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Abstract

The ultimatum game explains and is a useful model in the analysis of several effects of bargaining in
population dynamics. Darwin’s theory of evolution - as introduced in game theory by Maynard Smith - is
not the only important evolutionary aspect in a evolutionary dynamics, since complex interdependencies,
competition, and growth should be modeled by, for example, reactive aspects. In biological models, compu-
tationally or analytically considered, several authors have been able to show the emergence of cooperation
with stochastic or deterministic dynamics based on the mechanism of copying the best strategies. On the
other hand, in the ultimatum game the reciprocity and the fifty-fifty partition seems to be a deviation from
rational behavior of the players under the light of the Nash equilibrium concept. Such equilibrium emerges
from the punishment of the responder who generally tends to refuse unfair proposals. In the iterated version
of the game, the proposers are able to improve their proposals by adding an amount thus making fairer
proposals. Such evolutionary aspects are not properly Darwinian-motivated, but they are endowed with a
fundamental aspect: they reflect their actions according tovalue of the offers. Recently, a reactive version
of the ultimatum game where the acceptance occurs with fixed probability was proposed. In this paper, we
aim at exploring this reactive version of the ultimatum gamewhere the acceptance by the players depends
on the offer. In order to do so, we analyze two situations: (i)mean field and (ii) by considering the players
inserted within the networks with arbitrary coordinations. In the proposed model we not only explore situa-
tions of occurrence of the fifty-fifty steady-state, in both homogeneous and heterogeneous populations, but
also explore the fluctuations and payoff distribution characterized by the Gini coefficient of the population.
We then show that the reactive aspect, here studied, thus farnot analyzed in the evolutionary game theory
literature can unveil an essential feature for the convergence to fifty-fifty split. Our approach concerns four
different policies to be adopted by the players. In such policies the evolutionary aspects do not work through
a Darwinian copying mechanism, but by following a policy that governs the increase or decrease of their
offers according to the response of the result - i.e. acceptance or refusal. Moreover, we present results
where the acceptance occurs with fixed probability. Our contribution is twofold: we present both analytical
results and MC simulations which in turn are useful to designnew controlled experiments in the ultimatum
game in stochastic and deterministic scenarios.

1. Introduction

Game theory analyzes several important aspects of the Economical and Biological sciences such as

bargaining, cooperation and other social features. The theory plays an important role in explaining the
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interaction between individuals in homogeneous and heterogeneous populations, with or without spacial

structure, in which agents negotiate/combat/collaboratevia certain protocols. The full understanding of

cooperation between individuals as an emergent collectivebehavior remains an open challenge [1, 2, 3]. In

this context, bargaining is an important feature has calledattention of many authors: two players must divide

an amount (resources, money, food, or other interesting quantity) and the disagreement (or no agreement)

between them in a given deal could mean that both lose something. This dilemma motivates a simple game

that mimics the bargaining between two players - the Ultimatum Game.

In this game, firstly proposed by Güthet al. [4], one of the players proposes a division (the proposer)

and the second player (the responder) can either accept or reject it. If the responder (the second player)

accepts it, the values are distributed according to the division established by the proposer. Otherwise, no

earning is distributed to both players.

Real situations in western societies suggest that unfair proposals are refused for either fairer or even

more selfish amounts. However some isolated societies as Machiguenga localized at Peruvian Amazon

seem to show a behavior opposed to such fact, which suggests amore altruistic behavior [5]. On the other

hand, scientists have studied and simulated artificial societies where players confront each other according

the ultimatum game protocol. In order to consider a simple evolutionary probabilistic model where un-

satisfactory proposals are refused, in this paper we propose to study a model where accepting depends on

proposal.1

Although it is rationally better for the responder to acceptany offer, offers below one third of the

available amount to be shared are often rejected [6]. The responder punishes the proposer up to the balance

between proposal and acceptance in the iterated game. In general, values around a half of the total amount

are accepted [6, 7]. Other interesting experimental results suggest that high-testosterone men reject low

offers in the ultimatum game [8]. Nowak et. al [9] showed thatthe evolution of fairness, similarly to the

evolution of cooperation, is linked to reputation by considering a simple memory mechanism: fairness will

evolve if the proposer can obtain some information on what deals the responder has accepted in the past .

Our contribution goes precisely along this line of research. In this manuscript, we extend the memory-

1 model proposed by one of the authors in [10] that considers the acceptance with fixed probability, by

putting this probability variable and assigning the offerOt , at timet, that is a number belonging to[0,1] and

performing the game in graphs with arbitrary homogeneous and heterogeneous coordination.

1This game scenario is common and expected in real situations, at least in western societies, illustrated even when children
negotiate chocolate coins (see e.g. this video https://www.youtube.com/watch?v=YXfEv-xEWtE).
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In this reactive and iterated version of the ultimatum game,the players are able to correct their offers

by adding/subtracting an amount to the offers in order to make fairer proposals. Such mechanisms, which

we assume are an essential ingredient for the convergence tofifty-fifty partitions seems to be discarded

in typical evolutionary game theory based on probabilisticDarwinian copies. By performing a detailed

study, we investigate the game both analytically and via Monte Carlo (MC) simulations under four different

policies about the increase or decrease of the offer under different levels of greed. Moreover, we present

results about temporal correlations in the model with fixed probability for a suitable comparison with the

model where the offer is time-dependent.

The remainder of paper is organized as follows. Next, we define the reactive model and its mean-field

approximation. Then, we show how the model can be run in networks with arbitrary coordination. In

Section 2 we present the first part of our results corresponding to the mean-field approximation. In Section

5 we present the results for the game with arbitrary coordination via equation integrations. Particularly

for k = 4 we explore the randomness effects by considering MC simulations in small world networks. A

general and analytical formula is obtained for the stationary average offer and a complete study of the

fluctuations and distribution of the payoffs are performed considering homogeneous and heterogeneous

populations. Then we present a comparative analysis between mean-field and the model on networks.

Finally, we conclude and comment on the relevance of the reactive ultimatum game, in particular on the

experimental evidence of the effect of fairer offers in different international societies.

2. Modeling and Mean-field Approximation: Analyzing the correlations

In the reactive ultimatum game, when a player (proposer) performs an offerOt ∈ [0,1] at timet, it can b

accepted or rejected by the other player (i.e. the responder). Let us think that such acceptance occurs with

probability pt . Let us consider two simple situations:

1. pt = p fixed, and does not change along time;

2. pt = Ot , i.e., the acceptance occurs with higher probability as theoffer is more generous.

When the offer is rejected it will take the proposer to changeits expectations increasing its proposed

offer ε . On the other hand when it is accepted the proposer decreasesits proposal by a quantityε . Hereε is

a rate of offer change. We can consider the mean-field regime as the average under all different time series

of parameters of two players interacting according to a dynamics. We also can imagine it as parameters

averaged by the different players in a large population, where the players interact at each timet (denoted
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by authors in refs. [11], and [12] as one ‘turn’) by pairs composing a perfect matching withN players (for

the sake of simplicityN is an even number) randomly composed. In this pairing, no player is left out of the

game, with each individual playing once by turn, by construction.

Both ways provide similar ways to compute averaged parameters evolving along time, since in this

reactive formulation of the ultimatum game, the interaction depends only on the proposal (offer). The first

case (p fixed) were partially explored in [10] but some important points involving the existing correlations,

have not been studied yet.

First, we would like to revisit the problempt = p to describe the possible correlations which were not

studied in [10]. In this case the clustering effects are not important, and in the next subsection we revisit

some results forpt = p to deduce some semi-analytical formulas for the sum of temporal correlations of the

payoff. Next, in the following subsection, we define the model for pt = Ot , and we deduce some relevant

results by mean-field approximation. Our results show that independently fromO0, limt→∞ Ot = 1/2.

2.1. Reactive Ultimatum Game With pt = p: Mean-field approximations

Let us consider the case where the responder always accepts the offer with a fixed probabilityp∈ [0,1]

[10], and the offer rejection occurs with probability 1− p. This assumption allows us to obtain analytical

results in the one-step memory iterated game. Givenε andp, in thei−th round, the average offer is:

〈Oi〉= O0+ iε(1−2p), (1)

where i = 0,1,2. . . t, since in each round the average offer is modified by〈(△O)i〉 = (1− p)ε − pε =

ε(1−2p). In thei-th round, the responder average payoff is〈gi〉= p〈Oi〉= pO0+ ipε(1−2p). Thus, after

t iterations, the average of the cumulative payoff is

〈Wr 〉(t) =
t

∑
i=0

〈gi〉= pO0(t +1)+
t(t +1)

2
p(1−2p)ε (2)

and there is a probabilityp, for a givenn, that maximizes the cumulative responder gain〈Wr〉(t) is given by

p∗ = 1
4

[

2y0
t△y +1

]

. Similarly we have that for proposer the average cumulativepayoff is given by〈Wp〉(t) =

p(1−O0)(t +1)− t(t+1)
2 p(1−2p)ε .

In order to calculate the variance of the cumulative gain, the task is not so simple. The result was

obtained in [10] but only this computed result was shown. Basically, this is not only an analytical task. We

suppose that variance is four-degree polynomialp with at least two roots:p= 0 andp= 1. So the variance

is considered as a polynomialvar(Wr ) = ap(p−1)(p− p1)(p− p2) wherea, p1 andp2 are constants to be

determined. By observing the variance for an arbitrary number of rounds (numerically) for three different
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p valuesp= 1/2, p= 1/4 andp= 3/4 we solve a linear system to finda, p1 andp2 and we can check the

semi-empirical analytical formula obtained in [10]:

var(Wr )(t) = (t +1)p(1− p)O2
0+4t(t +1)p(p−1)

(

p− 1
4

)

O0ε +[2t(t +1)(2t −1)p3(1− p)

−2t(t2−1)p2(1− p)+ t(t+1)(2t+1)p(1−p)
6 ]ε2

(3)

and similarly, we can obtain the variance of the cumulative gain of the proposer:var(Wp) = (t +1)p(1−

p)(1−O0)
2 − 4t(t + 1)p(p− 1)

(

p− 1
4

)

(1−O0)ε + [2t(t + 1)(2t − 1)p3(1− p)− 2t(t2 − 1)p2(1− p) +
t(t+1)(2t+1)p(1−p)

6 ]ε2.

Implicitly, our difficulty in analytically obtaining a formula to the variance of the gain is related to

the the fact that there is no control of correlation in the problem. Here aim at providing a more detailed

exploration in order to understand the correlations involved in such a problem.

Since for examplevar(Wr )(t)=∑t
t ′=0

〈

g2
t ′
〉

−〈gt ′〉
2+∑t

t ′=0∑t
t ′′=0 (〈gt ′gt ′′〉− 〈gt ′〉〈gt ′′〉 )= ∑t

t ′=1var(gt ′)+

∑t
t ′=1∑t

t ′′=1corr(gt ′ ,gt ′′). Let us think about the first part of sum: we can write that
〈

g2
t ′
〉

= p
〈

O2
t ′
〉

. But,

how can one compute
〈

O2
t ′
〉

? Since
〈

Ot ′
2
〉

= (1− p)
〈

(Ot ′−1+ ε)2
〉

+ p
〈

(Ot ′−1− ε)2
〉

, we have that
〈

Ot ′
2
〉

= ε2 +
〈

O2
t ′−1

〉

+ 2ε(1− 2p)〈Ot ′−1〉. We can easily conclude, by iterating such equation, that:
〈

Ot
2
〉

= O2
0+2(1−2p)O0tε +(t(t −1)(1−2p)2+ t)ε2. So

〈

g2
t

〉

= p[O2
0+2(1−2p)O0tε +(t(t −1)(1−

2p)2+ t)ε2)] and〈gt〉
2 = p2

[

O2
0+2(1−2p)O0tε +(1−2p)2t2ε2

]

. Expanding the terms we have that

〈

g2
t

〉

−〈gt〉
2 = p(1− p)O2

0+2p(1− p)(1−2p)O0tε (4)

+[p(t(t −1)(1−2p)2+ t)− p2(1−2p)2t2]ε2

By performing the sum we obtain:

var(Wr )(t) =
t

∑
t ′=0

〈

g2
t ′
〉

−〈gt ′〉
2 =

(

2p2(1− p)t(t +1)+
1
6

p(1− p)(1−2p)2t (2t +1)(t +1)

)

ε2 (5)

+p(1− p)(1−2p)O0t(t +1)ε + p(1− p)O2
0(t +1)

This formula, can be used to estimate the magnitude of correlations since from Eq. 3 we have an exact

form (empirically obtained) for the variance. So by measuring this magnitude we can define the following:

Φ(t) =
t

∑
t ′=0

t

∑
t ′′=0

corr(gt ,gt ′) (6)

By some algebra derivations we obtain:
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Φ(t) = 2t(t +1)p2(p−1)O0ε + (7)
(

−
8
3

p4t3+
8
3

p4t +
10
3

p3t3−
10
3

p3t −
2
3

p2t3+
2
3

p2t

)

ε2

So we can study this function in detail. Since the offerOi does not touch the limits (0 or 1) there is a

lower bound for the number of iterations necessary for the system to reach such limits:nc =min(⌊y0/ε⌋ ,⌊(1−y0)/ε⌋).

2.2. Reactive Ultimatum Game With pt = Ot : Mean-field approximations

In more realistic situations, the acceptance depends on theoffer. So, a natural choice is setting the

accepting probability as exactly the value of the offer. In this case, considering a simple ”mean-field”

approximation where we changeOt by 〈Ot〉, a recurrence relation for the offer can be written as:

〈Ot+1〉 = 〈Ot〉− 〈Ot〉ε +(1−〈Ot〉)ε

= (1−2ε)〈Ot〉+ ε

By iterating this equation we obtain:

〈Ot〉 = (1−2ε)tO0+ ε ∑t−1
k=0(1−2ε)k

= (O0−1/2) (1−2ε)t +1/2
(8)

and limt→∞ 〈Ot〉 = 1/2. Since(1− 2ε)t = 1− 2εt +O(ε2) for intermediatet-values, sinceε is a small

number we have the asymptotical behavior:

〈Ot〉 ∼







(O0−1/2) (1−2εt)+1/2 t → 0

1/2 t → ∞
(9)

Therefore an approximation for the average gain of the responder at timet is 〈gt〉≈ 〈Ot ′〉
2=(O0−1/2)2(1−

2ε)2t +1/4+(O0−1/2) (1−2ε)t . That asymptotically gives

〈gt〉 ∼







O2
0+(2−4O0)εO0t t → 0

(O0−1/2)2+(O0−1/2)+1/4 t → ∞

In our approximation, in this Pavlovian version the offer must converge to a fair proposal. This result

although simple, deserves a lot of discussion in the literature and distortions of this behavior must be better

understood since it has an important role in the Pavlovian version of the ultimatum game.

So a formula for the average of the cumulative gain at timet in mean field approximation can be written,
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since the acceptance probability is the owner’s offer value:

〈Wr(t)〉 = ∑t
t ′=0〈Ot ′〉

2

=
(

O0−
1
2

)2 (2ε−1)2t+2−1
4ε(ε−1) +

(

O0−
1
2

) 1−(1−2ε)t+1

2ε + t+1
4

(10)

Again, we have two regimes: fort → 0, asymptotically we have〈Wr (t)〉 ∼
(

O0−
1
2

)2 (t+1)
1−ε +(t +1)+

t+1
4 =

(

5
4 +

1
1−ε

(

O0−
1
2

)2
)

(1+ t). For t → ∞, 〈Wr (t)〉 ∼
(

O0−
1
2

)2 1
4ε(1−ε) +

1
2ε
(

O0−
1
2

)

+ t+1
4 which

determines a crossover between two different linear behaviors.

If we extract the correlations, the variance of the cumulative gain:

var(Wr )(t) = var(Wr )(t)−∑t−1
t ′=0∑t−1

t ′′=0(〈Ot ′Ot ′′〉− 〈Ot ′〉〈Ot ′′〉 )

= ∑t−1
t ′=0

〈

g2
t ′
〉

−〈gt ′〉
2 .

〈

Ot
2〉≈ (1−〈Ot−1〉)

〈

(Ot−1+ ε)2
〉

+ 〈Ot−1〉
〈

(Ot−1− ε)2
〉

After some algebraic calculations:

〈

Ot
2〉= ε2+

〈

O2
t−1

〉

+2ε 〈Ot−1〉−4ε 〈Ot−1〉
2

what after the iteration and some algebra leads to:

〈

Ot
2
〉

=
〈

Ot−1
2
〉

+ ε2+2ε
[

(O0−1/2)(1−2ε)t−1+1/2
]

−4ε
[

(1−2ε)t−1+1/2
]2

= O0
2+ ε2t − (O0−1/2)

[

1− (1−2ε)t
]

− (O0−1/2)2

(1−ε)

[

1− (1−2ε)2t
]

(11)

Following exactly what we considered previously, we can approximate
〈

g2
t ′
〉

≈ 〈Ot ′〉
〈

O2
t ′
〉

〈gt ′〉
2 ≈ 〈Ot ′〉

4

It is important to see that

var(gt) =
〈

g2
t ′
〉

−〈gt ′〉
2 ∼

1
2
(O0

2+ ε2t − (O0−1/2)−
(O0−1/2)2

(1− ε)
)−

1
16

(12)

for t → ∞, which leads to a linear behavior in time for the variance differently from case where accepting

occurs with fixed probability. In this casevar(gt) has a quadratic leader term in time.
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We can evaluate numerically the expression

var(Wr )≈
t

∑
t ′=0

〈Ot ′〉
(

〈

O2
t ′
〉

−〈Ot ′〉
3
)

(13)

and naturally to computeΦ(t) as performed for the case of the fixedp (equation 2) for the particular case

where acceptance depends on the offer, but for this case we have to computevar(Wr ) numerically by a

Monte Carlo simulation differently from the case where the acceptance occurs with fixed value ofp (3) and

computingvar(Wr ) by using 11.

3. Extending the Model to Networks

In this second part we analyze the model considering coordination and randomness. In this case we

consider that players are inserted into a network (or graph)by considering the reactive ultimatum game

with acceptance probability equal to offerOt .

To extend our results to networks, we consider four different policies that governs the update dynamics

of the player offers in the network, which works as a greedy level. Here, the termconservativemust be

understood by the policy:if you are not sure about the acceptance of your offer in the neighborhood, you

will increase your offer; otherwise you will decrease it.

Our simulations consider a simple initial condition: first,an initial offer O0 is assigned equally to all

players. Such initial condition is initially adopted for the sake of simplicity.

At t−th simulation step, each playeri = 1, ...,N in the network, whereN is the number of nodes, offers

a value for itski neighbors. Each neighbor accepts or not the proposal with probability pa(t) = O(i)
t , where

O(i)
t is the offer ofi-th player at timet. Since we compute the number of players that accept the proposal,

na(i), we have the possible policies:

1. Conservative: Ensures that more than half of the neighbors accept the proposal in order to reduce

the offer- If na(i)> ki/2, soO(i)
t+1 = O(i)

t − ε , otherwiseO(i)
t+1 = O(i)

t + ε ;

2. Greedy: One acceptance is enough to reduce the offer- If na(i) ≥ 1, soO(i)
t+1 = O(i)

t − ε , otherwise

O(i)
t+1 = O(i)

t + ε ;

3. Highly Conservative: All neighbors must accept the proposal to reduce the offer- If na(i) = ki, so

O(i)
t+1 = O(i)

t − ε , otherwiseO(i)
t+1 = O(i)

t + ε ;

4. Moderate: If exactly half of the neighbors accept it, then the proposal is reduced -na(i) ≥ ki/2, , so

O(i)
t+1 = O(i)

t − ε , otherwiseO(i)
t+1 = O(i)

t + ε ;

8



Let us consider a particular and interesting case, where thecoordination of all nodes is fixed and made

equal tok (regular graph). For example, in the first case we have,

〈Ot+1〉 ≈ 〈Ot〉− ε (Pr(na > k/2| 〈Ot〉)−Pr(na ≤ k/2| 〈Ot〉))

= 〈Ot〉+ ε (2Pr(na ≤ k/2| 〈Ot〉)−1)

But

Pr(na ≤ k/2| 〈Ot〉) =
k/2

∑
m=0

k! 〈Ot〉
m(1−〈Ot〉)

k−m

m!(k−m)!

and so

〈Ot+1〉 ≈ 〈Ot〉+

[

2
k/2

∑
m=0

k! 〈Ot〉
m(1−〈Ot〉)

k−m

m!(k−m)!
−1

]

ε (14)

We can iterate this recurrence relation and compare with results from Monte Carlo simulations in net-

works with fixed coordinationk. Monte Carlo simulations can also be performed to analyze the deviations

of this formula when the average degree isk in disordered networks. In section 5 we analyze, for example,

the deviations from formula 14 when we introduce effects of randomnessp in small worlds built from rings

and two-dimensional lattices.

In this same section we present studies about payoff distribution for k = 4 and analyses of stationary

offer 〈O∞〉 for arbitrary k in heterogeneous population of players, i.e., we consider different partition of

players that play under four different policies.

4. Results Part I: Mean-field Regime

In the sequel, we present our main results in the mean-field regime.

4.1. Mean-field for acceptance with fixed probability p

In the previous section, we observe that in such case, the offer increases or decreases linearly with time.

The cumulative payoff (wealth) of the responder (〈Wr〉(t)) also is easily calculated by Eq. 2. Forp= 1/2,

we can verify that〈Wr〉 grows linearly in time, independently from rateε . The quadratic term is relevant for

p 6= 1/2. This simple calculation suggests that the variance of cumulative gain should also be calculated.

Here a problem occurs: The authors in [10] have analyzed thisparticular case of the game. They calculated

it by using a semi-empirical method to obtainvar(Wr )(t), fitting a polynomial inp which has two obvious

roots: p= 0 andp= 1, resulting in equation 3. This is so because the authors avoid the correlations of the

problem, the only reason that prohibits an analytical derivation of this formula by direct methods. But why

9



is this important? Because we can use the semi-empirical formula for the variance obtained by [10] given

by Equation 3 in order to study the correlations of the problem.

By performing such correlations, first of all, it is important to observe the behavior of variances of the

payoff at timet of responder:var(gt ) =
〈

g2
t

〉

−〈gt〉
2. We know how to calculate this value as can be seen

in Eq. 4. Here our first study is to observe the influence of the changing rate ofε .

100 101 102 103 104 105
0.01

0.1

1

10
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x 10-3
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2 >-

<g
>2

t

x 10-4

Figure 1: Variance of the payoff of responder forp= 1/2 andO0 = 1/4, for differentε-values according to Eq. 4 We can observe
in this log-log plot different stages of growing as functionof time.

We can observe thatvar(gt) increases with time, as Fig. 1. A convexity change is more sensitive to

higherε-values. The sum of these local variances corresponds to a part of var(Wr )(t), denoted byvar(Wr )(t)

which was analytically obtained by Eq. 5. So we computeΦ(t) = var(Wr )(t)− var(Wr )(t) estimated by

equation 7 which corresponds to the sum of all correlations of the payoffs until timet, i.e., a kind of

“cumulative” correlation.

In Fig. 2 we can check the behavior of|Φ(t)|. The pointst∗(O0) whereΦ = 0, give var(Wr )(t∗) =

10



0 1000 2000 3000 4000

0

200

400

600

800

 

 

 O
0
 = 0.25

 O
0
 = 0.50

 O
0
 = 0.75

|
(t)

 |

t

p = 0.5

points: Monte Carlo
line: analytical

Figure 2: Absolute value ofΦ(t) given by Eq. 7 for different values ofO0, with p= 1/2. We can observe that there is at∗ which
corresponds toΦ = 0 for eachO0. Such point corresponds to a signal change ofΦ(t).

var(Wr )(t∗), i.e, they work as a “decorrelation time” of the system that depends on initial offerO0. The

points in Fig. 2 corresponds to MC simulations used to corroborate the results from equation 7. In this

simulations we performed 105 runs of the iterated game performing averages for each time.We can see a

perfect agreement between Eq. 7 and MC simulations.

Now let us show the results for the reactive ultimatum game version when the acceptance depends on

the offer and compare with the results of this subsection.

4.2. Mean-field for Acceptance Dependent on the Offer

We observed that reactivep-fixed approach for acceptance of the offer leads to offers that increase or

decrease along time. This is a possible behavior, but the experiments with human beings (see e.g. [5]) seem

to avoid the undesirable situation leading to a fair steady state: fifty-fifty sharing.

The reactive ultimatum game, based on acceptances that depend on the offers produce a stable state
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O∞ = 1/2 independently ofO0. This strong fixed point must be better understood. Here, thefirst question is

to check the cumulative gain and variance of the offer forO0 = 1/2 in this situation comparing these same

values in the reactivep-fixed game.

In Figure 3 (left plot ) we show the temporal evolution of〈Wr〉(t), i.e., the cumulative payoff up to time

t, according to Equation 2 for fivep-values. We can observe that casep= 1/2 corresponds to the regime

which p changes with offer (10).

In the same Figure (right plot ) we show the behavior of the variance of the payoff for the same p-values

(Eq. 4). The variance can increase or decrease, respectively, for p> 1/2 andp< 1/2. Forp= 1/2 we have

also the agreement with the case withp dependent on the offer given by Equation 12
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Figure 3:Left : Cumulative payoff (wealth) for differentp−values withO0 = 1/2. The red line corresponds to the case in which
accepting depends on the offer. It fits very well the casep= 1/2. Right: The same results corresponding to the variance of payoff.

Now, it is interesting to observe what happens with other initial conditions for variance of payoff when

the acceptance depends on the offer. We can observe in Fig. 4 that values of payoff dispersion always

converge to the same valuevar(g) ≈ 0.06 which does not depend onO0.

Particularly forO0 = 0.95, we observe that variance has a maximum before it converges to the steady

state. This rich behavior is obviously related to the fact that on average that offer converges〈Ot〉 → O∞ =

1/2 (see Eq. 9). In this same plot, we also show that MC simulations corroborate our analytical results.

So our reactive ultimatum game in mean field regime (two individuals iteratively playing) and with the

values averaged for a huge number of repetitions (mean-fieldregime) is able to reproduce the intuitive aspect

of the ultimatum game, which corroborates real situations.2 Finally looking at the variance of the cumulative

2As seen in this simple video: https://www.youtube.com/watch?v=YXfEv-xEWtE
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Figure 4: Temporal evolution of the payoff dispersion for the case which accepting depends on the offer. The points correspond to
analytical results and the lines to Monte Carlo simulations.

payoff we can also estimate the valueΦ(t) for this case as we performed for thep-fixed approach.

In Fig. 5 (left) we show the variance of the cumulative payoffvar(Wr ) as a function of time which

is only obtained by Monte Carlo simulations (full points). On the other hand,var(Wr ) (lines), the sum of

payoff variances for all timest ′ < t, were analytically estimated by Equations 13, 11, and 8.

The empty points correspond tovar(Wr ) obtained by Monte Carlo simulations. By performing the

differencevar(Wr )− var(Wr ) we obtainΦ(t). In Fig. 5 (right) we can observe thatΦ(t) converges to a

steady state well defined as the payoff and its variance. Remember that this is different for thep-fixed

approach (as seen in Fig. 2).

In summary, we observed that offer-dependent acceptance produces a fair steady state for these offers

contrary to the expected rational behavior. But in this version of reactive ultimatum game other important

questions can be answered: which are the effects of topologies, randomness, and the neighborhood size on
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corresponding to results of the left plot in this same figure.

the offers. In the next section (second part of our results) we analyze such effects on the reactive ultimatum

game when the acceptance depends on the offer.

5. Results Part II: Coordination (k 6= 1) and Randomness Effects (p 6= 0)

In this section we analyze the reactive ultimatum game in networks. We initially concentrate our atten-

tion for populations that play under policy I, in a regular graph withk= 4. In this case, we can setk= 4 in

equation 14, we have〈Ot+1〉= 〈Ot〉+ ( 6〈Ot〉
4−8〈Ot〉

3+1)ε . For 〈O0〉 = O0. We can iterate this equa-

tion. Simultaneously we have performed Monte Carlo simulations in a square lattice by considering that

a player will make an offer to their four different neighborsand therefore will be the responder to another

four different neighbors. The player changes her decision with respect to the offer only after having played

with all neighbors, and the synchronous our asynchronous version of the MC simulations which are similar

in this case.

Here an important question to ask is about the influence of randomness on these results. If we imagine

for example a small world built from a simple ring or even a square lattice with coordinationk0, by intro-

ducing a rewiring probabilityp, we have〈k〉= k0 but the result corresponds exactly, for example to policy

I, by changingk by corresponding〈k〉? This is not what happens. This occurs only ifk0 is large; for smaller

k0 we have a dependence onp as can be observed in the color maps of Figure 7.

Such behavior can be checked by looking the dependence of stationary offer as function ofp and〈k〉 as

shown in fig. 7. We performed simulations in a small world starting from a ring and a square lattice. It is
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Figure 6: (a): Average offer, for different initial valueO0, equally attributed to all players. We considered the exactrecurrence
from Eq: 14 (continuous curves) and MC simulation (points) in a square lattice which corresponds to usek = 4 in formula. Inset
plot correspond to stationarity of the offer dispersion. (b): Results obtained from mean field which corresponds tok= 1 (no policy
dependent). (c): Results for the other policies also fork = 4. (d) Results for policy I simulated on the square but with arbitrary
neighborhood for differentk-values.

interesting observe that for low coordination even forp= 1 we do not obtain the result expected for mean

field (〈Ot→∞〉= 1/2).

Now it is interesting to analyze the effects about the payoffof the players in populations under four

different policies. We want to show the effects about distribution of payoff in populations as a function of

time considering the populations in which the offers are performed under 4 different policies and acceptance

occurs with probability exactly the offer of the player. We consider (k = 4). We can see from plot (C) in

Fig. 6 that policy 3 leads to higher offers. This happens because players with this behavior only decrease

their offers in really favorable situation; they prefer to deal with more players under lower offer values than

playing with only one player under higher offer values. Bigger offers mean higher acceptance probabilities,

which mean larger number of deals.
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Figure 7: Randomness effects on stationary offers for the policy I: a) Left plot: small world built from a ring b) Right plot: small
world built from a square lattice.

By considering the payoff obtained by players in populations interacting under the different policies, we

analyzed statistics related to payoff obtained by the players in populations interacting under these different

policies separately. We considerk= 4, for the sake of simplicity. One question to ask is how the payoff is

distributed among the players along time. In this case, we can use a interesting concept from Economics,

the Gini coefficient. Considering thatN players have their payoffs at timet in increasing order:g1(t) ≤

g2(t)≤ ....≤ gN(t). So we consider the cumulative distribution:

ϕi(t) =
∑i

j=1g j(t)

∑N
j=1g j(t)

The Lorentz (ϕi(t)× i/N) curve shows the corresponding wealth (sum of payoffs) corresponding to

population fractionfi = i/N. We expect an identity function for a well distributed payoff. By a trapezoidal

formula, the Gini coefficient can be estimated by

G(t) = 1−
1
N

N

∑
i=1

ϕi(t)

which measures the difference between the Lorentz curve andthe identity function. This number changes

from 0 up to 1, and the higher the value ofG, the worse is the payoff distribution.

Since we analyzed the properties of populations under different policies fork= 4, now we would like to

better explore a general formula for the stationary offer for arbitrary coordination, considering populations

under proportions of different policies. If we consider that ρc, ρG, ρHC andρM are the densities of conser-

vative, greedy, highly conservative and moderated players, we can write that with the players inserted in a
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of the average payoff described by Plot (a).

population with coordinationk, is

〈Ot+1〉 ≈ 〈Ot〉+ρc · [2Pr(0≤ na ≤ k/2| 〈Ot〉)−1]ε +ρG · [2Pr(na = 0| 〈Ot〉)−1]ε+

+ ρHC [2Pr(0< na < k| 〈Ot〉)−1]ε +ρM [2Pr(0< na < k/2−1| 〈Ot〉)−1]ε

which results in

〈Ot+1〉 ≈ 〈Ot〉+ρc

(

2∑k/2
m=0

k!〈Ot〉
m(1−〈Ot〉)

k−m

m!(k−m)! −1
)

+ρG
(

2(1−〈Ot〉)
k−1

)

+ρHC

(

1−2〈Ot〉
k
)

+ρM

(

2∑k/2−1
m=0

k!〈Ot〉
m(1−〈Ot〉)

k−m

m!(k−m)! −1
)

ε
(15)

Obviously, Eq. 14 is a particular case of Eq. 15 (ρc = 1, ρG = ρHC = ρM = 0). So our work now

is to change the proportionsρc, ρG, ρHC andρM, by numerically solving this equation and answering an

important question: Is there some proportion that is able tochange the behavior as〈Ot→∞〉= 1/2? First of

all, it is important to mention that all results obtained by numerical integration of Eq. 15 were checked by

performing simulations in rings and square lattices with arbitrary coordination. For this reason we will omit

any information about MC simulations from that part until the final results, but remember that we have a

perfect agreement between MC simulations and numerical integration of Eq. 15.

First, we would like to analyze the stationary average offerfor mixing of different strategies, by looking

at differences between the homogeneous populations (i.e.,that one where players only use the same policy

(I, II, III, or IV). In plot (a), Fig. 9, we show the behavior of〈Ot→∞〉 as a function ofk in log-log scale. Each
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plot corresponds to one population interacting according to a specific policy (we denote it as homogeneous

population). The inset plot corresponds to the same plot in linear scale. We can observe that in policies I

and IV, the stationary offers converge to 1/2 whenk→ ∞, differently from II and III.

It is important to mention that a population with only greedyplayers leads to an algebraic decay of the

offer as coordination (k): 〈Ot→∞〉 ∼ k−ξ . We measured the exponentξ ≈ 0.95 by usingkmax = 40 and

ξ ≈ 0.97 for kmax= 60 which indicates a kind of hyperbolic scaling in coordination 〈Ot→∞〉 ∼ 1/k.

The first experiment with heterogeneous population keeps (ρc = ρG = ρHC = ρM = 1/4). In this case,

surprisingly the stationary case is〈Ot→∞〉= 1/2 independently fromk (by simplicity we omit this obvious

plot). We cannot observe such behavior in the studied homogeneous populations.

Other exotic choices can be performed in which〈Ot→∞〉 shows convex and concave behaviors as func-

tion of k, i.e., with extrema well defined as we can observe in plot (b),Fig. 9.
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6. Conclusions

In this paper we analyze some important aspects of populations which interact under a reactive ultima-

tum game. First we extended results of a recent publication where acceptance of the offers occurs with fixed

probability p. We show an interesting behavior for the sum of all temporal correlations of the payoff from

t ′ = 0, ..., t: Φ(t), which changes its signal in time that depends on the acceptance probabilityp, that is a

property from the fact that〈Ot〉 increases (respectively, decreases) asp> 0 (resp.,< 0) as function of time.

Based on the fact that unfair offers have small acceptance probabilities, we proposed a new model where
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acceptance occurs with probabilityOt , i.e. the offer of the opponent. In this case a mean field regime leads

to a interesting stationary fair offer:Ot→∞ = 1/2 independently from the initial offerO0. Thus, the sum of

the temporal correlations of the payoff has a steady state well defined, but depends onO0.

When studied in networks the model does not presentOt→∞ = 1/2 for low coordination (smallk) what-

ever the policy analyzed. Particularly fork = 4 we showed that the average payoff is larger and the Gini

coefficient is smaller for the policy that decreases the respective offer only when all players have accepted

the offer at hand. This apparently altruistic player gains low values as proposer, but higher values as a

responder; this combination leads to a well distributed payoff. We show that the absolutely greedy policy

(II) leads to low payoffs and to high Gini coefficients.

Further, we introduced four policies that differ in how eachplayer increases/decreases her offer. Only

two policies present〈Ot→∞〉 = 1/2 for k → ∞. However a perfect equilibrium among policies, i.e. 1/4 of

population for each policy, leads to〈Ot→∞〉 = 1/2 independently fromk. There is a breaking of mono-

tonicity of 〈Ot→∞〉(k) for mixing of strategies, which presentsk-values where〈Ot→∞〉 is a extreme, either

maximum or minimum value.
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