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Abstract

In this paper, the generalized Darboux transformation is established to the AB system, which mainly describes
marginally unstable baroclinic wave packets in geophysical fluids and ultra-short pulses in nonlinear optics. We
find a unified formula ofNth-order rogue wave solution for the AB system by the direct iterative rule. In particular,
rogue waves possessing several free parameters from first tosecond order are calculated. The dynamics and some
interesting structures of the rogue waves are illustrated through some figures.
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1. Introduction

It is well known that the AB system serves as model equations to describe marginally unstable baroclinic wave
packets in geophysical fluids [1], ultra-short optical pulse propagation in nonlinear optics [2], and also mesoscale
gravity current transmission on a sloping bottom in the problem of cold gravity current [3]. It was firstly proposed by
Pedlosky using the singular perturbation theory [1]. So far, there has been surge of interesting in studying the dynamics
properties of the AB system, such as the single-phase periodic solution depending on a complete set of four complex
parameters [4], the envelope solitary waves and periodic waves [5], the Painlevé analysis and conservation laws of the
variable-coefficient AB system [6], the soliton and breather solutions through the classical Darboux transformation
[7], and the N-soliton solutions by using the dressing method [8].

To our knowledge, there are no reports on rogue waves of the ABsystem up to the present. While in the past five
years, rogue waves (also known as freak waves, monster waves, killer waves, rabid-dog waves and similar names)
[9–12] have become a hot spot in the research field of oceanography [14], optics [15], Bose-Einstein condensates
[16], superfluid [17], capillary flow [18] and even finance [19]. A rogue wave is localized in both space and time,
and can be depicted as a wave which appears from nowhere and disappears without a trace [13]. Many nonlinear
Schrödinger (NLS)-type equations, for instance, the standard NLS equation [11, 22, 23, 35, 36], the Hirota equation
[24], the Sasa-Satsuma equation [25], the high-order dispersive generalized NLS equation [26], the variable coefficient
NLS equation [27], the discrete NLS equation [28], the Manakov equations [29–31], the coupled Hirota equations
[32], the three-component NLS equations [37] have been confirmed to possess lower or high-order rogue waves of
diverse structures. Nevertheless, there are relatively few papers on rogue waves of the non-NLS-type equations, and
a complete understanding of the mysterious and catastrophic rogue wave phenomenon is still far from been achieved,
due to the difficult and hazardous observational conditions [13]. Therefore, it is of great interest to investigate rogue
waves of the non-NLS-type AB system, which may be helpful to better understand the dynamics properties of the
complicated rogue wave phenomenon.

In this paper, we take the AB system in canonical form [4]

Axt = AB, (1)

Bx = −
1
2

(|A|2)t, (2)
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wherex andt are semi-characteristic normalized coordinates,A andB are the wave amplitudes yielding the normal-
ization condition

|At|2 + B2
= 1. (3)

WhenA is the real value, Eqs. (1) and (2) can be transformed into theSine-Gordon equation, and when A is the
complex value, the self-induced transparency system [2, 4].

The aim of the present paper is to research Eqs. (1) and (2) through the so-called generalized Darboux transfor-
mation (DT) [23], which been proposed by Guo, Ling and Liu, has provided a powerful tool to derive general rogue
wave solutions of many nonlinear equations, the NLS equation [23], the derivative NLS equation [33], the Manakov
equations [34], etc. With the help of the generalized DT, a unified formula ofNth-order rogue wave solution for Eqs.
(1) and (2) is obtained by the direct iterative rule. As application, rogue waves of Eqs. (1) and (2) from first to second
order are studied. The first-order rogue waves of fundamental pattern, the second-order rogue waves of fundamental
and triangular patterns are displayed by choosing different parameters, respectively.

Our paper is organized as follows. In section 2, we constructthe generalized DT to Eqs. (1) and (2) under the
normalization condition (3), then a unified formula ofNth-order rogue wave solution for Eqs. (1) and (2) is obtained
by the direct iterative rule. In section 3, the dynamics and some interesting structures of the rogue waves for Eqs. (1)
and (2) from first to second order are illustrated through some figures. In section 4, we give the conclusion.

2. Generalized Darboux transformation

In this section, we start from the Lax pair of Eqs. (1) and (2),which reads

Ψx = UΨ, U =

(

−iλ 1
2A

− 1
2A∗ iλ

)

, (4)

Ψt = VΨ, V =
1

4iλ

(

−B At

A∗t B

)

, (5)

whereΨ = (ψ(x, t), φ(x, t)) is the vector eigenfunction,λ is the spectral parameter, and asterisk denotes the complex
conjugation. It could be easily verified that the compatibility conditionUt − Vx +UV − VU = 0 gives rise to Eqs. (1)
and (2).

Next, letΨ1 = (ψ1, φ1) be a basic solution of the Lax pair (4) and (5) withA = A[0], B = B[0] andλ = λ1. Thus,
on basis of the above lax pair, the classical DT [20, 21] of Eqs. (1) and (2) can be built [7]

Ψ[1] = T [1]Ψ, T [1] = (λI − H[0]Λ1H[0]−1), (6)

A[1] = A[0] − 4i(λ1 − λ∗1)
ψ1[0]φ1[0]∗

(|ψ1[0]|2 + |φ1[0]|2)
, (7)

B[1] = B[0] − 4i(λ1 − λ∗1)
[|ψ1[0]|2(|φ1[0]|2)t − |φ1[0]|2(|ψ1[0]|2)t]

(|ψ1[0]|2 + |φ1[0]|2)2
, (8)

whereψ1[0] = ψ1, φ1[0] = φ1,

I =

(

1 0
0 1

)

, H[0] =

(

ψ1[0] φ1[0]∗

φ1[0] −ψ1[0]∗

)

, Λ1 =

(

λ1 0
0 λ∗1

)

.

In the following, supposeΨl = (ψl, φl), 1 ≤ l ≤ N be a basic solution of the Lax pair (4) and (5) withA = A[0],
B = B[0] andλ = λl. Then theN-step classical DT of Eqs. (1) and (2) can be naturally given as follows

Ψ[N] = T [N]T [N − 1] · · ·T [1]Ψ, T [l] = λI − H[l − 1]ΛlH[l − 1]−1, (9)

A[N] = A[N − 1] − 4i(λN − λ∗N)
ψN [N − 1]φN [N − 1]∗

(|ψN [N − 1]|2 + |φN [N − 1]|2)
, (10)

B[N] = B[N − 1] − 4i(λN − λ∗N)
[|ψN [N − 1]|2(|φN [N − 1]|2)t − |φN [N − 1]|2(|ψN [N − 1]|2)t]

(|ψN [N − 1]|2 + |φN [N − 1]|2)2
, (11)
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where

H[l − 1] =

(

ψl[l − 1] φl[l − 1]∗

φl[l − 1] −ψl[l − 1]∗

)

, Λl =

(

λl 0
0 λ∗l

)

,

with (ψl[l − 1], φl[l − 1]) = Ψl[l − 1], and

Ψl[l − 1] = Tl[l − 1]Tl[l − 2] · · ·Tl[1]Ψl, Tl[k] = T [k]|λ=λl , 1 ≤ l ≤ N, 1 ≤ k ≤ l − 1.

According to the above facts, the generalized DT can be derived for Eqs. (1) and (2). To this end, letΨ1(λ1+ δ) be
a special solution of the Lax pair (4) and (5) withA[0], B[0] andλ = λ1 + δ, and it can be expanded as Taylor series
atδ = 0, that is

Ψ1 = Ψ
[0]
1 + Ψ

[1]
1 δ + Ψ

[2]
1 δ2
+ Ψ

[3]
1 δ3
+ · · · + Ψ[N]

1 δN
+ o(δN), (12)

whereΨ[k]
1 = (ψ[k]

1 , φ
[k]
1 ) = lim

δ→0

1
k!
∂k
Ψ1

∂δk , k = 0, 1, 2, · · · .

Afterwards, it is easy to find thatΨ[0]
1 is a special solution of the Lax pair (4) and (5) withA = A[0], B = B[0]

andλ = λ1. Hence, by means of the formulas (6)-(8), the first-step generalized DT of Eqs. (1) and (2) can be directly
obtained.

(1) The first-step generalized DT

Ψ[1] = T [1]Ψ, T [1] = (λI − H[0]Λ1H[0]−1), (13)

A[1] = A[0] − 4i(λ1 − λ∗1)
ψ1[0]φ1[0]∗

(|ψ1[0]|2 + |φ1[0]|2)
, (14)

B[1] = B[0] − 4i(λ1 − λ∗1)
[|ψ1[0]|2(|φ1[0]|2)t − |φ1[0]|2(|ψ1[0]|2)t]

(|ψ1[0]|2 + |φ1[0]|2)2
, (15)

whereψ1[0] = ψ[0]
1 , φ1[0] = φ[0]

1 ,

H[0] =

(

ψ1[0] φ1[0]∗

φ1[0] −ψ1[0]∗

)

, Λ1 =

(

λ1 0
0 λ∗1

)

.

(2) The second-step generalized DT
It is clear thatT [1]Ψ1 is a basic solution of the Lax pair (4) and (5) withA[1], B[1] andλ = λ1 + δ. So that, by

using the identityT1[1]Ψ[0]
1 = 0, the following limit process

lim
δ→0

T [1]|λ=λ1+δΨ1

δ
= lim

δ→0

(δ + T1[1])Ψ1

δ
= Ψ

[0]
1 + T1[1]Ψ[1]

1 ≡ Ψ1[1]

provides a nontrivial solution of the Lax pair (4) and (5) with A[1], B[1], λ = λ1, and can be adopted to do the
second-step generalized DT, i.e.

Ψ[2] = T [2]T [1]Ψ, T [2] = (λI − H[1]Λ2H[1]−1), (16)

A[2] = A[1] − 4i(λ1 − λ∗1)
ψ1[1]φ1[1]∗

(|ψ1[1]|2 + |φ1[1]|2)
, (17)

B[2] = B[1] − 4i(λ1 − λ∗1)
[|ψ1[1]|2(|φ1[1]|2)t − |φ1[1]|2(|ψ1[1]|2)t]

(|ψ1[1]|2 + |φ1[1]|2)2
, (18)

where (ψ1[1], φ1[1])T
= Ψ1[1],

H[1] =

(

ψ1[1] φ1[1]∗

φ1[1] −ψ1[1]∗

)

, Λ2 =

(

λ1 0
0 λ∗1

)

.

(3) The third-step generalized DT
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In the same way, with the aid of the identities

T1[1]Ψ[0]
1 = 0, T1[2](Ψ[0]

1 + T1[1]Ψ[1]
1 ) = 0,

we get the following limit process

lim
δ→0

[T [2]T [1]] |λ=λ1+δΨ1

δ2
= lim

δ→0

(δ + T1[2])(δ + T1[1])Ψ1

δ2
= Ψ

[0]
1 + (T1[2] + T1[1])Ψ[1]

1 + T1[2]T1[1]Ψ[2]
1 ≡ Ψ1[2],

which is a nontrivial solution of the Lax pair (4) and (5) withA[2], B[2], λ = λ1, and can lead to the third-step
generalized DT, namely,

Ψ[3] = T [3]T [2]T [1]Ψ, T [3] = (λI − H[2]Λ3H[2]−1), (19)

A[3] = A[2] − 4i(λ1 − λ∗1)
ψ1[2]φ1[2]∗

(|ψ1[2]|2 + |φ1[2]|2)
, (20)

B[3] = B[2] − 4i(λ1 − λ∗1)
[|ψ1[2]|2(|φ1[2]|2)t − |φ1[2]|2(|ψ1[2]|2)t]

(|ψ1[2]|2 + |φ1[2]|2)2
, (21)

where (ψ1[2], φ1[2])T
= Ψ1[2],

H[2] =

(

ψ1[2] φ1[2]∗

φ1[2] −ψ1[2]∗

)

, Λ3 =

(

λ1 0
0 λ∗1

)

.

(4) TheN-step generalized DT.
Iterating the above processN times, we ge theN-step generalized DT of Eqs. (1) and (2)

Ψ1[N − 1] = Ψ[0]
1 +

N−1
∑

l=1

T1[l]Ψ[1]
1 +

N−1
∑

l=1

l−1
∑

k=1

T1[l]T1[k]Ψ[2]
1 + · · · + T1[N − 1]T1[N − 2] · · ·T1[1]Ψ[N−1]

1 ,

Ψ[N] = T [N]T [N − 1] · · ·T [1]Ψ, T [N] = (λI − H[N − 1]ΛN H[N − 1]−1), (22)

A[N] = A[N − 1] − 4i(λ1 − λ∗1)
ψ1[N − 1]φ1[N − 1]∗

(|ψ1[N − 1]|2 + |φ1[N − 1]|2)
, (23)

B[N] = B[N − 1] − 4i(λ1 − λ∗1)
[|ψ1[N − 1]|2(|φ1[N − 1]|2)t − |φ1[N − 1]|2(|ψ1[N − 1]|2)t]

(|ψ1[N − 1]|2 + |φ1[N − 1]|2)2
, (24)

where (ψ1[N − 1], φ1[N − 1])T
= Ψ1[N − 1],

H[l − 1] =

(

ψ1[l − 1] φ1[l − 1]∗

φ1[l − 1] −ψ1[l − 1]∗

)

, Λl =

(

λ1 0
0 λ∗1

)

, 1 ≤ l ≤ N.

By making use of the above formulas (22)-(24), a unified formula of Nth-order rogue wave solution for Eqs. (1) and
(2) can be obtained by the direct iterative rule. Moreover, it is not difficult to convert (22)-(24) into the 2N × 2N
determinant representation. But, to avoid the calculationof the determinant of a matrix of very high order, we prefer
to use Darboux transformations of degree one successively instead of a Darboux transformation of higher degree with
determinant representation. In the next section, the formulas (22)-(24) will be applied to work out the explicit rogue
wave solutions of Eqs. (1) and (2), the dynamics and some interesting structures of the rogue waves for Eqs. (1) and
(2) from first to second order are illustrated through some specific figures.

3. Rogue wave solutions

From the above section, we can observe that acquiring the adequate initial eigenfunction under the seed solutions
enables us to obtain rogue waves of Eqs. (1) and (2). To this end, we start from the periodic pane waves

A[0] = eiθ, B[0] = − a
√

1+ a2
, (25)

4



whereθ =
(a
√

1+ a2x + t)
√

1+ a2
, anda is a real constant. After that, inserting (25) into the Lax pair (4) and (5) and solving

it, we have

Ψ1 =

(

(C1eN −C2e−N)e
i
2θ

(C1e−N −C2eN)e−
i
2 θ

)

, (26)

where

C1 =
(2λ + a −

√
4λ2 + 4aλ + 1+ a2)

1
2

√
4λ2 + 4aλ + 1+ a2

, C2 =
(2λ + a +

√
4λ2 + 4aλ + 1+ a2)

1
2

√
4λ2 + 4aλ + 1+ a2

,

and

N =
i

4
√

1+ a2λ

√
4λ2 + 4aλ + 1+ a2(2

√
1+ a2λx + t +

N
∑

k=1

sk f 2k).

Here f is a small real parameter,sk = mk + ink, (mk, nk ∈ R). Next, we fixλ1 = −
a
2
+

i
2

, and setλ = −a
2
+

i
2
+ f 2 in

(26). Then, the vector functionΨ1 can be expanded as Taylor series atf = 0, that is

Ψ1( f ) = Ψ[0]
1 + Ψ

[1]
1 f 2

+ Ψ
[2]
1 f 4

+ · · · , (27)

here we firstly present the explicit expression ofΨ[0]
1

ψ
[0]
1 = −

√
2

2
√

1+ a2(i − a)
p[0]

1 e
i
2 θ, φ

[0]
1 =

√
2

2
√

1+ a2(i − a)
p[0]

2 e−
i
2θ,

where
p[0]

1 = (1− i)
√

1+ a2(i − a)x + (1− i)t + (1− i)
√

1+ a2(i − a),
p[0]

2 = (1− i)
√

1+ a2(i − a)x + (1− i)t − (1− i)
√

1+ a2(i − a).

With the aid of the symbolic computation tool Maple, it is easy to verify thatΨ[0]
1 = (ψ[0]

1 , φ
[0]
1 ) is a nontrivial solution

of the Lax pair (4) and (5) with the seed solutions (25) and thefixed spectral parameterλ1 = −
a
2
+

i
2

. So that, by

means of the formulas (14) and (15), we get

A[1] = eiθ(1+
F1 + iH1

D1
), B[1] =

1
√

1+ a2

G1

D2
1

, (28)

where
F1 = (2a4

+ 4a2
+ 2)x2 − 4

√
1+ a2axt + 2t2 − 2a4 − 4a2 − 2, H1 = 4

√
1+ a2t,

D1 = −(a4
+ 2a2

+ 1)x2
+ 2a

√
1+ a2xt − t2 − a4 − 2a2 − 1,

G1 = −a(a2
+ 1)4x4

+ 4a2(a2
+ 1)5/2tx3 − 2a(a2

+ 1)((3a2
+ 1)t2 + a6

+ 5a4
+ 7a2

+ 3)x2
+

4
√

1+ a2(a2t2 + a6
+ 4a4

+ 5a2
+ 2)xt − at4 − (2a5

+ 8a3
+ 6a)t2 − a9

+ 6a5
+ 8a3

+ 3a,

which is nothing but the first-order rogue wave solution of Eqs. (1) and (2), see Fig. 1, and it is direct to check that
(28) satisfies Eqs. (1), (2) and (3).

Next, in order to obtain the second-order rogue wave solution of Eqs. (1) and (2),Ψ[1]
1 should be used to construct

the generating function,

ψ
[1]
1 =

√
2(1+ i)

12(i− a)3(1+ a2)3/2
p[1]

1 e
i
2θ, φ

[1]
1 = −

√
2(1+ i)

12(i− a)3(1+ a2)3/2
p[1]

2 e−
i
2 θ,

where

p[1]
1 =

√
1+ a2(i − a)[(a4 − 2ia3 − 2ia − 1)x3

+ (3a4 − 6ia3 − 6ia − 3)x2
+ (3a4 − 6ia3 − 6ia − 3)x + (3x + 3)t2

− 3a4
+ 6ia3

+ 6ia + 3] + t3 + ((3a4 − 6ia3 − 6ia − 3)x2
+ (6a4 − 12ia3 − 12ia − 6)x + 3a4

+ 6ia3
+ 12a2

+ 6ia + 9)t + 6im1a4 − 6n1a4
+ 12in1a3

+ 12m1a3
+ 12in1a + 12m1a − 6im1 + 6n1,

p[1]
2 =

√
1+ a2(i − a)[(a4 − 2ia3 − 2ia − 1)x3 − (3a4 − 6ia3 − 6ia − 3)x2

+ (3a4 − 6ia3 − 6ia − 3)x + (3x − 3)t2

+ 3a4 − 6ia3 − 6ia − 3] + t3 + ((3a4 − 6ia3 − 6ia − 3)x2 − (6a4 − 12ia3 − 12ia − 6)x + 3a4
+ 6ia3

+ 12a2

+ 6ia + 9)t + 6im1a4 − 6n1a4
+ 12in1a3

+ 12m1a3
+ 12in1a + 12m1a − 6im1 + 6n1.
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By using the following limit process

lim
f→0

T [1]|λ=−a/2+i/2+ f 2Ψ1

f 2 = lim
f→0

( f 2
+ T1[1])Ψ1

f 2 = Ψ
[0]
1 + T1[1]Ψ[1]

1 ≡ Ψ1[1],

we have

ψ1[1] =

√
2(−1+ i)

6(i − a)2(1+ a2)3/2D1
ρ1e

i
2 θ, φ1[1] =

√
2(−1+ i)

6(i − a)2(1+ a2)3/2D1
ρ2e−

i
2θ, (29)

where

ρ1 =
√

1+ a2[(−a8
+ 2ia7 − 2a6

+ 6ia5
+ 6ia3

+ 2a2
+ 2ia + 1)x4

+ (−2a8
+ 4ia7 − 4a6

+ 12ia5
+ 12ia3

+ 4a2

+ 4ia + 2)x3
+ (−6a8

+ 12ia7 − 12a6
+ 36ia5

+ 36ia3
+ 12a2

+ 12ia + 6)x − t4 + ((−6a4
+ 6ia3 − 6a2

+ 6ia)x2

+ (−6a4
+ 12ia3

+ 12ia + 6)x + 6ia3
+ 6a2

+ 6ia + 6)t2 + (3im1a4 − 3n1a4
+ 6m1a3

+ 6in1a3
+ 6in1a + 6m1a

− 3im1 + 3n1)t − 3a8
+ 6ia7 − 6a6

+ 18ia5
+ 18ia3

+ 6a2
+ 6ia + 3] + (3n1a7 − 3im1a7 − 3m1a6 − 3in1a6

+ 9n1a5 − 9im1a5 − 9m1a4 − 9in1a4 − 9im1a3
+ 9n1a3 − 9in1a2 − 9m1a2

+ 3n1a − 3im1a − 3m1 − 3in1)x
+ ((4a3 − 2ia2

+ 4a − 2i)x + 2a3 − 4ia2
+ 2a − 4i)t3 + ((4a7 − 6ia6

+ 8a5 − 14ia4
+ 4a3 − 10ia2 − 2i)x3

+ (6a7 − 12ia6
+ 6a5 − 24ia4 − 6a3 − 12ia2 − 6a)x2 − (6ia6

+ 18ia4
+ 18ia2

+ 6i)x + 6a7
+ 18a5

+ 18a3

+ 6a)t + 3im1a7 − 3n1a7
+ 3m1a6

+ 3in1a6 − 9n1a5
+ 9im1a5

+ 9m1a4
+ 9in1a4

+ 9im1a3 − 9n1a3
+ 9in1a2

+ 9m1a2 − 3n1a + 3im1a + 3m1 + 3in1,

ρ2 =
√

1+ a2[(−a8
+ 2ia7 − 2a6

+ 6ia5
+ 6ia3

+ 2a2
+ 2ia + 1)x4

+ (2a8 − 4ia7
+ 4a6 − 12ia5 − 12ia3 − 4a2

− 4ia − 2)x3
+ (6a8 − 12ia7

+ 12a6 − 36ia5 − 36ia3 − 12a2 − 12ia − 6)x − t4 + ((−6a4
+ 6ia3 − 6a2

+ 6ia)x2

+ (6a4 − 12ia3 − 12ia − 6)x + 6ia3
+ 6a2

+ 6ia + 6)t2 + (3im1a4 − 3n1a4
+ 6in1a3

+ 6m1a3
+ 6m1a + 6in1a

+ 3n1 − 3im1)t − 3a8
+ 6ia7 − 6a6

+ 18ia5
+ 18ia3

+ 6a2
+ 6ia + 3] + (−3im1a7

+ 3n1a7 − 3in1a6 − 3m1a6

− 9im1a5
+ 9n1a5 − 9in1a4 − 9m1a4 − 9im1a3

+ 9n1a3 − 9m1a2 − 9in1a2 − 3im1a + 3n1a − 3m1 − 3in1)x
+ ((4a3 − 2ia2

+ 4a − 2i)x − 2a3
+ 4ia2 − 2a + 4i)t3 + ((4a7 − 6ia6

+ 8a5 − 14ia4
+ 4a3 − 10ia2 − 2i)x3

+ (−6a7
+ 12ia6 − 6a5

+ 24ia4
+ 6a3

+ 12ia2
+ 6a)x2

+ (−6ia6 − 18ia4 − 18ia2 − 6i)x − 6a7 − 18a5 − 18a3

− 6a)t − 3im1a7
+ 3n1a7 − 3m1a6 − 3in1a6

+ 9n1a5 − 9im1a5 − 9m1a4 − 9in1a4 − 9im1a3
+ 9n1a3 − 9in1a2

− 9m1a2
+ 3n1a − 3im1a − 3m1 − 3in1,

then a special solution of the Lax pair (4) and (5) withA[1], B[1] andλ = λ1 = −a/2+ i/2 can be obtained. Thus, the
second-order rogue wave solution of Eqs. (1) and (2) can be given by substituting (29) and (28) into (17) and (18).
Here we omit the explicit expressions ofA[2] and B[2] because it is rather tedious and inconvenient to write them
down here, but it is not difficult to verify that they satisfy Eqs. (1), (2) and (3) with thehelp of Maple. Finally, we
show some interesting structures of the second-order roguewaves, see Figs. 2-4. For the second-order rogue wave
solution of Eqs. (1) and (2) under the normalization condition (3), there are two free parameters in the expressions
of A[2] and B[2] excepta, namely,m1 andn1. When we setm1 = 0, n1 = 0, the fundamental second-order rogue
waves can be given, see Fig. 2. When the parameter are chosen by m1 , 0, n1 = 0, the second-order rogue waves of
triangular patterns can be presented, see Fig. 3-4.

4. Conclusion

In this paper, the AB system which is important to describe marginally unstable baroclinic wave packets in geo-
physical fluids, ultra-short optical pulse propagation in nonlinear optics, and also mesoscale gravity current transmis-
sion on a sloping bottom in the problem of cold gravity current is investigated through the so-called generalized DT.
We find a unified formula to constructNth-order rogue wave solution for Eqs. (1) and (2) by the direct iterative rule.
As application, rogue wave solutions from first to second order are obtained. With the help of some free parame-
ters, the first-order rogue waves of fundamental pattern, the second-order rogue waves of fundamental and triangular
patterns are shown, respectively. The results further reveal and enrich the dynamical properties of Eqs. (1) and (2),
and we hope our results will be verified in real experiments inthe future. Besides, on the one hand, continuing the
generalized DT one by one, the higher-order rogue waves of Eqs. (1) and (2) can be generated, and they are likely
to possess the more abundant dynamic properties, such as the“claw”, “claw-line”, and “claw-arc”structures like the
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high-order rogue waves of the standard NLS equation [35]. Onthe other hand, motivated by the remarkable work of
Baronio and Guo et al. for the Manakov equations [29, 30], theinteractions between the rogue waves and the solitons
or the breathers of Eqs. (1) and (2) may also be obtained by thedarboux transformation. Both of these problems are
interesting, and we will investigate them in our future papers.
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(a) (b)

Fig. 1: The first-order rogue waves of the AB system. (a) Rogue wavein A component; (b) Rogue wave inB component. The parameters are
a = 1/10.

(a) (b)

Fig. 2: The second-order rogue waves of the AB system. (a) Rogue wave in A component; (b) Rogue wave inB component. The parameters are
a = 1/10, m1 = 0, n1 = 0.

(a) (b)

Fig. 3: The second-order rogue waves of triangular pattern for the AB system inA component; The parameters area = 1/10, m1 = 500, n1 = 0.

(a) (b)

Fig. 4: The second-order rogue waves of triangular pattern for the AB system inB component; The parameters area = 1/10, m1 = 500, n1 = 0.
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