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Abstract

In this paper, the generalized Darboux transformation faldished to the AB system, which mainly describes
marginally unstable baroclinic wave packets in geophydlaas and ultra-short pulses in nonlinear optics. We
find a unified formula oNth-order rogue wave solution for the AB system by the direariitive rule. In particular,
rogue waves possessing several free parameters from figsctmd order are calculated. The dynamics and some
interesting structures of the rogue waves are illustratealigh some figures.
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1. Introduction

It is well known that the AB system serves as model equatiordescribe marginally unstable baroclinic wave
packets in geophysical fluids| [1], ultra-short optical pupgopagation in nonlinear optics [2], and also mesoscale
gravity current transmission on a sloping bottom in the pobof cold gravity current[3]. It was firstly proposed by
Pedlosky using the singular perturbation theory [1]. SptFeare has been surge of interesting in studying the dyramic
properties of the AB system, such as the single-phase pesotiition depending on a complete set of four complex
parameters [4], the envelope solitary waves and periodiesgb], the Painlevé analysis and conservation laws of the
variable-coéficient AB system|[6], the soliton and breather solutions tigiothe classical Darboux transformation
[@], and the N-soliton solutions by using the dressing me{&.

To our knowledge, there are no reports on rogue waves of theydEm up to the present. While in the past five
years, rogue waves (also known as freak waves, monster willes waves, rabid-dog waves and similar names)
[9-12] have become a hot spot in the research field of oceapbygr14], optics|[15], Bose-Einstein condensates
[16], superfluid[17], capillary flow [18] and even finance[1® rogue wave is localized in both space and time,
and can be depicted as a wave which appears from nowhere seqgpbdars without a trace [13]. Many nonlinear
Schrodinger (NLS)-type equations, for instance, theddath NLS equation [11, 22, 23,/35,/ 36], the Hirota equation
[24], the Sasa-Satsuma equation [25], the high-order digegeneralized NLS equatian [26], the variablefiiognt
NLS equation|[27], the discrete NLS equation![28], the Manak&quations [29-31], the coupled Hirota equations
[32], the three-component NLS equations|[37] have been coafl to possess lower or high-order rogue waves of
diverse structures. Nevertheless, there are relativelypfpers on rogue waves of the non-NLS-type equations, and
a complete understanding of the mysterious and catastropdile wave phenomenon is still far from been achieved,
due to the diicult and hazardous observational conditions [13]. Theegfibis of great interest to investigate rogue
waves of the non-NLS-type AB system, which may be helpfulaéttdr understand the dynamics properties of the
complicated rogue wave phenomenon.

In this paper, we take the AB system in canonical farm [4]

Axq = AB, 1)
By = —%(|A|2)t, )
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wherex andt are semi-characteristic normalized coordinafeandB are the wave amplitudes yielding the normal-
ization condition

A +B? = 1. (3)

WhenA is the real value, Egs. (1) and (2) can be transformed int&Sthe-Gordon equation, and when A is the
complex value, the self-induced transparency system [2, 4]

The aim of the present paper is to research Egs. (1) and @)dhrthe so-called generalized Darboux transfor-
mation (DT) [238], which been proposed by Guo, Ling and Lius peovided a powerful tool to derive general rogue
wave solutions of many nonlinear equations, the NLS eqnd#8], the derivative NLS equation [33], the Manakov
equations/[34], etc. With the help of the generalized DT, ifiethformula ofNth-order rogue wave solution for Eqs.
(1) and (2) is obtained by the direct iterative rule. As aqgtiion, rogue waves of Egs. (1) and (2) from first to second
order are studied. The first-order rogue waves of fundarhpattern, the second-order rogue waves of fundamental
and triangular patterns are displayed by choosifigdint parameters, respectively.

Our paper is organized as follows. In section 2, we consthegeneralized DT to Egs. (1) and (2) under the
normalization conditior{3), then a unified formulahth-order rogue wave solution for Egs. (1) and (2) is obtained
by the direct iterative rule. In section 3, the dynamics amde interesting structures of the rogue waves for Egs. (1)
and (2) from first to second order are illustrated througheséigures. In section 4, we give the conclusion.

2. Generalized Darboux transformation

In this section, we start from the Lax pair of Egs. (1) and @@)ich reads

_ ( -ia 1A

\PX_U‘Il» U_( —%A* |/l )7 (4)
B 1 (-B A

\Pt‘w’v‘m(A;‘ B), (5)

where¥ = (y(x, 1), ¢(x, 1)) is the vector eigenfunction, is the spectral parameter, and asterisk denotes the complex
conjugation. It could be easily verified that the compaitipitonditionU; — V, + UV — VU = 0 gives rise to Egs. (1)
and (2).
Next, let¥; = (1, ¢1) be a basic solution of the Lax pali (4) afd (5) wih= A[0], B = B[0] andA = A;. Thus,
on basis of the above lax pair, the classical DT [20, 21] of. Etjsand (2) can be built [7]

Y[1] = T[1]¥, T[1] = (Al — H[0]A{H[0] ™), (6)
_ e ey ¥a[0]¢[0]
AL = A= 4 = Wy e + w01 ™
2 2 2 2
B[1] = B[O] - 4i(4; — ID[IM[O]I (1400119« — I#2[011“(ly4[011):] ®

(ly1[0]12 + |¢1[0]2)? '
wherey1[0] = yr1, ¢1[0] = ¢4,
(1 0 _ [ ¥1l0]  ¢4[0]" (A1 0
"(01yHm‘(mm-wmryA“(o q)
In the following, suppos&| = (¥1,¢), 1 < | < N be a basic solution of the Lax palir (4) aid (5) with= A[0],
B = B[0] andA = 4;. Then theN-step classical DT of Egs. (1) and (2) can be naturally givefolbows
WIN] = T[NJT[N = 1]--- T[1]¥, T[I] = Al = H[I = 1]JAH[I - 1]7%, 9)
Yn[N - 1]gn[N - 1]°
(lyn[N = 1]12 + [¢n[N - 1]12)°
[nIN = 1]P(IanIN = 1] = IonIN = 1]PP(lgnIN = 1]1%)]
(In[N = 12 + [¢n[N - 1]12)2 ’
2

A[N] = AN — 1] — 4i(Ay — A3)

(10)

B[N] = B[N — 1] - 4i(dy — ) (11)



where
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with (Y[l = 1], &l = 1]) = W[l - 1], and
Yl -1 =Tl -2T[1 - 2]---Ty[2]¥, Tu[K] = T[Klls=a» L1<T <N, 1<k<I-1

According to the above facts, the generalized DT can be e@fir Egs. (1) and (2). To this end, i (11 + 6) be
a special solution of the Lax palr](4) arid (5) witf{0], B[0] and 2 = 1; + 6, and it can be expanded as Taylor series
ats = 0, thatis

Wy = W s pls? s NN o), (12)

K K Ky _ g 1 O _
Where\}‘[l] = (zp[l],¢[l]) _(Isli%k_!ﬁkl’ k=0,1,2,---.

Afterwards, it is easy to find thal'[f] is a special solution of the Lax palt](4) arid (5) with= A[0], B = B[0]
andA = A;. Hence, by means of the formulés (B)-(8), the first-step gdized DT of Egs. (1) and (2) can be directly
obtained.

(1) The first-step generalized DT

Y[1] = T[1]¥, T[1] = (Al — H[O]AH[O] ™), (13)
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wherey1[0] = ¢, ¢4[0] = 4L,
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(2) The second-step generalized DT
It is clear thafT[1]¥; is a basic solution of the Lax palr](4) arid (5) witil], B[1] andA = 1; + 6. So that, by
using the identit;ﬂ'l[l]‘P[lol = 0, the following limit process

T[] azpp+6'P

50 5 50 =¥+ Ty = w1

provides a nontrivial solution of the Lax palrl (4) arid (5) lwi[1], B[1], 1 = A3, and can be adopted to do the
second-step generalized DT, i.e.

Y[2] = T[2]T[1]¥, T[2] = (Al — H[1]A2H[1]™Y), (16)

Azl = All] -4l - 1) (wll[ﬁll][;]f 1|<[¢11][11|2>’ an
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B[2] = B[1] — 4i(A1 — A7) (U112 + [1[1]12)2

(18)

where (/1[1], ¢1[1])T = ¥1[1],
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(3) The third-step generalized DT



In the same way, with the aid of the identities
T = 0, Ta[2)(¥ + Tu1]¥) = 0,
we get the following limit process

im [T[2]T[1]]2|»=A1+5W1 im @ T1[2])(62 + T1[1])P1
6—0 o 6—0 o

= WO (T4[2] + Ta[a) ¥ + Ta[2] T4 (1191 = w,[2],
which is a nontrivial solution of the Lax paitl(4) and (5) wif§2], B[2], 1 = A3, and can lead to the third-step
generalized DT, namely,

Y[3] = T[3]T[2]T[1]¥, T[3] = (Al — H[2]A3H[2]™}), (29)

AlS] = A2] - 4t ~ %) (It//:{/Zl][li]f llc[ﬁzl][;]lz)’ (20)
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(4) TheN-step generalized DT.
Iterating the above processtimes, we ge thé&\-step generalized DT of Egs. (1) and (2)
N-1 N-1 |-
PN - 1] = ¥l 4 Znu]qﬂfl + TaTa KA + -+ T[N = 2] T4 [N - 2] - - Ty[1]9N
I=1 =1 k=1
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By making use of the above formulas12P)4(24), a unified fdenuf Nth-order rogue wave solution for Egs. (1) and
(2) can be obtained by the direct iterative rule. Moreowveis not dificult to convert[(ZR)i(24) into theN x 2N
determinant representation. But, to avoid the calculaticthe determinant of a matrix of very high order, we prefer
to use Darboux transformations of degree one successivalydd of a Darboux transformation of higher degree with
determinant representation. In the next section, the ftasi@2)-{24) will be applied to work out the explicit rogue
wave solutions of Egs. (1) and (2), the dynamics and someeistiag structures of the rogue waves for Egs. (1) and
(2) from first to second order are illustrated through sonmez#ie figures.

3. Rogue wave solutions

From the above section, we can observe that acquiring treguatkeinitial eigenfunction under the seed solutions
enables us to obtain rogue waves of Egs. (1) and (2). To tlisves start from the periodic pane waves
a

Vitaz

Al0] = €, B[0] = - (25)



(aVvli+a2x+t)

whered = N andais a real constant. After that, inserting{25) into the Lak () and [5) and solving
1+a
it, we have
(CleN - Cze*N)eii"
\P = i N 26
! (Cle‘N - CzeN)e‘59 ( )
where ) .
c, . (@+a- V422 + 4ad + 1 + a2)3 c, _ (@+a+ V422 + 4ad + 1 + a?)3
1= s 2 =
V42 + 4a1 + 1+ a? V412 + 4ad + 1+ a2
and
Ne V422 + dad + 1+ a2(2 V1 + a2ax + t + ZN: scf2).
4V1+ 21 =

: : ' a | a | :
Heref is a small real parametes, = my + ing, (Mg, Nk € R). Next, we fixd; = —= + =, and sell = -5 + > + f2in
(28). Then, the vector functio; can be expanded as Taylor seried at 0, that is
Py(f) =Wl 4@t f2 ppledpd (27)
here we firstly present the explicit expressionﬂﬁq]
V2 [0] 30

Y= \/E [0] ~~16
; ) €,
2V1+a2(i —a)

Lo = ——p
Yo2Vitadi-a) ’

yll = —

where

P = (1) VI+a2(i - a)x+ (1 -i)t+ (1-i) Vi+a(i-a),

Pl = (1—i) VI+a2(i —a)x+ (1 —i)t— (1-i) V1+a2(i - a).
With the aid of the symbolic computation tool Maple, it is gas verify that¥” = (y1”, ¢!) is a nontrivial solution
of the Lax pair [#) and{5) with the seed solutiohs] (25) andfiked spectral parametes = —g + |§ So that, by
means of the formulaE(lL4) arid{15), we get

i F1+iH1 1 Gl
All] = (1 + , B[1] = = 28
[1] ( D, ), B[1] Ny (28)
where

F1 = (2a* + 4a? + 2)x° — 4 V1 + a%axt + 2t> — 2a* — 4a® — 2, H; = 4V1+ a2,

D; =—(@*+2a%+ 1)x*+2aVl+a?xt —t? —a*-2a® - 1,

G1 = —a(@® + 1)*x* + 4a%(a + 1)>2tx® — 2a(a® + 1)((3a + 1)t? + ab + 5a* + 7a2 + 3)x°+

41 + a2(a’t? + a® + 4a* + 5a° + 2)xt — at* — (2a° + 8a + Ga)t’ — a° + 6a° + 8a® + 3a,
which is nothing but the first-order rogue wave solution o§E€) and (2), see Fig. 1, and it is direct to check that
(28) satisfies Egs. (1), (2) and (3).
Next, in order to obtain the second-order rogue wave salufdegs. (1) and (2)‘}’[11] should be used to construct

the generating function,

V2(1+1i) i

21+ i
e, il V2(1+i) [1] 10

T12(-apradete ©

T Z
b 12(i- a3 +a?)32™t

where

P = V1 +aZ(i - a)[(a* - 2ia® - 2ia— 1)x® + (3a* - 6ia® - 6ia— 3)x% + (3a* - 6ia® - 6ia— 3)x + (3x + 3)2
— 3a* + 6ia® + 6ia+ 3] + t3 + ((3a* - 6ia® — 6ia — 3)x% + (6a* — 12ia° — 12ia — 6)x + 3a* + 6ia® + 12a°
+ 6ia+ 9t + 6ima® — 6ma* + 12imad + 12ma® + 12ima + 12ma — 6imy + 6ny,

pll = V1+a2(i - a)[(a’ - 2ia® - 2ia— 1)x® — (3a* - 6ia® - 6ia — 3)x* + (3a* - 6ia® — Bia — 3)x + (3x — )2
+ 3a* — 6ia® — 6ia— 3] + t3 + ((3a* - 6ia® — 6ia — 3)x% — (6a* — 12ia° — 12ia — 6)x + 3a* + 6ia® + 12a°
+ 6ia+ 9t + 6imya* — 6ma* + 12imad + 12ma® + 12ima + 12ma — 6imy + 6n;.
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By using the following limit process

 TAecajosijze 21 (F2+ T[]V o 1
i L gy C S = 9l el = )
we have
V2(-1+i) i Vo(-1+i) i
1] = 20 1] = -0 29
villl = s @ e, MM = g apar e, (29)
where

p1= V1+a2[(-al + 2ia’ — 2a° + 6ia® + 6ia® + 2a° + 2ia + 1)x* + (-2a® + 4ia’ - 4a° + 12ia° + 12ia® + 4a°
+ 4dia + 2)x® + (—6a° + 12ia’ — 12a° + 36ia° + 36ia® + 12a° + 12ia + 6)x — t* + ((—6a* + 6ia® — 6a® + 6ia)x?
+ (—6a* + 12ia® + 12ia + 6)x + 6ia® + 6a + 6ia + 6)t? + (3ima* — 3ma* + 6m,a® + 6insa® + 6inja + 6Ma
— 3imy + 3ny)t - 3a8 + 6ia’ — 6a° + 18ia° + 18ia® + 6a° + 6ia + 3] + (3n;a’ — 3ima’ — 3ma® — 3inga®
+9ma® - 9ima® — Imya* — 9ima* — 9imyad + 9nga® — 9inga? — 9Imya? + 3ma — 3ima — 3my — 3ing)x
+ ((4a% - 2ia® + 4a - 2i)x + 2a% — 4ia® + 2a - 4i)t3 + ((4a’ - 6ia® + 8a° — 14ia* + 4a° — 10ia? — 2i)x3
+ (6a’ — 12iab + 6a° — 24ia* — 6a® — 12ia® — 6a)x? — (6ia® + 18ia* + 18ia? + 6i)x + 6a’ + 18a° + 18a°
+ 6a)t + 3impa’ — 3ma’ + 3ma® + 3ina® — 9nya° + 9imya® + Imya® + 9ima® + 9imya® — 9nya® + 9inga?
+9mya? — 3n;a + 3ima + 3my + 3ing,

p2 = V1+a2[(-al + 2ia’ — 2a8 + 6ia® + 6ia® + 2a° + 2ia + 1)x* + (228 - 4ia’ + 4a® — 12ia° - 12ia® — 4a?
— 4ia - 2)x® + (6a® — 12ia” + 12a° — 36ia° — 36ia® — 12a° — 12ia — 6)x — t* + ((—6a* + 6ia® — 6a® + 6ia)x?
+ (6a* — 12ia® — 12ia — 6)x + 6ia® + 6a’ + 6ia + 6)t2 + (3ima* — 3ma* + 6ina® + 6rma® + bma + 6ima
+3ny — 3imy)t — 3a® + 6ia’ — 6a° + 18ia® + 18ia + 6a° + 6ia + 3] + (—3ima’ + 3ma’ — 3ina® — 3mya®
— 9ima® + 9nya® - 9inga® — 9mya* — 9imyad + 9nga® — Imya? — 9ima® — 3imya + 3n;a — 3my — 3ing)x
+ ((4a° - 2ia® + 4a — 2i)x — 2a° + 4ia’ — 2a + 4i)t3 + ((4a’ - 6ia® + 8a° — 14ia* + 4a® — 10ia? — 2i)x°
+ (—6a’ + 12iab — 6a° + 24ia* + 6a% + 12ia® + 6a)x? + (—6ia’® — 18ia* — 18ia® — 6i)x — 6a’ — 18a° — 18a°
— 6a)t — 3ima’ + 3ma’ — 3ma® — 3ina® + 9nya° — 9imya® — Imya® — 9ima® — 9imya® + 9nya® — 9inga?
— 9mya? + 3ma — 3ima — 3my; — 3iny,

then a special solution of the Lax pdit (4) ahfl (5) wAfi], B[1] andA = A; = —a/2+i/2 can be obtained. Thus, the
second-order rogue wave solution of Egs. (1) and (2) canendiy substituting’ (29) an@ (P8) into (17) andl(18).
Here we omit the explicit expressions Af2] and B[2] because it is rather tedious and inconvenient to wriath
down here, but it is not dlicult to verify that they satisfy Eqgs. (1), (2) and (3) with thelp of Maple. Finally, we
show some interesting structures of the second-order ragues, see Figs. 2-4. For the second-order rogue wave
solution of Egs. (1) and (2) under the normalization condit{3), there are two free parameters in the expressions
of A[2] and B[2] excepta, namely,m; andn;. When we setny = 0, n; = 0, the fundamental second-order rogue
waves can be given, see Fig. 2. When the parameter are chpsan#0, n; = 0, the second-order rogue waves of
triangular patterns can be presented, see Fig. 3-4.

4, Conclusion

In this paper, the AB system which is important to describegimally unstable baroclinic wave packets in geo-
physical fluids, ultra-short optical pulse propagation@mlnear optics, and also mesoscale gravity current trisism
sion on a sloping bottom in the problem of cold gravity cutriennvestigated through the so-called generalized DT.
We find a unified formula to construblth-order rogue wave solution for Egs. (1) and (2) by the diitecative rule.

As application, rogue wave solutions from first to seconceorte obtained. With the help of some free parame-

ters, the first-order rogue waves of fundamental pattemséitond-order rogue waves of fundamental and triangular
patterns are shown, respectively. The results furtheratemed enrich the dynamical properties of Egs. (1) and (2),

and we hope our results will be verified in real experimenthafuture. Besides, on the one hand, continuing the

generalized DT one by one, the higher-order rogue waves 8f Eld and (2) can be generated, and they are likely

to possess the more abundant dynamic properties, such &dahé, “claw-line”, and “claw-arc”structures like the
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high-order rogue waves of the standard NLS equation [35]tH@rother hand, motivated by the remarkable work of
Baronio and Guo et al. for the Manakov equations [29, 30]jrteractions between the rogue waves and the solitons
or the breathers of Egs. (1) and (2) may also be obtained bgat#ux transformation. Both of these problems are
interesting, and we will investigate them in our future pape
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(a) (b)

Fig. 1: The first-order rogue waves of the AB system. (a) Rogue vimvecomponent; (b) Rogue wave B component. The parameters are
a=1/10.

Fig. 2: The second-order rogue waves of the AB system. (a) Rogue inaA component; (b) Rogue wave Bicomponent. The parameters are
a=1/10 my =0, np =0.

Fig. 4: The second-order rogue waves of triangular pattern AR system inB component; The parameters are 1/10, my = 500, n; = 0.
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