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Abstract

The aim of this paper is to propose a 2D computational algorithm for model-

ing of the trigger and the propagation of shallow landslides caused by rainfall.

We used a Molecular Dynamics (MD) inspired model, similar to discrete el-

ement method (DEM), that is suitable to model granular material and to

observe the trajectory of single particle, so to identify its dynamical proper-

ties. We consider that the triggering of shallow landslides is caused by the

decrease of the static friction along the sliding surface due to water infiltra-

tion by rainfall. Thence the triggering is caused by two following conditions:

(a) a threshold speed of the particles and (b) a condition on the static fric-

tion, between particles and slope surface, based on the Mohr-Coulomb failure

criterion. The latter static condition is used in the geotechnical model to es-

timate the possibility of landslide triggering. Finally the interaction force

between particles is defined trough a potential that, in the absence of ex-

perimental data, we have modeled as the Lennard-Jones 2-1 potential. In

the model the viscosity is also introduced and for a large range of values of

the model’s parameters, we observe a characteristic velocity pattern, with

acceleration increments, typical of real landslides. The results of simulations
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are quite promising: the energy and the time triggering distributions of lo-

cal avalanches shows a power law distribution, analogous to the observed

Gutenberg-Richter and Omori power law distributions for earthquakes. Fi-

nally it is possible to apply the method of the inverse surface displacement

velocity [4] for predicting the failure time.

1. Introduction

The prediction of landslides, in particular the discovering of the triggering

mechanism, is one of the challenging problems in earth science. The term

landslide has been defined in the literature as a movement of a mass of rock,

debris or earth down a slope under the force of gravity [3, 17] . Landslides

occur in nature in very different ways. It is possible to classify them on the

basis of the involved material and the type of movement [18]. Landslides can

be triggered by different factors but in most cases the trigger is an intense or

long rain. Rainfall-induced landslides involve different fields, such as engi-

neering geology, soil mechanics, hydrology and geomorphology [1]. With the

rapid development of computers and advanced numerical methods, detailed

mathematical models are increasingly being applied to the investigation of

complex process dynamics such as flow-like landslides or debris flows. In the

literature, two approaches have been proposed to evaluate the dependence

of landslides on rainfall measurements. The first approach relies on dynam-

ical models while the second is based on the definition of empirical rainfall

thresholds above which the triggering of one or more landslides is possible

[8, 11]. Several methods have been developed to simulate the propagation

of a landslide; most of the numerical methods are based on a continuum
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approach using an Eulerian point of view [2, 10]. An alternative to these ap-

proaches is to use Lagrangian discrete-particle methods which represent the

material as an ensemble of interacting elements, called particles or grains.

The commonly adopted term for the numerical methods for discrete systems

made of non deformable elements, is the discrete element method (DEM)

and it is particularly suitable to model granular materials, debris ows and

ow-like landslide [5]. The DEM is very closely related to molecular dynamics

(MD), the former method is generally distinguished by the inclusion of ro-

tational degrees-of-freedom as well as stateful contact and often complicated

geometries. As usual, the computational load can be very onerous with the

increasing of the complexity or of the number of the individual element. The

inclusion of a more detailed description of the units allows for more realistic

simulations. However, the accuracy of the simulation has to be compared

with the experimental data available. While for laboratory experiments it is

possible to collect very accurate data, this is not possible for real landslides.

These arguments motivated us in exploring the consequences of reducing the

complexity of the model as much as possible. In this paper we present a

toy model applied to the study of the starting and progression of particles

down a slope, whose displacement is induced by a rainfall [9]. The inclusion

of the effect of fluids on a granular material is a challenging problem. The

main hypothesis of our model is that the static friction decreases as a result

of the rain, which acts as a lubricant: this friction law is inspired by Jop

et al. in 2006 [6]. At present we do not pretend to be able to simulate a

real landslide or debris flow, rather we want to explore a new alternative

approach useful for this kind of problems. The resulting numerical method,
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similar to that of molecular dynamics (MD), is based on the use of an interac-

tion potential, i.e. the 2-1 Lennard-Jones one. This approach is particularly

suited for the inclusion of nonlinear terms such as those given by instanta-

neous change of velocities, constitutive relations among different quantities,

chemical reactions, etc. This flexibility was also exploited in the modeling

of continuous material by means of mesoscale models. Although the model

is still schematic, and known constitutive relations are not yet included, its

emerging behavior is quite promising. The results are consistent with the

behavior of real shallow landslides induced by rainfall. Emerging phenomena

such as fractures, detachments and arching can be observed in the simula-

tions. In particular, the model reproduces well the time distribution of local

avalanches into the landslide, analogous to the observed Omori distributions

for earthquakes. These power laws are in general considered the signature

of self-organizing phenomena. As in other models, this self-organization is

related to a large separation of time scales. The main advantage of these

particle methods is given by the capability of following the trajectory of a

single particle, possibly identifying its dynamical properties.

2. The Model

We are interested in modeling superficial landslides, therefore we describe

an inclined soil layer as a two-dimensional structure formed by a set of masses

or blocks. The model is based on the interaction forces that act among blocks

in the coordinates system along the surface. The triggering conditions are

based on the modeling of Mohr-Coulomb law. The forces that act on the

particles are:
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Force of gravity

F
(g)
i = g sin(α)(mi + wi(t), 0), (1)

where g is the gravity acceleration, α the angle of the slope (supposed con-

stant), mi is the dry mass, variable from block to block and wi is the cumu-

lative absorbed water in time, defined as:

wi(t) =

∫

σwi(t) dt, (2)

where σwi(t) is the water absorbed during time because of the rainfall.

Static Friction

The static friction F
(s)
i is given by:

F
(s)
i = µs(mi + wi(t))g cos(α)(µs exp(−w0t) + µslow(1− exp(w0t))). (3)

The force in Eq. 3 depends on two friction terms, characterized by co-

efficients µs and µslow respectively the initial coefficient µs at t = 0 and the

final one µslow for t → ∞, with µs > µslow. In synthesis, the effect of rain-

fall is to decrease the friction on the sliding surface of the landslide during

time (through the constant velocity w0 of the exponential). Moreover the

friction coefficients µs and µslow vary randomly (in small increments) with

the position, thus modeling the roughness of the sliding surface.

Dynamic Friction

When the block is moving, the applied force is:

F
(d)
i = µd(mi+wi(t)) cos(α)(µd exp(−w0t)+µdlow(1−exp(w0t))) ·(−v). (4)
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Eq. 4 is similar to Eq. (3), but the direction of the force direction is opposed

to velocity. The friction coefficients (static and dynamic) are randomly as-

signed to spatial zones, according to a Gaussian distribution. In this way we

are modeling a rough sliding surface. Similarly, the friction coefficients µd

and µdlow vary randomly.

Interaction forces among blocks

The interaction force between two blocks or particles is defined trough a

potential that, in the absence of experimental data, we model after a 2 − 1

Lennard-Jones one (in Eq. (5)). The justification of this choice is given in

section simulation methodology.

F
(i)
ij = −F

(i)
ji = −∇

(

4ε ·

[

(

r

Rij

)

−2b

−

(

r

Rij

)

−b
])

, (5)

where Rij = 1 is the equilibrium distance between two blocks, b = 1 and r is

the distance between two blocks: r =
√

(xj − xi)2 + (yj − yi)2.

Force of cohesion

At beginning, the system is prepared in equilibrium, that is, the blocks

are disposed on a regular grid. We can assume, in agreement with the law

of Mohr-Coulomb, modified by Terzaghi in 1943 [14] (see Eq. (6)), to have

a tension of cut, due to a cohesion force, also in a condition of zero normal

tension: such principle is expressed as:

τf = c′ + σ′ tan(φ′). (6)

In order to start the rupture, the tension of cut on the sliding surface equals

an adhesive part c′ plus a friction part σ′n tan(φ′). Therefore, in analogy
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with this method, the motion of the single block will not be initiate until

the active forces (indicated in the third term of Eq. 6) exceed the static

friction threshold plus a cohesion term (that depends on the position in

stochastic way). Moreover, we consider a speed threshold vd for the static-

dynamic transition. Summing all up, the block is at rest under the following

conditions:

|F
(a)
i | < F

(s)
i + c′,

|vi| < vd,

F
(
ia) = F

(g)
i +

n
∑

j=1

F ij − µvi,

(7)

where F
(a)
i and vi represent the active forces and the speed. C ′

i is the term

of cohesion, variable with the position, while µvi is the term of viscosity. For

b = 1 the potential energy dV = −Fdr becomes:

V = −k

∫
(

1

r
−

1

r2

)

dR = −k

(

lnr +
1

r
− 1

)

, (8)

in which we choose −1 as arbitrary constant of integration so to have zero

potential energy at the equilibrium distance.

3. Simulation Methodology

In our simulations we consider an interaction among those particles at

distance below a given threshold which in our units is 21/2. At beginning

the particles are arranged on a regular grid, i.e., at the instant t = 0 each

block is placed in the nodes of a regular rectangular grid and therefore every

mass interacts with the eight blocks placed in the nearest and next-to-nearest
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(a) (b)

Figure 1: (a) At t = 0 we have an interaction among second neighbours. (b) Technique

of ri-calcolous of interactions between particles: at each time step, the interactions are

re-calculated for each mass within the interaction range.

nodes (Figure 1a). For each time step, the interactions are re-calculated for

each mass within the interaction range. This technique is used in molecular

dynamics and congruent with principle of action and reaction (Figure 1b).

In our simulations and generally in MD the positions and velocities are

updated using a first or second-order Verlet algorithm [19]. This algorithm

allows a good numerical approximation and is very stable. It also does not

require a large computational power as the forces are calculated once for each

time step. When a block is in state of motion, the total force that acts on it

is given by the sum of the active forces and the force of dynamic friction,

F
tot
i = F

(a)
i + F

(d)
i (9)

We have to define a starting time of the landslide, for instance the time of

the first block detachment. In case of uniform rainfall, it is simple to deduce

theoretically this time, i.e., we can write, in the equilibrium conditions limit,

for the single mass i,

|F
(a)
i | = F

(s)
i + C ′

i. (10)
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F i = F
(g)
i +

8
∑

j=1

F ij − u · vi, (11)

But since initially the masses are arranged in a regular grid, the interaction

term is null as the term of viscosity that depends on the velocity, so:

8
∑

j=1

F ij = 0,

vi = 0,

(12)

thus

|F
(g)
i | = F

(s)
i + C ′

i, (13)

that is:

m∗

i g sin(α) = m∗

i g cos(α)(µs exp(−w0Tp) + µslow(1− exp(−w0Tp))),

m∗

i = mi +∆wTpn,

Tpn = Tp/∆t,

(14)

where Tp is the time of particle triggering, Tpm the number of temporal steps

in simulation and ∆t the amplitude of simulation step (∆t = 0.01). Solving

the Eq. (13) we obtain:

A0 +B0

K +B
= exp(w0Tp), (15)

where A0 = (µs − µslow)mi, B0 = (µs − µslow)
∆w
∆t

, A = (tan(α) − µslow)mi,

B = (tan(α)− µslow)
∆w
∆t

and K = A− C′

g cos(α)
.

Eq. (15) is a transcendental equation solvable with numeric methods.

An example of simulation is reported in the Figure 2. The triggering time of

particles is variable from 80 to 180 temporal steps for a subset of particles
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Figure 2: Triggering time of subset of particles depending on random variables (cohesion,

friction, mass) in the coordinates system of the slope.

depending on random variables (cohesion, friction, mass) in the coordinates

system of the slope. In the Figure 3(a) the triggering time versus slope is

shown for different values of cohesion.

Actually, the sliding blocks could stop again after the first detachment,

so our first definition of the starting time is not accurate. A more sensible

definition for the starting time is based on the motion of the center of mass

of the system. Since ours system is discrete, we get:

Xc(T
∗)−Xc(T = 0) =

∑

i m
∗

ixi
∑

i mi
> ǫ. (16)

In other words, we consider the starting time T ∗ as the time for which the

center of mass is displaced more than a distance from its starting position

(assumed to be zero). See also the Figure 3(b).
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(a) (b)

Figure 3: (a) Triggering time of particles versus slope for different values of cohesion. (b)

Triggering time of landslides versus slope for increasing value of the threshold ǫ (Eq. (16)).

4. Simulation results

In the simulations, an interesting behavior emerges by varying the coef-

ficient of viscosity. For high values of viscosity, the model reproduces well

the observed behavior of the slow shallow landslides, exhibiting a Gaussian

distribution of mean kinetic energy increments (Figure 4(a)),

f(x) = a1 exp(−d), (17)

where d = (x−b1)2

c1
. Lowering the viscosity coefficient, the model exhibits a

lognormal distribution (Figure 4(b), Eq. (18) considering x the logarithm

of the data). With null viscosity, the simulation data can be fitted by an

exponential (Figure 4(c), Eq. (18)):

f(x) = a exp(b), (18)

or a power law:

f(x) = axb, (19)
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(a) (b)

(c) (d)

Figure 4: (a) Mean kinetic energy increment distribution of landslide, in case of µ = 0.05,

shows a gaussian behavior. (b) Mean kinetic energy increment distribution, in case of

µ = 0.01, shows a log-normal behaviour; the distribution of the logarithm of the same

data is obviously gaussian. (c) Mean kinetic energy increment distribution, in case of

µ = 0 (exponential interpolation). (d) Mean kinetic energy increment distribution, in case

of µ = 0 (power law interpolation).

which seems to better fit the data (Figure 4(d), Eq. (19)). We measure

also the intervals between the triggering time of local avalanches, i.e. we

measures the time intervals between subsequent simulation steps (t, t + 1)

for which the blocks start to move: in all cases a power law distribution is

observed, but with the power coefficient decreasing with viscosity. This is

consistent with the local triggering that is more frequent for observations in
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(a) (b) (c)

Figure 5: Power law distributions of difference of time triggering of the particles relative

to the simulation with µ = 0.05 (a), µ = 0.01 (b) and µ = 0 (c).

(a) (b)

Figure 6: (a) An example of simulation in the inclined coordinate system: in this case

arching phenomena have emerged (in red the still particles, in green the particles in mo-

tion). (b) The displacements of the particle in the inclined coordinate, relative to the

simulation reported in the Figure 6(a).

which values of µ are close to zero (Figure 5(a), Figure 5(b) and Figure 5(c)).

Several authors [7, 15, 16] have observed that some natural hazards such as

landslides, earthquakes and forest exhibit a power law distribution.

All results of distribution interpolation are reported in Table 1 and Table 2

using some estimator of the fitting accuracy:
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Table 1: [Kinetic energy distribution (KDE) varying the coefficient of viscosity µ.]

KDE µ = 0.051 µ = 0.012 µ = 03

SSE 2702 1.862 E. D. P.D.

R-square 0.991 1 SSE 50.4 26.95

Adj. R-square 0.991 1 R-square 0.947 0.972

RMSE 7.583 0.331 Adj. R-square 0.944 0.970

a1 295.3 370.4 RMSE 1.833 1.34

b1 25.26 18.07 a 15.61 33.28

c1 3.901 0.515 b -0.168 -1.033

[1]Gauss distribution of energy. [2] Log-Normal distribution of energy. [3] Distribution

interpolation with exponential (E.D.) and power law (P.D.).

SSE =

n
∑

i=1

(yi − f(xi))
2

R2 = 1−
SSE

SST
; SST =

n
∑

i=1

(y − ȳ)2

R̄2 = 1− (1− R)2
n− 1

n− p− 1

RMSE =

√

SSE

n−m

(20)

where the first estimator is the Sum of Squared Residuals (SSE), the sec-

ond is the Coefficient of Determination (R2), the third is R Bar Squared

(R̄2) and the last is the Root Mean Square Error (RMSE). In Figure 6(a)

and Figure 6(b) the results of a simulation are shown. The behavior of the

model is similar to that of real landslides: phenomena like fractures, arching

14



Table 2: [Landslide triggering time (Tr) distribution varying the coefficient of viscosity µ.]

Tr distribution 1 µ = 0.05 µ = 0.01 µ = 0

SSE 72.41 26.31 119.2

R-Square 0.9942 0.9816 0.9979

Adj. R-square 0.9937 0.9803 0.9976

RMSE 2.691 1.324 2.504

a 152 37.06 48.33

b -2.508 -1.485 -1.183

[1]Power law interpolation.

and detachments are generated spontaneously during evolution of the system

(Figure 6(a)). In the Figure 6(b) it is possible to observe the variations in the

displacements of the particles. The higher displacements are observed at the

base of the landslide, while smaller displacements and emerging phenomena,

like arching, are observed in the bulk of the landslide. At this point it is

possible to discuss the choice of the 2-1 Lennard-Jones potential: in our sim-

ulations we tune the powers of potential, but the 2-1 Lennard-Jones allows

to have a results similar to real landslide in term of velocity behavior, where

is possible to assess the triggering, for example, with Fukuzono method [4].

In the Figure 7(a), Figure 7(b) and Figure 7(c) the trends of the modulus

of the landslide mean velocity are reported. In all cases, by varying the

coefficient of viscosity, we observe a transient with a rapid acceleration, in

particular, for null viscosity (Figure 7(c) ), we observe the typical trend

of rapid landslides [12]. In this case (rapid landslide), the failure time
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(a) (b) (c)

Figure 7: (a) Landslides mean velocity for simulation with µ = 0.05: the behaviour, after

initial acceleration, is similar to a stick and slipe dynamics. (b) Landslides mean velocity

for simulation with µ = 0.01: the behaviour is typical of some real cases with acceleration

fases. (c) Landslides mean velocity for simulation with µ = 0, the behaviour is typical of

some real cases with rapid acceleration fases (this behaviour is similar to rapid shallow

landslides).

(a) (b)

Figure 8: (a) Inverse of mean velocity in the time simulatuion of landslide, in the square the

interval for failure time assessment with Fukuzono method. (b) Square of the Figure 8(a):

determination of failure time with Fukuzono method, the simulation data show a convex

behavior.

is estimated by using Fukuzono method [4]; see the Figure 8(a) and the

Figure 8(b). The time of triggering is calculated with the calibration of

function:
1

ν
= [β(α− 1)]

1

α−1 (tr − 1)
1

α−1 , (21)
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(a) (b)

Figure 9: (a) Simulation in the coordinate system of the slope at t = 184 (in red the still

particles, in green the particles in motion). (b) Relative mean displacement between near

vertical layers of the particles along x axes of the slope at t = 184.

where ν is the mean velocity of landslide (i.e. the all particles in motion), tr

the time of failure, t the time of simulation, while α and β are constant. With

the calibration we obtain α = 0.8836, β = 2.6618 and tr = 184. The behavior

of this simulation is similar to real landslide [13]. In the Figure 9(a) the status

of landslide at t = 184 is shown, while in the Figure 9(b) the relative mean

displacement between near vertical layers of the particles along x axes of the

slope at t = 184 is reported. This distance is defined for particle positions

xij as:

1

Nr

Nr
∑

i=1

xi,j+1 − xi,j, (22)

where Nr is the number of horizontal layer.

Then in the Figure 10 the relative mean displacement between vertical

particle layers x1 − x2 (initial layers) and x30 − x31 (central layers) in the

time are shown. Note the time interval where the fracture is formed at initial

acceleration phase and where the failure time is estimated with the inverse

of velocity ([4]). Finally in Figure 11(a) and Figure 11(b) the progression of
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Figure 10: Relative mean displacement between vertical particle layers x1-x2 (initial layers)

and x30-x31 (central layers) in the time: in evidence the time interval where the fracture

is formed at initial acceleration phase and where the failure time is estimated with the

inverse of velocity [4].

(a) (b)

Figure 11: (a) Simulation in the coordinate system of the slope at t = 220 (in red the still

particles, in green the particles in motion). (b) Simulation in the coordinate system of the

slope at t = 260 (in red the still particles, in green the particles in motion)
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simulated landslide is reported (time step t = 220 and t = 260).

5. Conclusion

A computational 2D mesoscopic models for shallow landslides, triggered

by rainfall, is proposed. The latter is based on interacting particles to de-

scribe the features of granular material along a slope, where a horizontal layer

with thickness of one particle is arranged. For shallow instability movement

we consider that the triggering is caused by the decrease of static friction

along sliding surface. Particle triggering is caused by the trespassing of two

conditions, e.g., a threshold speed of the particles and the static friction be-

tween particles and slope surface, based on the modeling of the failure crite-

rion of Mohr-Coulomb. For the prediction of the positions of these particles,

after and during a rainfall, we use the Molecular Dynamic (MD) method,

which is very suitable to simulate this type of systems. The results are quite

satisfactory in order to claim that this type of modeling could represent a new

method to simulate landslide triggered by rainfall. In our simulations emerg-

ing phenomena such as fractures, detachments and arching can be observed.

In particular, the model reproduces well the energy and time distribution of

avalanches, analogous to the observed Gutenberg-Richter and Omori power

low distributions for earthquakes. In particular the distribution of landslide

mean kinetic energy shows a transition from Gaussian to power law, passing

through lognormal to decrease the coefficient of viscosity up to zero. This

behavior is compatible with slow landslides (high viscosity) and rapid land-

slides (low viscosity). The main advantage of these Lagrangian methods is

given by the capability of following the trajectory of a single particle, possi-
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bly identifying its dynamical properties. Finally, for a large range of model

parmaters values, in our simulations we observed a velocity pattern, with

acceleration increments, typical of real landslides [12].
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