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Abstract

Biological oscillators can respond in a surprising way when they are perturbed by two external

periodic forcing signals of very different frequencies. The response of the system to a low-frequency

signal can be enhanced or depressed when a high-frequency signal is acting. This is what is known

as vibrational resonance (VR). Here we study this phenomenon in a simple time-delayed genetic

toggle switch, which is a synthetic gene-regulatory network. We have found out how the low-

frequency signal changes the range of the response, while the high-frequency signal influences the

amplitude at which the resonance occurs. The delay of the toggle switch has also a strong effect

on the resonance since it can also induce autonomous oscillations.
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I. INTRODUCTION

The concept of resonance in physics generally refers to a large increase in the amplitude

of the oscillations provoked by a particular external forcing or signal. In nonlinear systems

there are many types of resonance, depending on which are the sources that causes them.

When the resonance is induced by an stochastic noise, it is called stochastic resonance [1].

In the case that the resonance is produced by a chaotic signal, we say that the system

presents a chaotic resonance [2], and finally if the forcing is a high-frequency periodic signal

then the phenomenon is called vibrational resonance (VR) [3]. The role of resonances in

different biological processes is paramount. For example, stochastic resonance, which has

drawn much attention in the past few years, has been found in neural systems [4], crayfish

mechanoreceptor cells [5] or the feeding behavior of paddle-fish [6]. However, though VR

has been widely studied in physical systems such as lasers [7] and electronic devices [8], only

recent attention has been paid to this phenomenon in biology [9–11].

Here, we study VR in a time-delayed genetic network, which is a recurrent control motif

[12] in nature. It has been reported that this kind of systems is able to create patterns

via quorum sensing [13], modulate immunologic pathways [14] or enhance the oscillations

in circadian clocks [15]. Moreover, the variety of dynamical phenomena shown by nonlin-

ear time-delayed systems such as phase synchronization [16], excitation regeneration [17],

amplitude death [18], resonance [19, 20] etc. makes them a topic of high relevance.

Motivated by the preceding ideas, we present a theoretical and computational study of

VR in a time-delayed toggle switch. This work is organized as follows. In Sec. II we explain

the main features of the time-delayed toggle switch. First, the original model of the toggle

switch is presented. Then, we introduce the delay and analyze its implications. Section III

is a description of the usual treatment of VR in dynamical systems and how we apply it

to our model. In Sec. IV we examine the mechanism inducing the VR. Next, we show the

effects of the delay on resonance, and we vary the periodic signals too. Finally, in Sec. V

we summarize our findings and discuss the role of VR in biological systems.
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II. DESCRIPTION OF THE MODEL

The genetic toggle switch [22] is a biological system designed to have two possible stable

states, in other words, it is a bistable system. It is constructed from two repressible promoters

in a mutually inhibitory network. The system can flip between high and low levels of

concentration of repressors: when one is high the other one is low, and vice versa. This

transition between states can be achieved with chemical or thermal induction, that is, with

external signals. The dynamics of the toggle switch can be modeled using dimensionless

differential equations. We consider the variables u and v as the concentrations of the two

transcription factors involved, and furthermore we introduce the delay in the repressional

terms. The equations of the system introducing identical discrete delays in the degradation

terms become:

du

dt
=

α

1 + vβ
− u (t− τ) (1)

dv

dt
=

α

1 + uβ
− v (t− τ) . (2)

For simplicity, we assume equal promoter strengths α for both variables and equal repres-

sional cooperativity coefficients β. As it is shown in [22], it is needed that the cooperativity

coefficient β ≥ 2 to have a bistable system. Also there are some restrictions on the values

of alpha, so by choosing α = 2.5 and β = 2 we get a bistable toggle switch. This election

of the parameters will be kept throughout the manuscript. Then, the system presents two

symmetric stable equilibria (e1 = (0.5, 2) , e2 = (2, 0.5)) and an unstable equilibrium line

or separatrix (u = v). Interestingly, we have found that a delay τ in the degradation term

can induce oscillations in the system. Moreover, we have observed numerically and theoret-

ically that the system presents damped oscillations for τ < τcrit and that tuning this delay

means tuning the damping coefficient of the oscillations. When the delay is above a certain

threshold (τ > τcrit) the system presents autonomous oscillations. The original work, where

VR was first reported [3], was carried out on a bistable damped oscillator. Thereby the

time-delayed toggle switch is an extraordinary candidate to make a first study of VR in

genetic networks.
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III. METHODS

Vibrational resonance consists of the optimization of the response of the system to a

low-frequency (LF) signal of amplitude A and frequency ω due to a high-frequency (HF)

signal of amplitude B and frequency Ω ≫ ω. We introduce these two signals to one of the

proteins and look at the response of the other one. The system of differential equations that

we have to solve is:

du

dt
=

α

1 + vβ
− u (t− τ) + A sinωt+B sinΩt, (3)

dv

dt
=

α

1 + uβ
− v (t− τ) . (4)

The response for the frequency ω is usually defined as the amplitude of the sine and cosine

components of the output signal, yielding

Cs =
2

nT

nT
∫

0

v(t) sinωtdt (5)

Cc =
2

nT

nT
∫

0

v(t) cosωtdt, (6)

where n is the number of complete oscillations of the LF signal and T = (2π/ω) is its period.

The numerical values of CS and CC are related to the Fourier spectrum of the time series of

the variable v computed at the frequency ω. Then, the relation between the output and the

forcing signals provides an idea of how the LF signal is being amplified by the HF signal.

This is commonly defined by means of the Q factor:

Q =

√

C2
s + C2

c

A
. (7)

The usual procedure to search for VR is to compute Q for different amplitudes B of the

HF periodic signal [3]. If there is a value of B that maximizes Q, then the VR occurs. This

means that there is a particular value of the HF periodic signal that optimizes the response

of the system to the weak LF periodic signal.

Our algorithm, developed in Matlab, accomplish several computational tasks. The

different steps are:

• First, we solve the delayed differential equations of the system with the external signals

(Eqs. 3-4) using dde23. The initial conditions are chosen to be in one of the two
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FIG. 1: Typical VR curve, the response of the system Q is plotted vs the amplitude of the HF signal

B. The parameters of equations (3-4) are chosen to be α = 2.5, β = 2, τ = 0.5, A = 0.1, ω = 0.1

and Ω = 5. These will be the standard parameters along this work if not specified.

symmetric equilibrium states, and the external signals are applied to the protein at the

higher level. This is completely equivalent to solve the delayed differential equations

in the absence of external signals with any initial conditions, and then apply the two

periodic signals after the transient has vanished.

• After solving the Eqs. (3-4) and discarding the transient, we compute the factor Q for

a range of different values of the HF intensity B.

• Finally a graph of Q vs B is plotted and, if the parameters are properly chosen, a

bell-shaped curve is found (Fig. 1). The maximum of this curve is the optimal match

between the LF and HF signals, that is the VR.

IV. RESULTS

A. Explanation of the mechanism inducing VR

So far, we have seen that it is possible to find VR after having chosen the appropriate

parameters. However, it would be interesting to understand why the amplitude is increased

and to know what the levels of protein are actually doing. To answer these two questions it

is convenient to represent the phase diagram. In this kind of diagram the coordinates give
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FIG. 2: Phase diagram. The dashed line represents the separatrix (u = v) and the magenta crosses

are the two equilibria states (e1 = (0.5, 2) , e2 = (2, 0.5)). In red B = 0.1, only one region below

the separatrix is explored; in blue B = 1.5, both regions are explored making the amplitude higher

(VR); in green B = 2.2, only the region above the separatrix is explored.

the concentrations of each protein, in such a way that every point represents a state of the

system at a given time. In Fig. 2 we can see the trajectories of the system in three different

cases. For small values of B the concentration of the protein only oscillates around the low

expression state (B = 0.1, red line), for very large values of B the low state becomes unstable

and the concentration of the protein oscillates around the high expression state (B = 2.2,

green line). However, for intermediate values of B the concentration of the protein oscillates

between the high and the low states, reaching a maximum amplitude for some optimal value

of the amplitude Bopt = 1.5 (blue line). When the system explores both states the amplitude

is much larger, thus unveiling an appearance of the VR. In other words, resonance occurs

when the concentrations of both proteins switch (oscillate) between the low and the high

state. These examples are directly connected to the Fig. 1, where the amplitude of the

oscillations are represented as a function of B. The two plotted dots correspond to the

simulations for B = 0.1 and B = 1.5.

Of course we can also plot directly the concentration of the protein vs time (Fig. 3).

When the amplitude of the HF forcing is Bopt = 1.5, then the oscillations increase their

amplitude about four times keeping the same global period. This is shown in Fig. 1.
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FIG. 3: Oscillations of the protein before introducing any external signal are plotted in dotted line

(A = 0, B = 0), after introducing the LF signal in dashed line (A = 0.1, B = 0), when both LF

and HF signals are introduced in solid line (A = 0.1, B = 1.5). The amplitude is highly increased

when B = Bopt. The concentrations are given in arbitrary units (A. U.) and the time is given in

hours.

B. Effects of LF/HF signals on VR

To study the dependence of the resonance with the LF signal we can vary its amplitude A

and its frequency ω. When we increase the amplitude A the resonance increases as well and

the bell-shaped curve gets wider (Fig. 4). There is an upper limit for A, above which the

maximum of the response Q is lost, producing an effect sometimes called resonance without

tuning [21]. Changing the frequency ω of the LF signal changes the width of the peak too,

but just in the opposite way: for decreasing values of ω the value of Q grows and so does

its width. In this case there is a lower limit for ω and below this limit resonance without

tuning also occurs (Fig. 5). From these results we can infer that, in general, resonance will

be easily achieved for signals with small frequencies and large amplitudes.

The variation of the HF signal changes resonance in a very different manner. Increasing

frequencies Ω lead to increasing values of Bopt too (Fig. 6). This is important since resonance

can be achieved with smaller amplitudes B of the HF force, if its frequency Ω is decreased.

Delving deeper into the effects of the HF signal, we have observed that there is a linear

relation between Ω2 and Bopt (Fig. 7). This can be very useful since once we have fixed

the parameters of the system, we can tune the amplitude Bopt at which VR takes place by

tuning the high frequency Ω.
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FIG. 4: Resonance curves for different amplitudes of the LF periodic signal A = 0.09, 0.1, 0.11,

0.12, 0.13, 0.14 (curves 1-6 respectively). Notice that in this case Q is multiplied by A for clarity

of the plot, otherwise the curves would cross. The shape of the curves remains unaltered, so we

can appreciate the widen of the peaks. Above some threshold (A & 0.15) resonance without tuning

occurs.
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FIG. 5: Response of the system Q when the low frequency ω is varied, ω =0.02, 0.04, 0.06, 0.08,

0.10, 0.12 for curves 1-6 respectively. Below the threshold (ω . 0.02) there is resonance without

tuning.

So far, we have kept the delay constant. However, the strong effect of the delay in the

oscillations of the system can also be exploited. When the delay is in a range of values far

from the autonomous regime (τ < τcrit), the variation of τ has qualitatively similar effects

to the variation of the amplitude of the slow signal A: over some value of τ the maximum

of the curve Q vs B disappears, and VR without tuning is found (Fig. 8).
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FIG. 6: In this plot Ω is varied keeping the other parameters constant. The VR curve presents

a shift in the amplitude of the HF signal B at which resonance occurs. However, the maximum

value of Q is barely changed.
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FIG. 7: A relation of the type Bopt ⋉ Ω2 appears when Ω is varied, keeping the other parameters

constant. In this plot 16 points from resonance curves (blue crosses) are fitted to a straight-line

(red solid line), with a correlation coefficient r =0.9992.

V. CONCLUDING REMARKS

In this work it has been shown that under certain conditions LF oscillations can be

greatly amplified by a HF signal in a time-delayed toggle switch. It has been reported that

oscillations underlay in the heart of many cell processes [23], and the timing involved can

vary from minutes [24, 25] to days [26], so it is of great importance to know how these low and

fast oscillations may couple among them. Here we have also analyzed the different effects

of the LF and HF signals on the resonance. The variation of the high frequency Ω produces
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FIG. 8: Effect of the variation of the delay τ in the response of the system, when τ < 1. For the

curves 1-7, τ = 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95. For τ > 1 autonomous oscillations occur.

a shift of the intensity B at which resonance occurs. This is very remarkable since tuning

the high frequency allows similar resonances with smaller variations in the concentrations

of the proteins. Furthermore, it has been demonstrated that there is a linear dependence

between Bopt and Ω2, making it possible to predict the value of the amplitude Bopt at which

VR will take place. On the other hand, we have seen that the variation of the LF signal

changes the width of the peak of resonance. Moreover, we have shown that variations in the

amplitude A and variations in the frequency ω had the opposite effect on the resonance: for

increasing values of A the resonance increases, but for increasing ω it decreases. This led to

a higher (lower) limit for the values of A and ω respectively, and we have seen that above

(below) these limits the VR without tuning occurred. In this time-delayed toggle switch,

the variation of the delay τ produces a variation in the damping of the system, inducing

strong effects on resonance. When the system is far from the autonomous oscillations regime

(τ < τcrit), the effect of the delay on VR is similar to the effect produced by the variation of

the amplitude of the LF signal A, including the higher limit above which resonance without

tuning is found. The VR is indeed a very interesting mechanism because it can be externally

controlled, and can also induce collective behaviors [8], what makes it interesting for both

biologists and physicists.
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