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Abstract 10 

Background: The demographic shift generated by the ageing of the world's population is having important 

consequences in the rise of chronic diseases. People with chronic diseases require long-term care and commitment 

to adhere to the prescribed medications, e.g. taking pills on a daily basis. Poor medication adherence is a common 

problem in patients with chronic diseases, possibly leading to hospital readmissions and medical complications, with 

increased healthcare expenses.  15 

Methods: Towards objectively monitoring medication adherence, we propose a method to automatically recognize 

hand gestures in daily living. The method relies on a commercially available wristband sensor (MMR, MbientLab 

Inc.) integrating tri-axial accelerometer and gyroscope. Both machine (ML) and deep-learning (DL) algorithms were 

evaluated for multi-gesture (drinking, eating, pouring water, opening a bottle, typing, answering a phone, combing 

hair, and cutting) and binary gesture (drinking versus other gestures) classification from MMR signals. Twenty-two 20 

participants were involved in the experimental analysis, performing a 10-minute acquisition in a laboratory setting. 

Leave one subject out cross validation was performed for robust performance assessment.  

Results: The highest performance was achieved using a convolutional neural network with long-short term memory 

(CNN-LSTM), with a median f1-score of 90.5 [first quartile: 84.5; third quartile: 92.5]% and 92.5 [81.5;98.0]% for 

multi-gesture and binary classification, respectively.  25 

Conclusions: Our experimental results showed that hand gesture classification with ML/DL from wrist 

accelerometers and gyroscopes signals can be performed with reasonable accuracy in laboratory settings, paving the 

way for a new generation of medical devices for monitoring medical adherence. 
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1. Introduction 

The remarkable improvements in healthcare of the past century have led to an increase in life expectancy. 

Population aging is associated with the rise of chronic diseases, such as heart diseases, stroke and diabetes, which 

are the most frequent conditions affecting the elderly [1]. Patients with chronic conditions require long-term care, 35 

which includes home nursing, assisted living and long-stay hospitalization. Chronic diseases further imply long-term 

therapy and several medicine prescriptions, posing issues relevant to poor medication adherence [2]. The World 

Health Organization reports that, in developed countries, approximately 50% of patients suffering from one or more 

chronic diseases does not take medications as prescribed, ultimately leading to increased morbidity and mortality 

[3], as well as to increased emergency-room visits, hospitalization and hospital readmissions [4]. Studies have 40 

shown that 26% of hospitalizations involving older adults are related to poor or wrong medication adherence [5]. 

This contributes in increasing the financial burden on the health care system: lack of adherence has been estimated 

to provoke about 125,000 deaths in the United States with associated costs for the healthcare system being between 

$100 billion and $289 billion per year [6].  

In this complex scenario, several approaches for medication adherence monitoring have been developed, 45 

including both direct and indirect measurements. The former are based on the direct observation of medication 

intake, including the detection of drugs in biologic fluid (i.e., blood or urine), or the use of medications 

manufactured with an ingestible sensor embedded in the pill, emitting an electric signal upon digestion. These 

methods provide accurate estimation of adherence, but they are invasive, costly and time consuming. Conversely, 

indirect measurements of adherence monitoring include self-reporting, pharmacy refill rates assessment, as well as 50 

smartphone reminders applications. Requiring, in most cases, an individual’s interaction, those methods lack 

reliability for long-term monitoring [7].  

In order to attenuate such issues, electronic medication packaging devices have been proposed. Those are 

adherence-monitoring devices incorporated into the packaging of a prescription medication, which can record 

dosing events, provide audio-visual reminders for the next dose and provide feedbacks on adherence performance 55 

[8]. Among them, the medication events monitoring systems (MEMS) are the most commonly used in medication 

adherence studies. MEMS include pill containers equipped with a microprocessor that registers the opening event as 

a possible removal of a pill [9,10]. These devices are relatively cheap, easy to use, and safe. However, they can be 



easily deceived, as they are assuming the pill intake for every opening, thus without taking into account possible 

accidental actuation of the container [8]. As an alternative solution, the use of wearable devices has been proposed. 60 

In [11], a wrist-worn device equipped with a tri-axis accelerometer was used to detect gestures as drinking water, 

picking pills, holding pills and taking them to the mouth. The work relies on extracting signal features from an 

accelerometer and gyroscope, both embedded in a commercial smartwatch, to detect the gestures of twisting the pill 

bottle cap and turning the palm upward to take the pill, respectively. Similarly, Wang et al. [8] proposed a method 

based on dynamic time warping analysis of the data generated by accelerometers embedded in two wristwatches, 65 

worn one on each hand, to detect the gesture of taking empty gelatine capsules, drinking water and wiping mouth.  

Given the described potential of wearable devices in addressing the problem of poor medication adherence by 

recognizing hand gestures, we hypothesised that machine (ML) and deep learning (DL) methods, which are 

currently employed in human activity recognition [12,13], can be used to process wearable-device signals and 

provide accurate hand gesture recognition for the purpose of medication adherence monitoring. 70 

Specifically, our aim was to develop and test ML/DL methods for recognizing eight common hand activities from 

accelerometer and gyroscope signals acquired by a commercially available wristband, with a particular focus on the 

classification of the drinking gesture, to be part of a novel solution for supporting drug adherence currently under 

development. 

2. Materials and methods 75 

This section describes the utilized wrist device (Sec. 2.1), the data acquisition protocol (Sec. 2.2) and gesture 

classification pipeline (Sec. 2.3), together with the experimental protocol for evaluation and testing (Sec 2.4). 

2.1 MetaMotionR wrist monitoring device 

The MetaMotionR wrist wearable device (MMR), developed by MbientLab (MBIENTLAB INC, San Francisco, 

CA, USA), was used. The device is light and comfortable, with a USB rechargeable battery, and can be easily used 80 

during daily activities. It features ultra-low power consumption, providing energy efficient smartphone 

communication and central processing. 

The MMR device (Fig. 1) embeds a tri-axial accelerometer, a tri-axial gyroscope, an ambient light sensor, and a 

humidity sensor. In this work, only the accelerometer and gyroscope signals were used. The accelerometer has a 

maximum resolution of 16 bit, and the gyroscope of 2000°/sec. A sampling frequency of 50 Hz was selected for 85 



both sensors. The acquired signals and the corresponding timestamp were stored in the memory of a smartphone to 

which the MMR was connected through Bluetooth by using the MetaBase App (MBIENTLAB INC, San Francisco, 

CA, USA), available for both Android and IOS devices. 
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Fig. 1. MetaMotionR device (MMR) (MBIENTLAB INC, San Francisco, CA, USA): (a) Axis orientation of the 

inertial sensors embedded in the MMR; (b) Sensor integrated in MBIENTLAB provided rubber WatchBand. 

2.2 Study population and acquisition protocol 

The study was approved by the Ethical Committee of Politecnico di Milano. Twenty-two healthy subjects, both 

men and women (mean ± SD, 29 ± 12 years, age range 22÷61), voluntarily participated in the experiment after 95 

signing a written informed consent form. 

The acquisition protocol was designed to investigate the problem of automated classification of hand activities 

from the acquired signals in a laboratory setting. The subjects were asked to sit in a comfortable position and wear 

the MMR wrist monitor on their dominant hand (DH) while performing a set of eight common daily hand gestures 

(Fig. 2), chosen among the most common studied in the literature [14,15,16]: 100 

1. Drinking: the subject takes a glass of water by his/her DH, drinks an amount of water, and then puts it 

back on the table.  

2. Eating: the subject takes an almond and brings it to the mouth, to simulate pill taking.  

3. Opening a bottle: the subject opens a bottle cap by the DH and puts the cap on the table.  

4. Pour water: the subject takes an opened bottle, pours an amount of water in a glass, and puts the bottle 105 

back on the table using only the DH.  

5. Typing: the subject types at least ten characters on a computer keyboard with the DH using the index 

finger.  



6. Answering the phone: the subject takes the phone from the table using the DH, raises it up to the ear and 

holds it for 3-5 seconds, then puts it back on the table. 110 

7. Combing hair: the subject picks up a comb from the table, combs hair for a few seconds and then puts 

the comb back on the table.  

8. Cutting: the subject takes a piece of paper from the table, while holding a pair of scissors with the DH. 

Then he/she cuts the paper for about 3 or 4 times, and puts the scissors and the paper back on the table. 

All the objects were already present on the table. 115 

The subjects were asked to perform the eight gestures in a random order during a 10-minute acquisition (Protocol 

1). They were asked to perform one gesture in a 30-second interval (timing was monitored by the supervising 

researcher), keeping their hand still in an idle position between two consecutive gestures. The protocol further 

required the subjects to perform each gesture at least once, and to drink at least twice. There were no restrictions in 

the modality of performing the activities. During the acquisition session, the sequence of actions performed by the 120 

subjects was annotated by the supervising researcher. Additionally, to increase the dataset size, seventeen subjects 

out of the enrolled twenty-two accepted to perform also a second 2-minute acquisition (Protocol 2), which included 

the action of drinking 4 different quantities of water as follows:  

 60 ml of water in eight sips 

 45 ml of water in six sips 125 

 30 ml of water in four sips 

 15 ml of water in two sips 

At the end of the acquisition session, each subject was asked whether the device or the environmental factors (i.e., 

laboratory-controlled settings, presence of a supervisor) affected their performance during the tests. 

 130 



 

Fig. 2. Hand gestures studied in this work. From left to right/ up to down: Hand idle (performed between 

gestures), eating, opening a bottle, filling a glass, drinking water, typing, cutting, answering the phone and combing. 

2.3 Gestures classification 

The pipeline for gesture classification involved pre-processing, signal windowing, feature extraction (for ML 135 

methods only) and classification, as shown in Fig. 3. 
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Fig. 3. The proposed gesture classification pipeline includes: data acquisition and pre-processing, signal 

windowing, feature extraction, which is performed for machine-learning (ML) methods only, and classification. In 

feature extraction, fn(w) represents the n-th feature of the feature vector f obtained for the window w. 

 

The pre-processing step consisted of a fourth-order low-pass Butterworth filtering with a cut-off frequency of 5 145 

Hz. Such frequency was chosen due to the frequency content of our signals, which was below 5-6 Hz, as verified by 

Fourier power spectrum analysis. Pre-processing also included raw signal standardization: each signal acquired with 

the MMR was centred to have zero mean and standard deviation equal to one. After filtering, the portion of the 

signals relevant to the idle gesture was manually removed.  

The raw signal was split into fixed size window segments, referred to as temporal windows, as commonly 150 

performed in the literature [17]. Each window included one gesture only. To select the proper window length, three 

window lengths of 2s, 3s and 6s were evaluated. After preliminary testing, the window size of 3s (corresponding to 

150 data points with the sampling frequency of 50Hz) was selected. Window overlap was 0.75s, corresponding to 

75% overlap. 

The feature extraction step was performed for ML algorithms only, as they require handcrafted features. Here, a 155 

combination of time and domain features (Table 1) mostly used in research work for activity recognition [12,13,18] 

was used. Both for the accelerometer and gyroscope signals, each feature was computed for the three axes and for 

their modulus. The goal of the classification step was to assign a label to each temporal window. Two different 

classification problems were considered: 

 Classification of all the eight gestures (multi-gesture classification problem) 160 

 Classification of the of the drinking gesture versus all the other gestures (binary classification problem) 

The classification was performed testing both ML and DL approaches. 



 

Table 1 

Features in time and frequency domains used for gesture recognition. 165 

 Features 
Time domain Root mean square (RMS) 

Variance 
Mean absolute deviation (MAD) 
Kurtosis skewness 
Interquartile range (IQR) 

Frequency 
domain 

Energy 
Spectral entropy 
Mean frequency of power spectrum 
Median frequency of power spectrum 

2.3.1 Gestures classification with ML 

As for ML approaches, inspired by human activity recognition work in the literature, the following classifiers 

were evaluated: Support Vector Machine (SVM) [19,20], Random Forest (RF) [21] and K-Nearest Neighbour 

(KNN) [22]. These ML approaches processed the features listed in Table 1; the hyperparameters of each classifier 

were tuned using grid search with 5-fold cross-validation (Table 2), according to the highest f1-score. The Least 170 

Absolute Shrinkage and Selection Operator (LASSO) [23] algorithm was used for feature selection. The ML 

classification process was implemented in Python using the open-source machine learning library Scikit-learn 

(http://scikit-learn.org/stable/index.html). 
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Table 2 

Tuned hyperparameters for each classifier with corresponding grid-search values. 

Classifier Hyperparameter(s) Grid-search values 
KNN Number of neighbours [5,10] 

SVM Gaussian kernel size 
Regularization parameter 

[10-7, 10-3] 
[10-3, 103] 

RF Number of trees 
Maximum depth of each tree 

50, 100, 150 
10, 15, 20, 40 

Abbreviations: KNN = K-Nearest Neighbour; SVM = Support Vector Machine; RF = Random Forest. 



2.3.2 Gestures classification with DL 

For gesture classification with DL, both a convolutional neural network (CNN) and a hybrid model combining 180 

CNN and long short-term memory (LSTM) were investigated.  

The architecture of the proposed CNNs for both multi-gesture and binary gesture classifications are shown in 

Table 3: it is based on the one proposed in [24], but the input shape and number of layers have been adapted to our 

signals. The input shape of both CNNs was 150 (i.e., the number of data points in a window) times 6 (number of 

channels, corresponding to the 3 axes of the accelerometer and gyroscope). Both CNNs shared the same backbone, 185 

where each convolutional layer was activated by a rectifying linear unit (ReLU) function. Temporal max pooling 

and dropout (with probability = 0.5) were used for preventing overfitting. For the multi-gesture and binary 

classification CNNs, a fully connected layer with 8 (where 8 is the number of gestures) and 2 neurons was used, 

respectively. In the latter case, a further fully connected layer with dropout was added to attenuate overfitting issues 

when moving from 500 to 2 neurons. 190 

The CNN-LSTM models (Table 4) were built by adding an LSTM layer on top of the convolutional part of the 

CNNs in Table 3. In particular, the models take inspiration from [25], adapting the number of layers and the input 

shape to our signals. The input of the CNN-LSTM consisted of a temporal window split into 5 sequences of equal 

length. For processing such sequences, time-distributed convolution was used. The architecture of the CNN in the 

CNN-LSTM model was kept as previously described, in order to make a fair comparison between the CNN and 195 

CNN-LSTM.  

For both the CNN and CNN-LSTM, Adam optimizer was used, with the cross-entropy loss function. The best 

model among epochs was chosen according to the highest accuracy on the validation set (20% of the training set). 

The Python Keras library (https://keras.io/) was used for training and testing the DL models. 

2.4 Validation protocol 200 

Leave-one-subject-out cross-validation was used to evaluate both the ML and DL approaches. As performance 

metrics, precision, recall, f1-score and the precision-recall (PR) curve were computed. In addition, the balanced 

accuracy was calculated. 



2.5 Statistical analysis 

With the aim to compare methods’ performance, the non-parametric Friedman test (p<0.05) was applied to 205 

compare the values of f1-score, precision and recall obtained for each classifier (H0: no differences among 

methods). In case the null hypothesis was rejected, the post-hoc Wilcoxon Signed Rank test with Bonferroni 

correction was performed for additional paired comparisons. 

 
Table 3 210 

Architecture of the CNN for gesture classification. Both the multi-gesture and binary classification CNNs share the 

same architecture until layer 7. The different top layers for the multi-gesture and binary classification are 

highlighted in italics. TdC: Time distributed Convolution; FC: Fully Connected 

Layer  Type  Feature maps  Input shape  Output shape  k  s  

Layer 1  Convolution + ReLU  100  (None, 150,6)  (None, 148, 100)  3  1  
Layer 2  Convolution + ReLU  150  (None, 148, 100)  (None, 146, 150)  3  1  
Layer 3  Convolution + ReLU  150  (None, 146, 150)  (None, 144, 150)  3  1  
Layer 4  Dropout  _  (None, 144, 150)  (None, 144, 150)  1  1  
Layer 5  Max pooling  _  (None, 144, 150)  (None, 48, 150)  3  3  
Layer 6  Flatten  _  (None, 48, 150)  (None, 7200)  1  1  
Layer 7  FC + ReLU  _  (None, 7200)  (None, 1000)  1  1  
Layer 8 - Multi-
gesture 

Dropout  _  (None, 1000)  (None, 1000)  1  1  

Layer 9 - Multi-
gesture  

FC + ReLU  _  (None, 1000)  (None, 500)  1  1  

Layer 10 - Multi-
gesture 
Layer 8 - Binary 

Dropout  _  (None, 500)  (None, 500)  1  1  

Layer 11 - Multi-
gesture 

FC + Softmax  _  (None, 500)  (None, 8) 1  1  

Layer 9 - Binary FC + ReLU _ (None, 500) (None, 200) 1 1 
Layer 10 - Binary Drop out _ (None, 200) (None, 200) 1 1 
Layer 11 - Binary FC + ReLU _ (None, 200) (None, 100) 1 1 
Layer 12 - Binary Drop out _ (None, 100) (None, 100) 1 1 
Layer 13 - Binary FC + Softmax _ (None, 100) (None, 2) 1  1 
Abbreviations: ReLU = Rectifying Linear Unit; k = kernel size; s = stride. 
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Table 4 

Architecture of the CNN-LSTM for gesture classification. Both the multi-gesture and binary classification CNN-

LSTMs share the same architecture until layer 7. The different top layers for the multi-gesture and binary 220 

classification are highlighted in italics. TdC: Time distributed Convolution; FC: Fully Connected 

Layer  Type  Feature maps  Input shape  Output shape  k  s  

Layer 1 TdC + ReLU 100 (None,None, 30, 100)     (None,None, 28, 100)   3 1 
Layer 2 TdC + ReLU 150 (None,None, 28, 100)     (None,None, 26, 150)   3 1 
Layer 3 TdC + ReLU 150 (None,None, 26, 150)     (None,None, 24, 150)   3 1 
Layer 4 Drop out _ (None,None, 24,150)     (None,None, 24, 150)   1 1 
Layer 5 Max pooling  _ (None,None, 24, 150)     (None,None, 8, 150)     3 3 
Layer 6 Flatten _ (None,None, 8, 150)      (None,None, 1200)       1 1 
Layer 7 LSTM _ (None,None, 1200)        (None, 150) 1 1 
Layer 8 - Multi-
gesture 

FC + ReLU _ (None, 150) (None,1000) 1 1 

Layer 8 - Binary FC + ReLU _ (None, 150) (None, 500)   
Layer 9 - Multi-
gesture 

Drop out _ (None,1000) (None,1000)   

Layer 10 - Multi-
gesture 

FC + ReLU _ (None,1000) (None, 500)   

Layer 11 - Multi-
gesture 
Layer 9 - Binary 

Drop out _ (None, 500) (None, 500) 1 1 

Layer 12 - Multi-
gesture 

FC +Softmax _ (None, 500) (None, 8) 1 1 

Layer 10 - Binary FC + ReLU  (None, 500) (None, 200)   
Layer 11 - Binary Drop out  (None, 200) (None, 200) 1 1 
Layer 12 - Binary FC + ReLU _ (None, 200) (None, 100) 1 1 
Layer 13 - Binary Drop out _ (None, 100) (None, 100) 1 1 
Layer 14 - Binary FC + Softmax _ (None, 100) (None, 2) 1 1 
Abbreviations: ReLU = Rectifying Linear Unit; LSTM = Long-Short Term Memory; k = kernel size; s = stride. 

3. Results 

All the involved subjects declared that neither the laboratory setting, nor the wristband device influenced their 

gesture performance during the test.  225 



 

Fig. 4. Data distribution for each gesture in the available dataset. 

 

Fig. 4 shows the final number of windows available for each gesture, with ‘drink’, ‘comb’ and ‘cut’ being the 

most frequent. Both ML and DL methods provided good classification results in terms of f1-score, precision, recall 230 

and balanced accuracy, as shown in Table 5. Among ML methods, SVM resulted with higher classification 

outcomes, significantly outperforming KNN in terms of f1-score (multi-gesture: 83.5 [78.0; 91.5]% versus 82.0 

[76.5; 89.0]%; binary: 87.5 [79.5; 93.5]% versus 82.5 [75.5; 87.0]%) and precision (binary: 83.0 [75.3; 90.5]% 

versus 71.0 [60.0; 81.0]%).  

In multi-gesture classification, CNN and CNN-LSTM performed better than ML methods, with CNN-LSTM 235 

resulting in the highest balanced accuracy (89.0 [84.0; 92.8]%). Remarkably, the CNN-LSTM allowed to obtain 

significantly higher results compared to the CNN in terms of precision (92.0 [88.0; 93.3]% versus 91.0 [85.8; 

92.3]%) and recall (90.0 [85.0; 92.5]% versus 88.0 [82.5; 92.3]%). 

In the binary classification, the highest f1-score and precision values were obtained with CNN (92.5 [86.0;97.5]% 

and 94.0 [82.3; 100]%, respectively) and CNN-LSTM (92.5 [81.5; 98.0]% and 94.0 [83.0; 97.0]%, respectively), 240 

especially compared to KNN (82.5 [75.5; 87.0]% and 71.0 [60.0; 81.0]%, respectively), with SVM and CNN-LSTM 

resulting with the highest values of balanced accuracy (96.3 [92.6; 97.5]% and 96.3 [91.1; 99.2]%, respectively). 
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Table 5 250 

Performance metrics for the tested classifiers for multi-gesture and binary classification. Median is reported with 1st 

and 3rd quartile in brackets.  

 Classifier  f1-score  (%) Precision (%)  Recall (%)  Balanced Accuracy  

Multi-
gesture  

SVM 83.5 [78.0;91.5]  85.5 [82.3;93.0]  84.5 [78.5;91.3]  81.5 [77.5;91.5] 

KNN 82.0 [76.5;89.0] * 85.5 [80.0;89.5]  83.5 [76.0;89.0]  81.0 [75.3;85.8] 

RF 78.5 [75.0;90.0]  82.0 [79.0;91.0]  79.5 [74.8;89.3]a 79.0 [73.5;87.5] 

CNN 88.5 [82.0;92.0]a,b 91.0 [85.8;92.3]*,a,b 88.0 [82.5;92.3]*,b 87.5 [80.5;91.0]a 

CNN-LSTM 90.5 
[84.5;92.5]*,b 

92.0 [88.0;93.3]c 90.0 [85.0;92.5]*,a,c 89.0 [84.0;92.8]*,a,b

Binary  SVM 87.5 [79.5;93.5] 83.0 [75.3;90.5] 100.0 [86.5;100.0] 96.3 [92.6;97.5] 

 KNN 82.5 [75.5;87.0] * 71.0 [60.0;81.0]* 100.0 [93.3;100.0] 93.2 [90.5;95.3] 

 RF 88.0 [77.0;91.0] 83.0 [72.5;93.0]a 91.5 [84.3;97.5]*,a 93.9 [82.6;95.5]* 

 CNN 92.5 [86.0;97.5] a 94.0 [82.3;100.0]*,a,b 96.0[88.5;100.0] 95.7 [92.4;98.7] 

 CNN-LSTM 92.5 [81.5;98.0] a 94.0 [83.0;97.0]*,a 95.5[85.0;100.0] 96.3 [91.1;99.2] 

Results of the post-hoc Bonferroni test (p<0.05/n, with n=10) performed for f-score, Precision and Recall are 

reported as: * vs SVM; a vs KNN; b vs RF; c vs CNN. 

 255 

The PR curves obtained with CNN-LSTM are reported in Fig. 5. In the multi-gesture classification problem, the 

gestures “Type”, “Comb” and “Cut” resulted with the highest area under the PR curve (0.96, 0.65 and 0.95, 

respectively), which was equal to 0.92 for the “Drink” gesture. Interestingly, this value increased up to 0.98 in the 

binary classification. 
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Fig. 5. Data distribution for each gesture in the available dataset. 

 

4. Discussion 265 

In this paper, an innovative learning-based framework for gesture classification from hand activity captured by a 

wrist wearable device was presented, with possible applications in the context of measuring medication adherence 

by recognizing gestures that are related to the pill intake. The dataset collected for this study included similar 

movements, thus challenging the proper discrimination of each activity.  

ML classifiers included SVM, KNN and RF, among which SVM performed slightly better, while the other two 270 

had comparable performance. Successful performance of SVM was also observed in previous work, such as [19] 

and [22], in which it outperformed KNN and Naïve Bayes. In both multi-gesture and binary classification problems, 

DL-based approaches, which included a CNN and a CNN-LSTM, outperformed the ML ones. This result is in line 

with other similar research [26,27], and possibly explained by the ability of neural networks to extract relevant 

features different from the manual hand-crafted ones, as CNNs could learn the internal relationships present in the 275 

dataset. While no significant difference between the two CNN models was highlighted in the binary problem, CNN-

LSTM hybrid model allowed to achieve higher performance in multi-gesture classification, and a higher balanced 

accuracy in the binary problem. This result could be attributed to its ability to handle high-dimensional feature-space 

(which was high if compared with the number of subjects in the dataset), as well as to its robustness in tackling the 

noise components of the accelerometer and gyroscope signals. Also, LSTM allows to process the temporal 280 

information naturally encoded in the signals and thus improving CNN results, as observed in [25]. Among the 



analysed gestures, some were classified particularly well, such as ‘drinking’, ‘typing’, ‘combing’ and ‘cutting’, 

while others (‘pouring water’ and ‘opening the bottle’) were classified with less precision. 

In this work, specific attention was given to the ‘drinking’ gesture, as the natural action that is closer to the 

possible pill intake, but that could have its own interest also in the context of remote monitoring of hydration 285 

conditions in elderly [28,29,30] or heart failure patients [31]. Accordingly, a binary classification problem was 

addressed in order to test the ability of the proposed methods to distinguish the ‘drinking’ gesture from all the other 

gestures. Particularly, both DL models and SVM outperformed the KNN and RF. The introduction of the binary 

classification came from the observation that, in the multi-gesture classification problem, the drinking gesture 

appeared as the best-classifiable medication adherence-related gesture, and it represents an element of novelty 290 

compared to the current literature on medication adherence monitoring.  

In Table 6, the results obtained in this work and in similar studies using ML methods for solving a multi-

classification problem are reported. Compared to [15], where the same number of subjects was studied, our SVM 

results were superior, both in terms of f1-score and accuracy. Also, our results outperformed [22] in the overall 

recall, while the precision was slightly lower; however, it is worth noticing that only 2 subjects were studied in [22]. 295 

On the contrary, [32] achieved higher values of precision and recall using the same wearable device (MMR wrist 

monitor) for the classification problem: this could be attributed to the development of a novel multi-step refinement 

with the aim of improving the classification accuracy, as well as to the lower complexity in terms of lower number 

of subjects (n = 6), and to the different kinds of activities classified, including standing, sitting and walking. In a 

recent study, Chun and collaborators [33] performed a classification of the drinking gesture versus non-drinking, 300 

obtaining the best results using the RF model. Their outcomes, in terms of recall and f1-score, were comparable to 

our results with RF, though remaining inferior to the results we obtained with DL models. Instead, Ortega-Anderez 

and colleagues [34], in the 2-class classification of eating/drinking versus other gestures obtained with the RF model 

a better performance compared to our study, both considering multi-gesture and binary (drink versus non-drink). 

This outcome possibly depends on their choice to consider eating and drinking gestures as a single class.  305 

 

  



Table 6 

Comparison of the results obtained with ML models with the state of the art.  

Ref  # 
su
bje
cts 

Sen
sor 
Typ
e 

Sensor 
placem
ent  

Activities  ML 
models  

Balanced 
Accuracy 

Precision  Recall  f1-score  

Our 
work 

20 Acc 
Gyr 

Wrist Eat, drink, open a 
bottle, pour water, 
type, answer a phone, 
combing hair, cutting 
by scissors 

SVM 
KNN 
RF 

SVM 
90% 
 
KNN 
89% 
 
RF 
89% 

SVM 
84% 
 
KNN 
82% 
 
RF 
82% 

SVM 
84% 
 
KNN 
82% 
 
RF 
82% 

SVM 
84% 
 
KNN 
82% 
 
RF 
82% 

[15] 
 

20 Acc 
Gyr 

Finger
Wrist 

Eat, drink, answer a 
phone, brush the teeth, 
brush hair, use a hiar 
dryer 

SVM 
 
DT 

SVM 
Wrist65% 
Both 92% 
 
DT 
Wrist67% 
Both 89% 

- - SVM 
Wrist62% 
Both 91% 
 
DT 
Wrist67% 
Both 88% 

[22] 
 
 
 

2 Acc 
Gyr 

Wrist, 
outer 
side of 
lower 
arm, 
outer 
side of 
upper 
arm 

Opening and closing a 
window, watering a 
plant, turning book 
pages, 
Drinking from a bottle, 
cutting with a knife, 
chopping with a knife, 
stirring in a bowl, 
forehand, backhand 
and smash  

SVM 
 
KNN 
 
NB 

- SVM 
88.9% 
 
KNN 
76.2% 
 
NB 
75.7% 

SVM 
66.5% 
 
KNN 
44.2% 
 
NB 
56.6% 

- 

[32] 6 Acc  Wrist Hand washing, Teeth 
brushing, 
Standing, Sitting, 
Picking up an object 
from the floor, 
Walking upstairs, 
Walking downstairs  

SVM 
RF 
KNN 

99.28% 94.43% 93.22% - 



[33] 30 Acc Left 
and 
right 
wrist 

Drink gesture versus 
non drinking (including 
watching a movie, 
eating, talking, 
brushing teeth, folding 
laundry, walking, 
browsing the news) 

HMM,  
 
KNN, 
 
RF 

- RF 
90.3% 

RF 
91.0% 

RF 
>75.0%  
in all 
participant
s 
 
>90.0%  
in 20 out 
of 30 
participant
s 

[34] 6 Acc 
Gyr 

Wrist 2-class: Null, Drinking 
or Eating 
 
 

KNN, 
 
RF, 
 
SVM 

2-class:  
RF 
97.4% 
 

2-class:  
RF 
97.2% 
 

2-class:  
RF 
96.3% 
 

- 

Abbreviations: Acc = Accelerometer; Gyr = Gyroscope; SVM = Support Vector Machine; KNN = K-Nearest 310 

Neighbour; RF = Random Forest; DT = Decision Tree; NB = NaiveBayes; HMM = Hidden Markov Models. 

 

Table 7 shows the comparison of the results obtained in this work and in similar studies using DL methods for 

solving multi-classification problems. From this analysis, our results with CNN and CNN-LSTM were comparable 

to [34] for the 3-class classification problems, and outperformed their 5-class classification. On the contrary, our 315 

performance appears slightly inferior to [26], in which three sensors were used, placed in different positions along 

the two experimental subjects’ arms, thus possibly improving the activity recognition accuracy. On the other hand, 

when compared to [25], our work showed higher values of f1-score in both CNN and CNN-LSTM models. 
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Table 7 

Comparison of the results obtained with DL models with the state of the art.  325 

Ref # 
sub
ject
s 

Sen
sor 
type 

Sensor 
place
ment  

Activities  ML 
models  

Balanced 
Accuracy 

Precision  Recall  f1-
score  

Our work 
 
 

20 Acc 
Gyr 

Wrist Eat, drink, 
open a bottle, 
pour water, 
type, answer a 
phone, 
combing hair, 
cutting by 
scissors 

CNN 
 
CNN-
LSTM 

CNN 
92% 
 
CNN-
LSTM 
93% 

CNN 
88% 
 
CNN-
LSTM 
89% 

CNN 
87% 
 
CNN-
LSTM 
89% 

CNN 
87% 
 
CNN-
LSTM 
89% 

[25] 4 Acc
, 
Gyr
, 
and 
mag
neto
met
er 

Upper 
Arms, 
wrists, 
hands, 
back, 
hip, 
knee    

Open and close 
door, open and 
close fridge, 
open and close 
dishwasher, 
open and close 
drawer, clean 
table, drink 
from cup, 
Toggle switch, 
Groom, 
prepare coffee, 
Drink coffee, 
prepare 
Sandwich, eat 
sandwich, 
Clean up 

CNN 
 
DC- 
LSTM 

 - - - CNN 
78% 
 
DC- 
LSTM 
86% 

[26] 2 Acc 
Gyr 

Wrist, 
outer 
side of 
lower 
arm, 
outer 
side of 
upper 
arm 

Opening and 
closing a 
window, 
watering a 
plant, turning 
book pages, 
Drinking from 
a bottle, 
cutting with a 
knife, 
chopping with 
a knife, stirring 
in a bowl, 

CNN 
 
DBN 

CNN 
95% 
 
DBN 
84% 

- - CNN 
89.6% 
 
DBN 
76% 



forehand, 
backhand and 
smash  

[34] 6 Acc 
Gyr 

Wrist 3-class: Null, 
Drinking, 
Eating 
 
5-class: Null, 
Drinking, 
Spoon, Fork, 
Hand 

ANN 
 

3-class: 
ANN 
98.2% 
 
5-class: 
ANN 
97.8% 
 

3-class: 
ANN 
95.7% 
 
5-class: 
ANN 
88.7% 
 
 

3-class: 
ANN 
95.0% 
 
5-class: 
ANN 
85.8% 

- 

Abbreviations: Acc = Accelerometer; Gyr = Gyroscope; CNN = Convolutional Neural Network; LSTM = Long-

Short Term Memory; DC = Deep Convolutional; DBN = Deep Belief Network; ANN = Artificial Neural Network. 

 

 

4.1 Limitations 330 

In the acquisition protocol, only one activity was performed in a 30-second interval, with the hand being still 

between two consecutive gestures. This represents a simplification of a real-life scenario that would probably bring 

additional challenges. However, this study was conceived as a first feasibility study to test and compare the 

performance of different methods in multi-class and binary classification problems from the acquired signals from 

the wrist device. Future studies will tackle these more complex experimental conditions on the basis of the lesson 335 

learned and trained algorithms.  

As a second limitation, all the subjects enrolled in the experiments were right-handed; for higher generalization; 

future studies should consider including left-handed subjects as well. Similarly, a larger number of subjects in 

different age ranges should be considered to avoid introducing possible biases. 

5. Conclusion 340 

In this work, the problem of automated classification of eight hand gestures using a wearable wrist-worn device 

was investigated. Both multi-gesture classification, as well as binary classification of drinking against all the other 

gestures, were taken into consideration. Three ML models (SVM, RF and KNN) commonly used in human activity 

recognition were tested using temporal and frequency features, with SVM obtaining the best performance. In 



addition, two DL-based methods (CNN and CNN-LSTM) were applied. All the models showed good performances 345 

in classifying each activity, with the DL models outperforming the ML ones, and CNN-LSTM being the best 

performing model (median f1-score = 90.5% for the multi-gesture classification). All the models showed better 

performance for the binary classification of the ‘drinking’ gesture. These results represent a promising step in the 

direction of developing solutions for passive monitoring of medical adherence. 
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