 

MeSH 4,179 1,849 

 

794 

 

52 

 

OMIM 2,238 1,503 

 

771 

 

11 

 

Orphanet 977 9,058 

 

3,147 

 

606 

 

SNOMED CT 20 32,377 10,091 742 

UMLS N/A 16,035 

 

11,658 

 

3,051 

 

Total 12,363 72,545 32,488 6,335 

Table 6. Number mappings between DISNET disease codes and other vocabularies (first column) found by querying 
DisMaNET, for different relevance scores (s). 

4. Discussion 

Our disease vocabulary cross-mapping system consists of a complex network with around five 

hundred thousand nodes and approximately nine hundred thousand relationships. However, 

numbers vary significantly between vocabularies, as depicted in Table 1. In the case of MeSH 

descriptors, for example, the number of relationships, especially of hierarchical type, is relatively 

large with respect to the node count. This is due to the fact that the same descriptor is usually 

related to multiple parent descriptors, sometimes within different categories. In contrast, ICD-10-

CM, whose elements have only one ancestor, presents a number of hierarchical relationships very 

close to that of nodes. Further queries to DisMaNET reveal that only 185 disease terms are 

connected through direct MAP type relationships in all 8 vocabularies. If we only consider 

UMLS, SNOMED CT, ICD-10-CM and MeSH, vocabularies, the number of connected concepts 

totals 2,728, which is slightly higher than in MalaCards [26]. 

The completeness of the database and the power of network analysis enabled us not only to 

quantify the number of MeSH descriptors which are not mapped with terms of other vocabularies 

in the mapping sources (Table 2), but also to solve a significant number of these missing mappings 

(Table 3). Orphanet has the largest contribution of new connections between MeSH descriptors 

and other vocabularies, with 81.20% and 88.41% of the missing mappings with ICD-10-CM and 
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SNOMED CT resolved, respectively. The reason is that Orphanet does not contain direct 

relationships with SNOMED CT, and relatively few with ICD-10-CM. If we look at the missing 

mappings between DO and SNOMED CT, 78.20% of them were resolved by applying the same 

techniques. As a result, 75.96% of all the DO terms in DisMaNET are connected to SNOMED 

CT concepts, which is comparable in relative terms to previous studies based on mapping  through 

semantic and hierarchical characterization [7]. The comparison with MonDO and DisGeNET, 

with over 80% of coincidences in both cases, confirms the ability of DisMaNET to cross-map 

codes from different vocabularies with a performance comparable to that of the state of the art.  

Despite these benefits, the extent of the network and the use of algorithms such as Shortest Path 

result in an overwhelming number of cross-mappings. To alleviate this effect and provide a 

quantitative reference of the mapping relevance, we introduced a score metric in Section 2. The 

results in Section 3 show that the ratio of relevant mappings (score > 0.5) ranges from 10% to 

70%. The fact that most of the mappings in DisMaNET validated with MonDO and DisGeNET 

have a high score, demonstrates the validity of this metric to measure the relevance of the results 

and to prevent eventual false positives. Still, this metric is only a first approximation, and it is 

necessary to study more advanced alternatives to improve the reliability of our solution. To 

complement the quantitative assessment provided by the score, result visualization allows 

researchers to understand and validate mappings qualitatively. For example, Figure 4 shows the 

ICD-10-CM concepts associated with the “Meningeal Neoplasms” MeSH descriptor. In 

particular, the mapping with ICD-10-CM code “G03.9” (“Meningitis, unspecified”) has a score 

of 0.125. Although not highly relevant, this relationship is meaningful when we look at the graph. 

Meningitis is typically caused by an infection with microorganisms, but in some cases it may 

occur as the result of several non-infectious causes, such as the spread of cancer to the meninges 

(malignant or neoplastic meningitis) [28].  

DisMaNET has proven to be an effective cross-mapping tool even in the case of rare diseases, 

which often present additional difficulties. On the one hand, rare disease databases such as OMIM 

and Orphanet represent different perspectives of diseases, and as a result they are inconsistently 

cross-referenced [29, 30]. On the other hand, generic vocabularies have very limited coverage of 

this type of diseases, posing a major problem for health insurance reimbursement and research. 

Figure 5 shows the connections between the “Osteopetrosis-hypogammaglobulinemia” term in 

Orphanet with MeSH, obtained by querying DisMaNET. Interestingly, there is an indirect 

relationship with the MeSH descriptor “Agammaglobulinemia” through the Supplementary 

Concept Record “Osteopetrosis, Osteoclast-Poor, With Hypogammaglobulinemia”, via 

HAS_DESCRIPTOR. As explained, MeSH SCR are often used to label rare diseases. This 
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example demonstrates the value of introducing more sources in DisMaNET to solve non-direct 

mappings, especially for rare diseases. 

5. Conclusion 

The integration of data from biological, clinical and literary sources enables the study of diseases 

from a more comprehensive and holistic approach. However, the interoperability of these sources, 

particularly of the codes used to identify diseases, poses a major challenge. Despite the 

availability of cross mapping resources such as the Unified Medical Language System or the 

Disease Ontology, their coverage, especially in the case of rare diseases, is still insufficient. To 

address this problem, we built DisMaNET, a network-based system to cross-map terms from 

disease vocabularies in an intuitive and efficient way. Thanks to its completeness and the power 

of network analysis, our system is able to detect and solve a significant number of the mappings 

missing in the most commonly used resources, even for rare diseases. The study compares 

DisMaNET with other resources such as MonDO and DisGeNET, demonstrating that our tool is 

capable of obtaining more than 80% of their mappings. A relevance score and the possibility of 

visually analyzing the obtained mappings facilitate the understanding and validation of the results. 

DisMaNET and the datasets used to build it are publicly available for their exploitation and 

evaluation. 

Given the continuous publication of new versions of the disease vocabularies, the update and 

versioning of DisMaNET is one of the next challenges to face. On the other hand, the exploitation 

of alternative network analysis algorithms to find disease mappings, the design of a more 

advanced relevance score and the integration of new data sources, such as NCI or GRAD, are 

envisioned as future lines of work. Finally, it is necessary to investigate and evaluate alternatives 

for the network algorithms and the relevance score, in order to improve the precision of the 

system.  
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