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Abstract

The ultimatum game explains and is a useful model in the aisabf several effects of bargaining in
population dynamics. Darwin’s theory of evolution - as @auced in game theory by Maynard Smith - is
not the only important evolutionary aspect in a evolutigndynamics, since complex interdependencies,
competition, and growth should be modeled by, for examplagtive aspects. In biological models, compu-
tationally or analytically considered, several authorgehiaeen able to show the emergence of cooperation
with stochastic or deterministic dynamics based on the ar@sin of copying the best strategies. On the
other hand, in the ultimatum game the reciprocity and the-fifty partition seems to be a deviation from
rational behavior of the players under the light of the Naghildorium concept. Such equilibrium emerges
from the punishment of the responder who generally tendsftse unfair proposals. In the iterated version
of the game, the proposers are able to improve their propdsabdding an amount thus making fairer
proposals. Such evolutionary aspects are not properly Damvmotivated, but they are endowed with a
fundamental aspect: they reflect their actions accordingfize of the offers. Recently, a reactive version
of the ultimatum game where the acceptance occurs with fikalogbility was proposed. In this paper, we
aim at exploring this reactive version of the ultimatum gamiere the acceptance by the players depends
on the offer. In order to do so, we analyze two situationsm@an field and (ii) by considering the players
inserted within the networks with arbitrary coordinatiohsthe proposed model we not only explore situa-
tions of occurrence of the fifty-fifty steady-state, in botinfogeneous and heterogeneous populations, but
also explore the fluctuations and payoff distribution chtaazed by the Gini coefficient of the population.
We then show that the reactive aspect, here studied, thumfamalyzed in the evolutionary game theory
literature can unveil an essential feature for the convergeo fifty-fifty split. Our approach concerns four
different policies to be adopted by the players. In suchcEsithe evolutionary aspects do not work through
a Darwinian copying mechanism, but by following a policyttbaverns the increase or decrease of their
offers according to the response of the result - i.e. acoeptar refusal. Moreover, we present results
where the acceptance occurs with fixed probability. Ourrdmution is twofold: we present both analytical
results and MC simulations which in turn are useful to desigw controlled experiments in the ultimatum
game in stochastic and deterministic scenarios.

1. Introduction

Game theory analyzes several important aspects of the Bdoalband Biological sciences such as

bargaining, cooperation and other social features. Theryhelays an important role in explaining the
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interaction between individuals in homogeneous and hgésreous populations, with or without spacial

structure, in which agents negotiate/combat/collabovidecertain protocols. The full understanding of

cooperation between individuals as an emergent colleb&avior remains an open challenaﬂﬂ 2,3]. In
this context, bargaining is an important feature has caltezhtion of many authors: two players must divide
an amount (resources, money, food, or other interestingtiiypand the disagreement (or no agreement)
between them in a given deal could mean that both lose sangethhis dilemma motivates a simple game
that mimics the bargaining between two players - the UltimmaGame.

In this game, firstly proposed by Gt al. [H], one of the players proposes a division (the proposer)
and the second player (the responder) can either accepjeot ite If the responder (the second player)
accepts it, the values are distributed according to thesidiviestablished by the proposer. Otherwise, no
earning is distributed to both players.

Real situations in western societies suggest that unfajpqgwals are refused for either fairer or even
more selfish amounts. However some isolated societies akitflmnga localized at Peruvian Amazon
seem to show a behavior opposed to such fact, which suggestseaaltruistic behavioHS]. On the other
hand, scientists have studied and simulated artificialetiesi where players confront each other according
the ultimatum game protocol. In order to consider a simpldwtionary probabilistic model where un-
satisfactory proposals are refused, in this paper we peofmstudy a model where accepting depends on
proposal

Although it is rationally better for the responder to accapy offer, offers below one third of the
available amount to be shared are often rejeid [6]. Thmreker punishes the proposer up to the balance
between proposal and acceptance in the iterated game. énagievalues around a half of the total amount
are accepte(ﬂ[(ﬂ 7]. Other interesting experimental resulggest that high-testosterone men reject low
offers in the ultimatum gamtg[S]. Nowak et. g [9] showed ttie evolution of fairness, similarly to the
evolution of cooperation, is linked to reputation by coesidg a simple memory mechanism: fairness will
evolve if the proposer can obtain some information on whatsine responder has accepted in the past .

Our contribution goes precisely along this line of reseatnofthis manuscript, we extend the memory-
1 model proposed by one of the authors [10] that considersatceptance with fixed probability, by
putting this probability variable and assigning the offgr at timet, that is a number belonging {0, 1] and

performing the game in graphs with arbitrary homogeneodshaterogeneous coordination.

1This game scenario is common and expected in real situatareast in western societies, illustrated even when aild
negotiate chocolate coins (see e.qg. this video https://wawtube.com/watch?v=YXfEv-XEW1E).
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In this reactive and iterated version of the ultimatum gathe,players are able to correct their offers
by adding/subtracting an amount to the offers in order toerfalker proposals. Such mechanisms, which
we assume are an essential ingredient for the convergertfifeytbifty partitions seems to be discarded
in typical evolutionary game theory based on probabilifigrwinian copies. By performing a detailed
study, we investigate the game both analytically and via td&@warlo (MC) simulations under four different
policies about the increase or decrease of the offer undferatit levels of greed. Moreover, we present
results about temporal correlations in the model with fixeabpbility for a suitable comparison with the
model where the offer is time-dependent.

The remainder of paper is organized as follows. Next, we ddfia reactive model and its mean-field
approximation. Then, we show how the model can be run in mésvaith arbitrary coordination. In
Sectior 2 we present the first part of our results corresponidi the mean-field approximation. In Section
we present the results for the game with arbitrary cootidinavia equation integrations. Particularly
for k = 4 we explore the randomness effects by considering MC stioakain small world networks. A
general and analytical formula is obtained for the statipreverage offer and a complete study of the
fluctuations and distribution of the payoffs are performedsidering homogeneous and heterogeneous
populations. Then we present a comparative analysis batweman-field and the model on networks.
Finally, we conclude and comment on the relevance of theiveagltimatum game, in particular on the

experimental evidence of the effect of fairer offers ineliéint international societies.

2. Modeling and Mean-field Approximation: Analyzing the correlations

In the reactive ultimatum game, when a player (proposefppes an offerQ; € [0,1] at timet, itcan b
accepted or rejected by the other player (i.e. the resphndet us think that such acceptance occurs with

probability p;. Let us consider two simple situations:

1. p. = pfixed, and does not change along time;

2. pr =0, i.e., the acceptance occurs with higher probability aoffer is more generous.

When the offer is rejected it will take the proposer to chaitg@xpectations increasing its proposed
offer €. On the other hand when it is accepted the proposer decrigapesposal by a quantity. Hereg is
a rate of offer change. We can consider the mean-field regintleesaverage under all different time series
of parameters of two players interacting according to a dyos. We also can imagine it as parameters

averaged by the different players in a large population,revtiee players interact at each timéenoted
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by authors in refs.ml], an&hZ] as one ‘turn’) by pairs carsipg a perfect matching witN players (for
the sake of simplicityN is an even number) randomly composed. In this pairing, ngepls left out of the
game, with each individual playing once by turn, by congtamnc

Both ways provide similar ways to compute averaged parasi@lving along time, since in this
reactive formulation of the ultimatum game, the interactilepends only on the proposal (offer). The first
case f fixed) were partially explored ihO] but some importantmeiinvolving the existing correlations,
have not been studied yet.

First, we would like to revisit the problem = p to describe the possible correlations which were not
studied in ]. In this case the clustering effects are ngidrtant, and in the next subsection we revisit
some results fop; = p to deduce some semi-analytical formulas for the sum of teadporrelations of the
payoff. Next, in the following subsection, we define the mdde p; = O, and we deduce some relevant

results by mean-field approximation. Our results show ti@gpendently fron®g, lim;_,. Oy = 1/2.

2.1. Reactive Ultimatum Game With=p p: Mean-field approximations

Let us consider the case where the responder always achepiffer with a fixed probabilityp € [0, 1]
], and the offer rejection occurs with probability-1p. This assumption allows us to obtain analytical

results in the one-step memory iterated game. Gévandp, in thei—th round, the average offer is:
(Oj) = Op+ig(1—2p), 1)

wherei = 0,1,2...t, since in each round the average offer is modified(O);) = (1 — p)e — pe =
€(1-2p). In thei-th round, the responder average payoffgs = p(O;) = pOy +ipe(1—2p). Thus, after

t iterations, the average of the cumulative payoff is

t
W (0= 3 (8) = pOs(t+ 1)+ 3

p(1-2p)e 2)

and there is a probabilitp, for a givenn, that maximizes the cumulative responder gaif) (t) is given by
p= %1 [% + 1} . Similarly we have that for proposer the average cumulaiaaoff is given by(W,) (t) =
p(1—Oo)(t+1) — 32 p(1- 2p)e.

In order to calculate the variance of the cumulative gaie, tsk is not so simple. The result was
obtained in ] but only this computed result was shown.i@&dly, this is not only an analytical task. We
suppose that variance is four-degree polynorpiaiith at least two rootsp = 0 andp = 1. So the variance
is considered as a polynomighr(W ) = ap(p—1)(p— p1)(p— p2) wWherea, p; andp, are constants to be

determined. By observing the variance for an arbitrary remab rounds (numerically) for three different
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pvaluesp=1/2, p=1/4 andp = 3/4 we solve a linear system to firgl p; and p, and we can check the

semi-empirical analytical formula obtained |£|[10]:

varW)(t) = (t+1)p(1—p)O§+4t(t+1)p(p—1) (p—3) O+ [2t(t+1)(2t —1)p*(1—p)
3)

—2t(t2—1)pA(1—p) + t(t+l)(2t-gl)p(l—p)]£2

and similarly, we can obtain the variance of the cumulatia® @f the proposervar(W,) = (t+1)p(1—
P)(1—00)* — 4t(t+1)p(p—1) (p— ) (1— Oo)e + [2A(t + 1)(2 — 1)p*(1— p) — 2 (t> — 1)p*(1— p) +
t(t+1)(2tzl) p(1-p) €2,
Implicitly, our difficulty in analytically obtaining a formla to the variance of the gain is related to
the the fact that there is no control of correlation in thebpem. Here aim at providing a more detailed
exploration in order to understand the correlations inedlin such a problem.
since for examplear(W;)(t) = 54 _o (%) — (Gr)*+ 340 3o ((GrGr) — (Gr) (G ) = Sh_y var(a) +
St_1St_1c0rr(gy, o). Letus think about the first part of sum: we can write thgt) = p(OZ). But,
how can one computéO7)? Since(Oy?) = (1— p) <(Ot/,1+s)2> + p<(Ot/,1—s)2>, we have that
(Oy?) = €2+ (0F_,) 4+ 2¢(1—2p) (Oy_1). We can easily conclude, by iterating such equation, that:
(Or%) = 05 +2(1—2p)Ogte + (t(t — 1)(1—2p)% +t)e%. So(g?) = p[OF+2(1— 2p)Opte + (t(t —1)(1—
2p)2 +1)€?)] and(g)? = p? [0F +2(1— 2p)Oote + (1 — 2p)?t2¢?]. Expanding the terms we have that

(@) —(@)* = p(1—p)O§+2p(1—p)(1—2p)Octe @)
+p(t(t —1)(1—-2p)* +t) — p*(1—2p)*t%]e?

By performing the sum we obtain:

6
+p(1—p)(1—2p)Ogt(t+1)e+ p(1— p)Oj(t+1)

Wi = 3 (&) - (e’ <2p2<1— DIt + 1)+ Sp(1— p)(1—2p)t (2 +1) <t+1>) £ (5)
2

This formula, can be used to estimate the magnitude of etimak since from Ed.]3 we have an exact
form (empirically obtained) for the variance. So by measyithis magnitude we can define the following:

t t

P(t) = O 6
(t) thZoCO”(gt o) (6)

By some algebra derivations we obtain:



() = 2A(t+1)p?(p—1)Op€ + ©)
8t P10

8 43 3 223 22\ 2
( 3pt+3p 3 P 3pt 3pt+3pt €
So we can study this function in detail. Since the offgrdoes not touch the limits (0 or 1) there is a
lower bound for the number of iterations necessary for tiséesy to reach such limitsi. = min(|yo/€], | (1 —Yo)/€]).

2.2. Reactive Ultimatum Game With-p O;: Mean-field approximations

In more realistic situations, the acceptance depends onffee So, a natural choice is setting the
accepting probability as exactly the value of the offer. Histcase, considering a simple "mean-field”

approximation where we chan@® by (O), a recurrence relation for the offer can be written as:

(Or11) = (O)—(Or)e+(1-(Op))e

= (1-28)(Q) +e
By iterating this equation we obtain:
(O) = (1-2¢)'Oo+ey|p(1—2¢)
(8)
= (Og—1/2)(1—2¢) +1/2

and lim . (O) = 1/2. Since(1— 2¢)! = 1— 2et + O(€?) for intermediatet-values, sinces is a small

number we have the asymptotical behavior:
(Op—1/2)(1—2¢et)+1/2 t—0
(Or) ~

1/2 t— oo

9)

Therefore an approximation for the average gain of the redgoat timet is (g;) &~ (Oy)? = (Og — 1/2)% (1—
2¢)2 +1/44 (0p—1/2) (1— 2¢). That asymptotically gives

03+ (2 — 400) €00t t—0
(9) ~
(Oo—1/2)+(0p—1/2)+1/4 t—w
In our approximation, in this Pavlovian version the offersnaonverge to a fair proposal. This result
although simple, deserves a lot of discussion in the liteeafind distortions of this behavior must be better

understood since it has an important role in the Pavloviasiae of the ultimatum game.

So a formula for the average of the cumulative gain at timemean field approximation can be written,
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since the acceptance probability is the owner’s offer value

W (1) = 3ho(Or)?

1\2 (26—1)2+21 1\ 1—(1-2¢)t*t 1
— (- p e <oo—§><2—:> 8

Again, we have two regimes: for— 0, asymptotically we havé\ (t) ( o — 1
= (5+ 2 (00— 1)) (@+1). Fort— e W(t) ~ (Co—3)° gt + % (O —%) Y which
determines a crossover between two different linear behavi

If we extract the correlations, the variance of the cumwagjain:

var(We)(t) = var(W)(t) — 545 3120 ((OrOr) — (Ov) (Or) )
= Sho(g) — (o)®

(02) % (1= (0-2)) (01 +)°) +(01) Q-1 —¢)°)

After some algebraic calculations:
(O%) = €2+ (02 1) + 26 (Or_1) — 4€ (Or_1)°
what after the iteration and some algebra leads to:

(02) = (O 12)+&2+2¢ [(o0 —1/2)(1—2¢) 1 1/2} 4 [(1 2ty 1/2} ’

11
= Op?+&%—(0p—1/2) [1- (1-2¢)'] — (212" [1 (- 25)2] Y
Following exactly what we considered previously, we canragimate
(gf) =~ (0v)(Of)
(o)? ~ (Op)*
It is important to see that
var(@) = (&) — @) ~ 50+ e~ (Op-1/2) - (X—UZE) L (12

for t — oo, which leads to a linear behavior in time for the variancéed#intly from case where accepting

occurs with fixed probability. In this caser(g;) has a quadratic leader term in time.



We can evaluate numerically the expression

t

varW) ~ 3 (0n) ((02) - (0v)?) (13)

t'=0

and naturally to comput®(t) as performed for the case of the fixpdequatior 2) for the particular case
where acceptance depends on the offer, but for this case veetbaomputevar(\W;) numerically by a
Monte Carlo simulation differently from the case where theeptance occurs with fixed value pf3) and

computingvar(\W ) by usind 11.
3. Extending the Model to Networks

In this second part we analyze the model considering coatidim and randomness. In this case we
consider that players are inserted into a network (or grégghgonsidering the reactive ultimatum game
with acceptance probability equal to ofi@y.

To extend our results to networks, we consider four diffemticies that governs the update dynamics
of the player offers in the network, which works as a greedglleHere, the terntonservativemust be
understood by the policyif you are not sure about the acceptance of your offer in thghimrhood, you
will increase your offer; otherwise you will decrease it.

Our simulations consider a simple initial condition: firah initial offer Og is assigned equally to all
players. Such initial condition is initially adopted foretisake of simplicity.

At t—th simulation step, each playet 1,...,N in the network, wherd&\ is the number of nodes, offers
a value for itsk; neighbors. Each neighbor accepts or not the proposal wathghility p,(t) = t(i), where
Ot(i> is the offer ofi-th player at timd. Since we compute the number of players that accept the gahpo

na(i), we have the possible policies:

1. Conservative: Ensures that more than half of the neighbors accept the malpo order to reduce
the offer If na(i) > ki/2, soOt(R1 =o' —¢, otherwiseot(izl — o) +¢;

2. Greedy: One acceptance is enough to reduce the offém,(i) > 1, soOt(iJzl = Ot(i) — g, otherwise
ol =0 +&;

3. Highly Conservative: All neighbors must accept the proposal to reduce the offéem,(i) = ki, so
Ot(ill =o' —¢, otherwiseOt(Rl — o +¢;

4. Moderate: If exactly half of the neighbors accept it, then the prop@seeduced na(i) > ki/2, , so

o, = o' — ¢, otherwise0("”, = O + ¢;



Let us consider a particular and interesting case, wheredbedination of all nodes is fixed and made

equal tok (regular graph). For example, in the first case we have,
(Ory1) =~ (Or) —€(Pr(na >k/2[(Cr)) — Pr(na < k/2[(Cy)))
= (O)+€&(2Prna <k/2[(Cr)) — 1)

But
k/2 meq k—m
Pr(na <k/2|(Or)) = ZO < <Otin! Ei_ ,f))f»
and so

k/2 k! ot 1— (O k—m
= o+ |25 Ol (0

~1le (14)

We can iterate this recurrence relation and compare witlteeom Monte Carlo simulations in net-
works with fixed coordinatiok. Monte Carlo simulations can also be performed to analyzeléviations
of this formula when the average degreé is disordered networks. In sectibh 5 we analyze, for example
the deviations from formulaZ14 when we introduce effectsaoffomnesg in small worlds built from rings
and two-dimensional lattices.

In this same section we present studies about payoff digiwi for k = 4 and analyses of stationary
offer (O«) for arbitraryk in heterogeneous population of players, i.e., we consid&rent partition of

players that play under four different policies.

4. Results Part I: Mean-field Regime

In the sequel, we present our main results in the mean-figichee

4.1. Mean-field for acceptance with fixed probability p

In the previous section, we observe that in such case, theioffreases or decreases linearly with time.
The cumulative payoff (wealth) of the respond@i() (t)) also is easily calculated by Elg. 2. Foe 1/2,
we can verify thatW; ) grows linearly in time, independently from rege The quadratic term is relevant for
p # 1/2. This simple calculation suggests that the variance ofutatine gain should also be calculated.
Here a problem occurs: The author [10] have analyzedgtriicular case of the game. They calculated
it by using a semi-empirical method to obtaiar(\W )(t), fitting a polynomial inp which has two obvious
roots: p= 0 andp = 1, resulting in equationl 3. This is so because the authoiid #ve correlations of the

problem, the only reason that prohibits an analytical @ian of this formula by direct methods. But why



is this important? Because we can use the semi-empiricaduiar for the variance obtained tlﬂlO] given
by Equatiori B in order to study the correlations of the pnable

By performing such correlations, first of all, it is importdn observe the behavior of variances of the
payoff at timet of respondervar(g;) = <th> - (gt>2. We know how to calculate this value as can be seen

in Eq.[4. Here our first study is to observe the influence of trenging rate ok.

10

Figure 1: Variance of the payoff of responder foe= 1/2 andOg = 1/4, for differente-values according to Ef] 4 We can observe
in this log-log plot different stages of growing as functiafitime.

We can observe thatar(g;) increases with time, as Fi@ll 1. A convexity change is morsitea to

highere-values. The sum of these local variances corresponds 1 efpar(\W ) (t), denoted byar(W)(t)

which was analytically obtained by Ef] 5. So we comp@fe) = var(W )(t) — var(W; )(t) estimated by
equation[¥ which corresponds to the sum of all correlatiodhthe payoffs until timet, i.e., a kind of
“cumulative” correlation.

In Fig. [2 we can check the behavior @(t)|. The pointst*(Op) where® = 0, give var(W )(t*) =
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Figure 2: Absolute value ob(t) given by EqLY for different values @y, with p=1/2. We can observe that there is*avhich
corresponds t@® = 0 for eachOp. Such point corresponds to a signal change®(f.

var(W )(t*), i.e, they work as a “decorrelation time” of the system thepehds on initial offe©g. The
points in Fig.[2 corresponds to MC simulations used to canrate the results from equatiéh 7. In this
simulations we performed 20uns of the iterated game performing averages for each fifeecan see a
perfect agreement between [Eg. 7 and MC simulations.

Now let us show the results for the reactive ultimatum gameior when the acceptance depends on

the offer and compare with the results of this subsection.

4.2. Mean-field for Acceptance Dependent on the Offer

We observed that reactivefixed approach for acceptance of the offer leads to offeasititrease or
decrease along time. This is a possible behavior, but therempnts with human beings (see elg. [5]) seem
to avoid the undesirable situation leading to a fair steaalesfifty-fifty sharing.

The reactive ultimatum game, based on acceptances thahdl@pethe offers produce a stable state
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O. = 1/2 independently o®p. This strong fixed point must be better understood. Herdjrtequestion is
to check the cumulative gain and variance of the offet@ge= 1/2 in this situation comparing these same
values in the reactive-fixed game.

In Figure[3 (eft plot) we show the temporal evolution ¢} ) (t), i.e., the cumulative payoff up to time
t, according to Equationl 2 for fivp-values. We can observe that cgse- 1/2 corresponds to the regime
which p changes with offei (10).

In the same Figureaight plot ) we show the behavior of the variance of the payoff for theespmalues
(Eq.[4). The variance can increase or decrease, respgcfivep > 1/2 andp < 1/2. Forp=1/2 we have

also the agreement with the case witdependent on the offer given by Equation 12

: depends on the offer ' ' ' '
w4 x p=0.05 4 1074 E
o p=025 y
o p= 0.5 N/\ [
o 1 & p=075 = o E af’
= p
X + p=095 & jgpﬂ/ M
=] o X ] AT B ;
v x X VA
° * depends on the offer % p=0.05
. 0=05] | o p=025 o p=050
“ 0 a p=0.75 % p=0.95
: : . 107+ ; ; ;
! 10 100 1 10 100 1000
A t

Figure 3:Left: Cumulative payoff (wealth) for differem—values withOg = 1/2. The red line corresponds to the case in which
accepting depends on the offer. It fits very well the gasel/2. Right: The same results corresponding to the variance of payoff.

Now, it is interesting to observe what happens with othdiahconditions for variance of payoff when
the acceptance depends on the offer. We can observe i Figat 4dlues of payoff dispersion always
converge to the same valwvar(g) ~ 0.06 which does not depend @y.

Particularly forOp = 0.95, we observe that variance has a maximum before it corveéogihe steady
state. This rich behavior is obviously related to the faet thn average that offer converg@s;) — O, =
1/2 (see Eq19). In this same plot, we also show that MC simulatémrroborate our analytical results.

So our reactive ultimatum game in mean field regime (two iiddials iteratively playing) and with the
values averaged for a huge number of repetitions (meanréglcthe) is able to reproduce the intuitive aspect

of the ultimatum game, which corroborates real situattoR#ally looking at the variance of the cumulative

2As seen in this simple video: https://www.youtube.comsh@y=Y XfEv-xEWtE
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Figure 4: Temporal evolution of the payoff dispersion foe ttase which accepting depends on the offer. The pointsspumne to
analytical results and the lines to Monte Carlo simulations

payoff we can also estimate the val®ét) for this case as we performed for tpefixed approach.

In Fig. [ (left) we show the variance of the cumulative payadf(\W ) as a function of time which
is only obtained by Monte Carlo simulations (full points)n @e other handvar(W) (lines), the sum of
payoff variances for all timet < t, were analytically estimated by Equatidns 13, 11,[@nd 8.

The empty points correspond m obtained by Monte Carlo simulations. By performing the
differencevar(W, )— var(W ) we obtaind(t). In Fig. [§ (right) we can observe thdt(t) converges to a
steady state well defined as the payoff and its variance. Rérmethat this is different for th@-fixed
approach (as seen in F[d. 2).

In summary, we observed that offer-dependent acceptanckipes a fair steady state for these offers
contrary to the expected rational behavior. But in this ieerf reactive ultimatum game other important

guestions can be answered: which are the effects of todprandomness, and the neighborhood size on
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Figure 5:Left: Variance of the cumulative payoff (filled in points) and them of payoff variances (empty points) obtained by MC
simulations. The lines correspond to analytical resultaiokd by Mean-Field approximatioRight: Temporal evolution ofp(t)
corresponding to results of the left plot in this same figure.

the offers. In the next section (second part of our resulesamalyze such effects on the reactive ultimatum

game when the acceptance depends on the offer.

5. Results Part Il: Coordination (k # 1) and Randomness Effectsyf # 0)

In this section we analyze the reactive ultimatum game iwoekds. We initially concentrate our atten-
tion for populations that play under policy |, in a regulaagin withk = 4. In this case, we can skt= 4 in
equatior TH, we havéD, 1) = (O) + (6(0)*—8(0)3+1)e. For (Op) = Op. We can iterate this equa-
tion. Simultaneously we have performed Monte Carlo sinmatet in a square lattice by considering that
a player will make an offer to their four different neighbansd therefore will be the responder to another
four different neighbors. The player changes her decisiitim r@spect to the offer only after having played
with all neighbors, and the synchronous our asynchronorssoreof the MC simulations which are similar
in this case.

Here an important question to ask is about the influence aforamess on these results. If we imagine
for example a small world built from a simple ring or even aamgulattice with coordinatiokg, by intro-
ducing a rewiring probabilityp, we have(k) = kg but the result corresponds exactly, for example to policy
I, by changingk by correspondingk)? This is not what happens. This occurs onliifs large; for smaller
ko we have a dependence pras can be observed in the color maps of Fiflire 7.

Such behavior can be checked by looking the dependencetiohstey offer as function op and(k) as

shown in fig.[T. We performed simulations in a small worldtatgrfrom a ring and a square lattice. It is
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Figure 6: (a): Average offer, for different initial valu@y, equally attributed to all players. We considered the eractirrence
from Eq:[I2 (continuous curves) and MC simulation (pointsiisquare lattice which corresponds to kise 4 in formula. Inset
plot correspond to stationarity of the offer dispersior): fesults obtained from mean field which corresponds=tol (no policy
dependent). (c): Results for the other policies alsdckfer4. (d) Results for policy | simulated on the square but withiteary
neighborhood for differerit-values.

interesting observe that for low coordination evenfice 1 we do not obtain the result expected for mean
field ((Orw) = 1/2).

Now it is interesting to analyze the effects about the pagbfthe players in populations under four
different policies. We want to show the effects about distion of payoff in populations as a function of
time considering the populations in which the offers arégrared under 4 different policies and acceptance
occurs with probability exactly the offer of the player. Wansider k = 4). We can see from plot (C) in
Fig. [ that policy 3 leads to higher offers. This happens igealayers with this behavior only decrease
their offers in really favorable situation; they prefer &atlwith more players under lower offer values than
playing with only one player under higher offer values. Biggffers mean higher acceptance probabilities,

which mean larger number of deals.
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Figure 7: Randomness effects on stationary offers for thieypb a) Left plot: small world built from a ring b) Right pto small
world built from a square lattice.

By considering the payoff obtained by players in populatiorieracting under the different policies, we
analyzed statistics related to payoff obtained by the ptayepopulations interacting under these different
policies separately. We consider= 4, for the sake of simplicity. One question to ask is how thgoffas
distributed among the players along time. In this case, weuse a interesting concept from Economics,
the Gini coefficient. Considering th&t players have their payoffs at timieén increasing orderg; (t) <
g2(t) <.... < on(t). So we consider the cumulative distribution:

_ Yi-10;(t)
Siig;t)

The Lorentz §;(t) x i/N) curve shows the corresponding wealth (sum of payoffs)esponding to

i(t)

population fractionf; = i/N. We expect an identity function for a well distributed pdy®y a trapezoidal

formula, the Gini coefficient can be estimated by

1N
G =1-5 5 41
which measures the difference between the Lorentz curvehenidlentity function. This number changes
from O up to 1, and the higher the value®fthe worse is the payoff distribution.
Since we analyzed the properties of populations underdiitgoolicies fokk = 4, now we would like to
better explore a general formula for the stationary offerdiiditrary coordination, considering populations
under proportions of different policies. If we considerttpg ps, pHc andpy are the densities of conser-

vative, greedy, highly conservative and moderated playeescan write that with the players inserted in a
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Figure 8: (a): Average total payoff of the players kot 4 by considering the different policies. (b): Correspod@ini coefficient
of the average payoff described by Plot (a).

population with coordinatiof, is
(Oty1) =~ (O)+pc-[2PHO<na <k/2[(Or)) — 1] €+ ps-[2Prna = 0| (Or)) — 1] e+
+ prc[2PM0 < ng < K[(Or)) — 1] e+ pm [2P0 < na < k/2—1|(O)) — 1] &

which results in

(Ou) & (00 +pe (2502 ORI ~ 1) + o (21— (00) — 1) + prc (1~ 2(00)")

_ meq k—m

m! (k—m)!

(15)
Obviously, Eq.[I# is a particular case of Hq.] J& € 1, pc = pc = pm = 0). So our work now
is to change the proportions, ps, puc and py, by numerically solving this equation and answering an
important question: Is there some proportion that is abtthtmge the behavior 6 _,..) = 1/2? First of
all, it is important to mention that all results obtained lymerical integration of Ed._15 were checked by

performing simulations in rings and square lattices withiteairy coordination. For this reason we will omit

any information about MC simulations from that part unti tfinal results, but remember that we have a

perfect agreement between MC simulations and numericagiiation of Eq[15.

First, we would like to analyze the stationary average dtiemixing of different strategies, by looking

at differences between the homogeneous populationstkiag.pne where players only use the same policy

(I, I, 1L, or IV). In plot (a), Fig. @, we show the behavior ¢ _,..) as a function ok in log-log scale. Each
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plot corresponds to one population interacting according $pecific policy (we denote it as homogeneous
population). The inset plot corresponds to the same pldah@al scale. We can observe that in policies |
and IV, the stationary offers converge to2lwhenk — oo, differently from Il and IlI.

It is important to mention that a population with only greqaayers leads to an algebraic decay of the
offer as coordinationk): (O;_..) ~ k™ ¢. We measured the exponeht~ 0.95 by usingkmax = 40 and
& ~ 0.97 for kmax = 60 which indicates a kind of hyperbolic scaling in coordioat(O;_..) ~ 1/k.

The first experiment with heterogeneous population kepps-(oc = puc = pm = 1/4). In this case,
surprisingly the stationary case(®_,.) = 1/2 independently fronk (by simplicity we omit this obvious
plot). We cannot observe such behavior in the studied hormesmes populations.

Other exotic choices can be performed in whi{€h_,.) shows convex and concave behaviors as func-

tion of k, i.e., with extrema well defined as we can observe in plotRy),3.
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Figure 9:(a): Stationary average offers as a functiorkafonsidering homogeneous populations - players follow glsipolicy -
in log-log scale.(b): Some mixing of policies (heterogeneous population) ithting one case where there is a coordination that

maximizes the stationary offer and one that minimizes it.

6. Conclusions

In this paper we analyze some important aspects of popaofatidich interact under a reactive ultima-
tum game. First we extended results of a recent publicativerevacceptance of the offers occurs with fixed
probability p. We show an interesting behavior for the sum of all tempooaletations of the payoff from
t' =0,..,t: ®(t), which changes its signal in time that depends on the aaveptarobabilityp, that is a
property from the fact thaO;) increases (respectively, decreasesp as0 (resp,< 0) as function of time.

Based on the fact that unfair offers have small acceptaratgapilities, we proposed a new model where
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acceptance occurs with probabili@y, i.e. the offer of the opponent. In this case a mean field redgéads
to a interesting stationary fair offe@;_,., = 1/2 independently from the initial offéDy. Thus, the sum of
the temporal correlations of the payoff has a steady stalledefned, but depends dDy.

When studied in networks the model does not pre€gent, = 1/2 for low coordination (smak) what-
ever the policy analyzed. Particularly fer= 4 we showed that the average payoff is larger and the Gini
coefficient is smaller for the policy that decreases theaetdge offer only when all players have accepted
the offer at hand. This apparently altruistic player gamw Vvalues as proposer, but higher values as a
responder; this combination leads to a well distributedoffayjywe show that the absolutely greedy policy
(I1) leads to low payoffs and to high Gini coefficients.

Further, we introduced four policies that differ in how eaut@iyer increases/decreases her offer. Only
two policies presentO;_,.) = 1/2 for k — . However a perfect equilibrium among policies, i.e. 1/4 of
population for each policy, leads {®;_,..) = 1/2 independently fronk. There is a breaking of mono-
tonicity of (O;_,«) (k) for mixing of strategies, which preserkssalues wheréQ;_,) is a extreme, either

maximum or minimum value.
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