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Abstract

This paper presents a full probabilistic description of the solution of random SI-type epidemio-
logical models which are based on nonlinear differential equations. This description consists of
determining: the first probability density function of the solution in terms of the density func-
tions of the diffusion coefficient and the initial condition, which are assumed to be independent
random variables; the expectation and variance functions of the solution as well as confidence
intervals and, finally, the distribution of time until a given proportion of susceptibles remains in
the population. The obtained formulas are general since they are valid regardless the probabil-
ity distributions assigned to the random inputs. We also present a pair of illustrative examples
including in one of them the application of the theoretical results to model the diffusion of a
technology using real data.

Keywords: Random SI-type epidemiological models, first-order nonlinear random differential
equations, Random Variable Transformation technique, first probability density function

1. Motivation

Due to the non-deterministic nature of phenomena that appear in areas like epidemiology,
biology, engineering, physics, chemistry, social sciences, the mathematical description of such
phenomena is often modelled by random/stochastic differential equations. This approach is sup-
ported because of input parameters (coefficients, forcing terms, initial and/or boundary condi-
tions) that appear in such equations have specific real interpretations but their values are not
known with certainty. Examples of such situations are the contagion coefficient in epidemiology,
the diffusion coefficient in thermodynamics, the coefficient of viscosity in fluid mechanics, the
propagation coefficient in the theory of wave propagation, etc. In a first approach, these math-
ematical equations can be treated as deterministic using, as representative value of each input
parameter, the average value of a set of sampled observations experimentally obtained. This can
be done in specific problems as those ones which admit repeated trials in laboratories or environ-
ments under control. Things become more complicated when only one single sample is available
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as often happens in epidemiology or social sciences. Even in the former case where the exper-
iment can be performed repeatedly, then the mean values found could vary. If this variation is
large, the mean value actually used may be non-representative. This motivates the consideration
of input parameters as random variables (r.v.’s) or stochastic processes (s.p.’s) rather than deter-
ministic constants or functions, respectively. It is thus advantageous to consider the equations
that describe such models as being random rather than deterministic.

In dealing with differential equations with uncertainty, it is important to point out that two
classes of equations are possible, namely, stochastic differential equations (s.d.e.’s) and ran-
dom differential equations (r.d.e.’s). Both types of differential equations are distinctly different
and they require completely different techniques for analysis and approximation. On the one
hand, s.d.e.’s are forced by an irregular process such as a Wiener process or Brownian motion.
S.d.e.’s are typically written in terms of stochastic differentials, but they are interpreted as Itô or
Stratonovich stochastic integrals [1, 2]. On the other hand, r.d.e.’s are those in which random
effects are manifested directly in input parameters which are assumed to have specific probabil-
ity distributions such as uniform, beta, exponential, gamma, etc. [3, 4]. Throughout this paper
r.d.e.’s will be considered only. This is motivated because in our model the initial condition rep-
resents a rate lying in the interval [0, 1] and beta distribution is a flexible and appropriate choice
to model it.

Solutions of r.d.e.’s are s.p.’s, say X(t;ω), rather than classical functions. Usually, time vari-
able t lies in [0,∞[ and ω ∈ Ω, where (Ω,F,P) is a probability space. For simplicity, the
ω-parameter is hidden and the s.p. is denoted by X(t). In contrast to what happens in deal-
ing with deterministic differential equations, where the main aim is computing the solution, in
dealing with r.d.e.’s the computation of the mean, E[X(t)], and the variance, V[X(t)], is also a
goal in itself. Furthermore, a more desirable goal is to compute the first probability distribution
(1-p.d.f.), say f1(x, t), of X(t) since from it one can determine all its statistical moments

E[(X(t))n] =

∫ ∞

−∞

xn f1(x, t) dx, n = 0, 1, 2, . . . (1)

In particular, using (1) the mean and variance can be obtained straightforwardly. Further im-
portant information such as the probability that X(t) lies in specific intervals of interest or its
quantiles can also be obtained by f1(x, t).

Random Variable Transformation (R.V.T.) method is a powerful technique to compute the
p.d.f. of a r.v. which results from the mapping of another r.v. [3, p.21–25], [5]. In the context
of differential and difference equations, R.V.T. method has been recently applied in order to
determine the 1-p.d.f. of random ordinary differential equations [6, 7], random partial differential
equations [8, 9, 10, 11] and random difference equations [12]. In [13], a number of illustrative
examples show that R.V.T. technique can still be useful when only approximations of the solution
s.p. are available.

In this paper, we are interested in applying R.V.T. technique to study a class of random
nonlinear models that mainly appear in epidemiology to model a type of communicable diseases,
usually referred to as SI-type models. This kind of models are useful to study simple epidemics
where the population consists of individuals that are either susceptibles (S) or infected (I). In its
basic formulation, it is assumed that the total population size, say n, is constant for all time t.
This hypothesis is plausible during certain time-intervals particularly in developed countries as
well as for populations under control. SI-models can be stated through the following initial value
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problem (i.v.p.) {
S ′(t) = −

β
n S (t)[n − S (t)] , t > 0,

S (0) = m,
(2)

where, S (t) denotes the number of susceptibles at the time instant t, m represents the number
of susceptibles at the beginning (that corresponds to t = 0) over the total population size n, and
β > 0 denotes the rate of decline in the number of susceptibles. Illustrative examples where
deterministic and random SI-models are applied in different biological contexts can be found in
[14, 15, 16, 17, 18].

In [19], authors present a random SI-model where the unknown S (t) is rewritten in terms of
the proportion of susceptibles at time t, P(t) = S (t)/n, which leads the following i.v.p.{

P′(t) = −β P(t)[1 − P(t)] , t > 0,
P(0) = P0,

(3)

where P0 = m/n ∈ [0, 1]. In this manner, as the initial condition is assumed to be a r.v., authors
suppose throughout the paper that P0 has a beta distribution whose domain is the interval [0, 1].
For simplicity, the nature of the positive parameter β > 0 is assumed to be deterministic. In a first
step, authors establish a number of theoretical results which are applied to model the prevalence
of people with HIV antibodies in a representative sample of homosexual men.

Apart from epidemiology, SI-model encounters fruitful applications in many different frame-
works since the population of infected is not restricted to the spread of diseases but it can also
be interpreted as the population that, for instance, acquires a new technology. In this context,
the susceptibles population represents potential customers being the remainder of the population
who have already adopted the new technology [20, 21].

In this paper we will deal with the random SI-model (3), where uncertainty is considered in
both, the initial condition P0 and the rate of decline in the proportion of susceptibles β. To con-
duct this study we will take advantage of the R.V.T. method. In order to provide more generality
to our analysis, in a first stage, we will permit that both positive random inputs P0 and β have
any probability distribution. In a second stage, we will illustrate by means of two examples the
theoretical results established. In particular, we will model the evolution of the user penetration
rate of mobile phone lines in Spain over the last few years.

The paper is organized as follows, in Section 2, we introduce a number of results related to
R.V.T. method that will be required throughout the paper. Section 3 is devoted to compute the
1-p.d.f. and the mean and variance functions of the solution s.p. of the SI-model (3). Then, using
this information, confidence intervals are also included. This section ends by providing a general
formula to compute the distribution of time until a given proportion of susceptibles remains in
the population, which is an information of great interest in applications. In Section 4, a pair of
examples illustrate the theoretical results developed in Section 3. Conclusions are drawn in the
last section.

2. Preliminaries

For the sake of clarity in the presentation, in this section we introduce a number of results
that will be used throughout this paper.

The Random Variable Transformation method (R.V.T.) is a probability technique that permits
to calculate the p.d.f., fY (y), of a r.v. Y which comes from mapping another r.v., X, whose p.d.f.
is known. The scalar version of R.V.T. method establishes that if:
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• X is an absolutely continuous r.v. on the domain DX = {x : x1 ≤ x ≤ x2},

• fX(x) denotes the p.d.f. of r.v. X,

• r : DX ⊆ R −→ R is a monotone increasing (decreasing) mapping that transforms r.v. X
into r.v. Y , i.e., Y = r(X), and

• there exists the inverse function of mapping r, s(y) = x, which has continuous derivative on
the domain DY = {y : y1 = r(x1) ≤ y ≤ r(x2) = y2} (DY = {y : y1 = r(x2) ≤ y ≤ r(x1) = y2}),

then, the p.d.f. of r.v. Y is given by

fY (y) = fX(s(y))
∣∣∣s′(y)

∣∣∣ , y ∈ DY . (4)

A generalization of the scalar R.V.T. method can be found in [5, 22]. It consists of splitting
the domain of r.v. X into a number of subintervals where the mapping r is monotone and then
applying (4) in each piece.

Now, we establish two results that will be used later to study the SI-model (3). They will be
obtained by applying R.V.T. formula (4) for particular cases of mapping r.

Proposition 1 (R.V.T. technique: inverse-vertical translation transformation). Let c ∈ R and
X be an absolutely continuous real r.v. defined on a probability space (Ω,F,P), with p.d.f. fX(x).
Assume that X is a non-zero r.v. and let us denote by DX the domain of r.v. X, where

DX = I−x ∪ I+
x ,

 I−x = {x = X(ω) ∈ R : −∞ < x < 0 , ω ∈ Ω} ,

I+
x = {x = X(ω) ∈ R : 0 < x < +∞ , ω ∈ Ω} .

Then, the p.d.f. fY (y) of the inverse-vertical translation transformation Y = 1
X + c is given by

fY (y) =
1

(y − c)2 fX

(
1

y − c

)
, y ∈ DY = I−y ∪ I+

y ,

 I−y = {y ∈ R : y < c} ,

I+
y = {y ∈ R : y > c} .

(5)

Proof Let us consider the mapping y = r(x) = 1
x + c, that is monotone in each subinterval

−∞ < x < 0 and 0 < x < +∞. So, its inverse function exists and takes the form

x = s(y) =
1

y − c
, (6)

being

s′(y) = −
1

(y − c)2 , (7)

its first derivative. Then, by applying (4) in each subinterval and taking into account (6)–(7), one
gets expression (5). Note that the computation of the domain DY follows straightforwardly since
the transformation r(x) is decreasing monotone in each subinterval.

�
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Proposition 2 (R.V.T. technique: inverse-horizontal translation transformation). Let d ∈ R
and X be an absolutely continuous real r.v. defined on a probability space (Ω,F,P), with p.d.f.
fX(x). Assume that X − d is a non-zero r.v. and let us denote by DX the domain of r.v. X, where

DX = I−x ∪ I+
x ,

 I−x = {x = X(ω) ∈ R : −∞ < x < d , ω ∈ Ω} ,

I+
x = {x = X(ω) ∈ R : d < x < +∞ , ω ∈ Ω} .

Then, the p.d.f. fY (y) of the inverse-horizontal translation transformation Y = 1
X−d is given by

fY (y) =
1
y2 fX

(
1
y

+ d
)
, y ∈ DY = I−y ∪ I+

y ,

 I−y = {y ∈ R : y < 0} ,

I+
y = {y ∈ R : y > 0} .

(8)

Proof Let us consider the monotone mapping y = r(x) = 1
x−d , that is monotone in each subinter-

val −∞ < x < d and d < x < +∞. So, its inverse function exists and takes the form

x = s(y) =
1
y

+ d , (9)

being

s′(y) = −
1
y2 , (10)

its first derivative. Then, by applying (4) to each subinterval and taking into account (9)–(10),
one gets the expression (8). The computation of the domain DY follows straightforwardly since
the transformation r(x) is decreasing monotone in each subinterval.

�

Later, the following generalization of R.V.T. technique in two dimensions [5, 22] will be
needed.

Theorem 1. Let X = (X1, X2) be a two-dimensional r.v. with joint p.d.f. fX1,X2 (x1, x2). Let Y =

(Y1 = r1(X1, X2),Y2 = r2(X1, X2)) be a two-dimensional r.v. where y1 = r1(x1, x2), y2 = r2(x1, x2)
is a bijective continuous mapping whose inverse is given by x1 = s1(y1, y2), x2 = s2(y1, y2).
Let us assume that the partial derivatives ∂x1

∂y1
, ∂x1
∂y2

, ∂x2
∂y1

and ∂x2
∂y2

are continuous and the jacobian

J = ∂x1
∂y1

∂x2
∂y2
−

∂x2
∂y1

∂x1
∂y2
, 0. Then, the joint p.d.f. fY1,Y2 (y1, y2) of the random vector Y = (Y1,Y2) is

given by
fY1,Y2 (y1, y2) = fX1,X2 (s1(y1, y2), s2(y1, y2)) |J|. (11)

We close this section stating a result that will be crucial later. It has been recently established
in [7] and it provides a comprehensive study to compute the 1-p.d.f. of the solution s.p. to the
following random linear i.v.p.

Ż(t) = A Z(t) + B, t > t0,
Z(t0) = Z0,

}
(12)

where inputs Z0, B and A are assumed to be distinct r.v.’s. In our subsequent analysis just the
following particular case of (12), that corresponds to B = 0 with probability 1, will be required.
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Proposition 3 ([7], Case I.3). Let us consider the linear random i.v.p.

Ż(t) = A Z(t), t > t0,
Z(t0) = Z0,

}
(13)

where inputs Z0 and A are assumed to be absolutely continuous r.v.’s on a common probability
space (Ω,F ,P). Let us denote by

DZ0 =
{

z0 = Z0(ω), ω ∈ Ω : z0,1 ≤ z0 ≤ z0,2
}
,

DA = { a = A(ω), ω ∈ Ω : a1 ≤ a ≤ a2} ,
(14)

their respective domains and fZ0,A(z0, a) their joint p.d.f. Then, the 1-p.d.f. of the solution s.p.
Z(t) of (13) is given by

f1(z, t) =
1

t − t0

∫ ea2(t−t0)

ea1(t−t0)
fZ0,A

(
z
ξ
,

ln(ξ)
t − t0

)
1
ξ2 dξ, z1 ≤ z ≤ z2, ∀t > t0, (15)

where
z1 = z0,1ea1(t−t0), z2 = z0,2ea2(t−t0), if z0,1 > 0,
z1 = z0,1ea2(t−t0), z2 = z0,2ea2(t−t0), if z0,1 z0,2 ≤ 0,
z1 = z0,1ea2(t−t0), z2 = z0,2ea1(t−t0), if z0,2 < 0.

(16)

If t = t0,

f1(z0, t0) =

∫ a2

a1

fZ0,A(z0, a) da, z0,1 ≤ z0 ≤ z0,2.

3. Computing the 1-p.d.f. and further statistical information to the random SI-model

In this section we will determine important statistical information associated to the solution
s.p., P(t) of the random SI-model (3), namely, the 1-p.d.f. and the expectation and variance func-
tions. Based on these quantities, we will be able to construct confidence intervals for P(t) at any
fixed confidence level. Finally, we will obtain the p.d.f. of the time until a given proportion of
susceptibles remains in the population. This function provides epidemiologists crucial informa-
tion that helps them, for example, to determine whether a disease is under control or it could
become a pandemic.

3.1. First probability density function (1-p.d.f.)
This section is devoted to compute a probabilistic solution of the nonlinear SI-model (3)

where the inputs parameters, P0 and β, are assumed to be independent positive r.v.’s, being

DP0 =
{

p0 = P0(ω), ω ∈ Ω : 0 ≤ p0,1 ≤ p0 ≤ p0,2 ≤ 1
}
,

Dβ = { β = β(ω), ω ∈ Ω : 0 ≤ β1 < β < β2} ,
(17)

their respective domains. Hereinafter, fP0 (p0) and fβ(β) will denote their p.d.f.’s, respectively.
Notice that in contrast to the SI-model studied in [19], we permit the contagion parameter β
be random. This assumption is realistic since numerous physical, genetic, environmental, etc.,
factors, which usually involve uncertainty, are naturally embedded in β.

In order to obtain the probabilistic solution of i.v.p. (3), i.e., the 1-p.d.f. of the solution s.p.
P(t) of i.v.p. (3), in a first step we will transform (3) into a linear i.v.p. that adapts to expression
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(12) and then, the resulting i.v.p. will be again transformed to be better identified with model
(13). Therefore the results established in Proposition 3 will be applicable. To this end, let us first
consider the change of variable

Q(t) =
1

P(t)
, t > 0 , (18)

then, the problem (3) can be recast as

Q′(t) = βQ(t) − β , t > 0 , (19)

Q(0) =
1
P0

. (20)

Note that, regarding the i.v.p. (12), we have taken t0 = 0. Nevertheless, r.d.e. (19) does not fit
yet the pattern (12) since the random diffusion coefficient A and the random forcing term B must
be distinct. To accommodate equation (19) to model (12), we introduce a new change of variable

H(t) = Q(t) − 1 . (21)

In this manner, the i.v.p. (19)–(20) reads

H′(t) = βH(t) , t > 0 , (22)

H(0) =
1
P0
− 1 , (23)

which corresponds to the i.v.p. (13) with the identification:

Z0 =
1
P0
− 1, A = β, Z(t) = H(t), t0 = 0. (24)

As the p.d.f. fP0 (p0) of the random input P0 is assumed to be known, the p.d.f. of the random
initial condition Z0 defined in (24) can be computed by Proposition 1, and hence we can take
advantage of the results established in Proposition 3. So, for t > 0 fixed, the application of
formula (15) permits us to compute the p.d.f. of the r.v. H = H(t), which corresponds to the
solution s.p. H(t) of the i.v.p. (22)–(23) evaluated at that t > 0

fH(h) =
1
t

∫ ea2 t

ea1 t
fZ0,A

(
h
ξ
,

ln(ξ)
t

)
1
ξ2 dξ . (25)

Taking into account (24) and (17) for the computation of the domain of integration and that P0
and β are assumed to be independent r.v.’s, (25) can be written as

fH(h) =
1
t

∫ ea2 t

ea1 t
fZ0

(
h
ξ

)
fA

(
ln(ξ)

t

)
1
ξ2 dξ =

1
t

∫ eβ2 t

eβ1 t
fP0

(
ξ

h + ξ

)
fβ

(
ln(ξ)

t

)
1

(h + ξ)2 dξ , (26)

where in the last step Proposition 1 has been applied to X = P0, Y = Z0 and c = −1.
To conclude, we need to compute the p.d.f. fP(p) of r.v. P = P(t), being t > 0 arbitrary but

fixed. This can be done taking into account that by (18) and (21)

P(t) =
1

H(t) + 1
,
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for each t > 0, and applying Proposition 2 to X = H, Y = P, d = −1 and fX(x) = fH(h), where
fH(h) is given by (26). This yields

fP(p) =
1
p2 fH

(
1
p
− 1

)
=

1
t

∫ eβ2 t

eβ1 t
fP0

(
p ξ

1 − p + p ξ

)
fβ

(
ln(ξ)

t

)
1

(1 − p + p ξ)2 dξ .

As the previous development holds for every t > 0, we conclude that the 1-p.d.f. of the
solution s.p. P(t) of the i.v.p. (3) is given by

f1(p, t) =
1
t

∫ eβ2 t

eβ1 t
fP0

(
p ξ

1 − p + p ξ

)
fβ

(
ln(ξ)

t

)
1

(1 − p + p ξ)2 dξ . (27)

Note that if t = 0, P(0) = P0 and then f1(p, 0) is just the p.d.f. of the random input P0.
Finally, it is important to point out that expression (27) is general, since it holds regardless

the specific p.d.f.’s assumed for the model inputs P0 and β. It confers (27) great flexibility from a
practical standpoint where a wide range of p.d.f.’s can be considered in order to deal with specific
models.

Remark 1. From a practical point of view, in dealing with the SI-type epidemiological model
(3), it is natural to assume that the initial condition P0 and the rate of decline β are independent
r.v.’s. However, expression (27) can also be generalized to the case that these input parameters
are assumed to be dependent r.v.’s. In fact, let us apply Theorem 1 to X1 = P0, X2 = β, Y1 = Z0,
Y2 = A and

Z0 = r1(P0, β) =
1
P0
− 1 ⇒ P0 = s1(Z0, A) =

1
Z0 + 1

,

A = r2(P0, β) = β ⇒ β = s2(Z0, A) = A.

Notice that the jacobian of mapping s(Z0, A) = (s1(Z0, A), s2(Z0, A)) is given by

J =
∂s1(Z0, A)

∂Z0
×
∂s2(Z0, A)

∂A
−
∂s2(Z0, A)

∂Z0
×
∂s1(Z0, A)

∂A
= −

1
(Z0 + 1)2 , 0.

Hence, according to (11) the joint p.d.f. of (Z0, A) is given by

fZ0,A(z0, a) = fP0,β

(
1

z0 + 1
, a

)
1

(z0 + 1)2 . (28)

Now, instead of obtaining the p.d.f. fH(h) given by (26) where independence between the inputs
P0 and β has been used, we can obtain an analogous expression in the general case that both r.v.’s
are assumed to be dependent with joint p.d.f. fP0,β(p0, β). Indeed, by (25) and (28) one gets

fH(h) =
1
t

∫ ea2 t

ea1 t
fP0,β

(
ξ

h + ξ
,

ln(ξ)
t

)
1

(h + ξ)2 dξ . (29)

From this expression and following an analogous development as we showed previously, it is
straightforwardly to obtain

f1(p, t) =
1
t

∫ eβ2 t

eβ1 t
fP0,β

(
p ξ

1 − p + p ξ
,

ln(ξ)
t

)
1

(1 − p + p ξ)2 dξ . (30)

This expression extends (27) in the sense that it holds when P0 and β are dependent r.v.’s with
joint p.d.f. fP0,β(p0, β).
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3.2. Mean, variance and confidence intervals

In the context of the applications we will consider in the next section, the above expression
of f1(p, t) is useful to compute important statistical information associated to P(t) at the time
instant t such as, the mean, µP(t) = E[P(t)], and the variance, (σP(t))2 = V[P(t)], functions. In
agreement with (1), these functions can be computed as follows

µP(t) = E[P(t)] =

∫ ∞

−∞

p f1(p, t) dp, (σP(t))2 = V[P(t)] =

∫ ∞

−∞

p2 f1(p, t) dp − (µP(t))2 , (31)

where f1(p, t) is given by (27).
At this point, practical questions concerning the control of the spread of epidemics, the dif-

fusion of new technologies, etc., may be raised. For instance, in what ways are these statistical
moments results useful for monitoring the evolution of a disease or the success of an advertising
campaign? The answer must hinge upon the criteria chosen for determining when the number of
susceptibles (or equivalently, the number of infected) has exceeded preset threshold, say λ > 0.
For each t > 0, the Tchebycheff inequality (see [3, p.19]) together with (31) provide an upper
bound on the probabilistic criterion previously chosen

P
[
|P(t) − µP(t)| ≥ λ

]
≤

(σP(t))2

λ2 . (32)

However, the computation of the 1-p.d.f., f1(p, t), of the solution s.p .P(t) = P(t;ω) permits to
specify not just punctual predictions for P(t) as µP(t), but also to construct confidence intervals
for any (1 − α) × 100% confidence level. Indeed, fixed α ∈ (0, 1), for each time instant t one can
determine x1(t) and x2(t), such that

1 − α = P ({ω ∈ Ω : P(t;ω) ∈ [x1(t), x2(t)]}) =

∫ x2(t)

x1(t)
f1(p, t) dp , (33)

and ∫ x1(t)

0
f1(p, t) dp =

α

2
=

∫ 1

x2(t)
f1(p, t) dp . (34)

In practice, 95% confidence intervals, which correspond to α = 0.05, are usually considered.

3.3. Distribution of time until a given proportion of susceptibles remains in the population

So far, we have obtained the 1-p.d.f. f1(p, t) for the proportion P(t) of susceptibles at time t
(see (27)) and its main statistical information (see (31) and (33)). From a practical standpoint, it
is very useful to know when the proportion of susceptibles in the population will reach a specific
value. For instance, what is the expected time before twenty percent of the population remains
susceptible? To provide an answer to this question, a distribution for r.v. T , the time until some
proportion ρ of the population remains susceptible, must be defined. Obviously, the answer will
depend on the probability distributions to P0 (the initial proportion of susceptibles) and β (the
contagion rate) as well as the target proportion of susceptibles, ρ.

In order to determine the distribution of r.v. T , let us observe that the exact solution of the
nonlinear r.d.e. (3) is given by

P(T ) =
P0

eβT (1 − P0) + P0
. (35)
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Then, set ρ = P(T ) and solve for T to obtain

T =
1
β

ln
(

P0(1 − ρ)
ρ(1 − P0)

)
. (36)

Now, we apply Theorem 1 to

X1 = β, Y1 = T, Y1 = r1(X1, X2) = 1
X1

ln
(

X2(1−ρ)
ρ(1−X2)

)
, X1 = s1(Y1,Y2) = 1

Y1
ln

(
Y2(1−ρ)
ρ(1−Y2)

)
,

X2 = P0, Y2 = P0, Y2 = r2(X1, X2) = X2, X2 = s2(Y1,Y2) = Y2.
(37)

Taking into account that ∂s2(y1,y2)
∂y1

= 0, the jacobian is J = − 1
(y1)2 ln

(
y2(1−ρ)
ρ(1−y2)

)
, 0, hence the joint

p.d.f. of (Y1,Y2) = (T, P0) is given by

fT,P0 (t, p0) =
1
t2

∣∣∣∣∣∣ln
(

p0(1 − ρ)
ρ(1 − p0)

)∣∣∣∣∣∣ fβ,P0

(
1
t

ln
(

p0(1 − ρ)
ρ(1 − p0)

)
, p0

)

=
1
t2

∣∣∣∣∣∣ln
(

p0(1 − ρ)
ρ(1 − p0)

)∣∣∣∣∣∣ fβ

(
1
t

ln
(

p0(1 − ρ)
ρ(1 − p0)

))
fP0 (p0) ,

(38)

where the independence between r.v.’s P0 and β has been considered in the last step. Therefore,
the P0-marginal distribution of fT,P0 (t, p0) yields the p.d.f. of T

fT (t; ρ) =
1
t2

∫ min(p0,2,c2)

max(p0,1,c1)

∣∣∣∣∣∣ln
(

p0(1 − ρ)
ρ(1 − p0)

)∣∣∣∣∣∣ fβ

(
1
t

ln
(

p0(1 − ρ)
ρ(1 − p0)

))
fP0 (p0) dp0, p0 ∈ DP0 , (39)

where DP0 is defined by (17) and

c1 =
ρ eβ1t

ρeβ1t + (1 − ρ)
, c2 =

ρ eβ2t

ρeβ2t + (1 − ρ)
. (40)

For t and ρ previously fixed, these values have been determined by imposing that

β1 <
1
t

ln
(

p0(1 − ρ)
ρ(1 − p0)

)
< β2, (41)

being β1 and β2 the values that define the domain Dβ given in (17). In (39), fT (t; ρ) describes the
distribution of time until ρ percent of the population is susceptible.

4. Examples

In this section, we will illustrate the theoretical results previously obtained through a pair of
examples. The aim of the first example is to compute the 1-p.d.f. of the solution s.p. P(t) of the
i.v.p. (3) as well as its expectation, variance functions and confidence intervals. In the second
example, we show how to apply the i.v.p. (3) in order to model the diffusion of a technology,
namely, the user penetration rate of mobile phone lines in Spain over the last few years.

Example 1. Let us consider the i.v.p. (3) where the random initial condition P0 is assumed to
have a beta distribution of parameters a = 200 and b = 20, i.e., P0 ∼ Be(200; 20) and the
nonlinear coefficient β has a gamma distribution of parameters λ = 1000 and τ = 1/1000, i.e.,
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β ∼ Ga(1000; 1/1000). We will assume that P0 and β are independent r.v.’s. Figure 1 shows
the 1-p.d.f. of the solution s.p. P(t). It has been computed by expression (27). In Figure 2, we
have plotted the expectation (µP(t)) and standard deviation (σP(t)) of P(t) according to (27)–
(31). Since P(t) tends to zero as t increases, the expectation and standard deviation functions
converge to zero. This behaviour is in agreement with the plot of the 1-p.d.f. showed in Figure 1
where one observes that f1(p, t) concentrates about p = 0 as times increases. Figure 3 shows the
expectation and 95% confidence intervals, they have been computed according to expressions
(33)–(34). Note that confidence intervals about t = 2.5 become wider what is in agreement with
the shape of standard deviation plot shown in Figure 2 (right).
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10

20

f1Hp,tL

Figure 1: Plot of f1(p, t) given by (27) in Example 1 at different values of t = {0, 0.1, 0.2, 0.3, . . . , 1}.
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Figure 2: Expectation function µP(t) (left) and the standard deviation function σP(t) of P(t) (right) in Example 1.

Example 2. As it has been pointed out in Section 1, the SI-model (3) can be applied to study
the diffusion of a new technology. In this example, we will take advantage of the theoretical
results previously established to model the user penetration rate of mobile phone lines in Spain.
Table 1 collects the available data during the years 1995–2011, see [23]. Hereinafter, xi will
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Figure 3: Expectation (solid line) and 95% confidence intervals (dotted lines) in Example 1.

denote the penetration rate of mobile phone lines in Spain at the year ti, i = 0, 1, . . . , 16, that
correspond to 1995, 1996, . . . , 2011, respectively. The value xi represents the rate of mobile
phone lines per 100 inhabitants taking as reference the Spanish census corresponding to year
2011 updated by INE (National Statistics Institute of Spain). Notice that, the penetration rate,
xi, may be greater than 100% since any individual can possess more than one mobile phone line.
In order to be able to apply the model (3), two transformations on the data listed in Table 1 will
be done. First, we standardize the values xi by assuming a saturation value of 115. Secondly,
as the unknown P(t) of model (3) represents the percentage of susceptibles instead of infected
(i.e., the percentage of people who have already adopted the mobile phone technology), we take
Pi = 1 − xi/115, i = 0, 1, . . . , 16, hence Pi ∈ (0, 1). The resulting values Pi are given in Table
2. This motivates the choice of a beta distribution of parameters a, b > 0 for the random initial
condition, P0 ∼ Be(a; b). As long as, the diffusion coefficient β is assumed to have a gamma
distribution of parameters λ, τ > 0, i.e., β ∼ Ga(λ; τ). We make this decision because β is a
positive parameter and gamma distribution is a flexible model which has two degree of freedom
whose domain is (0,∞).

year 1995 1996 1997 1998 1999 2000 2001 2002 2003
penetration rate (xi) 2.3 7.5 10.2 16.2 37.3 59.9 72.6 81.9 89.3

year 2004 2005 2006 2007 2008 2009 2010 2011 −−

penetration rate (xi) 91.2 99.2 104.4 108.9 109.6 111.4 111.7 113.9 −−

Table 1: User penetration rates of mobile phone lines in Spain during the years 1995–2011. Source [23]

In order to determine the model parameters a, b, λ and τ, we have split the sample data in two
pieces. The first one corresponds from year 1995 to 2001 (t0 = 1995, t1 = 1996, . . . , t6 = 2001)
and it has been used to adjust the model (3). The rest of the sample data will be used to validate
the model. Model fitting has been carried out by minimizing the mean square error between the
data Pi and the expectation given by (31) evaluated at the time instants ti, i = 0, 1, . . . , 6. It leads
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year 1995 1996 1997 1998 1999 2000 2001 2002 2003
Pi 0.9800 0.9348 0.9113 0.8591 0.6757 0.4791 0.3687 0.2878 0.2235

year 2004 2005 2006 2007 2008 2009 2010 2011 −−

Pi 0.2070 0.1374 0.0922 0.0530 0.0470 0.0313 0.028695 0.0096 −−

Table 2: Data collected in Table 1 after their transformation. Source [23]

to the following optimization programme

min
a,b,λ,τ>0

E(a, b, λ, τ) =

6∑
i=0

(Pi − E[P(t; a, b, λ, τ)])2 , (42)

where, according to (31) and taking into account that P(t) = P(t; a, b, λ, τ) ∈ (0, 1), the above
expectation can be computed as

E[P(t; a, b, λ, τ)] =

∫ 1

0
p f1(p, t) dp . (43)

Since P0 ∼ Be(a; b) and, β ∼ Ga(λ; τ), hence β ∈ (β1, β2) = (0,∞), the 1-p.d.f. given by (27)
reads

f1(p, t) =
1
t

∫ ∞

1
fP0

(
p ξ

1 − p + p ξ

)
fβ

(
ln(ξ)

t

)
1

(1 − p + p ξ)2 dξ , (44)

where

fP0

(
p ξ

1 − p + p ξ

)
=

Γ(a + b)
Γ(a)Γ(b)

(
p ξ

1 − p + p ξ

)a−1 (
1 − p

1 − p + p ξ

)b−1

, (45)

and

fβ

(
ln(ξ)

t

)
= λτξ−

λ
t

1
Γ(τ)

(
ln(ξ)

t

)τ−1

. (46)

The optimum of the error function (42) has been computed using the NMinimize command by
Mathematica software applying the Nelder-Mead algorithm [24]. It provides the following pa-
rameters values

a∗ = 114.95, b∗ = 1.83, λ∗ = 27.36, τ∗ = 0.032 . (47)

Figure 4 displays the 1-p.d.f. f1(p, t) given by (44)–(46) for the optimal values a∗, b∗, λ∗ and
τ∗ given by (47). For the sake of clarity in its plotting, the range of the vertical axis has been
cut off since f1(p, t) takes very large values as p is close to 0 and 1. In Figure 5, the mean
function (left) and the standard deviation function (right) have been plotted. Taking advantage
of expressions (33)–(34), in Figure 6, the expectation function (solid line) together with 95%
confidence intervals have been plotted. In this graphic, the blue points correspond to the years
1995, . . . , 2001 used to compute the parameters a, b, λ, τ given by (47) whereas the red points are
the rest of the real data corresponding from year 2002 to 2011. Note that all these data lie inside
95% confidence intervals except the one that corresponds to the year 2010 which hardly exceeds
the limit. However, we can observe that the model fitting for the period 2002–2008 is not as
accurate as for the rest of the years. It is important to point out that this issue could be expected.
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Indeed, at the beginning when a new technology is released it often generates great expectation
and, afterwards, there is often a lack of interest. This fact together with the significant Spanish
population increase experienced during the economic boom, corresponding to the period 2002–
2008, may explain that after some years the points are above the average prediction.

From Figure 4, we observe the 1-p.d.f. becomes more platykurtic about t = 2002. It is in
agreement with the shape of the standard deviation function which has a maximum about this
year. This graphical behaviour is also observed in Figure 6, where confidence intervals widen
about year 2002.

Finally, Figure 7 displays the p.d.f. of the time T until a proportion ρ of susceptibles remains
in the population. Expressions (39)–(41) have been used to perform this plot. As ρ goes to 1, the
p.d.f. fT (t; ρ) tends to concentrates about t = 0 which means that a very few time is required in
order to the number of susceptibles being in the population is maximum. This function permits
governments or telecommunications companies to provide significant information such as the
average time until, for example, a 90% of the population has not adopted this technology (or
conversely, 10% of the population has acquired this technology), just by computing the following
the integral

E[T ] =

∫ ∞

0
t fT (t; 0.90) dt = 2.654 years, (48)

which is given in terms of the p.d.f. fT (t; ρ), defined by (39)–(40) for ρ = 0.90. Notice that this
value, 2.654 years, is in agreement with the figures shown in Table 2 since it is between t = 2
and t = 3, that correspond to years 1997 and 1998, where the percentages of people who had not
yet adopted the technology were 91.13% and 85.91%, respectively. This means, in time-average,
that in August 1998, 90% of the Spanish population had not yet acquired a mobile phone. In
Table 3, we show the figures corresponding to the above expectation, E[T ], for different values
of ρ.

ρ 0.90 0.80 0.70 0.60 0.50 0.40 0.30
E[T ] 2.654 3.616 4.254 4.778 5.259 5.740 6.263

Table 3: Expectation of time T until a proportion, ρ, of the population has not yet adopted the technology for different
values ρ.

5. Conclusions

In this paper, we have provided a closed expression for the first probability density function
(1-p.d.f.) of the solution stochastic process of the random SI-model (3), where uncertainty has
been considered in the initial condition, P0, and the nonlinear diffusion coefficient, β, regardless
their probability distributions. As a consequence, we have shown that important probabilistic
information can be computed from the 1-p.d.f., namely, the mean and variance functions, con-
fidence intervals and the distribution of time until a given proportion of susceptibles remains in
the population. The study has been based on the Random Variable Transformation method. The
theoretical development has been applied to a pair of illustrative examples. In particular, the
second example takes advantage of the obtained theoretical results to modelling the diffusion of
a new technology based on real data. Finally, we want to point out that an important feature of
our approach is that it can be extended to study other significant epidemiological models such
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Figure 4: Plot of f1(p, t) in the Example 2 at the years 1995, 1996, . . . , 2011 (corresponding to the solid lines).
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Figure 5: Plot of expectation function (left) and standard deviation function (right) in Example 2.
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Figure 6: Expectation (solid line) and 95% confidence intervals (dotted lines) in the Example 2. The real data used to fit
the parameters a, b, λ, τ given by (47) are plotted in red color, whereas blue points correspond to the rest of the real data
employed to validate the model.
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Figure 7: Plot of the p.d.f. of the time T until a proportion ρ of susceptibles remains in the population in Example 2.
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as the SIS/SIR/SIRS-types models, etc., as well as other nonlinear models based on differential
equations which often appear in other scientific areas.
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