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Abstract 
Structure of the eigenfrequencies parameter space for three and four dissipatively coupled van 

der Pol oscillators is discussed. Situations of different codimension relating to the configuration of 
the full synchronization area as well as a picture of different modes in its neighborhood are 
revealed. The organization of quasi-periodic areas of different dimensions is considered. The results 
for the phase model and for the original system are compared. 
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1. Introduction 

Problems concerned with the interaction of self-oscillating systems are 
important for the nonlinear science and various applications. In the simplest case of 
two oscillators, presentation of the results on the parameter plane “difference between 
eigenfrequencies – coupling parameter” is traditional. Such an approach for Adler-
type models or for a circle map produces a picture of Arnol’d tongues, immersed in 
the region of quasi-periodic oscillations [1,2]. An increase of the number of 
oscillators makes it possible to obtain illustrations of another type, namely, to explore 
structure of the oscillators’ eigenfrequencies (more precisely, frequency detunings) 
parameter space. This problem is very complex, since it must include a description of 
the different order resonances, their configuration, relative position, as well as a 
picture of quasi-periodic regimes of different dimensions. This problem was 
attracting for a long time for physicists and mathematicians in different aspects, such 
as the assessment of the size of periodic resonances depending on the coupling 
value [3-5], generalization of the Fairy tree and continued fractions to the case of a 
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larger number of frequencies [6-10], detection of local and nonlocal bifurcations [11-
13], structure of multi-frequency areas [14], experiments with electronic 
oscillators [15,16]. These aspects are also interrelated with problems of the forced 
synchronization of a resonant limit cycle on the torus [17-18], with the dynamics of 
coupled quasi-periodic generators [19], etc. However, the overall picture is still not 
built. We discuss here the problem concerned with the structure of the fundamental 
resonance and its neighborhood for dissipatively coupled oscillators. 

It should be noted that it is very important for the discussed range of problems to 
choose a physically motivated model. For example, the system from [11] is not 
applicable for these purposes. The reason is in selection of a model: it does not have a 
stable equilibrium, and therefore does not describe the possibility of the full 
synchronization of oscillators with the frequency ratio of 1:1:1. At the same time, 
many of the results of this work are important and significant. The picture obtained 
in [15] relates to the experimental study of a specific electronic circuit. Thus, it is 
important to choose a fairly universal, but physically based system. We will use van 
der Pol oscillator as such system. 

It was shown still in 1980 in the book of P.S. Landa [1] that for three van der Pol 
oscillators in the phase approximation the full synchronization area corresponding to 
the frequency ratio of 1:1:1 has the form of a parallelogram. This result was obtained 
analytically and is quite universal due to the universality of the model being used. 
However, modern methods and approaches can significantly complement and 
develop it. In the present paper we answer the following questions: 

 Which regimes are observed outside the “Landa’s parallelogram”? 
 What will change if we move from the phase model to the original 

system? 
 What will happen if we increase the number of oscillators in the chain? 

Note that quasi-periodic oscillations of different dimensions are possible in this 
system. For such systems approaches to the analysis of (quasi-periodic) bifurcations 
are still underdeveloped [21, 22]. Therefore, the main investigation tool for such 
modes is an analysis of the Lyapunov exponents. 

 
2. Phase model for the three oscillators 

The chain of three coupled van der Pol oscillators is described by the following 
equations: 
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Here  is an excitation parameter in each independent oscillator and characterizes 
negative friction; 1  is the frequency detuning between the second and the first 
oscillators; 2  is the frequency detuning between the third and the first oscillators;   
is the coefficient of dissipative coupling. The frequency of the first oscillator is taken 
as unity. 
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If excitation parameter , frequency detunings and coupling parameter are small, 
the method of slowly varying amplitudes [1,2] can be applied for the analysis of the 
equations (1). In addition, if assume that the oscillators move along their stationary 
orbits, it is possible to obtain equations in the phase approximation [1,14]: 
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Here 21  , 32   are relative phases of the oscillators, and all the 
parameters are normalized by , so they may be not small. 

Let us find the explicit boundaries of the “Landa’s parallelogram”. Full 
synchronization of all three oscillators corresponds to the stable equilibrium of the 
phase system (2). After setting 0  and 0  in (2) we obtain 
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Solutions (3) exist when the sinuses modulo less than unity. Therefore, the 
bifurcation conditions are of the form 
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The intersection of the lines (4) and (5) forms a parallelogram on the parameter 
plane ),( 21   as is shown in Fig. 1b. During the variation of the parameters, the 
solutions (3) appear in pairs: ),( 21   for the first equation and ),( 21   for the second 
equation. Thus, the system (2) has four equilibria, stable and unstable nodes and two 
saddles [14,17]. Crossing the borders of the parallelogram they approach each other 
in pairs ( 21   or 1 2  ) and then merge and disappear simultaneously. Note 
that it leads from (4) and (5) that the synchronization area enlarges linearly with an 
increase of the coupling parameter μ. 

Besides the full synchronization, two-frequency and three-frequency quasi-
periodic regimes1 are possible in the system (2). In the first case, the attractor of the 
phase model is an invariant curve, an example of which is shown in Fig. 2a. Such 
trajectories are conveniently classified by means of a kind of the rotation number 

qpw : , which is determined by the number of significant intersections of the phase 
trajectory with the horizontal and vertical boundaries of the field  2,0  

                                                
1 In these cases attractors for the original system are two-frequency and three-frequency tori. 
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[14,18,20]. So this number is w=1:3 for Fig. 2a. In the second case, the phase 
trajectories fill the whole “phase square”, as is shown in Fig. 2b. 

 
 

 

 
Fig. 1. (a) Chart of the Lyapunov exponents constructed for three dissipatively coupled phase 
oscillators on the frequencies parameter plane, (b) analytically obtained configuration of the full 
synchronization area, (c)-(d) charts of tori in the neighborhood of SNF and ASNF points. Value of 
coupling parameter is 0.6  . 
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Fig. 2. Examples of phase portraits for the system (2). (a) Two-frequency resonance regime of the 
type 1:3 for 1 1.5,   2 1  , 0.6  ; (b) three-frequency regime for 1 1   , 2 1  , 0.25  . 

 
Let us now define the character of regimes outside the parallelogram using the 

construction of the chart of Lyapunov exponents [14,18,20], which visualizes areas of 
the stable equilibrium P, two-frequency quasi-periodicity 2T  and three-frequency 
quasi-periodicity 3T . This chart is shown in Fig. 1a for the phase system (2). 

One can see from Fig. 1a that the full synchronization area P satisfies the 
analytical estimation and is bounded by the lines (4) and (5). The most representative 
two-frequency regimes in Fig. 1a look like two bars, at the intersection of which the 
full synchronization area is located. These bars correspond to the partial 
synchronization of two different pairs of oscillators, when their relative phase 
oscillates around some average value. They meet the resonance conditions 01   
and 21  . In terms of the original system the first of these two conditions means 
the coincidence of eigenfrequencies of the first and the second oscillators, and the 
second condition means the coincidence of the second and the third oscillators. 
Accordingly, the rotation numbers are equal to 0:1 and 1:0. The width of these bars is 
of the order of coupling parameter magnitude. 

Intersection of the lines (4) and (5) corresponds to the codimension-two 
situations when all equilibriums come simultaneously into a one point on the phase 
plane. There are four such points on the boundary of the full synchronization area and 
they may be easily found by combining (4) and (5): 

.0,3;0,3:
;2,;2,:

21212,1
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    (6) 

Areas of the two-frequency regimes have the most complex structure in the 
neighborhood of these points. In particular, there are many resonance regimes of 
different order. Their co-existence illustrate “charts of tori” in Fig. 1c and Fig. 1g. 
Different colors on these charts correspond to different rotation numbers w 
[14,18,20]. 
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For the first pair of SNF points a fan-shaped system of divergent areas of 
different order two-frequency resonance regimes is characteristic, with (at least on a 
visual level) a common peak directly at the point SNF. The neighborhood of the 
second pair of points – ASNF points – is more complicated. In this case, the two-
frequency regime tongues do not decrease in size approaching the full 
synchronization area, but vice versa increase so that they have an extended contact 
with it, see Fig. 1d. Using the terminology of [11,12,16], the first pair of points (6) 
may be called as “saddle node fan”, and the second pair of points may be associated 
with the point “accumulation of saddle node fans”. 

 
3. Three van der Pol oscillators 

Let us refer to the original system (1). Figure 3 illustrates the corresponding 
chart of the Lyapunov exponents for small value of the control parameter 1.0 . 
Note that in accordance with the normalization by , all values of the parameters are 
ten times larger as compared with Fig. 1. We can see some features that are typical 
for the phase model. Namely, the form of the full synchronization area is close to a 
parallelogram, there are two basic bars of two-frequency regimes immersed in the 
area of three-frequency tori, there are fan-shaped structures of the two-frequency high 
order resonant tori. However, there are certain differences. The full synchronization 
area transforms from the parallelogram2. So instead of SNF  points in Fig. 1 the 
characteristic vertices of a parallelogram are changed into the smooth lines. On the 
contrary, for ASNF points appreciably prolate vertices occur. 

 

 
Fig. 3. Chart of the Lyapunov exponents for three coupled van der Pol oscillators on the frequency 
detunings parameter plane. Numbers correspond to cycle periods in the Poincaré section. Values of 
the parameters are 0.1, 0.04    . 

 
                                                
2 Note that a limit cycle corresponds to the full synchronization. Its disappearance corresponds to a 
saddle-node bifurcation in the Poincaré section. 
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The bifurcation analysis for the full synchronization area of the system (1) 
allows to see the differences in more details. The obtained results are shown in Fig. 4. 

The first difference between the original system and the phase model is that 
saddle-node bifurcations of stable and unstable limit cycles do not occur 
simultaneously, but on different lines SN1 and SN2 that are shown in Fig. 4a by solid 
lines and dashed lines, respectively. So the “vertex” SNF of the parallelogram is 
changed into a smooth line. At the same time there are three cusp points for the 
bifurcation line of unstable regimes inside the full synchronization area. 

Enlarged fragment in Fig. 4b shows that Neimark–Sacker bifurcation lines NS 
are involved in the destruction of ASNF points. These lines have common points 
(points R1 of resonance 1:1) with the saddle bifurcation lines. Thus, the highly 
prolate narrow areas of a full synchronization occurring instead of ASNF points are 
limited by the Neimark–Sacker bifurcation lines. 

 

 
Fig. 4. Bifurcation lines for three coupled oscillators (1). Fig. b shows an enlarged fragment of 
Fig. a. Values of the parameters are 0.1, 0.04    . Solid lines identify bifurcations for stable 
regimes, and dashed lines – for unstable regimes. SN denote the saddle-node bifurcation lines (SN1 
corresponds to the merging of a stable node and a saddle, SN2 corresponds to the merging of an 
unstable node and a saddle), C denote the cusp points, NS correspond to the Neimark–Sacker 
bifurcation lines, R1 denote resonances 1:1. 
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We can see resonance regions of higher order periodic regimes on the chart of 
Lyapunov exponents in Fig. 3 within the two main bars of two-frequency tori, which 
is not observed in the phase model. These regions correspond to different periods in 
the Poincaré section and are labeled by numbers in Fig. 3. 

Figure 5 shows the chart of Lyapunov exponents for large value of the control 
parameter 1 . The phase approximation is not applicable in this case. Despite the 
large value of the control parameter, the full synchronization area keeps generally its 
form. However, there are significant differences. In addition to the synchronization 
area 1:1:1 there is another large full synchronization area. It corresponds to the 
harmonic resonance, when eigenfrequencies of the three oscillators are related as 
1:3:3. Indeed, as follows from the definition of frequency detunings in (1), 
eigenfrequencies of the oscillators are 2,13,21 1,1  , and the values 

821   satisfy such relation between frequencies. 
The Arnol'd resonance web structure [21,22] becomes visible for large values of 

the control parameter. This is a system of thin lines of two-frequency tori, on 
intersection of which the higher order periodic resonances arise. Some of these 
resonances are marked by numbers in Fig. 5. 
 
 
 

 
Fig. 5. Chart of the Lyapunov exponents for three coupled van der Pol oscillators on the frequency 
detunings parameter plane. Numbers correspond to cycle periods in the Poincaré section. Values of 
the parameters are 1, 0.4    . 
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4. Phase model for the four oscillators 
Consider now the chain of four dissipatively coupled van der Pol oscillators: 
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Here the meaning of the parameters is similar to those in equations (1). 321 ,,   
denote eigenfrequency of the second, the third and the forth oscillator, respectively. 
The frequency of the first oscillator is taken as unity. Acting in a conventional 
manner, we obtain equations for the relative phases of oscillators in the phase 
approximation: 
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Conditions for the full synchronization are .0   After some simple 
transformations we can obtain from (8) equations for the sines of relative phases: 
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During the variation of the parameters, solutions of the equations (9) appear in pairs: 
),(),,( 2121   and ),( 21  . Therefore, the system (8) has eight equilibrium states 

located at the vertices of a parallelepiped in the phase space ),,(  . One of these 
equilibrium states is always stable, and the rest are saddles and unstable node. 

If any of the three combinations of the parameters on the right side in (9) is 
varying, two faces of the parallelepiped approach each other and merge. All the eight 
pairs of fixed points merge and disappear simultaneously, as soon as the sine of one 
of the phase variables equals to unity. At the same time the steady state disappears 
and the full synchronization collapses. So we can obtain expressions for the saddle-
node bifurcations of such type: 
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.
4

3 321 
      (12) 

Thus, there are three variants of such bifurcation corresponding to the merging 
of the parallelepiped sides along one of the three phase axes. 

Let us discuss the structure of the eigenfrequencies parameter space ),,( 321  . 
Full synchronization area is defined by equations (10)–(12) that correspond to three 
pairs of planes whose intersection forms a polyhedron in the form of an oblique 
parallelepiped, Fig. 6. Its faces are surfaces of codimension-one bifurcations of the 
above three types, its edges are codimension-two bifurcations, and its verteces are 
codimension-three bifurcations. 

It is convenient to represent sections of the polyhedron by planes const 2  and 
to consider corresponding parameter planes ),( 31  , examples of which are shown in 
Fig. 7 and Fig. 8. Coupling parameter is assumed to be fixed 4.0 . 

 

 
Fig. 6. Full synchronization area for the four phase oscillators on the frequency detunings parameter 
space 1 2 3( , , )   . 
 

Figure 7 shows the chart of Lyapunov exponents constructed for small value of 
the frequency 2.02  . Figure 7b represents three pairs of lines given by equations 
(10)–(11). Their intersection forms a hexagon, which corresponds to the full 
synchronization area and is visible also on the chart of Lyapunov exponents. Thus, 
there are six codimension-two points which are vertices of the hexagon. Note that 
four-frequency regimes 4T  are possible now. 

Chart of tori in the neighborhood of two vertices of the hexagon is presented in 
Fig. 7c. Near the upper “corner” of the full synchronization area in Fig. 7c we can see 
regions with the rotation numbers p: q: 0. It means that the third and the fourth 
oscillators are captured mutually. So the considered system is partly similar to the 
system of three coupled oscillators where the role of the third oscillator plays the 
captured pair of the third and the fourth oscillators. But these regions do not form 
“fan” structures: two vertices of the hexagon in Fig. 7c are closely spaced enough, 
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and characteristic for the three oscillators picture which is shown in Figs. 3c,d is not 
observed in the pure state. 

Straight lines bounding the full synchronization area in Fig. 7b are shifting with 
an increase of the frequency parameter 2  in accordance with the equations (10)–
(11). Two pairs of lines are shifting downwards and one pairs of lines is shifting 
upwards. It is easy to show analytically that vertices of the hexagon merge in pairs 
simultaneously when  2 , so the shape of the full synchronization area looks like 
a triangle. Figure 8a shows the chart of Lyapunov exponents constructed for such a 
threshold situation. 

 
 
 
 
 

 

 
Fig. 7. (a) Chart of the Lyapunov exponents for the four dissipatively coupled phase oscillators on 
the frequency detunings parameter plane 1 3( , )  ; (b) analytically obtained configuration of the full 
synchronization area; (c) chart of tori in the neighborhood of two vertices of the full 
synchronization area. Values of the parameters are 0.4  , 2 0.2  . 
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Fig. 8. Charts of the Lyapunov exponents for the four dissipatively coupled phase oscillators on the 
frequency detunings parameter plane 1 3( , )  . Values of the parameters are 0.4  , (а) 2 0.4,   
(b) 2 2.4  . Resonance conditions in the chain of oscillators are shown by arrows. 

 
Possible resonance conditions are shown in Fig. 8a near the bottom and the left 

boundaries of the chart of Lyapunov exponents. Let us discuss them in detail. There 
are two possible resonances while varying frequency of the second oscillator 1  on 
the horizontal axis. This frequency may be equal to those of the first or the third 
oscillators: 

,01     21  .      (13) 
These resonance points are closely spaced when 2  is small. Presence of two 
resonances reduces dimension of quasi-periodic regime to two. As a result, fairly 
wide vertical bar of two-frequency regimes occurs near the area of 21 0   on the 
chart of Lyapunov exponents in Fig. 8a. 

During the variation of the forth oscillator’s frequency 3  on ordinate axis, the 
only resonance is possible, because the forth oscillator is on the edge of the chain of 
oscillators. Resonance occurs when its frequency is equal to the frequency of the 
third oscillator: 

23  .      (14) 
So a horizontal bar occurs in the vicinity of the resonance point 23   in Fig. 8a, 
and this is a bar of three-frequency regimes. Full synchronization area is located at 
the intersection of vertical and horizontal resonance bars. 

Now increase the parameter 2 . Full synchronization area maintains the shape 
of a triangle in this case, but reduces in size. The lower side of this triangle reaches its 
vertex and the full synchronization area completely disappears when  22 . Fig. 8b 
shows substantially over the threshold case when 4.22  . We can see on the chart 
of Lyapunov exponents that resonance points (13) diverge along the horizontal axis 
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due to increasing of frequency 2 . Situation of resonance overlapping destroys. Bar 
of two-frequency regimes disappears and is replaced by two vertical bars of three-
frequency regimes. Accordingly, full synchronization area disappears. Intersection of 
bars of three-frequency regimes provides now two regions of two-frequency regimes 
having the shape of a square and a parallelogram. It is easy to show by means of the 
phase portraits that inside the square region the first and the second oscillators as well 
as the third and the fourth oscillators are mutually (partially) captured in pairs. Inside 
the parallelogram region the second, the third and the forth oscillators are partially 
captured. We can see also thin stripes corresponding to the two-frequency higher 
order regimes. 

It is interesting to note that the two-frequency area having the shape of a 
parallelogram in Fig. 8b is qualitatively similar to the full synchronization area of 
three oscillators named “Landa’s parallelogram” in Fig. 1. We can see corresponding 
fan-shaped system of synchronization tongues in the neighborhoods of the vertices of 
a parallelogram. This picture is similar to Fig. 1a, but periodic regime is replaced by 
two-frequency regime and two-frequency regimes are replaced by three-frequency 
regimes. Finally, note that there are small areas of chaos C for the four oscillators in 
Fig. 8. 

Figure 9a shows the chart of Lyapunov exponents for the original system (7) of 
four oscillators. Values of the parameters are ,1.0 04.0 , 02.02  . Note that 
parameters  and 3,2,1  in Fig. 9a are diminished by the factor of 10/1   as 
compared to the case of the phase approximation in Fig. 7a. This is due to the rules of 
normalization to the value of the control parameter [14]. Because this parameter  is 
not large, the observed picture in Fig. 9a is close to that in Fig. 7a constructed for the 
phase model. However, there are some differences. For example, shape of the full 
synchronization area is distorted, periodic higher order resonance regimes appear, etc. 

Figure 9b shows the chart of Lyapunov exponents for the case of large value of 
the control parameter 1 . Now the differences are more significant. The most 
interesting is the emergence of hierarchically organized resonance web. In this case, a 
system of bars of three-frequency regimes occurs, which is immersed in the area of 
four-frequency tori. At the same time thin strips of two-frequency regimes are visible 
within the bars of three-frequency regimes. This hierarchical organization of the web 
is the cause of the increased number of oscillators in the system and is different from 
the case of three oscillators in Fig. 5. 
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Fig. 9. Charts of the Lyapunov exponents for the four coupled van der Pol oscillators (7). Values of 
the parameters are a) 0.1,  0.04  , 2 0.02  ; b) 1  , 0.4  , 2 0.2  . 
 
5. Conclusion 

Full synchronization area for the phase model of three dissipatively coupled 
oscillators looks like a parallelogram on the eigenfrequencies parameter plane. Sides 
of this parallelogram correspond to the saddle-node bifurcations of such type when 
both stable and unstable nodes merge simultaneously with saddles. Neighborhoods of 
vertices of the parallelogram have the most complicated structure. There are fan-
shaped systems of two-frequency resonance regimes of different order. Degeneracy 
disappears for the original system, and the saddle-node bifurcation line splits into the 
two lines: for the stable and unstable limit cycles. Finite in size areas occur instead of 
vertices of a parallelogram. Each area contains three cusp points. Neimark–Sacker 
bifurcations become also possible. Characteristic structure of the Arnol’d resonance 
web becomes visible for large values of the control parameter. This is a system of 
thin lines of two-frequency regimes, on intersection of which the higher order 
periodic resonances arise. In the phase approximation for the system of four coupled 
oscillators, the full synchronization area looks like an oblique parallelepiped. Its 
sections may have a form of hexagon or triangle, depending on the fixed frequency of 
one of the oscillators. If the section does not intersect a polyhedron of the full 
synchronization, two-frequency quasi-periodic areas may occur. These areas are 
similar in structure to the case of three oscillators, but the “fan-shaped” structures of 
synchronization tongues refer now to the three-frequency regimes, immersed in the 
four-frequency synchronization area. 
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