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Abstract

Problems of calculus of variations with variable endpoints cannot be solved without
transversality conditions. Here, we establish such type of conditions for fractional variational
problems with the Caputo derivative. We consider: the Bolza-type fractional variational
problem, the fractional variational problem with a Lagrangian that may also depend on the
unspecified end-point ϕ(b), where x = ϕ(t) is a given curve, and the infinite horizon fractional
variational problem.
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1 Introduction

The calculus of variations is concerned with the problem of extremizing functionals. It has many
applications in physics, geometry, engineering, dynamics, control theory, and economics. The
formulation of a problem of the calculus of variations requires two steps: the specification of a
performance criterion; and then, the statement of physical constraints that should be satisfied.
The basic problem is stated as follows: among all differentiable functions x : [a, b] → R such that
x(a) = xa and x(b) = xb, with xa, xb fixed reals, find the ones that minimize (or maximize) the
functional

J(x) =

∫ b

a

L(t, x(t), x′(t)) dt.

One way to deal with this problem is to solve the second order differential equation

∂L

∂x
− d

dt

∂L

∂x′
= 0,

called the Euler–Lagrange equation. The two given boundary conditions provide sufficient infor-
mation to determine the two arbitrary constants. But if there are no boundary constraints, then
we need to impose another conditions, called the natural boundary conditions (see e.g. [19]),

[

∂L

∂x′

]

t=a

= 0 and

[

∂L

∂x′

]

t=b

= 0. (1)

Clearly, such terminal conditions are important in models, the optimal control or decision rules
are not unique without these conditions.
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Fractional calculus deals with derivatives and integrals of a non-integer (real or complex)
order. Fractional operators are non-local, therefore they are suitable for constructing models
possessing memory effect. They found numerous applications in various fields of science and
engineering, as diffusion process, electrical science, electrochemistry, material creep, viscoelasticity,
mechanics, control science, electromagnetic theory, ect. Fractional calculus is now recognized as
vital mathematical tool to model the behavior and to understand complex systems (see, e.g., [20,
25, 32, 38, 39, 44, 46, 52]). Traditional Lagrangian and Hamiltonian mechanics cannot be used with
nonconservative forces such as friction. Riewe [51] showed that fractional formalism can be used
when treating dissipative problems. By inserting fractional derivatives into the variational integrals
he obtained the respective fractional Euler–Lagrange equation, combining both conservative and
nonconservative cases. Nowadays the fractional calculus of variations is a subject under strong
research. Investigations cover problems depending on Riemann-Liouville fractional derivatives
(see, e.g., [1, 9, 13, 17, 29]), the Caputo fractional derivative (see, e.g., [2, 6, 12, 11, 30, 41, 42]),
the symmetric fractional derivative (see, e.g., [37]), the Jumarie fractional derivative (see, e.g.,
[7, 33, 34]), and others [3, 5, 15, 16, 24, 27, 28].

The aim of this paper is to obtain transversality conditions for fractional variational problems
with the Caputo derivative. Namely, three types of problems are considered: the first in Bolza
form, the second with a Lagrangian depending on the unspecified end-point ϕ(b), where x = ϕ(t)
is a given curve, and the third with infinite horizon. We note here, that from the best of our
knowledge fractional variational problems with infinite horizon have not been considered yet, and
this is an open research area.

The paper is organized in the following way. Section 2 presents some preliminaries needed in
the sequel. Our main results are stated and proved in the remaining sections. In Section 3 we
consider the Bolza-type fractional variational problem and develop the transversality conditions
in a compact form. As corollaries, we formulate conditions appropriate to various type of variable
terminal points. Section 4 provides the necessary optimality conditions for fractional variational
problems with a Lagrangian that may also depend on the unspecified end-point ϕ(b), where x =
ϕ(t) is a given curve. Finally, in Section 5 we present the transversality condition for the infinite
horizon fractional variational problem.

2 Preliminaries

In this section we present a short introduction to the fractional calculus, following [26, 36, 47]. In
the sequel, α ∈ (0, 1) and Γ represents the Gamma function:

Γ(z) =

∫ ∞

0

tz−1e−t dt.

Let f : [a, b] → R be a continuous function. Then,

1. the left and right Riemann–Liouville fractional integrals of order α are defined by

aI
α
x f(x) =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,

and

xI
α
b f(x) =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt,

respectively;

2. the left and right Riemann–Liouville fractional derivatives of order α are defined by

aD
α
x f(x) =

1

Γ(1 − α)

d

dx

∫ x

a

(x− t)−αf(t)dt,
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and

xD
α
b f(x) =

−1

Γ(1 − α)

d

dx

∫ b

x

(t− x)−αf(t)dt,

respectively.

Let f : [a, b] → R be a differentiable function. Then,

1. the left and right Caputo fractional derivatives of order α are defined by

C
aD

α
xf(x) =

1

Γ(1 − α)

∫ x

a

(x− t)−αf ′(t)dt,

and

C
xD

α
b f(x) =

−1

Γ(1 − α)

∫ b

x

(t− x)−αf ′(t)dt,

respectively.

Observe that if α goes to 1, then the operators C
aD

α
x and aD

α
x could be replaced with d

dx
and the

operators C
xD

α
b and xD

α
b could be replaced with − d

dx
(see [47]). Moreover, we set aI

0
xf = xI

0
b f := f .

Obviously, the above defined operators are linear. If f ∈ C1[a, b], then the left and right Caputo
fractional derivatives of f are continuous on [a, b] (cf. [36], Theorem 2.2). In the discussion to
follow, we will also need the following fractional integrations by parts (see e.g. [3]):

∫ b

a

g(x) · CaDα
xf(x)dx =

∫ b

a

f(x) · xDα
b g(x)dx +

[

xI
1−α
b g(x) · f(x)

]x=b

x=a
(2)

and
∫ b

a

g(x) · CxDα
b f(x)dx =

∫ b

a

f(x) · aDα
xg(x)dx −

[

aI
1−α
x g(x) · f(x)

]x=b

x=a
.

Along the work, and following [14], we denote by ∂iL, i = 1, . . . ,m (m ∈ N), the partial
derivative of function L : Rm → R with respect to its ith argument. For simplicity of notation we
introduce operators [x] and {x, ϕ} defined by

[x](t) = (t, x(t), C
aD

α
t x(t)),

{x, ϕ}(t, T ) = (t, x(t), C
aD

α
t x(t), ϕ(T )).

3 Transversality conditions I

Let us introduce the linear space (x, t) ∈ C1([a, b]) × R endowed with the norm ‖(x, t)‖1,∞ :=
maxa≤t≤b |x(t)| + maxa≤t≤b

∣

∣

C
aD

α
t x(t)

∣

∣ + |t|.
We consider the following type of functionals:

J(x, T ) =

∫ T

a

L[x](t) dt+ φ(T, x(T )), (3)

on the set
D =

{

(x, t) ∈ C1([a, b]) × [a, b] |x(a) = xa
}

,

where the Lagrange function L : [a, b] ×R
2 → R and the terminal cost function φ : [a, b] × R → R

are at least of class C1. Observe that we have a free end-point T and no constraint on x(T ).
Therefore, they become a part of the optimal choice process. We address the problem of finding
a pair (x, T ) which minimizes (or maximizes) the functional J on D, i.e., there exists δ > 0 such
that J(x, T ) ≤ J(x̄, t) (or J(x, T ) ≥ J(x̄, t)) for all (x̄, t) ∈ D with ‖(x̄− x, t− T )‖1,∞ < δ.
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Theorem 1. Consider the functional given by (3). Suppose that (x, T ) gives a minimum (or
maximum) for functional (3) on D. Then x is a solution of the fractional Euler–Lagrange equation

∂2L[x](t) + tD
α
T (∂3L[x](t)) = 0 (4)

on the interval [a, T ] and satisfies the transversality conditions

{

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T
= 0

[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T )) = 0.

(5)

Proof. Let us consider a variation (x(t) + ǫh(t), T + ǫ△T ), where h ∈ C1([a, b]), △T ∈ R and
ǫ ∈ R with |ǫ| ≪ 1. The constraint x(a) = xa implies that all admissible variations must fulfill the
condition h(a) = 0. Define j(·) on a neighborhood of zero by

j(ǫ) = J(x + ǫh, T + ǫ△T )

=

∫ T+ǫ△T

a

L[x+ ǫh](t) dt+ φ(T + ǫ△T, (x+ ǫh)(T + ǫ△T )).

If (x, T ) minimizes (or maximizes) functional (3) on D, then j′(0) = 0. Therefore, one has

0 =

∫ T

a

[

∂2L[x](t)h(t) + ∂3L[x](t)CaD
α
t h(t)

]

dt+ L[x](T )△T
+∂1φ(T, x(T ))△T + ∂2φ(T, x(T ))[h(T ) + x′(T )△T ].

Integrating by parts (cf. equation (2)), and since h(a) = 0, we get

0 =

∫ T

a

[∂2L[x](t) + tD
α
T (∂3L[x](t))] h(t) dt+

[

tI
1−α
T (∂3L[x](t))h(t)

]

t=T
+ L[x](T )△T

+∂1φ(T, x(T ))△T + ∂2φ(T, x(T ))[h(T ) + x′(T )△T ]

=

∫ T

a

[∂2L[x](t) + tD
α
T (∂3L[x](t))] h(t) dt

+△T
[

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T

]

+
[[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

]

[h(T ) + x′(T )△T ] .

(6)

As h and △T are arbitrary we can choose h(T ) = 0 and △T = 0. Then, by the fundamental
lemma of the calculus of variations we deduce equation (4). But if x is a solution of (4), then the
condition (6) takes the form

0 = △T
[

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T

]

+
[[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

]

[h(T ) + x′(T )△T ] .
(7)

Restricting ourselves to those h for which h(T ) = −x′(T )△T we get the first equation of (5).
Analogously, considering those variations for which △T = 0 we get the second equation of (5).

Example 1. Let

J(x, T ) =

∫ T

0

[

t2 − 1 + (CaD
α
t x(t))2

]

dt, T ∈ [0, 10].

It easy to verify that a constant function x(t) = K and the end-point T = 1 satisfies the necessary
conditions of optimality of Theorem 1, with the value of K being determined by the initial-point
x(0).

In the case when α goes to 1, by Theorem 1 we obtain the following result.

Corollary 1. ([22], Theorem 2.24) If (x, T ) gives a minimum (or maximum) for

J(x, T ) =

∫ T

a

L(t, x(t), x′(t)) dt+ φ(T, x(T ))
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on the set
{

x ∈ C1([a, b]) |x(a) = xa
}

× [a, b],

then x is a solution of the Euler–Lagrange equation

∂2L(t, x(t), x′(t)) − d

dt
∂3L(t, x(t), x′(t)) = 0

on the interval [a, T ] and satisfies the transversality conditions

L(T, x(T ), x′(T )) + ∂1φ(T, x(T )) − x′(T )∂3L(T, x(T ), x′(T )) = 0,

∂3L(T, x(T ), x′(T )) + ∂2φ(T, x(T )) = 0.

Now we shall rewrite the necessary conditions (5) in terms of the increment on time △T and
on the consequent increment on x, △xT . Let us fix ǫ = 1 and consider variation functions h
satisfying the additional condition h′(T ) = 0. Define the total increment by

△xT = (x+ h)(T + △T ) − x(T ).

Doing Taylor’s expansion up to first order, for a small △T , we have

(x+ h)(T + △T ) − (x+ h)(T ) = x′(T )△T +O(△T )2,

and so we can write h(T ) in terms of △T and △xT :

h(T ) = △xT − x′(T )△T +O(△T )2. (8)

If (x, T ) gives an extremum for J , then

∂2L[x](t) + tD
α
T (∂3L[x](t)) = 0 holds for all t ∈ [a, T ].

Therefore, substituting (8) into equation (6) we obtain

△T
[

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T

]

+ △xT
[[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

]

+O(△T )2 = 0. (9)

We remark that the above equation is evaluated in one single point x = T . Equation (9) replaces
the missing terminal condition in the problem.

Let us consider five particular cases of constraints that can be specified in the optimization
problem.

A. Vertical terminal line

In this case the upper bound T is fixed and consequently the variation △T = 0. Therefore,
equation (9) becomes

△xT
[[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

]

= 0,

and by the arbitrariness of △xT , we deduce

[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T )) = 0.

When φ ≡ 0, we get the natural boundary condition as obtained in [1], equation (25):

[

tI
1−α
T ∂3L[x](t)

]

t=T
= 0.

For φ ≡ 0 and α→ 1, we get the second equation of (1).
B. Horizontal terminal line
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Now we have △xT = 0 but △T is arbitrary. Hence, equation (9) implies

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T
= 0.

When φ ≡ 0 and α → 1, we get equation (3.11) of [23]. It is worth pointing out that the integer
case has an economic interpretation (see explanation in [23], pags. 63–64).

C. Terminal curve

In this case the terminal point is described by a given curve ψ, in the sense that x(T ) = ψ(T ),
where ψ : [a, b] → R is a prescribed differentiable curve. For a small △T , from Taylor’s formula,
one has

△xT = ψ(T + △T ) − ψ(T )
= ψ′(T )△T +O(△T )2.

(10)

Substituting (10) into (9) yields

(ψ′(T ) − x′(T ))
{[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

}

+ L[x](T ) + ∂1φ(T, x(T )) = 0.

For φ ≡ 0, we obtain equation (29) of [2]. For φ ≡ 0 and α → 1, we have equation (3.12) of [23].
D. Truncated vertical terminal line

Now we consider the case where △T = 0 and x(T ) ≥ xmin. Here xmin is a minimum permissible
level of x. By the Kuhn-Tucker conditions, we obtain

[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T )) ≤ 0, x(T ) ≥ xmin,

(x(T ) − xmin)
{[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

}

= 0

for maximization problem; and
[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T )) ≥ 0, x(T ) ≥ xmin,

(x(T ) − xmin)
{[

tI
1−α
T ∂3L[x](t)

]

t=T
+ ∂2φ(T, x(T ))

}

= 0

for minimization problem. If φ ≡ 0 and α→ 1, we get equations (3.17) and (3.17’) of [23].
E. Truncated horizontal terminal line

In this situation, the constraints are △xT = 0 and T ≤ Tmax. Therefore, as in the previous
case, we obtain:

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T
≥ 0, T ≤ Tmax,

(T − Tmax)
[

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T

]

= 0

for maximization problem; and

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T
≤ 0, T ≤ Tmax,

(T − Tmax)
[

L[x](T ) + ∂1φ(T, x(T )) − x′(T )
[

tI
1−α
T ∂3L[x](t)

]

t=T

]

= 0

for minimization problem. Observe that for φ ≡ 0 and α → 1, we get equation (3.18) and (3.18’)
of [23].

4 Transversality conditions II

In this section we consider the following variational problem:

J(x, T ) =

∫ T

a

L{x, ϕ}(t, T )dt −→ extr

(x, T ) ∈ D

x(T ) = ϕ(T )

(11)

where L : [a, b] × R
3 → R and ϕ : [a, b] → R are at least of class C1. Here x = ϕ(t) is a specified

curve.
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Theorem 2. Suppose that (x, T ) is a solution to problem (11). Then x is a solution of the
fractional Euler–Lagrange equation

∂2L{x, ϕ}(t, T ) + tD
α
T (∂3L{x, ϕ}(t, T )) = 0 (12)

on the interval [a, T ], and satisfies the transversality condition

(ϕ′(T )−x′(T ))
[

tI
1−α
T ∂3L{x, ϕ}(t, T )

]

t=T
+ϕ′(T )

∫ T

a

∂4L{x, ϕ}(t, T )dt+L{x, ϕ}(T, T ) = 0. (13)

Proof. Suppose that (x, T ) is a solution to problem (11) and consider the value of J at an admissible
variation (x(t) + ǫh(t), T + ǫ△T ), where ǫ ∈ R is a small parameter, △T ∈ R, and h ∈ C1([a, b])
with h(a) = 0. Let

j(ǫ) = J(x+ ǫh, T + ǫ△T ) =

∫ T+ǫ△T

a

L{x+ ǫh, ϕ}(t, T + ǫ△T )dt.

Then, a necessary condition for (x, T ) to be a solution to problem (11) is given by

j′(0) = 0 ⇔
∫ T

a

[

∂2L{x, ϕ}(t, T )h(t) + ∂3L{x, ϕ}(t, T )CaD
α
t h(t) + ∂4L{x, ϕ}(t, T )ϕ′(T )△T

]

dt

+L{x, ϕ}(T, T )△T = 0.

Integrating by parts (cf. equation (2)), and since h(a) = 0, we get

0 =

∫ T

a

[∂2L{x, ϕ}(t, T ) + tD
α
T (∂3L{x, ϕ}(t, T ))]h(t) dt+

[

tI
1−α
T (∂3L{x, ϕ}(t, T ))h(t)

]

t=T

+L{x, ϕ}(T, T )△T +
∫ T

a
[∂4L{x, ϕ}(t, T )ϕ′(T )△T ]dt.

(14)
As h and △T are arbitrary, first we consider h and △T such that h(T ) = 0 and △T = 0. Then, by
the fundamental lemma of the calculus of variations we deduce equation (12). Therefore, in order
for (x, T ) to be a solution to problem (11), x must be a solution of the fractional Euler–Lagrange
equation. But if x is a solution of (12), the first integral in expression (14) vanishes, and then the
condition (14) takes the form

[

tI
1−α
T (∂3L{x, ϕ}(t, T ))h(t)

]

t=T
+L{x, ϕ}(T, T )△T+

∫ T

a

[∂4L{x, ϕ}(t, T )ϕ′(T )△T ]dt = 0. (15)

Since the right hand point of x lies on the curve z = ϕ(t), we have

x(T + ǫ△T ) + ǫh(T + ǫ△T ) = ϕ(T + ǫ△T ).

Hence, differentiating with respect ǫ and setting ǫ = 0 we get

h(T ) = (ϕ′(T ) − x′(T ))△T. (16)

Substituting (16) into (15) yields

△T (ϕ′(T ) − x′(T ))
[

tI
1−α
T ∂3L{x, ϕ}(t, T )

]

t=T

+ ϕ′(T )△T
∫ T

a

∂4L{x, ϕ}(t, T )dt+ L{x, ϕ}(T, T )△T = 0.

Since △T can take any value, we obtain condition (13).

In the case when α goes to 1, by Theorem 2 we obtain the following result.
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Corollary 2. If (x, T ) gives an extremum for

J(x, T ) =

∫ T

a

L(t, x(t), x′(t), ϕ(T )) dt

on the set
{

x ∈ C1([a, b]) |x(a) = xa
}

× [a, b],

then x is a solution of the Euler–Lagrange equation

∂2L(t, x(t), x′(t), ϕ(T )) − d

dt
∂3L(t, x(t), x′(t), ϕ(T )) = 0, for all t ∈ [a, T ],

and satisfies the following transversality condition

(ϕ′(T ) − x′(T ))∂3L(T, x(T ), x′(T ), ϕ(T )) + ϕ′(T )

∫ T

a

∂4L(t, x(t), x′(t), ϕ(T )) dt

+L(T, x(T ), x′(T ), ϕ(T )) = 0.

Example 2. Consider the following problem

J(x, T ) =

∫ T

0

[

(C0 D
α
t x(t))2 + ϕ2(T )

]

dt −→ min

x(T ) = ϕ(T ) = T,

x(0) = 1.

(17)

For this problem, the fractional Euler–Lagrange equation and the transversality condition (see
Theorem 2) are given, respectively, by

tD
α
T

(

C
0 D

α
t x(t)

)

= 0, (18)

2(1 − x′(T ))
[

tI
1−α
T

C
0 D

α
t x(t)

]

|t=T + 2T 2 + (C0 D
α
t x(T ))2 + T 2 = 0. (19)

Note that it is a difficult task to solve the above fractional equations. For 0 < α < 1 a numerical
or direct method should be used [10]. When α goes to 1, problem (17) becomes

J(x, T ) =

∫ T

0

[

x′(t))2 + ϕ2(T )
]

dt −→ min

x(T ) = ϕ(T ) = T,

x(0) = 1.

(20)

and equations (18)–(19) are replaced by

x′′(t) = 0, (21)

2(1 − x′(T ))x′(T ) + 2T 2 + (x′(T ))2 + T 2 = 0. (22)

Solving equations (21) and (22) we obtain that

x̃(t) =

√

−6 + 6
√

13 − 6
√

−6 + 6
√

13
t+ 1, T =

1

6

√

−6 + 6
√

13

is a candidate for minimizer to problem (20).
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5 Infinite horizon fractional variational problems

Starting with the Ramsey pioneering work [50], infinite horizon variational problems have been
widely used in economics (see, e.g., [18, 23, 35, 40, 45] and the references therein). One may assume
that, due to some constraints of economical nature, the infinite horizon variational problem does
not depend on the usual derivative but on the left Caputo fractional derivative. In this condition
one has to consider the following problem:

J(x) =

∫ +∞

a

L[x](t)dt −→ max

x ∈ D∞,

(23)

where L : [a,+∞] × R
2 → R is at least of class C1 and

D∞ =
{

x ∈ C1([a,+∞]) |x(a) = xa
}

.

The integral in problem (23) may not converge. In the case where the integral diverges, there may
exist more than one path that yields an infinite value for the objective functional and it would be
difficult to determine which among these paths is optimal. To handle this and similar situations
in a rigorous way, several alternative definitions of optimality for problems with unbounded time
domain have been proposed in the literature (see, e.g., [18, 31, 35]). Here, we follow Brock’s notion
of optimality [18], i.e., a function x ∈ D∞ is said to be weakly maximal to problem (23) if

lim
T→+∞

inf
T ′≥T

∫ T ′

a

[L[x](t) − L[x](t)] dt ≤ 0,

for all x ∈ D∞.
Using similar approach as in [40, 45], we obtain the transversality condition for infinite horizon
fractional variational problems. First, a lemma that we will use in the proof of Theorem 3.

Lemma 1. If g is continuous on [a,+∞) and

lim
T→+∞

inf
T ′≥T

∫ T ′

a

g(t)h(t) dt = 0

for all continuous functions h : [a,+∞) → R with h(a) = 0, then g(t) = 0, for all t ≥ a.

Proof. Can be done in a similar way as the proof of the standard fundamental lemma of the
calculus of variations (see, e.g., [19]).

Theorem 3. Suppose that x is a weakly maximal to problem (23). Let h ∈ C1([a,+∞]) and
ǫ ∈ R. Define

A(ǫ, T ′) =

∫ T ′

a

L[x+ ǫh](t) − L[x](t)

ǫ
dt;

V (ǫ, T ) = inf
T ′≥T

∫ T ′

a

[L[x+ ǫh](t) − L[x](t)]dt;

V (ǫ) = lim
T→+∞

V (ǫ, T ).

Suppose that

1. lim
ǫ→0

V (ǫ, T )

ǫ
exists for all T ;

2. lim
T→+∞

V (ǫ, T )

ǫ
exists uniformly for ǫ;

9



3. For every T ′ > a, T > a, and ǫ ∈ R \ {0}, there exists a sequence (A(ǫ, T ′
n))n∈N

such that

lim
n→+∞

A(ǫ, T ′
n) = inf

T ′≥T
A(ǫ, T ′)

uniformly for ǫ.

Then x is a solution of the fractional Euler-Lagrange equation

∂2L[x](t) + tD
α
T (∂3L[x](t)) = 0

for all t ∈ [a,+∞), and for all T > t. Moreover it satisfies the transversality condition

lim
T→+∞

inf
T ′≥T

tI
1−α
T ′ ∂3L[x](t)]t=T ′x(T ′) = 0.

Proof. Observe that V (ǫ) ≤ 0 for every ǫ ∈ R, and V (0) = 0. Thus V ′(0) = 0, i.e.,

0 = lim
ǫ→0

V (ǫ)

ǫ

= lim
T→+∞

inf
T ′≥T

∫ T ′

a

lim
ǫ→0

L[x+ ǫh](t) − L[x](t)

ǫ
dt

= lim
T→+∞

inf
T ′≥T

∫ T ′

a

[

∂2L[x](t)h(t) + ∂3L[x](t)Ca D
α
t h(t)

]

dt.

Thus, integrating by parts and since h(a) = 0, we get

lim
T→+∞

inf
T ′≥T

{

∫ T ′

a

[∂2L[x](t) + tD
α
T ′(∂3L[x](t))]h(t)dt + [tI

1−α
T ′ ∂3L[x](t)h(t)]t=T ′

}

= 0. (24)

By the arbitrariness of h, we may assume that h(T ′) = 0 and so

lim
T→+∞

inf
T ′≥T

∫ T ′

a

[∂2L[x](t) + tD
α
T ′(∂3L[x](t))]h(t)dt = 0. (25)

Applying Lemma 1 we obtain

∂2L[x](t) + tD
α
T (∂3L[x](t)) = 0

for all t ∈ [a,+∞), and for all T > t. Substituting equation (25) into equation (24) we get

lim
T→+∞

inf
T ′≥T

[tI
1−α
T ′ ∂3L[x](t)]t=T ′h(T ′) = 0. (26)

To eliminate h from equation (26), consider the particular case h(t) = χ(t)x(t), where χ :
[a,+∞) → R is a function of class C1 such that χ(a) = 0 and χ(t) = const 6= 0, for all t > t0, for
some t0 > a. We deduce that

lim
T→+∞

inf
T ′≥T

[tI
1−α
T ′ ∂3L[x](t)]t=T ′x(T ′) = 0.

6 Conclusion

Transversality conditions are optimality conditions that are used along with Euler–Lagrange equa-
tions in order to find the optimal paths (plans, programs, trajectories, etc) of dynamical models.
The importance of such conditions is well known in economics models and other phenomena
whose effects can be spread along time, e.g., radioactive, pollution. In this paper we have given
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in the compact form transversality conditions for fractional variational problems with the Caputo
derivative. The fractional variational theory is only 15 years old so there are many unanswered
questions. For instance, the question of existence of solutions to fractional variational problems
is a complete open area of research (more about this important issue the reader can find in
[21, 43, 53, 54]). Other interesting open question is about the convergence of the objective func-

tional J(x) =
∫ +∞

a
L[x](t)dt. This issue should be treat carefully, especially as the functional

depends on fractional type of derivatives. Generally, in order to solve fractional Euler–Lagrange
differential equations and apply transversality conditions one needs to use numerical methods.
Some progress is being made already on the numerical methods for fractional variational problems
[4, 8, 48, 49] but there is still a long way to go. We believe that all pointed issues will be considered
in a forthcoming papers.
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