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Complex dynamics in supervised work groups 

Arianna Dal Forno, Ugo Merlone 

 

 

Abstract 

In supervised work groups many factors concur to determine productivity. Some of them may be 

economical and some psychological. According to the literature, the heterogeneity in terms of individual 

capacity seems to be one of the principal causes for chaotic dynamics in a work group. May sorting groups 

of people with same capacity for effort be a solution? In the organizational psychology literature an 

important factor is the engagement in the task, while expectations are central in the economics literature. 

Therefore, we propose a dynamical model which takes into account both engagement in the task and 

expectations. An important lesson emerges. The intolerance deriving from the exposure to inequity may 

not be only caused by differences in individual capacities, but also by these factors combined. 

Consequently, solutions have to be found in this new direction. 
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1. Introduction 

The importance of the perception of inequity cannot be underestimated when determining employees 

responses in the workplace. In fact, according to [8] concepts such as justice, fairness, and equity are of 

fundamental importance. In particular, according to [9] in modern justice research, the most widely studied 

allocation rule is that of equity: one’s outcome should be proportional to one’s inputs, that is, those who 

contribute more to a common task should reap most of the benefits. Among the different theories, Adam’s 

contribution [1] is important in terms of explicitness [7] and rigor [24]. A model which extends Adam’s 

theory considering past inequity is the one presented in [8]. This model allows us to consider situations 

resembling the pattern of the proverbial “straw that broke the camel’s back”. These kinds of situation can 

be modeled as a discontinuous function, i.e., an individual who so far has been tolerant to inequity, 

suddenly exhibits a rather intolerant behavior. Finally, equity theory has been extensively considered in 

customer–supplier relationships (see [33] and the references cited therein). Therefore, when considering 

authors such as [4], who advocate bringing the market inside the firms, the importance of equity theory 

assumes a new perspective and further relevance. 

Recently, [10] has considered the effects of inequity in a work group. The authors assume that, as a result 

of the history of inequity individuals had been exposed to, the subordinates allocated their efforts in order 

to reduce the inequity. The analysis showed that having subordinate with the same capacities is quite 

different from having identical capacity subordinates. In fact, in the second case they were able to find 

chaotic dynamics in the subordinates’ effort allocation. 

Chaotic dynamics have several consequences: first of all, they make production of the team unpredictable; 

secondly, the work group production is not optimal; and finally, they make it extremely difficult for the 

supervisor to find incentives to increase production. Therefore, from the findings of [10] it seems natural to 

assume that a first step in this direction would be to have subordinates with the same capacity for effort. 

The literature has examined the problem of employees with different capacity from different perspectives. 

For example, [26] used participants’ observation to examine quota restrictions in a work group of industrial 

workers. On the other hand, Economics also considers this problem; in fact, it is possible to find treatment 

of a principal delegating production to agents with different marginal costs (see for example [20]). 

In this paper we examine the case of subordinates with the same capacity and propose a different reaction 

function. This function allow us to consider a wide range of behaviors such as imitation, compensation and 

also intolerance. Furthermore, by this function we are able to consider some other aspects such as 

engagement in the task and different expectations from the colleagues, see [32]. Our analysis allows us to 

confirm the results presented in [10], but also to find situations in which there may be chaotic dynamics 

even when the subordinates’ capacity is identical. 

In [10], besides heterogeneity in agents’ capacity, only their intolerance to inequity was considered; there, 

the most interesting dynamics were the result of subordinates having different capacities. In the model we 

present in this paper several other aspects on which – according to [5] – the economic framework is silent, 

are considered. In particular, we consider not only intolerance to inequity but also engagement in the task 

and beliefs about the focal allocation; this allows us to study different reactions to the effort of the 

colleague and to show how disfunctional dynamics may occur also when subordinates have the same 

capacity. 

The structure of the paper is the following. In Section 2 we describe the model of work group we consider, 

discuss the optimal incentive scheme when subordinates do not respond to inequity, and introduce how 
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subordinates’ reply is modeled according to how they react to the effort allocation by the colleague. 

Section 3 provides an exhaustive analysis of the equilibria when subordinates with different behavior are 

matched. On the other hand, Section 4 examines some example of dynamics; among the other there are 

examples in which subordinates with identical capacity exhibit chaotic dynamics. Finally, in the last section 

we discuss our results and examine future lines of research. 

 

2. Model 

The model of a supervised group we consider is the one analyzed in [10]. In this model a supervisor (acting 

as the principal) and two subordinates (acting as agents) cooperate. Agent i  , (i=1,2) allocates his 

effort ui with the supervisor and the effort li with the partner. The joint production function for agents 

is Γ(u1+u2)
α(l1+l2)

β, where Γ>0 is a constant factor,1 and α,β∈(0,1) are, respectively, the output elasticity with 

respect to the joint effort with the supervisor and with the partner. The agents have to decide both how 

much effort to exert, and how to partition it in the two complementary tasks.2 Each agent i bears a cost for 

effort: agent i  ’s cost function  will be denoted withci(ui,li); cost functions are private 

information. Furthermore, agent i   can observe the level effort l-i his partner provides with him,3 but not 

the one which is provided with the supervisor. Conversely, the supervisor can only observe the joint output 

and the effort each agent provides with her. The supervisor’s profit is a share γ∈(0,1) of the supervised 

work group production minus the incentives she pays to her subordinates. In the following, we assume that 

the output is sold on market at unitary price, and that the production constant Γ and the sharing 

constant γ are such that Γγ=1; this is not restrictive, it simplifies the notation, and allows us to simply 

consider monetary payoffs. Finally, agents’ retribution consists of a fixed wage w⩾0 plus a performance-

contingent reward. In economic terms we assume that the participation constraint is met. From a different 

perspective, this means that the fixed wage is sufficient to meet physiological and safety needs in terms of 

the hierarchy of needs theory [23]. Although Maslow’s theory has been examined and discussed 

(see [27] and [2]), recent studies found evidence that individuals tend to achieve basic and safety needs 

before other needs [31]. The performance-contingent reward is a linear incentive  proportional to the 

joint output of the team, and a linear incentive  on the effort each agent exerts with the supervisor. 

Therefore, the problem can be formalized as a bilevel programming problem: 
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First observe that this cost function is non decreasing with respect to the aggregated effort. This kind of 

cost function assumes that each subordinate has a physical capacity  under which the effort has zero cost, 

or, alternatively, that at some exertion level the effort becomes unpleasant enough to lead the individual to 

conclude that it is not worth working any harder independently of the reward. In this case we assume that 

each individual knows his individual capacity and uses it without goldbricking. This cost function assumes 

that the cost for discretionary effort is null and is appropriate when modeling well motivated subordinates 

with high self-efficacy as discussed in [11]. 

As proved in [11], when considering fully rational agents the optimal incentive scheme is 

 

with effort allocation4 of subordinates 

 

 

2.1. Modeling the behavior of same capacity agents 

Rational economic agents decide their effort allocation in terms of best reply to the colleague’s effort 

allocation. As discussed by several authors, when considering employment relations the economic 

framework is silent on many aspects, see for example [5]. Furthermore, [16, p. 10] state that “Many 

decisions seem to be made on the basis of factors other than cognitive ones, that is, factors other than 

estimations of probabilities, gains, costs, and the like”. 
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According to the organizational psychology literature, several factors influence organizational behavior. The 

relationship between attitudes and employees’ behavior are analyzed in [25]. Among the major job 

attitudes, it is well known that employee engagement plays an important effect of productivity, outcomes 

and profit (see for instance [19]). According to [25], employee engagement can be defined as the 

individual’s involvement with, satisfaction with, and enthusiasm for, the work he/she does. In our model 

we consider subordinate i  ’s engagement to the common task and model it with a parameter ei∈[0,1]. The 

larger the value of ei, the more the engagement. It should be noted that, when for both subordinates the 

engagement in the common task is equal to β/(α+β), then the situation is similar to the one described 

in[10], where the engagement was implicitly assumed to be β/(α+β) for both subordinates. On the other 

hand, it must be observed that when for both subordinates the engagement is smaller than this threshold it 

is impossible to maximize the production. 

Each agent i   has capacity  to be allocated in the two different tasks. Obviously, the sum of the effort 

exerted with the colleague and the effort exerted with the supervisor must not exceed the capacity. Since 

each agent can observe only the effort that the partner exerts in the common task, and not the effort 

exerted with the supervisor, we assume that agents may have different reactions when observing the 

colleague exerting an effort which is not the focal one (see for example [1], [8] and [10]). 

According to [8], the perceived inequity accumulates over time, and when a certain threshold is reached 

the agent may overreact when facing what appears to be a relatively minor inequity; see section “The straw 

that broke the camel’s back” in [8]. Following [10], we consider situations in which such a threshold has 

already been exceeded and, in order to reduce tension, subordinates reallocate their efforts on the two 

tasks, altering their inputs in Adams’ formulation. 

In this paper we consider subordinates with the same capacity . Therefore, when capacity  is 

normalized, the focal effort allocation (5) becomes 

 

In particular, the reaction of an agent who observes a colleague exerting an effort lower than the focal 

level  can be of (Fig. 1(a)): 

•retaliative imitation – the agent reduces his effort with the colleague; 

•tolerance – the agent keeps the focal allocation; 

•compensation – the agent compensates the colleague’s lower effort in the common task increasing his 

effort with the colleague. 
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Fig.  1 Possible reactions of agent 2 when observing the colleague effort being  
different from the focal – here atli=0.5. (a) l1<0.5; (b) l1>0.5. 

 

Similarly, an agent who observes a colleague exerting an effort higher than the focal level  can be of 

(Fig. 1(b)): 

•compensation – the agent lowers his effort with the colleague in order to compensate the colleague’s 

higher effort in the common task; 

•tolerance – the agent keeps the focal allocation; 

•imitation – the agent too increases his effort in the common task. 

In [10] the reaction to a colleague exerting an effort different from the focal one was modeled by two 

factors. They respectively describe the reaction to colleague’s effort when the latter is either lower or 

larger than the focal one. In the first case, the effort in the common task is reduced, while in the second 

case the agent adjusts his effort allocation in order to optimize the production. Finally, the focal allocation 

is chosen when observing a colleague whose effort on the common task corresponds to the focal 

allocation. For details on the derivation the reader is referred to [10]; the analytical form was 

 

where  is agent i’s capacity. 

We now modify this reaction function to take into account that the domain is a finite set identical for both 

subordinates and that the capacity is the same for each subordinate, normalized, and common knowledge (

). In this case the reaction function considered in [10] becomes 

It has the form of the product of a power times an exponential function where ki is the parameter modeling 
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intolerance. These two factors model the reactions to colleague’s effort which are respectively lower or 

higher than the focal one. 

In the formalization we introduce here, we consider subordinates engagement ei and modify the two 

factors in order to take into account that the capacity is finite, identical and normalized to 1 for both 

subordinates. The first factor is then replaced by (l-i(t))
a

i
-1 and maintains the same functional form. The 

second one is replaced by factor (1-l-i(t))
b

i
-1in order to consider the fact that both subordinates have the 

same finite capacity. In this case the second factor changes the functional form: it is no longer an 

exponential but becomes a power function. Therefore, the two factors now are (l-i(t))
a

i
-1 and (1-l-i(t))

b
i
-

1 where ai,bi⩾1 are two parameters which determine the shape of reaction as described above, and replace 

the tolerance parameter ki in the formulation considered in[10]. Furthermore, in order to consider 

allocations different from the focal one, the reaction function needs to drop factor (α+β)/β; this way its 

domain is [0,1], the set of common feasible efforts as . Summarizing, we observe that while 

the reaction function formally differs from the one considered in [10] for the second factor, it introduces 

several aspects which provide a finer modelization of the subordinates’ behavior. 

When the two factors are combined, and we introduce a constant θi in order to have the maximum effort 

equal to the engagement ei, the reaction functions are 

 

Where 

 

The piecewise definition of the map in Eq. (9) comes from considering the extremes of interval [0,1] which, 

when either ai=1 or bi=1 or both could otherwise cause an indecision form.5 

Summarizing, we do not derive function (9) from (8). Rather, we replace the reaction function (8) with a 

brand new one, in order to take into account the aforementioned assumptions: introducing subordinates’ 

engagement; considering subordinates with identical capacity; modeling tolerance; and, finally, allowing 

the allocation to take values different from the focal one. 

Fig. 2 illustrates how the reactions to the colleague’s effort can be combined in order to have different 

kinds of behavior such as tolerance, focal retaliation, perfect imitation and various degrees of intolerance. 

We observe that the reaction function formal expression is equivalent to a beta probability density 

function; in this case we do not consider parameter values which give a U shape, as this shape is not 

realistic in this context. 
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Fig.  2 Reaction function of subordinate 2 with: tolerance, ; 

intolerance, , and ; focal 

compensation, ; perfect imitation, . 

Coefficients ai and bi determine the shape of reaction curves and, therefore, model how subordinate react 

to colleague’s effort. We observe that we have tolerant behavior whenai=bi=1, imitative behavior 

when , compensative behavior when  and intolerant behavior 

when . 

We can observe that in the cases of tolerance, focal retaliation and perfect imitation, the reply function is 

monotonic in the observed effort; by contrast, in the case of intolerance the reaction is non-monotonic and 

unimodal. It is also possible to find the analytic expression of the effort vi which maximizes the reaction 

function when : 

 

The effort vi has two interpretations. On one side it may correspond to the belief the subordinate has about 

the focal allocation; on the other, it can be interpreted as the expectation he has about the other 

subordinates’ effort in the common task. Table 1summarizes the model parameters and variables. 
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Table 1 Model parameters and variables. 

Finally, it is possible to obtain a measure of agent’s intolerance as in [10]. In fact, it is well known that 

 

where B(a,b) is the Beta function. Therefore, it follows that 

 

In particular, when ai=bi=1 the integral value is ei. Now, fixing value ei, we can define agent i’s intolerance as 

 

In fact, for a tolerant subordinate with unitary engagement the area under the reaction curve is one; as the 

subordinate’s intolerance increases the area decreases. This way, given the subordinates 

parameters ai and bi, it is possible to measure his intolerance with a single parameter6 as illustrated in Fig. 

3(a). Therefore, given a fixed value of intolerance , it is possible to determine ai and bi such as the vertex 

of the reply function corresponds to a given v∈[0,1] as illustrated in Fig. 3(b). This allows us to study what 

happens when intolerant subordinates have different beliefs about the focal allocation. 
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Fig.  3 Reaction function of subordinate 2 with engagement e2=.60. (a) With different values of intolerance 

parameter  and k2=5; (b) with intolerance k2=5 and different beliefs about focal allocation 

in  and v=.75. 

 

To summarize the definitions so far introduced we report them in Table 2. 

 

Table 2 Terminology. 

 

3. Basic properties of the dynamic adjustment 

As in [10] we assume that both subordinates have naive expectations, that is, they expect that colleague’s 

allocation remains the same as in the current period and react accordingly. The time evolution can be 

modeled by the iteration of a map T:(l1,l2)→(r1(l2),r2(l1)) where  are the reaction functions of 

subordinates 1 and 2 respectively. For the sake of simplicity they can be rewritten 

as T(l1(t),l2(t))=(l1(t+1),l2(t+1)) defined by: 
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The equilibria and cycles of the model only depend on parameters . We recall that 

parameters θi also depend on ai and bi. These parameters directly affect and shape the dynamics. In fact, it 

is possible to observe cycles of any period and also chaotic behavior as it will be proved in the following. 

The reaction functions depend on the behavior of the subordinates; therefore, the Jacobian expression 

depends on the subordinates in the work group. As a consequence, although the Jacobian has the general 

structure 

 

and eigenvalues 

 

their analytical expressions depend on the behavior of the agents and will be discussed in the relative 

sections. 

For this kind of two-dimensional dynamical systems it is also common to consider the second iterate and, 

therefore, to study two decoupled one-dimensional dynamics: 

 

that is 

 

where g1=r1∘r2 and g2=r2∘r1. In fact, [14] shows that for two-dimensional maps with this structure cycles and 

fixed points are related to one-dimensional maps similar to (16). Furthermore, in [6] this approach is 

extended to study the chaotic attractor and basins of two-dimensional maps. Therefore, in the following we 

will use these properties to study the stability of some fixed points. 

The different reaction functions, and consequently the parameters values, determine the number of fixed 

points, which may range from 1 to 4 as illustrated in Fig. 4. 
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Fig.  4 Intersections of reaction functions for the subordinates. (a) 2 

Intersections, ; (b) 3 

intersections, ; (c) 4 

intersections, . 

 

Finally, it is easy to observe that the model is symmetric w.r.t. index i  , asT(l1,l2,a1,b1,e1)=T(l2,l1,a2,b2,e2)). 

This leads to a symmetric structure of the bifurcation curves in the 2-dimensional parameter 

planes  and (e1,e2)with respect to the lines , and e1=e2 respectively. 

In the following we analyze the different configurations in the subordinate matching. 

 

3.1. Tolerant subordinates 

The case in which at least one of the subordinates is tolerant is straightforward. Assume for the sake of 

simplicity that the tolerant subordinate is the second one; then his reaction curve is a straight line which 

can be represented as a vertical line. As a consequence there exists a unique intersection between the 

subordinates’ reaction function. As the eigenvalues are both 0, the fixed point is stable. In particular, when 

engagement for the tolerant agent is ei=β/(α+β) and the reaction function for the other one is such that r-

i(β/(α+β))=β/(α+β) the fixed point is focal. We have therefore proved the following proposition. 

Proposition 3.1. 

When at least one of the subordinates is tolerant there exists a unique stable fixed point. The effort 

allocation is focal if and only if the tolerant subordinate’s allocation is focal and the best reply to focal 

allocation is focal. 

3.2. Imitators subordinates 

Proposition 3.2. 

When both subordinates are imitators there can be either one or two or infinite fixed points. The origin is 

always a fixed point and if  a1>a2/(a2-1), then it is stable. 

Proof. 

In this case we have b1=b2=1 and the dynamics is 
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Fixed points are given by the solution of the system 

 

The origin l1=l2=0 is always a solution. Furthermore, plugging l2 expression in the first equation we obtain 

 

and rearranging we have 

 

This point is feasible if and only if a1<a2/(a2-1); in this case the coordinates are 

  

Finally, if e1=e2=1 and a1=a2/(a2-1) we have coexistence of infinite fixed points and infinite period-two 

cycles. In the special case in which a1=a2=2 they have respectively the form , 

where  and , with . 

As it concerns the stability, we consider the second iterate of the map which consists of two one-

dimensional, decoupled maps: 

 

The first derivatives are 

 

As it concerns fixed point (0,0), if a1>a2/(a2-1) then 
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and the origin is stable. On the other hand, if a1<a2/(a2-1) then 

 

and the origin is unstable. 

About the stability of the other point, when considering the Jacobian we have 

 

The eigenvalues are , therefore when the point is feasible, i.e.,a1<a2/(a2-1), it 

is always stable.  

 

3.3. Imitator vs compensator 

Proposition 3.3. 

When subordinates have respectively imitating and compensating behaviors then there is always one and 

only one fixed point. 

Proof. 

The case of one imitator and one compensator occurs when b1=a2=1. Fixed points are given by the solution 

of the system 

 

If  then, solving the first equation for l2 and putting together, we obtain 

 

The left-hand side is an increasing function with respect to l1 and passes through 

points (0,0) and ; the right-hand side function is decreasing with respect tol1 and passes through 

points (0,e2) and (1,0), therefore there always exists a unique fixed point  with 

. 

If e1=0, then dynamics (23) reduces to ; if e2=0, it reduces to the origin.  
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3.4. Imitator vs intolerant 

Proposition 3.4. 

When one of the subordinates has an imitative behavior and the other one is intolerant, the origin is always 

a fixed point; if  a1>a2/(a2-1), then it is stable. A sufficient condition to have another fixed point different 

from the origin is  a1<a2/(a2-1). 

Proof. 

In the case of one imitator and one intolerant, that is b1=1 and θ1=1, we have 

 

We have always the root l1=0, therefore (0,0) is always a fixed point. If  and , solving the first 

equation for l2 and putting together we obtain 

 

The other possible roots are given by 

 

The number of the other fixed points depends on the sign of a1+a2-a1a2. In fact, while the right-hand side of 

Eq. (27) is a decreasing power function passing through(0,e2/θ2) and (1,0), the left-hand side changes shape 

depending on the sign ofa1+a2-a1a2. When a1+a2-a1a2>0 the left-hand side function is an increasing power 

function passing through (0,0) and ; therefore, there exists always a unique intersection. In this 

case there are two fixed points, one of which is the origin. By contrast, when a1+a2-a1a2⩽0 the left-hand 

side of Eq. (27) is either a constant or a negative power and there may be either two or one or no 

intersections. 

As it concerns the stability, we consider only the origin which is always a fixed point. The second iterate of 

the map consists of two one-dimensional, decoupled maps: 

 

The first derivatives are 
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Therefore, if a1>a2/(a2-1) then 

 

and the origin is stable. On the other hand, if a1<a2/(a2-1) then 

 

and the origin is unstable. 

 

3.5. Compensator subordinates 

Proposition 3.5. 

When both the subordinates are compensators there exists always at least a fixed point. Furthermore, if and 

only if the first agent’s engagement is 1 then one of the fixed points is  (1,0)which is stable when  b2>2and 

unstable when  b2<2. Similarly, if and only if the second agent’s engagement is 1 one of the fixed points 

is  (0,1)which is stable when  b1>2and unstable when  b1<2. 

Proof. 

The case of two compensators occurs when a1=a2=1. In this case fixed points are given by the solution of 

the system 

 

Solving the first equation for l2 and putting together we obtain 

 

This equation can be analyzed graphically. Both the left and right hand functions are decreasing as b1,b2>1; 

they are concave or convex if  are respectively smaller or larger than 2. The left-hand side is an 

affine transformation of a power function. It is decreasing with respect to l1 and passes 

through (0,1) and (e1,0). The right-hand side is also a power function; it is decreasing with respect to l1 and 

passes through(0,e2) and (1,0). Therefore, there always exists at least a solution. 
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For the second part of the claim, when the engagement of the first subordinate is maximum, we 

have e1=1 and it is immediate to prove that this is necessary and sufficient in order to have the fixed 

point (1,0). As it concerns the stability, we consider the second iterates of the map: 

 

The first derivatives are 

 

Therefore, if b2>2 then 

 

and the point (1,0) is stable. On the other hand, if b2<2 then 

 

and the point (1,0) it is unstable. 

The case in which the second subordinate engagement is maximum is similar to the previous one.  

The analysis of the roots of Eq. (31) is not as simple as in the case of two imitators. In fact, it is possible to 

find examples of two and even three intersections as illustrated in Fig. 4(b). Finally, in the special case in 

which b1=b2=2 and e1=e2=1 there is a continuum of solutions. This case is similar to the one we examined in 

Section 3.2. There is coexistence of infinite fixed points , where  and infinite period two-

cycles , where . 

 

3.6. Compensator vs intolerant 

Proposition 3.6. 

When the first subordinate has compensating behavior and the other is intolerant, there is at least a fixed 

point. Furthermore,  (1,0)is a fixed point if and only if the engagement of the first subordinate is maximum. 

The condition for the stability of  (1,0)is that  b2>2. 

Proof. 
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In this case we have a1=1 and therefore we must analyze 

 

Solving the first equation for l2 and putting together we obtain 

 

As the second subordinate is intolerant the right-hand side is bell shaped7 and the left-hand side is convex 

and decreasing passing through points (0,1) and (1,1-(l1/e1)
1/(b

1
-1)). Therefore there exists always at least one 

intersection. 

Furthermore, by substituting (1,0) into Eq. (34) this effort allocation is a fixed point if and only if e1=1, that 

is, the first agent’s engagement is maximum. 

As it concerns the stability of (1,0), we again consider the second iterates of the map: 

 

The first derivatives are 

 

Therefore, if b2>2 then 

 

and the point (1,0) is stable. On the other hand, if b2<2 then 

 

and the point is unstable.  
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Furthermore, from graphical analysis it is immediate to observe that there may be up to three fixed points 

even in the case in which the compensating agent’s engagement is not maximum. For an example see Fig. 

5. 

 

Fig.  5 Intersections of reaction function for a compensator subordinate    and an intolerant 

one ; in this case we have three intersections. 

 

3.7. Intolerant subordinates 

Proposition 3.7. 

When both subordinates are intolerant the origin is always a fixed point. The condition for the stability of 

the origin is that both  a1and  a2are greater than two. 

Proof. 

In the case of two intolerant subordinates to find the fixed point we have to solve 

 

Obviously (0,0) is a fixed point. 

As it concerns the stability, we consider only the origin which is always a fixed point. The second iterate of 

the map again consists of two one-dimensional, decoupled maps: 
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The first derivatives are 

 

 

 

Therefore, if a1>a2/(a2-1) then 

 

 

and the origin is stable. On the other hand, if a1<a2/(a2-1) then 

 

 

and the origin is unstable.  

Since with two intolerant subordinates both reaction functions have a bell’s shape, besides the origin there 

may be up to three more fixed point as illustrated in Fig. 4(c). In fact in this case the analysis is qualitatively 

similar to the one presented in [10]. 

The results we have found are summarized in Table 3. 
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Table 3 Fixed points depending of the behavior of subordinates. 

4. Effort dynamics analysis 

The dynamics of the work group affects its productivity as seen in [10]. There it was proven that, when 

subordinates are identical in terms of capacities and intolerance, there exist two equilibrium points: the 

null production equilibrium (0,0) and the focal equilibrium. Since in this paper we only consider same 

capacity subordinates, it is important to see if this result holds also with this functional form. Therefore, we 

analyze the dynamics when the subordinates have the same engagement and the same belief about the 

focal allocation. 

We obtain results similar to [10] as illustrated in Fig. 6. We can see the basins of the two stable fixed points 

and the one of the 2-period cycle represented with different colors. Starting from any point belonging to 

the red region the trajectory converges to the origin. Similarly, trajectories starting in the green region 

converge to the other fixed point. Finally, initial conditions in the yellow regions converge to the 2-period 

cycle. In the picture we provide also an example for each case where the lines connecting the trajectories 

points are for illustrative purpose only and the arrows point to the respective attractors. For some values of 

intolerance these symmetric equilibria are stable. When the common intolerance is large enough, as in the 

case illustrated, there exists an unstable middle equilibrium  between these two equilibria. 

 

Fig.  6 Phase plane (l1,l2) with periodic attractors and their respective basins – represented in different colors – 

for  and e1=e2=.25. The initial conditions of the trajectories are 

respectively  (fixed point -green basin), l1(0)=0.41, l2(0)=.95 (2-period cycle -yellow basin), 

and  (origin -red basin). (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 



22 
 

When subordinates are tolerant the only fixed point is the focal equilibrium. As the common value of 

intolerance increases, its basin of attraction reduces. These results not only confirms the findings 

of [10] but allow us to conclude that they are not numerical artifacts as the functional form we consider is 

different from the one in the literature. 

Starting from this result, can the dynamics be chaotic even when the subordinates have the same capacity? 

A first interesting case is to consider what happens when one of the two subordinates has different 

engagement in the common task. In this case also we consider identical subordinates and study their effort 

allocation in the common task as the engagement of one of them varies in [0,1]. 

The bifurcation diagram is illustrated in Fig. 7. Firstly, we can observe that the behavior of the two 

subordinates is linked. As a consequence, the group production will also follow this individual pattern; this 

phenomenon is common in work groups as illustrated in [12]. Furthermore, it is interesting to observe that 

when the engagement is below a certain threshold the production is null; then moving up to e1=.25 – in this 

case both subordinates have the same value of engagement- the effort allocated in the common task 

increases for both subordinates. As the engagement increases further the effort allocation of the fixed 

engagement subordinate decreases. Further on a cascade of period-doubling bifurcation leads to chaos. 

Finally, the work group production collapses to 0 as no effort is allocated in the common tasks. The 

behavior we find after the first bifurcation, that is the coexistence of period cycles and, for greater values of 

the first subordinate’s engagement value, the chaotic cycles, resembles the case of subordinates with 

different capacities as in [10]. 

 

Fig.  7 Bifurcation diagrams of subordinates 1’s effort (top) and 2’s (bottom) as e1∈[0,0.6] with parameters 

values  and e2=.25 and initial condition l1(0)=l2(0)=.40. 

 

In Fig. 8 we can see some of the coexisting finite period cycles. Again, as in Fig. 6, black dots indicate the 

sequence of periodical points visited at each iteration, while the joining line are depicted for illustrative 

purpose only. Apart from the red region, which corresponds to initial conditions of trajectories converging 

to the origin, we can see five 16-period stable cycles. Following the terminology introduced in [6], four of 

them are homogeneous cycles deriving from a stable 8-period cycle of the map g1(x), one of which – 
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bottom left in the figure – is a Markov-Perfect-Equilibrium8 (MPE); the last one is a mixed 16-period cycle 

which derives from the fixed point in the origin and shows the retaliation actions. On the top left the basins 

of attraction of each cycle are depicted; their colors match those at the bottom left of the respective cycle. 

 

Fig.  8 Basins of attraction and respective periodic cycles 

with  and e2=.25 On the bottom left a MPE is illustrated, while a 
retaliation cycle is at the bottom right. 

As in [10], the MPE is interesting in terms of group dynamics. In fact, in this case only one of the 

subordinates at the time changes his effort allocation. This means that each subordinate at every other 

turn believes that his previous allocation was optimal. In this case, the allocation dynamics is midway 

between a constant allocation (a fixed point) and a situation in which both subordinates adjust their 

allocation at each period. Finally, also the mixed 16-period cycle deriving from the fixed point in the origin 

is interesting in terms of group dynamics; in this case, every other turn, one of the subordinates alternately 

stops cooperating with his colleague. This sort of sequence retaliation may be interpreted in terms of 

intragroup conflict. 

These kinds of cycle are quite similar to the ones found in [10] when subordinates have different capacities. 

Their presence confirms that with intolerant subordinates even when their capacity is the same, chaotic 

behaviors may occur. One of the reasons for this is that, when subordinates have the same belief about the 

focal allocation and a different engagement, it results in a situation similar to those in which the capacity of 

the subordinates is different. 

So far we have examined what happens when the subordinates’ engagement changes; now it is interesting 

to analyze what happens as one subordinate has different beliefs about the focal allocation as illustrated 

in Fig. 3(b). As we mentioned in Section 2, the belief a subordinate has about the focal allocation 

determines how he reacts to the effort of the other. 
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First, let us consider the case in which two intolerant subordinates have the same engagement. As the 

belief of one of them varies the intersection point different from the origin moves and eventually 

disappears as illustrated in Fig. 9(a). This phenomenon has consequences on the work group dynamics 

since, when the only intersection between the reaction functions is the origin, the production collapses as 

illustrated in the bifurcation diagram in Fig. 9(b). It should be noted that when the two subordinates’ 

intolerance is sufficiently small this intersection never vanishes and production remains positive. 

 

Fig.  9 (a) intersections between the reaction curves for different beliefs of subordinate 1 and constant intolerancek1=1.4699; (b) 
bifurcation diagram of subordinates 1’s effort as v1∈[0,1]. Other parameters 

are: . Initial condition is l1(0)=l2(0)=.45. 

Finally, we observe how the effect of the belief of a subordinate depends on the engagement of the other. 

This is illustrated in Fig. 10(a) where, for different values of parameters v1 and e2, we indicate with different 

colors the k-period cycles which may exist. Obviously, period k is different in regions with different colors; 

the central zone shows parameter values for which the dynamics is chaotic. Fig. 10(b) and (c) show 

respectively the one-dimensional bifurcation diagrams of the state variable l1 as the parameter v1 increases 

along each of the two lines in Fig. 10(a); that is, for e2=0.505and e2=0.75. We can observe that, when the 

belief of subordinate 1 is larger than some threshold values depending on the engagement of subordinate 

2, the effort allocation in the common task collapses and the group production drops to zero. 

 

Fig.  10 Bifurcation diagrams for two intolerant agents with parameters  such 

that ; (a) two-dimensional bifurcation 
diagram in the plane (v1,e2) with v1∈[0,1] and e2∈[0,1]; (b) one-dimensional bifurcation diagram of the state variable l1 as the 
parameter v1 increases along the line shown in (a), with fixed valuee2=0.505; (c) one-dimensional bifurcation diagram of the 
state variable l1 as the parameter v1increases along the line shown in (a), with fixed value e2=0.75. 
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The coexistence of different attractors and chaotic dynamics can be found also when only one subordinate 

is intolerant. For example, in the case of one imitator and one intolerant; or when one compensator is 

matched with one intolerant. On the other hand, the other matchings are much less interesting and 

therefore not analyzed here, as it is sufficient the analysis we provided in Section 3. 

 

5. Conclusion 

In this paper we extended the classes of behavior for subordinates interacting in a supervised work group. 

According to [25], organizational behavior focuses on few work-related attitudes. In particular, most of the 

literature has looked at job satisfaction, job involvement, and organizational commitment. Nevertheless, 

other attitudes may be important: perceived organizational support and employee engagement. As, in the 

model we consider, the structure of interaction is rather fixed, we introduced engagement in the task. The 

new functional form allowed us to take into account the effort each subordinate expects from the 

colleague and his reaction – depending on the fact that the observed effort may be lower or higher than his 

expectation. 

The introduction of this functional form allowed us to shed light on different aspects of the group 

dynamics. In fact, according to previous research, since subordinates with different capacity seem to be 

one of the principal causes for chaotic dynamics, we considered work groups in which the subordinates 

have the same capacities and analyzed what other aspects could affect the dynamics. Furthermore, we 

provided an exhaustive analysis of the equilibria which may result when subordinates with different 

behaviors are matched and we derived the number of possible equilibria in each case. Finally, we analyzed 

the stability of the origin. At this point the production collapses as both subordinates work only with the 

supervisor. Therefore, the conditions we found are interesting in determining what may cause this 

outcome which is the worst possible from the organizational perspective. 

One important lesson we can derive from our analysis is that having subordinates with the same capacity is 

not sufficient to avoid chaotic dynamics. In fact, from the economics point of view, having subordinates 

with the same capacity can be related to the so-called shutdown of inefficient agents [20] and corresponds 

to a situation in which only efficient subordinates are employed. Nevertheless, this could not be sufficient 

to avoid conflicts within the group when considering also some of the important noneconomic facts 

suggested by [5]. In addition, since according to the literature intolerance may be the result of exposure to 

inequity, as long as subordinates are intolerant to deviation from what they expect from colleagues, any 

difference can trigger retaliation, cycles, chaotic dynamics and eventually the collapse of production. 

Therefore, simply matching individual according to their capacity may not solve the problem. 

Furthermore, incentive schemes play an important role. Compensation schemes which are appropriate for 

fully rational subordinates may not be effective in practice. Rather, it is important to implement 

compensation systems which are fair in terms of distributive and procedural justice instead of being 

optimal for the fully rational agents. Finally, it is important to monitor how the employees evaluate the 

compensation system in order to prevent intolerance. 

In order to apply this kind of analysis to a real situation it would be necessary to estimate several 

parameters. First, monitoring the subordinates’ efforts and the resulting production could provide the 

production function parameters. Second, to estimate the subordinates’ reaction function, we could either 
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use Grounded Theory [17] and [30] as suggested in [3] and [13], or some of the techniques for analyzing 

real data in behavioral sciences as proposed in [18]. 

Further research will start from the findings of this paper and will address the consequences on the 

dynamics of strategies to reduce intolerance. Several factors such as engagement, and perception of the 

colleague effort seem to affect the dynamics of the work group. Therefore, it will be interesting to evaluate 

how interventions on these aspects may be able to avoid chaotic dynamics, steer the group from one to 

another of the coexisting cycles and, eventually, to increase the production. 
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Notes: 

1 The case Γ=0 is trivial and therefore, omitted. 

2 It is immediate to observe that the two tasks are not additive; for a discussion the reader may refer 

to [29]. 

3 This notation is commonly used in the Game Theory literature, see for example [15]. 

4 In [11] it was proved that there exist infinitely many solutions among which one is rather natural and can 

be interpreted as focal in the sense of [28]. There, Schelling considers points “ which are focal for each 

person’s expectation of what the other expects him to expect to be expected to do” ([28, p. 57]). 

5 Forcing 00=1 the map expression could be simpler:  

 
With 

 
6 The careful reader can observe that the ki parameter we introduce here is not exactly the same of the one 

used in [10]. Nevertheless, by a simple change of scale the two intolerance parameters become 

comparable. 

7 We recall that the reaction function is a transformation of a beta probability density function. 

8 This kind of equilibrium has been discussed in oligopoly dynamics, see for example[21] and [22] and also 

in [6] where the computation of the periodic points, as well as the structure of the basins, has been 

analyzed. 
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