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Abstract

In this paper, the robust design with an uncertain model of a vibro-impact
electro-mechanical system is done. The electro-mechanical system is com-
posed of a cart, whose motion is excited by a DC motor (motor with con-
tinuous current), and an embarked hammer into this cart. The hammer
is connected to the cart by a nonlinear spring component and by a linear
damper, so that a relative motion exists between them. A linear flexible
barrier, placed outside of the cart, constrains the hammer movements. Due
to the relative movement between the hammer and the barrier, impacts can
occur between these two elements. The developed model of the system takes
into account the influence of the DC motor in the dynamic behavior of the
system. Some system parameters are uncertain, such as the stiffness and the
damping coefficients of the flexible barrier. The objective of the paper is to
perform an optimization of this electro-mechanical system with respect to
design parameters (spring component, and barrier g) in order to maximize
the impact power under the constraint that the electric power consumed by
the DC motor is lower than a maximum value. This optimization is formu-
lated in the framework of robust design due to the presence of uncertainties
in the model. The set of nonlinear equations are presented, and an adapted
time domain solver is developed. The stochastic nonlinear constrained design
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optimization problem is solved for different levels of uncertainties, and also
for the deterministic case.

Key words: electro-mechanical systems, vibro-impact, robust design
optimization, nonlinear dynamics.

1. Introduction

Electro-mechanical systems are common in actual technologies, and their
design is of a great interest in many areas. Many works have been done in
this topic, as [1, 2, 3], trying to characterize the mutual interaction between
electrical and mechanical parts. This interaction leads us to analyze very
interesting nonlinear dynamical systems (see for instance [4, 5, 6, 7, 8,9, 10])
, in which the nonlinearities vary with the coupling conditions, and also af-
fects the two most important variables used to evaluate the performance of
electro-mechanical systems, related to the power consumed by the electrical
part, and the power used into the movement of the mechanical part. As
the mutual interaction between electrical and mechanical parts affects the
two powers used to evaluate the system performance, the coupling effects
must be analyzed in the design optimization problem for electro-mechanical
systems. The present work deals with the robust design optimization of a
vibro-impact electric-mechanical system in order to improve its performance.
The electrical part of the system is a DC motor, and the mechanical part is a
vibro-impact system. It should be noted that, in [11], the equations and the
numerical integration were presented for a similar electric-mechanical sys-
tem for which the embarked mass was replaced by a pendulum and for which
there was no impact. This first work has allowed the electro-mechanical cou-
pling to be analyzed as a function of the mass of the mechanical system.
The analysis of vibro-impact systems is not a new subject, and is frequently
encountered in technical applications of mechanisms. The interest of ana-
lyzing the optimization of their performance is reflected by the increasing
amount of research in this area (see for instance [12, 13, 14|, and also the
book by Ibrahim [15], which is completely devoted to this problem). Besides
the theoretical research in vibro-impact dynamics, the applications have also
been developed, such as percussive actions in rotary drilling, vibration ham-
mer, impact damper, and gears. The vibro-impact dynamics appears also in
several other situations, as for example in earthquakes, where the interest is
the seismic mitigation [16]. The vibro-impact dynamics can be affected by



many factors, and the analysis of vibro-impact dynamical systems requires to
taken into account uncertainties in the computational models that are used
(see for instance [17]).

The objective of the paper is to perform an optimization of this electro-
mechanical system with respect to design parameters that are the stiffness
of the spring component, and the gap, g, of the barrier. The optimization
consists in maximizing the impact power under the constraint that the elec-
tric power consumed by the DC motor is lower than a maximum value. This
optimization is formulated in the framework of robust design due to the pres-
ence of uncertainties in the computational nonlinear dynamics model of the
electro-mechanical system.

This paper is organized as follows. In Section 2 , without introducing
any simplifying hypotheses, the equations are constructed. The initial value
problem is presented for the vibro-impact electro-mechanical system. In Sec-
tion 3 we define the variables of interest for the design optimization. A
sensitivity analysis with respect the system parameters is performed numeri-
cally in Section 4, in order to define the most sensitive parameters, and then
to define what will be the design parameters. The construction of the proba-
bilistic models of the uncertain parameters, and the formulation of the robust
design optimization problem are given in Sections 5 and 6. The numerical
results of the robust design optimization problem are presented in Section 7.

2. Dynamic of the coupled system

First, the elements (motor, cart, hammer, and barrier) of the electro-
mechanical system are presented. The coupling between the motor and the
mechanical system is described, and the time-evolution coupled problem is
mathematically formulated as an initial-value problem.

2.1. Electrical system: DC motor

The mathematical modeling of DC motors is based on the Kirchhoff law
[18]. It is written as

Lée(t)+re(t) + ke a(t) = v,
(1)
Jm Q(t) + by, a(t) — ke c(t) = —7(t),

where t is time, v is the source voltage, ¢ is the electric current, ¢ is the
angular speed of the motor, [ is the electric inductance, j,, is the inertia



DC Motor

Figure 1: Sketch of the DC motor.
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Figure 2: Motor-cart-hammer coupled system. The nonlinear component spring is drawn
as a linear spring with constant kj; and a nonlinear cubic spring with constant k3.

moment of the motor, b,, is the damping ratio in the transmission of the
torque generated by the motor to drive the coupled mechanical system, k.
is the constant of the motor electromagnetic force, and r is the electrical
resistance. Figure 1 shows a sketch of the DC motor. The available torque
delivered to the coupled mechanical system is represented by 7 that is the
component of the available torque vector 7 in the z-direction shown in Fig. 1.

2.2. Motor-cart-hammer coupled system

As described in the introduction, the system is composed by a cart whose
movement is driven by the DC motor, and by a hammer that is embarked into
the cart. The motor is coupled to the cart through a pin that slides into a slot
machined in an acrylic plate that is attached to the cart, as shown in Fig. 2.
The off-center pin is fixed on the disc at distance A of the motor shaft, so that
the motor rotational motion is transformed into a cart horizontal movement.
To model the coupling between the motor and the mechanical system, the



motor shaft is assumed to be rigid. Thus, the available torque vector to the
coupled mechanical system, 7, can be written as

T(t) = A(t) x £(t), (2)

where A = (A cosa(t), A sina(t), 0) is the vector related to the eccen-
tricity of the pin, and where f is the coupling force between the DC motor
and the cart. Assuming that there is a viscous friction between the pin and
the slot, the vector f has two components: the horizontal force that the DC
motor exerts in the cart, f,, and the vertical force, f,, induced by the viscous
friction. The available torque 7 and vertical force f, are written as

7(t) = fu(t) A cosa(t) — fu(t) A sina(t), (3)

fy(t) = cpin A &(t) cosa(t), (4)

where ¢, is the viscous friction. The embarked hammer is modeled as a rigid
body of mass my, and its relative displacement is h with respect to the cart.
In the adopted model, the constitutive equation of the spring component
between the hammer and the cart is written as fi(t) = kn1 h(t) + knz h(t)3.
The rate of nonlinearity of the hammer stiffness is defined as r, = ky3/kp1.
We introduce the natural frequency, wy, of the hammer suspended to the
linear spring with constant kj; such that w, = \/kn1/mp. The horizontal
cart displacement is represented by x. Due to constraints, the cart is not
allowed to move in the vertical direction. The spring-damper element mod-
eling the medium on which the impacts occur, is constituted of a linear spring
with stiffness coefficient k; and a damper with damping coefficient ¢;. The
equations of the cart-hammer-barrier system are

#(t) (me +mu) + h(t) mp + Cem () = — frmp(t) + fu(t) (5)

E(t) mp + h(t) mp 4 Cing B+ kpy B(E) + Ens B2(1) = — famp(t),  (6)

where, cq.; 18 the viscous friction coefficient between the cart and the rail
and ¢ = 26V mpkp1 is the viscous friction coefficient between the cart
and the hammer (g, is the damping ratio). The term f, is the horizontal
coupling force between the DC motor and the cart, and fin,, is the impact
force between the hammer and the barrier, which is written as

Fin(®) = =0(8) (i (2(6) + h(t) + 9) + @ @) +h)) . (7)

>



1, if z(@t)+ht)+g<0 and h(t)+x(t) <0,

t) = 8
o(t) {O, in all other cases, ®)

in which ¢ is defined as the horizontal distance from the hammer (when
a = /2 rad) to the equilibrium position of the barrier. In the model defined
by Eq. (8), an impact starts when x(t) +h(t) is negative and equal to —g and,
h(t) — &(t) < 0. During an impact, the action of the barrier on the hammer
stops as soon as the total velocity A(t) + &(t) becomes positive (the return
of the hammer). Due to the system geometry, z(t) and «(t) are related by
the following constraint

x(t) = A cos (a(t)). 9)

Substituting Egs. (3) to (9) into Eq. (1), we obtain the initial value problem
for the motor-cart-hammer-barrier coupled system that is written as follows.
Given a constant source voltage v, find («, ¢, h) such that, for all ¢ > 0,

le(t) +re(t) + ke = v 10)
Q(t) (jm + (me +mp)A%sin ((t))?) = h(t) (mpA sin (a(t))) — kec(t)
+alt) <bm + &) (me + ma)A? cos (a(t)) sin (a(t))
(e

+CpinA? cos (a(t))? — comA? sin ((t))?

(
(

- (ki(A cos (a(t)) + h+ g) + c;(—da(t) sin (a(t)) + h(t))) A sin (a(t) |
(11)
fz(t)mh — a(t) (mpA sin (a(t))) — &(t) (mpA &(t) cos (a(t)))
+h(t)Cint + knah(t) + knsh® () (12)

— $(t) (ki(A cos (a(t)) + h+ g) + c;(—A &(t) sin (a(t)) + h(t))) ,

, if  Acosa(t)+h(t)+g9<0 and h(t) — Ad(t) cos (at)) <0
o(t) = .
0, 1in all other cases,
(13)
with the initial conditions,

a(0)=0 , a0)=0 , c(0)=



3. Measure of the system performance

At time ¢, the electric power introduced by the electrical grid in the motor

is
min(t) = ve(t). (15)
Let ti and t/ be the instants of begin and end of the j-th impact, such that
for all ¢ belonging to [t} , ], we have i(t) + h(t) < 0. At time ¢, the impact

br"e
] . .
power, 7y, (t), is then written as

Thp(t) = Ki (2(t) + h(1)) (&(6) + h(t), <t <H. (16)
The time average of the impact power during the j-th impact, Eijmp, is written
as .
, 1 te
] = , J (1) dt. 17
oy = g, e a7)

The sum, 7y, of the averages of the impact powers, which is one of the
variable of interest in the design optimization problem, is written as

Nimp

Timp = Z Ejjmp ) (18)
j=1

where Ninyp, is the total number of impacts that occur during time interval
[0,T]. The time average of the electric power consumed in this time interval

1S

1 T
Telec — T/O Win(t) dt. (19)

These two variables, iy, and Teec, are considered for measuring the system
performance. The biggest is miy,p and the smaller is mejee, better will be the
system performance.

4. Sensitivity analysis and choice of the design parameters

To understand the role played by each system parameter in 7y, and mejec,
a sensitivity analysis has been done. The objective was to determine what
were the system parameters that had the biggest influence in 7, and 7Teec,
in order to define those that will be the design parameters for the robust
design optimization problem. The initial value problem defined by Egs. (10)

7



to (14) has been rewritten in a dimensionless form for computation and some
dimensionless parameters were defined. However, in the sensitivity analysis,
these dimensionless parameters were not considered as varying parameters
since they do not have an easy physical interpretation. The varying param-
eters used for the numerical simulations are related with the design of the
cart and the embarked hammer. They are:

e m./my, relation between the hammer mass and the cart mass;

o kp1/my, relation between the linear stiffness of the spring component
and hammer mass (a sort of natural frequency of the hammer);

e ¢, horizontal distance from the hammer (when o = 7/2 rad) to the
equilibrium position of the barrier;

e A eccentricity of the pin. This parameter determines the length of the
cart path.

The other parameters, related with the motor properties and viscous friction
coefficients, are fixed and the values of these fixed parameters are given in
Table 1. The output responses are Tip,, and meec. For computation, the initial

Table 1: Values of the system parameters used in simulations.

Parameter Value Parameter Value
Mme 0.50 Kg v 24V
Th 0.30 1/m? r 0.307 2
Cpin 5.00 Ns/m ! 1.88 x 1074 H
Cont 5.00 Ns/m i 1.21 x 10~* Kg m?
Sint 0.05 b, 1.5452 x 10™* Nm/(rad/s)
k; 106 N/m ke 0.0533 V/(rad/s)
¢ 10® Ns/m

value problem defined by Egs. (10) to (14) has been rewritten in a dimension-
less form. The main objective was to reduce the computation time. Duration
is chosen as T'= 10.0 s. The 4th-order Runge-Kutta method is used for the
time integration scheme for which we have implemented a varying time-step.
The time-step is adapted to the state of the dynamical system according to
the occurrence or the non occurrence of impacts. When the hammer is not
impacting the barrier, the time step used is 10~ s, but when the hammer is
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Figure 3: For the optimal values (m./mp)* and A*: (a) graph of mimp as a function of g
and kp1/mp, (varying in all its range of values), (b) graph of mimp as a function of g and
kn1/myp (varying in [0.06,0.02] and [1250,1953] respectively).

approaching the barrier and when it is impacting it, the time step is chosen
as the value 107® s. Simulations with different values to the initial condi-
tions, were performed. As it was verified that they do not have a significant
influence in 7y, and e, in all simulations the initial conditions were taken
as constant, given by Eq. (14). Concerning the sensitivity analysis, 20,000
numerical simulations have been carried out combining the following values
of the parameters: 10 values for m./my, selected in the interval [0.10,2.00],
10 values for kj;/my, in [657,4410] rad?/s?, 10 values for g in [0,0.02] m,
and 20 values for A in [0.003,0.013] m. The largest value of Ty, obtained
with such numerical simulations, is 5,690 W, and is reached for the follow-
ing values of the parameters: (m./my)* = 0.40, (ky1/mp)* = 1,580 rad?/s?,
g =0.011 m, and A* = 0.013 m. With these values, the average of the con-
sumed electric power is Tege. = 3.93 W. For A = A* and m./my, = (m./mp)*,
Fig. 3 displays minp as a function of parameters g and kp1/my. In Fig. 3(a),
g and kj1/my, vary in all its range of values, and in Fig. 3(b), they vary in
[0.06,0.02] and [1250,1953] respectively. These figures show that, the op-
timal value of the design parameter correspond to a global maximum. The
influence of each parameter in 7y, and e, can be observed through the
graphs plotted in Figs. 4 to 7. Regarding all the graphs of iy, and meec as
a function m./my,, ku1/my, g and A, it can be seen that small variations on
g, kn1/my, and A induce large variations for iy, and for mee., but the same
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Figure 4: (a) Graph of mim, as a function of m./my, with (kni/mp)*, g*, and A*. (b)
Graph of mimp as a function of kpni/my with (m./ms)*, g%, and A*.
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Figure 5: (a) Graph of mimp as a function of g with (m./my)*, (kp1/mn)*, and A*. (b)
Graph of 7imp as a function of A with (me/mp)*, (kp1/mp)*, and g*.
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Figure 6: (a) Graph of meec as a function of m./my, with (kn1/mp)*, g*, and A*. (b)

Graph of 7ejec as a function of kp1/my with (m./mp)*, g*, and A*.
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Figure 7: (a) Graph of mejec as a function of g with fix (m./mp)*, (kn1/mn)*, and A*. (b)

Graph of 7ejec as a function of A with fix (m./mp)*, (kn1/mp)*, and g*.
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phenomenon does not occur with respect to the parameter m./my,. Thus,
while 7y, and Teec are not very sensitive to m./my, they are sensitive to
kni/myp, g and A. It is also seen, that two different kinds of sensitivity can
be distinguished among these three parameters. For parameters kp;/my, and
g, it can be seen that m,, and Tee. reach their maxima when kjyy/my, and
g are equal to 1,580 rad?/s* and 0.011 m respectively. For parameter A
varying in its range of values, Figs. 5(b) and 7(b) show that the highest is A,
the highest are iy, and meee. It has been considered as not necessarily to
verify the behavior of iy, and 7. for a larger range of A because the value
A = 0.013 m is already sufficiently large when compared with the system
dimensions and the motor properties. It should be noted that if parameter
A were increased more then, the nonlinearities would increase more, that is
not the objective of the analysis. Considering that m./m; does not have
a significant influence in 7y, and 7eec, and considering that the sensitivity
of the parameter A is easily predictable, these two parameters will not be
considered as design parameters in the robust design optimization problem.
Only parameters g and kj; /my, will thus be considered as design parameters.

5. Construction of the probability model

As explained in the introduction, this paper deals with the robust design
of the electro-mechanical system in presence of uncertainties in the compu-
tational model. The three parameters that are assumed to be uncertain are
kn1, k; and ¢;, which are modeled by the independent random variables Kj1,
K; and C;. The probability distribution of each one is constructed using the
Maximum Entropy Principle [19, 20]. This principle allows the probability
distribution of a random variable to be constructed using only the available
information, avoiding the use of any additional information that introduces
a bias on the estimation of the probability distribution. If a large amount
of experimental data are available, then the nonparametric statistics can be
used. If there are no available experimental data, or if there are only a few
experimental data, then the Maximum Entropy from Information Theory is
the most efficient tool for constructing a prior probability model for which
its hyperparameters are used as sensitivity parameters if there are no exper-
imental data, or, are estimated in using the parametric statistics if a few
experimental data are available. The Maximum Entropy Principle states:
out of all probability distributions consistent with a given set of available
information, choose the one that has maximum uncertainty (the Shannon

12



measure of entropy). The available information of the random variables is

defined as

1. Ky, K; and C; are positive-valued random variables,

2. the mean values are known: F{K;} = K,, E{C;} = C; and E{K}1} =
Khl?

3. in order that the response of the dynamical system be a second-order

stochastic process, we impose the following conditions: ||E{log K;}|| <
00, |[E{log C;}|| < oo and ||E{log Kp1}|| < oc.

Thus, the Maximum Entropy Principle for each random variable K;, C;, and
Kp, yields a Gamma distribution (see [21]),

where 1}y 15)(a) is an indicator function that is equal to 1 for a € [0, 400)
and 0 otherwise, and where

e ['is the Gamma function: I'(b) = / "= exp(—t)dt;
0

° )= % is the coefficient variation of the random variable, p is its mean
value representing K, C;, or K,;,, and o is its standard deviation.

6. Robust design optimization problem

In order to formulate the robust design problem, the set of all the sys-
tem parameters is divided into three subsets. The first subset is the fam-
ily of the fixed parameters that is represented by the vector ps, = { v,
L, 7y Jms ey by Cpiny  Ceats Sints Thy Me, mp, A}, The second one is the
family of the design parameters that is represented by the vector pges =
{K,1/mn, g}. The third one is the family of the uncertain parameters
that is represented by the random vector Py, = {K;, C;, Ku1}. Since
P .. is a random vector, the outputs of the electro-mechanical system are
stochastic processes and, consequently, Timp(Pdes, Punc) a1d Telee(Pdes, Punc)s
become random variables Il (Pdes) = Timp(Pdes, Punc) and Ilgec(Pdes) =
Telec (Pdes, Punc). The cost function of the robust design optimization prob-
lem is defined by

J(pdes) = E{Himp(pdes)} . (21)

13



The robust design optimization problem is written as

piry = argmax J(Paes) , (22)

Pdes Ecad

in which Coy = {Pdes € Pdes; F{etec(Pdes)} < Celec }, Where Pge is the admis-
sible set of the values of pges, and where cge. is an upper bound.

7. Results of the robust optimization problem

The hyperparameters dg, and d¢,, which control the level of uncertainties
for K; and C; are fixed to 0.1. The robust design optimization problem is
then solved for three levels of uncertainties for K3, defined by the following
values of the hyperparameters dg,, = 0, 0x,, = 0.1, and dx,, = 0.4. The
optimization problem is also considered whitout uncertainties in the systems
parameters, that is, the deterministic case (0k,, = dx, = d¢, = 0). For
Pdes € Cuq, the cost function is estimated by the Monte Carlo simulation
method using 100 independent realizations of random vector Py, following
its probability distribution. The optimization problem (defined by Eq. (22))
is solved using the trial method for which the admissible set C,; is meshed
as follows: for K, ,/my, 13 values are nonuniformly selected in the interval
[703,3830], and for g, 20 nonuniform values in [0,0.038]. Thus, 26,000
numerical simulations have been carried out to solve optimization problem
for each level of uncertainties. For computation, the initial value problem,
defined by Egs. (10) to (14) and rewritten in a dimensionless form, is solved
using the time-integration scheme described in Section 4 with duration T =
10.0 s. The values of the fixed parameters are m, = 0.3 Kg, m;, = 0.5 Kg,
A = 0.01 m, and the others are given in Table 1. Upper bound cee. is
fixed to the value 6.00 W. For the deterministic case, the components of the
optimal solution p3r are (K,,/mp)° = 1,580 rad?/s* and ¢g°?* = 0.011 m.
For case with uncertainties, for which 0k, is fixed to 0.1, and d¢, to 0.1,
we obtain, for dx,, = 0, (K,;/ms)°"" = 957 rad?/s* and ¢°®* = 0.018 m,
for dr,, = 0.1, (K,1/mp)® = 1,950 rad?/s* and ¢°P* = 0.008 m, and for
Ok, = 0.4, (K, /mp)°P" = 2,360 rad?/s? and g°P* = 0.008 m. Figures 8 and 9
display the graphs of the cost function defined by Eq. (21) as a function of the
design parameter for these four cases. These figures show that, for each case,
the optimal value of the design parameter correspond to a global maximum
in C,y. The role played by uncertainties on the optimal values of the design
parameters can be analyzed through Figs. 10 and 11, which display the graphs

14
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Figure 8: (a) Cost function as function of the design parameters for the deterministic case.

(b) Cost function as function of the design parameters for the case in which dx, = d¢, = 0.1
and 0g,, = 0.
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Figure 9: (a) Cost function as function of the design parameters for the case in which

0k, = 0c; = 0K,, = 0.1. (b) Cost function as function of the design parameters for the
case in which dx, = éc, = 0.1 and 0k, = 0.4.
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Figure 10: (a) Cost function as function of g with (K,;/my)°P". (b) Cost function as
function of K, /my with g°P*. In both graphs, the E{Himp(pggz)} is highlighted for each
level of uncertainties with markers.

9 = E{ip ((Kpy /m), 9) b Ky /g = E{ILinp (K1 /i, g°P) Y, g >
E{Metec (K1 /mn), g)}, and Ky /my, = E{eiec(K 1 /mu, g°*)}. These
figures show that the optimal design point strongly depends on the level of
uncertainties. In particular, it can be deduced that the mean value of the
electric power increases with the increase of the gap.  The robustness of
the optimal design point, pﬁ‘e’:, can be analyzed in studying the evolution
of the coefficient variation, dr,, (Pg), of random variable iy, (pih) as a
function of the uncertainty level. However, in order to better analyze the
sensitivity of the responses with respect to the uncertainty level, we have
constructed Fig. 12 that displays the graphs g — o, ((K};/mn)°"", g) and
K,y /mp = On,,, (K, /i, g°). For each level of uncertainties, it can be
seen that the value &y, (Poe) occurs in a region for which the two following
functions g = o, (K41 /ma)™, g) and Ky /mp = Oy, (Kpy /m, , g°F")
are minima. This means the optimal design point is robust with respect to
uncertainties.

8. Conclusions

In this paper, the formulation and the solution of a robust design op-
timization problem have been presented for a nonlinear electro-mechanical
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is highlighted for each level of uncertainties with markers.

17

t
Paes)



vibro-impact system in presence of uncertainties in the computational model.
Since this nonlinear electro-mechanical system is devoted to the vibro-impact
optimization, the time responses exhibit numerous shocks that have to be
identified with accuracy, and consequently, a very small time step is required.
We have thus chosen an explicit time-integration scheme and not an implicit
one. Nevertheless, due to the presence of low-frequency contributions in the
time responses, a long time duration is required, which will imply a huge
number of integration time step if the time step were chosen constant. This
is the reason why we have implemented an adaptive integration time step.
It was one of the difficulties encountered for the solver implementation. The
use a varying time-step integration scheme was not the only strategy adopted
to reduce the computation time. The initial value problem has been rewrit-
ten in a dimensionless form, which reduced the computation time of each
simulation from 8 minutes to 5 minutes on average. Furthermore, a cluster
with 20 computers has been used to to parallelize the simulations carried
out in the sensitivity analysis and in the optimization problem. Observing
the results of numerical integration, as time histories and phase diagrams,
some interesting phenomena were verified, as for example bifurcation. Bi-
furcation is a typical nonlinear phenomena, and it is frequently discussed in
many works (see for instance [22]). In the present paper, it appears because
depending on the values of the system parameters, the system response will
have the occurrence or the non occurrence of impacts. But this topic is
an ongoing research that will be object of a future work. The construction
of the solution for the design optimization problem, has been prepared by
carrying out a sensitivity analysis with respect all the possible design pa-
rameters. This pre-analysis has allowed for reducing the number of design
parameters to two parameters. Consequently, a random search algorithm or
a genetic algorithm was not necessary, and we have thus used a trail method.
It should be noted that in the framework of a robust analysis formulated in
the context of the probability theory, and taking into account the types of
nonlinearities in the dynamical system, the Monte Carlo numerical simula-
tion method has been used, and this introduces a significant increase of the
numerical cost. The design optimization problem of the dynamical system
without uncertainties yields an optimal design point that differs from the
nominal values, and which can not be determined, a priori, without solving
the design optimization problem. In addition, the robust analysis that has
been presented demonstrates the interest that there is to take into account
the uncertainties in the computational model. The optimal design point that
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has been identified in the robust design framework significantly differs from
design point obtained with the computational model without uncertainties.
For this electro-mechanical system, it has been seen that, the minimum value
of the dispersion of the random output occurs in the region of the optimal
design parameters, which means that the optimal design point is robust with
respect to uncertainties.
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