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 Background and Objective: Aortic pressure (Pa) is important for the diagnosis of cardiovascular disease. 
However, its direct measurement is invasive, not risk-free, and relatively costly. In this paper, a new 
simplified Kalman filter (SKF) algorithm is employed for the reconstruction of the Pa waveform using dual 
peripheral artery pressure waveforms.  
Methods: Pa waveforms obtained in a previous study were collected from 25 patients. Simultaneously, radial 
and femoral pressure waveforms were generated from two simulation experiments, using transfer functions. 
In the first, the transfer function is a known finite impulse response; and in the second, it is derived from a 
tube-load model. To analyse the performance of the proposed SKF algorithm, variable amounts of noise 
were added to the observed output signal, to give a range of signal-to-noise ratios (SNRs). Additionally, 
central aortic, brachial and femoral pressure waveforms were simultaneously collected from 2 Sprague-
Dawley rats and the measured and reconstructed Pa waveforms were compared.  
Results: The proposed SKF algorithm outperforms canonical correlation analysis (CCA), which is the 
current state-of-the-art blind system identification method for the non-invasive estimation of central aortic 
blood pressure. It is also shown that the proposed SKF algorithm is more noise-tolerant than the CCA 
algorithm over a wide range of SNRs.  
Conclusion: The simulations and animal experiments illustrate that the proposed SKF algorithm is accurate 
and stable in the face of low SNRs. Improved methods for estimating central blood pressure as a measure 
of cardiac load adds to their value as a prognostic and diagnostic tool. 

 

1. Introduction 1 

The aortic pressure (Pa) waveform is an important predictor of 2 
cardiovascular disease risk [1]. The blood ejected from the left 3 
ventricle gives rise to an aortic pressure wave which is propagated 4 
through the arterial tree changing in amplitude and shape as it 5 
progresses, in a way which depends on variations in the local diameter, 6 
wall thickness and elastic properties of the aorta, as well as the 7 
presence of reflected waves from peripheral sites and, to a lesser extent, 8 
on re-reflections [2], [3]. Thus Pa, having been formed initially at the 9 
aortic root by the contraction of the left ventricle, contains essential 10 
information about the heart itself as well as about the properties of the 11 
arterial system in general [4], [5]. Pa in the ascending aorta, often 12 
referred to as “central pressure” is of particular importance because it 13 
is a measure of maximal left ventricular load [6]. However, the use of 14 
Pa as a diagnostic and prognostic tool has been limited in clinical 15 
practice because the gold standard of Pa measurement using a pressure-16 
sensing cardiac catheter is invasive and expensive [7]. Therefore, a 17 
number of non-invasive measurement techniques have been proposed, 18 
usually substitution and transfer function methods, in which the central 19 
pressure wave is derived from peripheral pressure measurements. 20 
Peripheral artery pressure (Pp) waveforms such as the brachial (Pb) are 21 
generally easier to obtain noninvasively than the Pa waveform. 22 
However, due to the aforementioned changes in shape as the wave 23 
propagates along the arterial tree, important aspects of the Pa 24 
waveform, such as systolic pressure and pulse pressure cannot be 25 

accurately derived from the measurement of peripheral artery pressure 26 
[8]. Carotid pressure is also often used as a surrogate for central Pa 27 
because the carotid artery is closer to the aorta than the brachial. 28 
However, even the carotid pressure waveform is subject to 29 
amplification and, in general, will lead to an over-estimation of central 30 
Pa [9], [10]. Several numerical methods to estimate the Pa from non-31 
invasive measurements of Pp have recently been developed. A widely 32 
used approach is based on the notion of a generalized transfer function. 33 
This is obtained from simultaneous measurements of Pa (invasive) and 34 
Pp (non-invasive) on a large number of subjects [11], [12], [15]. The 35 
inverse transfer function can then be derived and used to estimate Pa 36 
from Pp. Tube-load models represent the path between the aorta and 37 
the periphery from which a transfer function can be derived for the Pa 38 
waveform [13], [14]. However, generalized transfer function methods 39 
require parameter values derived from prior invasively measured 40 
central pressures from many subjects [15]. Additionally, the form of 41 
the function will depend on the specific measurement device and thus 42 
care should be taken to allow for this [15]. Furthermore, it is usually 43 
assumed that the arterial system is linear and short-time invariant. In 44 
spite of these limitations, such methods have proved to be useful as a 45 
means of estimating systolic pressure although pulse pressure 46 
estimation is less reliable [17]. More recently, multichannel blind 47 
system identification (MBSI) algorithms have been proposed, such as 48 
the cross-relation (CR) algorithm [18], the subspace (SS) algorithm 49 
[19], and the canonical correlation analysis (CCA) algorithm [20]. 50 
These methods are able to estimate the Pa waveform satisfactorily 51 
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when the signal-to-noise ratio (SNR) of the observed channel output is 52 
high [21]. Unfortunately, the peripheral artery pressure signal may 53 
contain some noise and the SNR may not be high enough. In this paper, 54 
we propose a simplified Kalman filter (SKF) algorithm for Pa 55 
waveform estimation with a high update rate and which is tolerant of 56 
low SNRs. The main innovations of the study are as follows: 1) the 57 
central aortic pressure waveform is noninvasively estimated by two 58 
peripheral pressure waveforms, and 2) the proposed method is self-59 
calibrating and accommodates any inter-subject variation and intra-60 
subject differences in vascular dynamics. 61 

The paper is organized as follows. Section 2 describes the data 62 
acquisition, the estimation of the Pa by the MBSI method, evaluation 63 
indices and statistical analysis. Section 3 presents the results, which 64 
are discussed and interpreted in Section 4. Section 5 concludes the 65 
paper with suggestions for future work. 66 
 67 

2. Methods 68 

In this paper, the CCA algorithm [20] based on a linear single input 69 

multiple output (SIMO) system is applied as a benchmark to compare 70 

the performance of different blind system identification algorithms. 71 

The generated peripheral artery pressure waveforms as the observed 72 

output signals using the finite impulse response (FIR) and tube-load 73 

simulation models are noiseless. It has been reported that the majority 74 

of real pulse waveforms have SNRs between 50 dB and 10 dB with 75 

only 8% above 50 dB and only 1.5% below 10 dB [22]. Therefore, to 76 

analyze and compare the performance of the SKF and CCA 77 

algorithms, various levels of noise (Gaussian random) in the range 10 78 

dB to 50 dB were added to the observed output signals. Respiration 79 

was simulated by modulating the baseline with a sinusoidal signal [22]. 80 

and these noisy signals were used in the simulation experiments. With 81 

this in mind, the resulting pulse signal can be modeled as: 82 

    (1) 83 

  84 
Fig. 1. Examples of a pulse wave, simulated baseline modulation and Gaussian 85 
random noise signals (SNR =25 dB). ppi: pulse wave signal without noise; xi: pulse 86 
wave signal with added Gaussian noise and respiratory modulation. b1i: simulated 87 
respiratory modulation signal; b2i: Gaussian random noise signal. 88 

As shown in Fig. 1,  represents the heart-generated pulse wave 89 

signal.  and  represent the respiratory modulation signal 90 

and Gaussian random noise signal, respectively. 91 

  (2) 92 

where  and are the amplitude and frequency of the simulated 93 

respiratory sinusoidal signal. Clinical observations have shown that 94 

the healthy human pulse rate is four to five times the respiration rate 95 

[23]. Therefore,  was set to 0.3 Hz and the value of  was 96 

chosen according to the magnitude of the SNR. 97 

2.1 Data acquisition 98 

Here, we have utilized a set of clinical data collected in a previous 99 

study [24], [40]. Invasive measurements of central Pa were made at the 100 

aortic root in 25 patients undergoing cardiac surgery, at a sampling 101 

frequency of 100 Hz. Basic population and hemodynamic data are 102 

listed in Table 1. Approval was obtained from the Research Ethics 103 

Committee of the Northeastern University (EC-2020B016), China, 104 

and written informed consent was obtained from all participants.  105 

 106 

Table 1 107 
Basic information of the clinical data (Mean ± SD). 108 

Variables Data 
Gender, male/female 10/15 
Age (years) 56.8 ± 13.5 
Height (cm) 165.4 ± 7.9 
Weight (kg) 68.6± 12.4 
SP (mmHg) 147.3 ± 20.7 
DP (mmHg) 76.8 ± 11.5 
HR (bpm) 74.0 ± 4.8 

2.1.1 Simulation data generated with the FIR model 109 

As shown in Fig. 2, the simulated radial pressure (Pr) and femoral 110 

pressure (Pf) waveforms without noise were obtained as the output 111 

signals of two given FIRs with the above-mentioned Pa waveform as 112 

the input signal.  113 

 114 

Fig. 2. Measured Pa and generated Pr and Pf waveforms using the FIR simulation 115 
model. 116 

The impulse responses of the two channels, were as used in a previous 117 

study [20]. The FIR coefficients refer to the pressure signal 118 

1 2( )= ( )i pi i ix n p n b n b n+ ( ) + ( )

( )pip n

1ib n( ) 2ib n( )

1 1 0 ssin 2ib n a f n Fp( ) = ( )/

1a 0f

0f 1a
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transmission from the aorta to the upper and lower limb arteries, 119 

respectively. 120 

2.1.2 Simulation data generated with the tube-load model 121 

The ascending aortic to peripheral wave propagation path is 122 

modeled by a uniform lossless tube and a Windkessel load. This set up 123 

is usually called the tube-load model, the transfer function of which is 124 

given by: 125 

  (3) 126 

Derivation of the equations and further details can be found in [14]. 127 

The transfer function of the tube-load model has three unknown 128 

parameters: ,  and . In Equation (4),  represents the 129 

characteristic impedance of the tube, the terminal of which is 130 

composed of a Windkessel load consisting of the compliance ( ) of 131 

the distal arteries and a peripheral resistance ( ) due to the arterioles. 132 

 represents the terminal impedance of the Windkessel load. In 133 

Equation (5),  is the pulse transit time associated with the wave 134 

propagation from the ascending aorta to the distal end of the 135 

cardiovascular system.  is the sampling frequency. 136 

  (4) 137 

  (5) 138 

 139 
Fig. 3. An example of measured Pa waveform and the corresponding simulated Pr 140 
and Pf waveforms based on the tube-load model.  141 

In many previous studies, the tube-load model has been used in 142 

animals to estimate central aortic hemodynamics based on the relative 143 

ease of obtaining Pp waveforms [25], [33]-[35]. The model has been 144 

rarely used in human subjects due to the difficulty of obtaining 145 

invasive aortic pressure measurements and simultaneous multiple 146 

peripheral artery pressures. In one such study [14], the values of the 147 

physiologically relevant parameters of the tube-load model (load 148 

compliance, characteristic impedance, and peripheral resistance, pulse 149 

transit time etc.) were derived from the measured aortic blood pressure 150 

and estimated aortic blood pressure. The mean values of the 151 

parameters such as ,  and  from this study [14] were used 152 

in this simulation. Their values are 94.6 and 16.6 for radial artery; and 153 

82.5 and 40.6 for the femoral artery. The order NL of the transfer 154 

function is determined by the values of the parameter  for the 155 

upper and lower limbs. The  of the upper and lower limbs were 156 

set to 86.9 ms and 64.4 ms, respectively. The same Pa waveform in 157 

subsection 2.1.1 was also used as the input signal to the tube-load 158 

models. The simulated waveforms are shown in Fig. 3. 159 
 160 

2.1.3 Animal experiments 161 

Blood pressure in the ascending aorta, brachial and femoral arteries 162 
was recorded in two anesthetized Sprague-Dawley rats, weighing 0.32 163 
kg and 0.35 kg. Blood pressures were measured simultaneously 164 
through three catheters, each connected to a transducer (MLT1199, 165 
AD Instruments, Castle Hill Australia). The catheters were introduced 166 
via incisions in the right common carotid artery and right brachial and 167 
left femoral arteries. The carotid catheter (outer diameter (o.d.) 0.90 168 
mm and an inner diameter (i.d.) 0.50 mm.) was passed into the 169 
ascending aorta to record aortic pressure. For the brachial and femoral 170 
artery measurements, smaller catheters, o.d. 0.60 mm and i.d. 0.30 mm 171 
were used. A Power Lab 8/35 (PL3508) and quad Bio Amp (FE224) 172 
acquisition system (AD Instruments, Castle Hill Australia) and Lab 173 
Chart software running on a laptop computer were used for displaying 174 
and storing the data in real time, at a sampling rate of 1 kHz. All the 175 
animal experimental procedures were approved by the Institutional 176 
Animal Care and Use Committee (IACUC) of Shenzhen Institutes of 177 
Advanced Technology, Chinese Academy of Sciences: (SIAT-178 
IACUC-190801-YGS-LWH-A0454-01). 179 

 180 

2.2 Estimation of the Pa by the MBSI algorithm 181 

In this study, the cardiovascular system is regarded as a black-box 182 

model of a two-channel wave propagation system, with one channel 183 

corresponding to the upper limb and the other to the lower limb. Up to 184 

now, many MBSI approaches have assumed the arterial system to be 185 

linear and short-time invariant [20]. Here, we present a method for Pa 186 

waveform estimation, with a FIR filter used as a transfer function. For 187 

a two-channel FIR system as presented in Fig. 4, denotes the Pa 188 

waveform;  denotes the Pp waveforms; the L-by-1 vector 189 

 represents the channel’s impulse 190 

response between the Pa waveform and the i-th Pp waveform;  191 

is the additive noise.  192 

 193 

Fig. 4. Black-box structure of a two-channel FIR system. 194 

A linear convolution between the Pa and Pp waveforms is then given by 195 

Equation (6) [26]:  196 

   (6) 197 
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The two Pp waveforms are not independent; they conform to the so-198 

called cross-relation (CR): 199 

  (7) 200 

where  201 

    (8) 202 

The * symbol is the linear convolution operator. The cross-relation in 203 

Equation (7) can be rewritten in matrix form as: 204 

                    (9) 205 

where ; ;206 

. 207 

2.2.1 An introduction to the SKF algorithm 208 

For Pa waveform estimation, the first step is to identify the 209 

multichannel impulse response vector h. Taking into account the 210 

cross-relation in Equation (9), we propose the following Kalman filter 211 

problem for h estimation. The process and measurement equations are 212 

given as follows: 213 

a) Process equation: 214 

  (10) 215 

b) Measurement equation: 216 

  (11) 217 

where the vectors  and  denote the process and 218 

measurement noise, respectively; the state transition matrix is assumed 219 

to be  (identity matrix) because the cardiovascular 220 

system is a slow time-varying system; the observation vector 221 

 is a zero-vector series. For the special transition 222 

matrix and the zero-observation vector, the computation of the Kalman 223 

filter is simplified as in Table 2. 224 

 
Table 2 
Summary of the SKF algorithm. 

Input vector process: 
,  

Known parameters: 
 

,  

Computation:  
 

 
 

 

As shown in Table 2, for the simplified multichannel identification 225 

problem, the correlation matrix of process noise is assumed to be 226 

 (meaning ) and the correlation matrix of the 227 

measurement noise is assumed to be . The matrix  228 

represents the Kalman gain, and the  represents the filtered state-229 

error correlation matrix. 230 

2.2.2 Multichannel deconvolution algorithm 231 

After the identifying the SIMO system using the SKF algorithm, the 232 

Pa waveform can be obtained by the deconvolution of the two known 233 

Pp waveforms. These deconvolution problems are of two types. First, 234 

if both the output signal and the channel responses are known, the input 235 

signal can be solved by ordinary deconvolution. Second, if only the 236 

output signal is known, both the input signal and the channel transfer 237 

function need to be solved. This second type is known as blind 238 

deconvolution and is more difficult to handle than ordinary 239 

deconvolution. Nevertheless, multichannel blind deconvolution 240 

algorithms have been used in many applications including signal 241 

processing [27], medical imaging [28] and seismic imaging [29]. 242 

Several blind deconvolution algorithms have been proposed, including 243 

the Sato algorithm [30], Godard algorithm [31] as well as Bussgang-244 

type algorithms [32]. However, these algorithms require prior 245 

knowledge of the source statistics. The multi-input multi-output 246 

theorem can also be used to solve a multichannel inverse system and 247 

then to filter multiple signals [33]. In this paper, the channel responses 248 

are solved by the SKF algorithm. Both two-channel output signals and 249 

the corresponding two FIRs are known and used to solve the common 250 

input signal based on a multichannel least squares deconvolution. 251 

Equation (6) can be rewritten in matrix form： 252 

  (12) 253 

where 254 

  (13) 255 

  (14)  256 

  (15) 257 

and N denotes the number of the measured Pp waveform samples.  258 

   (16) 259 

Here  is the [ ] Toeplitz matrix composed of the 260 

estimated impulse responses of the channel. The linear least squares 261 

solution of the problem is given by: 262 

  (17) 263 

where 264 

  (18) 265 

  (19) 266 

 267 

2.2.3 Evaluation and statistical analysis 268 

In all experiments, we used the root mean square error (RMSE) as a 269 

measure of the quality of the quantitative assessments. RMSE is 270 

defined as follows: 271 

  (20) 272 

In Equation (20),  is the real source input signal for the system 273 

identification;  is the estimated source input signal and N 274 

represents the total number of data points comprising the test signal. 275 

 Normalized projection misalignment (NPM) is commonly used to 276 

evaluate the convergence performance of the estimated impulse 277 

responses in blind SIMO systems [36], [37]. The NPM is computed 278 

during the iteration process and is given by: 279 
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  (21) 280 

where || · || is the l2 norm; k is the iteration index; and are the real 281 

and estimated FIRs, respectively.  282 

Measured and estimated central aortic pressures are reported as 283 

mean ± SD or 95% CI where appropriate. Differences between them 284 

were analyzed by a paired t-test (IBM SPSS Statistics, version-23),The 285 

linear regression parameters and Pearson’s correlation coefficients 286 

between the measured and estimated central aortic pressure were also 287 

calculated. Bland-Altman plots were constructed to assess the 288 

agreement between estimated and measured central aortic pressure. A 289 

p-value smaller than 0.01 was considered to be statistically significant. 290 

 291 

3. Results  292 
 293 

3.1 FIR simulation experiments 294 

Blind system identification algorithms are usually sensitive and 295 

vulnerable to measurement noise [21]. The SNR of the observed output 296 

signals can affect the convergence process and the noise of each 297 

channel is unknown in practice. Therefore, simulation experiments 298 

were conducted to verify the performance of the proposed algorithm 299 

under a range of different SNRs. In Fig. 5, the curves represent the 300 

convergence performance of the SKF algorithm when applied to 301 

signals with various SNRs, with each panel representing one channel . 302 

The curves from top to bottom correspond to SNRs from 10 dB to 50 303 

dB. Fig. 6 shows the effect of iteration number on the relationship 304 

between RMSE and SNR, using the SKF algorithm. As shown in the 305 

figure, the number of iterations is in the range 80 to 200. 306 

 307 

Fig. 5. The convergence behavior of averaged NPMs at different SNRs for each 308 
channel in a two-channel system.  309 

 310 

Fig. 6. Effect of iteration number on the relationship between RMSE and SNR, using 311 
the SKF algorithm. 312 

All simulation results are summarized in Table 3. To simulate real in-313 

vivo measurements where noise is inevitable, we applied the proposed 314 

SKF and CCA algorithms to estimate the Pa waveform by adding noise 315 

to Pp to produce a SNR of 25 dB. The RMSEs of the measured and 316 

estimated Pa were computed for the total waveform (TW), SP and beat-317 

to-beat diastolic pressure (DP). For a SNR of 25 dB (shown in bold), 318 

it can be seen that the TW RMSE of the measured and estimated Pa 319 

waveforms using the CCA algorithm is 6.43 ± 2.66 mmHg, whereas 320 

the corresponding value obtained from the SKF algorithm is 3.31 ± 321 

1.92 mmHg.  322 

 323 
Table 3 324 
RMSEs obtained from measured and estimated Pa waveforms using the CCA and 325 
SKF algorithms at different added noise levels (Mean ± SD). 326 

SNR 
(dB) 

Method TW 
(mmHg) 

SP 
(mmHg) 

DP 
(mmHg) 

10 CCA 21.60 ± 5.66 30.9 ± 12.95 143.36 ± 106.56 
SKF 8.76 ± 3.59 5.28 ± 2.26 13.11 ± 9.94 

15 CCA 12.04 ± 4.78 13.45 ± 7.61 55.55 ± 40.98 
SKF 5.78 ± 2.93 2.46 ± 1.45 3.46 ± 2.33 

20 CCA 7.97± 3.12 5.38 ± 2.00 11.43 ± 9.03 
SKF 4.52 ± 2.42 1.44 ± 0.78 1.55 ±0.90 

25 CCA 6.43 ± 2.66 2.27 ± 0.97 3.16 ± 1.73 
SKF 3.31 ± 1.92 0.93 ± 0.42 1.12 ± 0.58 

30 CCA 4.73 ± 2.76 1.16 ± 0.56 1.55 ± 0.91  
SKF 2.41 ± 1.14 0.77 ± 0.22 0.99 ± 0.43 

35 CCA 3.89 ± 2.52 0.78 ± 0.24 1.03 ± 0.45 
SKF 2.25± 1.57 0.77 ± 0.27 0.89 ± 0.30 

40 CCA 1.95 ± 1.14 0.77 ± 0.23 0.87 ± 0.32 
SKF 1.46 ± 0.79 0.76 ± 0.22 0.81 ± 0.21 

45 CCA 1.26 ± 0.80 0.75 ± 0.23 0.80 ± 0.20 
SKF 1.29 ± 0.65 0.74 ± 0.22 0.79 ± 0.18 

50 CCA 1.06 ± 0.49 0.75 ± 0.22 0.76 ± 0.19 
SKF 1.19 ± 0.54 0.75 ± 0.22 0.76 ± 0.22 

T

T
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 327 
Fig. 7. Effect of added noise on the RMSE values obtained from measured and 328 
estimated Pa waveforms using the CCA and SKF algorithms (Mean ± SD, the number 329 
of points in the total waveform, n is 600). 330 

 331 
Fig. 8. Measured and estimated Pa waveforms using the CCA and SKF algorithms 332 
from the same subject for a SNR of 25 dB. 333 

The two algorithms were compared by a paired t-test. The SKF 334 
algorithm has significantly lower RMSEs than the CCA up to a SNR 335 
of 40dB to 45dB. Fig. 7 shows that there was a significant difference 336 
between the CCA and SKF methods when the SNR values were less 337 
than 35 dB (p < 0.01), although not for SNR values greater than 35 dB 338 
(p > 0.01). In general, the results show that the SKF method is more 339 
noise-tolerant than the CCA method. Fig. 8 compares the measured 340 
and estimated Pa waveforms using the CCA and SKF algorithms, 341 
operating on the same FIR simulation dataset. The correlation between 342 
the measured and estimated pressures is shown in Figs. 9 (A) and 10 343 

(A) for the CCA and SKF algorithms, respectively. Also shown in each 344 
plot are the line of identity and the equation of the linear fit to the data. 345 
Figs. 9 (B) and 10 (B) are the corresponding Bland-Altman plots in 346 
which the mean bias is shown by the solid horizontal line and limits of 347 
agreement (± 1.96SD of the mean difference), by dashed lines. 348 

The linear regression equations obtained between the measured and 349 
estimated Pa waveforms using the CCA and SKF algorithms were y = 350 
1.00x - 0.14 (r = 0.99, p < 0.01) in Fig. 9 (A) and y = 1.00x + 0.28 (r 351 
= 0.99, p < 0.01) in Fig. 10 (A). A comparison (mean ± SD, -0.11 ± 352 
2.27 mmHg) between the measured and estimated Pa waveforms using 353 
the CCA algorithm is shown in Fig. 9 (B); and a similar comparison 354 
using the MCN algorithm (mean ± SD, -0.10 ± 1.80 mmHg) is shown 355 
in Fig. 10 (B).  356 

357 
Fig. 9. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 358 
and estimated Pa waveforms for a SNR of 25 dB using the CCA algorithm and FIR 359 
simulation data (25 subjects). and  are the measured and estimated pressures, 360 
respectively. 361 

 362 
Fig. 10. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 363 
and estimated Pa waveforms for a SNR of 25 dB using the SKF algorithm and FIR 364 
simulation data (25 subjects).  and are the measured and estimated 365 
pressures, respectively. 366 

3.2 Tube-load Modeling of arterial pressure waveforms in human 367 
subjects 368 

As shown in Fig. 11, the SKF algorithm also has significantly lower 369 
RMSEs than the CCA. The proposed SKF algorithm clearly 370 
outperforms the CCA algorithm (p < 0.01). It is notable that, as shown 371 
in Fig. 11, the RMSE values of the measured and estimated Pa 372 
waveforms using the CCA algorithm are more than 5 mmHg for all 373 
values of SNR investigated. Thus, the mean difference between the 374 
estimated and measured Pa waveforms does not satisfy the Association 375 
for the Advancement of Medical Instrumentation standard of 5 ± 8 376 
mmHg [38], [39], whereas this requirement is met by the SKF 377 
approach, for SNRs of 25 dB and above. Again, a SNR of 25 dB, 378 
corresponding to a typical real-world value, has been used in Fig. 12 379 
to provide a visual comparison of the performance of the two 380 
algorithms, where it is seen that the qualitative agreement between 381 
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measured and estimated waveforms is good for the SKF algorithm but 382 
clearly inferior for the CCA approach. 383 

Considering the tube-load simulation experiments, Table 4 shows 384 
that for SNRs greater than 25 dB there is little change in the RMSEs 385 
for SP and DP when calculated by either algorithm, although the SKF 386 
values remained consistently lower. 387 

  388 
Fig. 11. Effect of added noise on the RMSE values obtained from the measured and 389 
estimated Pa waveforms, using the CCA and SKF algorithms (Mean ± SD, the 390 
number of points in the total waveform, n is 600).  391 

  392 
Fig. 12. Measured and estimated Pa waveforms using the CCA and SKF algorithms 393 
from the same subject for a SNR of 25dB. 394 

 395 

 396 
Fig. 13. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 397 
and estimated Pa waveforms for a SNR of 25 dB using the CCA algorithm and FIR 398 
simulation data (25 subjects). and are the measured and estimated pressures, 399 
respectively. 400 

 401 
Fig. 14. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 402 
and estimated Pa waveforms for a SNR of 25 dB using the SKF algorithm and FIR 403 
simulation data (25 subjects). and are the measured and estimated pressures, 404 

respectively. 405 

Table 4 406 
RMSE values obtained from measured and estimated Pa waveforms using the CCA 407 
and SKF algorithms with the different SNRs of the observed channel output signals 408 
(Mean ± SD). 409 

SNR Method TW SP DP 
(dB)  (mmHg) (mmHg) (mmHg) 

10 CCA 22.39 ± 6.80 36.79 ± 11.91 122.09 ± 62.58 
SKF 7.59 ± 3.12 3.41 ± 2.35 4.10 ± 4.60 

15 CCA 10.95 ± 3.27 16.57 ± 6.02 31.45 ± 30.11 
SKF 5.19 ± 1.52 3.19 ± 1.79 1.70 ± 0.67 

20 CCA 8.03 ± 3.04 11.01 ± 5.03 9.02 ± 5.10 
SKF 4.60 ± 1.87 2.24 ± 1.47 1.24 ± 0.74 

25 CCA 7.03 ± 2.15 8.77 ± 4.85 2.87 ± 1.67 
SKF 4.43 ± 2.05 2.16 ± 1.57 0.96 ± 0.61 

30 CCA 6.74 ± 2.12 8.34 ± 5.00 1.72 ± 1.55 
SKF 4.49 ± 2.12 2.83 ± 2.45 0.82 ± 0.73 

35 CCA 6.76 ± 2.16 8.23 ± 4.93 1.33 ± 1.09 
SKF 4.71 ± 1.96 4.15 ± 3.66 0.64 ± 0.42 

40 CCA 7.10 ± 2.64 8.38 ± 5.09 1.34 ± 1.03 
SKF 4.68 ± 1.81 3.60 ± 3.50 0.72 ± 0.35 

45 CCA 6.98 ± 2.39 8.33 ± 5.08 1.22 ± 1.05 
SKF 4.63 ± 1.79 3.20 ± 3.27 0.81 ± 0.44 

50 CCA 6.77 ± 1.97 8.24 ± 4.97 1.14 ± 1.08 
SKF 4.66 ± 2.30 2.84 ± 2.60 0.98 ± 0.73 

 410 

When the SNR increases from 10 dB to 40 dB, the corresponding 411 
RMSE values for TW continue to decrease, as also listed in Table 4. 412 
Point-by-point comparisons of the pressure signals analyzed by the 413 
CCA and SKF algorithms are shown in the correlation plots of Figs.13 414 
(A) and 14 (A). Also, in each plot the line of identity and the equation 415 
of the linear fit to the data are shown. Figs. 13 (B) and 14 (B) are the 416 
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corresponding Bland-Altman plots in which the mean bias is shown by 417 
the solid horizontal line and limits of agreement (± 1.96SD of the mean 418 
difference), by dashed lines. The superior performance of the SKF 419 
approach is evident in the higher value of the Pearson correlation 420 
coefficient (r = 0.99, p < 0.01 vs. r = 0.96, p < 0.01) and the narrower 421 
limits of agreement (± 9.73 mmHg vs. ± 19 mmHg). 422 
 423 

3.3 Animal experiments  424 

To verify the accuracy and effectiveness of the proposed SKF 425 
algorithm in vivo, we performed measurement on two Sprague-426 
Dawley rats. The channel order was assumed to be 20 and the number 427 
of points in the total waveform of every sample was 1800. The 428 
estimated and true pressure waveforms agreed well. The average 429 
RMSE of the total waveform between the measured and estimated Pa 430 
waveforms using the SKF algorithm was 1.20 mmHg and that using 431 
the CCA algorithm, 1.70 mmHg.  432 

 433 

 434 
Fig. 15. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 435 
and estimated Pa waveforms using the CCA algorithm (2 Sprague-Dawley rats). 436 
Animal1, blue points; animal2, black points. and are the measured and 437 
estimated pressures, respectively. 438 

 439 

       440 
Fig. 16. (A) Correlation analysis and (B) Bland-Altman plots comparing measured 441 
and estimated Pa waveforms using the SKF algorithm (2 Sprague-Dawley rats). 442 
 443 
The point-by-point correlation and corresponding Bland Altman plots 444 
(Figs. 15 and 16) again show that the SKF algorithm yields a higher 445 
correlation coefficient (r = 0.99, p < 0.01 vs. r = 0.97, p < 0.01) as well 446 
as narrower limits of agreement (± 3.29 mmHg vs. ± 6.50 mmHg). Fig. 447 
17 is a direct comparison of the two algorithms and shows that the 448 
estimated Pa waveform using the SKF algorithm is closer to the 449 
measured Pa waveform than that obtained from the CCA algorithm, 450 
most notably near end systolic and end diastolic pressure. 451 
 452 

  453 

  454 
Fig. 17. Measured and estimated Pa waveforms using the CCA and SKF algorithms 455 
from 2 Sprague-Dawley rats (A and B).  456 

4. Discussion  457 

In this study, we have applied a simplified Kalman filter algorithm to 458 
estimate central Pa in simulations and in-vivo experiments and 459 
compared the results to those obtained from the previously described 460 
CCA approach. In the simulations, we have shown that, although the 461 
results are similar at high SNRs, when the signal becomes relatively 462 
weaker the SKF algorithm outperforms the CCA algorithm. 463 
Furthermore, the proposed SKF algorithm for central Pa estimation 464 
does not require any explicit calibration as the method is by nature self-465 
calibrating and can thus account for any inter-subject or intra-subject 466 
variability in vascular dynamics. The computational times  of the 467 
CCA and SKF methods were 44.4ms and 51.4ms, respectively. The 468 
CCA approach uses matrix eigenvalue decomposition to directly solve 469 
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eigenvectors as the response of the blind system, whereas the SKF 470 
method uses continuous updating iteratively to solve the response of 471 
blind system. Although the SKF method requires more time than the 472 
CCA approach, its accuracy is superior. As shown in Fig. 7, the 473 
RMSEs of the SKF method are smaller than those obtained when using 474 
the CCA approach. 475 

In the simulation experiments, the convergence performance of the 476 
SKF algorithm has shown that the NPM values decrease markedly as 477 
the SNR increases. The convergence is fast and the channel impulse 478 
responses are accurately estimated when the SNR is high, as shown in 479 
Fig. 5. The results also demonstrate that the RMSEs decrease as the 480 
number of iterations increases, as shown in Fig. 6, where the number 481 
of iterations ranges from 80 to 200. It was found that if the number of 482 
iterations is less than the number of sampling points in one complete 483 
cardiac cycle, the Pa waveform cannot be reliably reproduced. 484 
Therefore, the number of iterations was maintained at a value not less 485 
than 80. For lower values of SNR, RMSEs fall with increasing number 486 
of iterations; although for SNRs greater than 30 dB, increasing the 487 
number of iterations had little further effect. Fig. 6 also shows that 488 
there is a small additional gain in performance when the number of 489 
iterations is increased from 150 to 200, the effect being more marked 490 
for low SNRs. These results indicate that the proposed SKF algorithm 491 
has a good overall performance when the number of iterations is 150 492 
or more. Accordingly, to optimize the speed and accuracy in estimating 493 
the Pa waveform, the number of iterations of the SKF algorithm was 494 
set to 200. On the whole, TW RMSEs of the measured and estimated 495 
Pa waveforms using the SKF algorithm are lower than those seen when 496 
using the CCA algorithm. Moreover, the SKF algorithm gives lower 497 
RMSE values for SP and DP, as shown in Tables 3 and 4. For the 498 
animal experiments, although the proposed SKF algorithm 499 
outperforms the CCA method, only two animals were measured, so 500 
this result should be regarded only as preliminary. Ideally, primates 501 
would be the experimental model in a study of this type because of 502 
their similarity to humans in physiology, neuroanatomy, reproduction, 503 
development, cognition, and social complexity. However they are not 504 
often used for cost and ethical reasons [41]. Pigs and humans share 505 
many physiological and anatomical similarities for organs such as skin, 506 
brain and, especially, the cardiovascular system. Therefore they have 507 
been widely used as experimental models [42]. Nevertheless, rats 508 
account for the majority of animal experiments and have yielded a 509 
large body of experimental data over many years. More importantly, 510 
rats and humans suffer from many of the same diseases, because they 511 
have the same basic physiology, similar organs, and similar body plans 512 
[43]. Furthermore they are robust and tolerate surgical procedures and 513 
anesthesia well. Therefore, in this preliminary study, rats were selected, 514 
with the intention of using pigs for further verification before applying 515 
the method in a clinical validation study on human subjects.  516 

This study has a few limitations which will be addressed in future 517 
work. The morphology of the pulse waveform changes with position 518 
in the vascular tree, gender, age, cardiovascular disease etc. [44], [45], 519 
[46], [47], [48]. The number of participants was small and most were 520 
female. In future work more volunteers will be recruited from subjects 521 
with cardiovascular pathology and the results will compared with age- 522 
and sex-matched healthy controls. Although the aortic and brachial 523 
blood pressure measurements in our previous study were collected 524 
simultaneously, we did not record any additional peripheral pressures 525 
at the same time. The nonlinearity of the cardiovascular system is 526 
neglected, which may lead to some estimation errors in the timing of 527 
the systolic shoulder and the pressure at which it occurs, both of which 528 
will affect clinically important hemodynamic variables such as 529 
augmentation index, reflection magnitude and reflection index. 530 

Similar errors in the time and the pressure at which the dicrotic notch 531 
appears may also occur. 532 

5. Conclusion and future work 533 

The results of the simulation experiments demonstrate that the 534 
performance of MBSI algorithms based on the proposed SKF 535 
approach is superior to that of the CCA method over a wide range of 536 
SNRs in the observed signal. The results of the animal experiments 537 
also confirm that the proposed SKF algorithm is superior to the CCA 538 
algorithm. It is worth noting that the SKF algorithm is especially 539 
effective for estimating systolic and diastolic pressures, which from 540 
the clinician’s point of view, as a measure of cardiac load, is of 541 
particular value. In a future study, we will measure more animals for 542 
the in-vivo validation of the SKF approach. We also plan to develop a 543 
nonlinear blind identification algorithm as an alternative approach to 544 
the estimation of central pressure from peripheral measurements. The 545 
clinical data will be used to verify the proposed method. Improved 546 
accuracy in estimating central pressures from peripheral arterial 547 
pressure waveforms will provide a valuable step towards dependable 548 
measurement of the elusive but clinically important central aortic 549 
pressure waveform, particularly the pulse pressure, as an aid to the 550 
early diagnosis of cardiovascular disease.  551 
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Abbreviations 568 

 569 
CCA Canonical correlation analysis 
CR Cross-relation 
CT Compliance of the distal arteries 
DP Diastolic pressure 
FIR Finite impulse response 
MBSI Multichannel blind system identification 
NPM Normalized projection misalignment 
Pa Aortic pressure 
Pb Peripheral artery pressure 
Pf Femoral pressure 
Pp Peripheral artery pressure 
Pr Radial pressure 
RT Peripheral resistance  
RMSE Root mean square error 
SIMO Single input multiple output 
SKF Simplified Kalman filter 
SP Systolic pressure 
SS Subspace 
TW Total waveform 
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Zc Characteristic impedance 
ZL Terminal impedance 
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