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Abstract

When using machine learning techniques in decision-making processes, the interpretability of the models is important. In the
present paper, we adopted the Shapley additive explanation (SHAP), which is based on fair profit allocation among many stake-
holders depending on their contribution, for interpreting a gradient-boosting decision tree model using hospital data. For better
interpretability, we propose two novel techniques as follows: (1) a new metric of feature importance using SHAP and (2) a tech-
nique termed feature packing, which packs multiple similar features into one grouped feature to allow an easier understanding
of the model without reconstruction of the model. We then compared the explanation results between the SHAP framework and
existing methods. In addition, we showed how the A/G ratio works as an important prognostic factor for cerebral infarction using
our hospital data and proposed techniques.
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1. Introduction

In recent years, remarkable breakthroughs have been
achieved in machine learning technology, as typified by deep
neural networks. Such technologies are expected to be used
for decision-making in medical fields. In decision-making, it
is important to recognize why decisions are made. Although
complex machine learning models such as deep learning and
ensemble models can achieve high accuracy, they are more dif-
ficult to interpret than simple models such as a linear model. To
provide interpretability, tree ensemble machine learning algo-
rithm such as the Random Forest and Gradient Boosting Deci-
sion Tree (GBDT) [1] can provide feature importance, which is
each feature’s contribution to the outcome. However, Lundberg
et al. pointed out that popular feature importance values such as
gain are inconsistent [2]. For addressing these problems, Lund-
berg et al. proposed using the SHapley Additive exPlanation
(SHAP). Using the idea of the Shapley value, which is a fair
profit allocation among many stakeholders depending on their
contribution, SHAP represents the outcome as the sum of each
feature contribution calculated as the Shapley value. SHAP val-
ues have proved to be consistent and SHAP summary plots pro-
vide a useful overview of the model.

In this paper, we adopted the SHAP method for interpreting
GBDT model constructed using real data from a hospital. For
better interpretability, we propose two novel techniques. One is
a new metric of feature importance using SHAP. Interpretation
using our metric is exactly the same as that of the generalized
linear model. The other technique is feature packing, which
packs multiple similar features into one grouped feature. Our

new metric of feature importance is useful for selecting similar
features, whereas feature packing allows easier understanding
of a model without reconstruction of the model while maintain-
ing accuracy. Here, we constructed a prognosis predictor using
cerebral infarction data from our hospital. We then compared
the explanation results between SHAP and the existing gain
method. We uncovered the underlying relationships between
features and outcome using our techniques and found unknown
prognosis factors.

2. Background

2.1. Generalized Linear Model

The generalized linear regression model (GLM), such as a
logistic regression model, is widely used in medical studies be-
cause it allows interpretation of the effect of explanatory vari-
able xi for outcome y using a coefficient. In the logistic regres-
sion model, the log-odds of the probability p is a linear combi-
nation of the explanatory variables, also called features xi ∈ Xi

and coefficient ai, and given as follows:

log
p

1 − p
= b +

K∑
i=1

aixi (1)

, where b is a constant term and K is the number of features. If
we increase xi by 1, the log-odds increases by ai. If ai > 0, a
larger xi has a positive impact on the outcome, while a negative
ai means a negative impact of a larger xi.

If all features are standardized, i.e., ∀i, E(Xi) = 0 and
Var(Xi) = 1, the estimated coefficients are called standardized
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coefficients or beta coefficients. A beta coefficient βi is a di-
mensionless quantity. Thus, we can directly compare beta co-
efficients. The importance of a feature is evaluated by the abso-
lute value of the beta coefficient. A larger value means greater
importance.

Since the relationship between features and GLM outcome is
simple and straightforward, we can interpret the model easily;
however, it is difficult to construct accurate prediction models
that include interactions and non-linear terms using the GLM.

2.2. Decision Tree and Ensemble Trees

A decision tree is a classification algorithm that partitions
data into subsets. The partitioning process is a binary split and
the outcome is described by simple if-then rules. The decision
tree model is easy for interpretation; however, it is difficult to
construct an accurate model using a single decision tree.

An ensemble tree combines several decision trees to achieve
a better predictive performance than a single decision tree. The
main principle behind the ensemble model is that a group of
weak learners comes together to form one strong learner. The
Random Forest and GBDT[1] are examples of ensemble tree
models. The ensemble tree model treats following data well.

• high dimensional features

• non-linear relationships between features and outcome

• interaction among features.

Since the model achieves good prediction performance empir-
ically using high-dimensional big data, the ensemble model is
widely used in the machine learning field. The use of multi-
ple decision trees can achieve a good prediction performance;
however, interpretation of if-then rules in such a model is more
difficult.

In the ensemble tree model, partial dependence plot [1, 3]
is used to show the relationship between the features and the
outcome.

2.3. Shapley Additive Explanation

In the ensemble tree model, gain, which is the total reduction
of loss contributed by all splits for a given feature, is widely
used to evaluate feature importance [4]; however, Lundberg et
al. pointed out that gain is inconsistent. This means that the
importance of a given feature may decrease even if a model can
change such that it relies more on the feature [2]. To address
these problems, Lundberg et al. proposed using the Shapley
value for calculating feature importance [5].

The Shapley value is a fair profit allocation among many
stakeholders depending on their contribution [6] and was de-
rived from the name of the economist who introduced it. The
Shapley value is defined as follows:

Φ(xi) =
∑

S⊆{1,2,···,K}\{i}

|S |!(K − |S | − 1)!
K!

[ fx(S∪{i})− fx(S )], (2)

where K is the number of stakeholders. The meaning of the
bracket part of Eq. (2) is that the contribution of entitiy-i can be

defined as a marginal contribution, i.e. the difference between
the profit obtained by group-S members only: fx(S ) and that of
both entity-i and the group members: fx(S ∪{i}). The gain intro-
duced by Friedman [4] is based on the same idea; however, the
gain can be changed by the group members S 1 and this causes
inconsistent. Then, we repeat this computation for all possi-
ble combinations and the Shapley value is the average of the
marginal contributions of all possible combinations. The Shap-
ley value is the only profit allocation method that satisfies the
following four properties: efficiency, symmetry, linearity and
null player. By using the idea of the Shapley value, SHapley Ad-
ditive exPlanation (SHAP) represents the outcome of patient- j:
f (x( j)) as the sum of each features-i’s contribution φi(x( j)

i ).

φ0 =
1
N

N∑
j=1

f (x( j)) (3)

φi(x( j)
i ) = Φ(x( j)

i ) −
1
N

N∑
k=1

Φ(xi
(k)) (4)

f (x( j)) = φ0 +

K∑
i=1

φi(x( j)
i ) (5)

, where N is the number of patients. We derived ∀i, E(φ(Xi)) =
1
N
∑N

j=1 φi(x( j)
i ) = 0 from Eq.(4).

The SHAP value has been proven to be consistent [5] and is
adoptable for all machine learning algorithms, including GLM.
The computation time of naive SHAP calculations increases ex-
ponentially with the number of features K; however, Lundberg
et al. proposed polynomial time algorithm for decision trees
and ensembles trees model [2]. This algorithm is integrated into
major ensemble tree frameworks like XGBoost [7] and Light-
GBM [8].

The relationship between a feature xi and SHAP value in
GLM φGLM is given as follows [5]:

φGLM(x( j)
i ) = aix

( j)
i − E(aiXi) = aix

( j)
i − aiE(Xi) (6)

Feature xi has a proportional relation with its SHAP value and
the proportionality factor is given by coefficient ai. This result
is consistent with existing interpretations of GLM.

3. Methods

3.1. SHAP Dependence Plot

A SHAP dependence plot [2] shows the relationship between
the feature and its effect on the outcome measured by SHAP.
In binary prediction, SHAP values correspond to log-odds in
the logistic regression model. The SHAP dependence plot for
GLM shows the linear relationship given by Eq. (6).

1In the tree model, group members correspond to all nodes from the root to
the evaluating node.
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3.2. Variable Importance of SHAP
Lundberg’s original method [2] uses the sum of absolute

value (L1-norm) of each patients’ SHAP value to measure the
feature’s contribution:

∑N
j=1 |φ(x( j)

i )|. However, we propose us-
ing the variance (L2-norm) of the SHAP value for measuring
variable importance.

IMP(Xi) = Var(φ(Xi)) =
1
N

N∑
j=1

[
φ(x( j)

i ) − E(φ(Xi))
]2

=
1
N

N∑
j=1

[
φ(x( j)

i )
]2
− {E(φ(Xi))}2

=
1
N

N∑
j=1

[
φ(x( j)

i )
]2

(7)

Using our definition, the variable importance of GLM in
Eq. (1), in which all features are standardized, is given as fol-
lows:

IMPGLM(Xi) =
1
N

N∑
j=1

[
aix

( j)
i − aiE(Xi)

]2
=

a2
i

N

N∑
j=1

[
x( j)

i − E(Xi)
]2

= |ai|
2 · Var(Xi) = |βi|

2 (8)

The ranking result sorted by the absolute value of the beta co-
efficients βi is exactly the same as that of our definition. Our
definition is also useful for the feature packing technique de-
scribed in the next subsection.

3.3. SHAP Feature Packing
Explanatory variables often include similar features. For ex-

ample, weight, height, and BMI are body-related information
and correlated with each other.

Since correlated variables may prevent interpretation, it is
common to remove correlated variables from the data and re-
construct the predictor. However, this method requires more
calculation time for reconstruction and the prediction accuracy
may become worse. Thus, we want to pack these variables into
one grouped variable without reconstruction of the predictor.
Thanks to a characteristic of the SHAP value, the effect of two
features on the outcome φ({x( j)

i , x( j)
k }) is calculated as follows:

φ({x( j)
i , x( j)

k }) = φ(x( j)
i ) + φ(x( j)

k ) (9)

Next, we derive the feature importance of the grouped variable
IMP({Xi, Xk}) by the definition of Eq. (7). The grouped feature
importance is given in a simple form as follows:

IMP({Xi, Xk})
= Var(φ(Xi) + φ(Xk))
= Var(φ(Xi)) + Var(φ(Xk)) + 2 ·Cov(φ(Xi), φ(Xk))
= IMP(Xi) + IMP(Xk) + 2 ·Cov(φ(Xi), φ(Xk)) (10)

, where Cov(X,Y) is the covariance between X and Y . The high
covariance of SHAP values means that these features operate in

a similar way for the outcome or there are strong interactions
between them; thus, it is reasonable to pack these variables into
one grouped variable. The grouped feature importance is larger
than the sum of each feature importance and a higher covari-
ance derives a higher grouped importance. Moreover, feature
packing does not require reconstruction of the model and has
absolutely no impact on prediction accuracy. Therefore, pack-
ing of features with similar meanings or large covariate is a very
useful technique.

3.4. SHAP Summary Plot
A SHAP summary plot [2] shows the feature importance and

a summary of the SHAP dependence plots. In the plot, fea-
tures are sorted by their importance, as defined by Eq. (7), and
stacked vertically. Each row plot is a summary of the SHAP
dependence plot of each feature Xi. Each dot represents a pa-
tient’s SHAP value φ(x( j)

i ) plotted horizontally. Each dot is col-
ored by the value of the feature, from low (blue) to high (red).
Black dots represent missing values. If red points are plotted
at the lower side and blue dots are plotted at the higher side,
then the risk becomes higher as the value increases. Since a
SHAP summary plot shows the importance of feature values
and an abstract of the SHAP dependence plot, it is useful for
overviewing the SHAP analysis.

3.5. Flow of SHAP Analysis
First, we provide an overview of the constructed model by

the SHAP summary plot. We find interesting features from the
summary plot, and draw SHAP dependence plots for detailed
analysis. If necessary, we identify similar features by their
meaning or covariate of SHAP value, and pack these features
into a grouped feature.

4. Experiment and Results

In total, 1712 patients were admitted to Saiseikai Kumamoto
Hospital for cerebral infarction from October 2011 to October
2016 and applied clinical pathway for mild cerebral infarction
is 1712. Of these, 1534 patients (∼90%) showed almost no
significant disability at the preclinical stage; that is, their pre-
onset modified ranking score (mRS) was less than 3. Using
data from these patients (N = 1534), we generated a predictor
of whether their outcome worsened, that is, if discharge mRS
was more than 2. The number of positive patients was 262 of
1534. Since one aim of this analysis was to identify high-risk
patients in advance, we extracted data available on admission
day from five data sources:

• Standardized discharge summary: Many acute hos-
pitals in Japan, including Saiseikai Kumamoto Hospital,
participate DPC (Diagnosis Procedure Combination) pay-
ment system and create standardized DPC data in order
to submit to the authorities. DPC data includes structured
discharge summary, known as Format-1 [9], and we ex-
tracted data available on admission day from Format-1
data. The following is an example: age, height, weight,
Japan Comma Scale (JCS) on admission, activity of daily
living (ADL) on admission, smoking index, tPA, etc.

3



• Discharge summary from the neurology department:
The neurology department create department-specific dis-
charge summary. The specific summary includes text
documents and we eliminate them and extract numerical
or categorical data from the specific summary. The fol-
lowing is an example: NIH Stroke Scale (NIHSS), chief
complaint, acute-phase treatment, Glasgow Coma Scale
(GCS), onset time, admission time, etc.

• Plan of nutritional management: We extract numerical
or categorical data from nutritional plan. The following is
an example: body mass index (BMI), basic energy expen-
diture (BEE), etc.

• Nursing Care: We extract numerical or categorical data
from nursing care data. The following is an example: ob-
servations (level of paralysis, pupil diameter, aching pain,
etc.), vital signs (blood pressure, body temperature, oxy-
gen saturation, etc.), dietary intake, etc.

• Examination outcome: We extract numerical or categor-
ical data from examination outcome. The following is an
example: blood test (D-dimer, albumin, potassium, blood
urea nitrogen, C-reactive protein, etc.), blood gas analysis
(hemoglobin, red blood cell, etc.), urinary test (pH, urinary
specific gravity, etc.)

All target patients are applied clinical pathway; however,
analysis data does not include pathway items because we only
used data at admission. In addition, we convert a nominal data
into multiple numerical features using one-hot encoding. We
then constructed a predictor of prognosis using GBDT. The
model was analyzed by the existing method and the SHAP
method. We then compared the results of these two methods.

A total of 1714 features were extracted from the 5 data
sources available on the day of admission. The mean of the
cross-validated area under the curve (AUC) of the predictor was
0.788 and its standard deviation was 0.006. This indicates that
we achieved good prediction accuracy.

4.1. Analysis by the Existing Method

Before starting SHAP analysis, we evaluated the predictor
using the existing method.

Figure 1 is a feature importance plot that shows the results of
evaluating feature importance using the existing gain method.
The feature importance plot gives the relative importance, but it
does not show the range and distribution of features or how the
features relate to the outcome. Next, we draw a partial depen-
dence plot in Figure 2 to show the relationship between total
NIHSS and outcome. The partial dependence plot shows that a
higher total NIHSS derives a higher risk of bad prognosis and
that the threshold for worse prognosis is three.

4.2. Analysis by the SHAP Method

We evaluated the predictor using the SHAP method and
then compared the results between the existing method and the
SHAP method.

Figure 1: Feature Importance Plot: The top 20 important features are listed and
sorted by the gain method. Total NIH Stroke Score on admission was extracted
as the most important feature of the predictor by the gain method.

Figure 2: Partial dependence plot showing the relationship between total
NIHSS and outcome: The plot shows that a higher total NIHSS derives a higher
risk of poor prognosis.

4.2.1. SHAP Summary Plot
Figure 3 presents the SHAP summary plot of the model. To-

tal NIHSS was also extracted as the most important feature of
the predictor using the SHAP method. We compared the top 20
important features between the existing method and the SHAP
method. Although there were few changes in the ranking, 18
out of 20 features matched. Lundberg et al. pointed out that
the gain method is inconsistent and that it is impossible to re-
liably compare feature attribution values [2]. In this analysis,
there was no significant difference of ranking between the two
methods.

On the contrary, it should be noted that the feature impor-
tance plot does not tell us the effect of total NIHSS; rather, the
SHAP summary plot tell us that a larger NIHSS derives a higher
risk because the red points are plotted at the lower side while
the blue points are plotted at the higher side. The summary plot
also shows that the maximum difference of the SHAP value
is approximately 0.8 on the log-odds scale and the maximum
odds is estimated at approximately 2.2. Thus, the SHAP sum-
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Figure 3: SHAP Summary Plot: The plot shows the top 20 important features
evaluated by the SHAP method and the effects of each feature on the outcome.
Total NIHSS on admission was extracted as the most important feature.

mary plot is more useful than the feature importance plot for
overviewing the results.

The top 20 important features extracted by the SHAP anal-
ysis include NIHSS, D-dimer, branch atheromatous disease
(BAD), etc. While these features are consistent with clinicians’
expectations, the albumin/globulin ratio (A/G ratio), which was
extracted as the sixth important feature, is unexpected.

4.2.2. SHAP Dependence Plot
For detailed analysis, we draw the SHAP dependence plot of

total NIHSS in Figure 4. Like the partial dependence plot, the
SHAP dependence plot shows that a higher total NIHSS derives
a higher risk of bad prognosis and that the threshold for worse
prognosis is three. In the SHAP dependence plot, the lines con-
nected with the means of SHAP for each NIHSS are almost the
same as those in the partial dependence plot. This is because
the partial dependence plot draws the mean effects of the esti-
mated outcome if the feature is virtually changed. The partial
dependence plot only draws the mean effects and the variation
in the estimation disappears; however, the SHAP dependence
plot draws both the mean effects and variation. This variation
implies the existence of interaction. The SHAP dependence
plot is more informative than the partial dependence plot.

The graphs above and to the left of the SHAP dependence
plot are the histograms of the X-axis and Y-axis, respectively.
Generally speaking, the prediction of the dense area is more
accurate than that of the sparse area. The histograms help to
understand the accuracy of the analysis.

Figure 5 shows the SHAP dependence plot of D-dimer, the
third important feature. The value of D-dimer has almost a pro-
portional relationship with the risk of bad prognosis. Figure 6
shows the SHAP dependence plot of A/G ratio, the eighth im-
portant feature and one that is unexpected by clinicians. The
plot indicates that a value of 1.5 is the threshold of a good prog-
nosis and the odds of patients with a high A/G ratio becomes
0.74[=exp(-0.3)].

Figure 4: SHAP dependence plot showing the relationship between total
NIHSS and outcome. The plot shows that a higher total NIHSS derives a higher
risk of bad prognosis.

Figure 5: SHAP Dependence Plot of D-dimer.

4.2.3. SHAP Feature Packing Technique
In the summary plot in Figure 3, there are many features that

start with ‘adlAdmission’. These features are 10 endpoints of
ADL scores on admission and are correlated with each other.
Packing these variables into one grouped variable helps to un-
derstand the model more easily. We named the grouped vari-
able ‘adlAdmission.all’ and the result is shown in Figure 7. In
Figure 3, the importance of ADL scores are distributed to each
endpoint. The integrated features become the second-most im-
portant features and are as important as NIHSS in Figure 7.

5. Discussion

5.1. Explanation of Missing Values

In general machine learning methods, missing values cannot
be handled directly and it is necessary to fill in the missing val-
ues with the median value, and so on. By contrast, decision tree
or ensemble tree models can handle missing values without data
filling because the decision tree can learn whether missing val-
ues should branch to the right or left to increase accuracy. The
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Figure 6: SHAP Dependence Plot of A/G Ratio.

Figure 7: SHAP summary plot in which the 10 endpoints of ADL scores on
admission are packed into one grouped variable named adlAdmission.all. ad-
lAdmission.all became the second-most important features of the model.

SHAP value can be calculated for missing values. The SHAP
plots show how missing values affect the outcome.

The effects of missing values depend on the generation mech-
anism of the missing values. In the case of values missing at
random (MAR), missing data are selected from both the high
risk group and low risk group so that the impact on the out-
come is considered to be intermediate between the two groups.
For example, since measurements of paralysis level, the seventh
most important feature, and JCS level, the 13th most important
feature, were performed for all stroke patients, in most cases the
missing data occurred at random. In such cases, the black dots
representing the missing values for these features are plotted in
the middle of the SHAP summary plot.

In other cases missing values may not occur randomly. For
example, in our data, blood glucose levels were mainly mea-
sured for diabetic patients. Most of the missing values are se-
lected from patients with low glucose levels. The black dots
may then be plotted at the right or left of the SHAP summary
plot.

Figure 8: SHAP Dependence Plot of A/G ratio and D-dimer: the x-axis repre-
sents the A/G ratio and each dot is colored according to the patient’s D-dimer.

Figure 9: Estimated relationship between A/G ratio and patient outcome: Blue
solid lines represent causal correlations and green dashed lines represent corre-
lations.

5.2. Relationship between A/G ratio and outcome

The A/G ratio is the ratio of albumin to globulin in serum. A
high A/G ratio group could mean a high albumin group or a low
globulin group. Belayev et al. reported that albumin has a brain
protective effect for acute cerebral infarction and affects death
and complications in the low albumin group [10]. However,
although albumin itself is included in the feature, its variable
importance is low. Thus, it is unlikely that albumin is the only
cause. Although the mechanism is unknown, it is possible that
globulin or some interaction term may affect the A/G ratio. We
examined the largest covariance with the SHAP value of A/G
ratio and found that the SHAP value of D-dimer is the largest
one. D-dimer is a degradation product of fibrin. A high D-dimer
value indicates that a thrombus was formed recently. D-dimer
is known to be a risk marker for cerebral infarction [11]. Fig-
ure 5 has already shown that patients with high D-dimer have a
high risk of bad prognosis. Therefore, we examined the effect
of D-dimer and A/G ratio using the feature packing technique.
Figure 8 shows that patients with high D-dimer (shown in red)
were few among the groups whose A/G ratio is more than 1.5
and the most patients of high A/G ratio group belong to low
D-dimer group (shown in blue).

Figure 9 shows the estimated causal and correlation relation-
ship. Since data analysis tells us only correlations, causal corre-
lations are based by known facts. Further analysis is necessary
in the future.

6



6. Conclusion

In this paper, we adopted the SHAP method for interpret-
ing GBDT model constructed using real data from our hospital.
For better interpretability, we proposed two novel techniques as
follows: (1) a new metric of feature importance using SHAP
and (2) a technique termed feature packing, which helps to un-
derstand the model more easily without reconstruction of the
model. We then compared the explanation results between the
SHAP method and an existing method such as the gain feature
importance and partial dependence plot. The interpretation by
SHAP was mostly consistent with that by the existing methods.
For overviewing the analysis results, the SHAP summary plot
was more useful than the existing feature importance plots. We
also showed how the A/G ratio functions as an important prog-
nosis factor for cerebral infarction using our hospital data and
proposed techniques. Our techniques are useful for interpret-
ing machine learning models and can uncover the underlying
relationships between features and outcome.
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