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Highlights

e We develop novel glucose-insulin systems modeling rates of glucose in-
fusions and insulin injections.

e The periodic solution for type 1 and permanence for type 2 diabetes o
the system have been studied.

e The results showed that the period, the frequency a e e of
glucose infusions and insulin injections are crucial.
e The blood concentration can be controlled within a @ range using

the proposed models.
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Abstract

Novel mathematical models with open,and closed-loop control for type
1 or type 2 diabetes mellitus were developed to improve understanding of
the glucose-insulin regulatory system., A" hybrid impulsive glucose-insulin
model with different frequenciés.ofsglucose infusions and insulin injections
was analyzed, and the existence andyuniqueness of the positive periodic solu-
tion for type 1 diabetes, which is globally asymptotically stable, was studied
analytically. Moreover; permanence of the system for type 2 diabetes was
demonstrated which’showed that the glucose concentration level is uniformly
bounded above and below! To investigate how to prevent hyperinsulinemia
and hyperglycaemia being caused by this system, we developed a model in-
volving periodic intakes of glucose with insulin injections applied only when
the blood/glucoselevel reached a given critical glucose threshold. In addition,
our numeric¢al analysis revealed that the period, the frequency and the dose of
glucose infusions and insulin injections are crucial for insulin therapies, and
the'results’'provide clinical strategies for insulin-administration practices.
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1. Introduction

Diabetes mellitus is an epidemic disease worldwide, characterized by
plasma glucose concentrations mostly remaining above the normal range
as a consequence of the absolute or relative lack of insulin. Depending on
the pathogenic mechanisms involved, diabetes mellitus is divided into™three
types: type 1 diabetes, type 2 diabetes and gestational diabetes. Typeyl dia-
betes is generally due to the immune system of the patients destroying 3 ¢ells
in the islets of Langerhans of the pancreas and thus preventing production
and secretion of insulin. In type 2 diabetes, either the S-cels*domot produce
enough insulin or the so-called insulin resistance occurs when the ‘system be-
comes dysfunctional and prevents cells from taking up glucese‘efficiently [1].
Gestational diabetes refers to cases when pregnant, women who have never
had diabetes develop high plasma glucose levels.during pregnancy. Since the
discovery of diabetes, the main aims of researehershave been to find out how
the endocrine metabolic system works [2.48fmthe reasons for dysfunctions
[4] and effective and efficient therapies improying the daily life of diabetic
patients.

A typical therapy is subcutaneous,injection of insulin or its analogues by
using an insulin pump. This not,only provides a basic treatment for type 1
diabetes [5], but also supplies a viable alternative for type 2 diabetes although
the latter can be controlleds™or, even cured, by life-style changes such as di-
etary adjustment, physicahexercise, stopping smoking and avoiding exposure
to second-hand smoke” [6:8]. A" drawback of insulin therapy, however, is the
difficulty in the monitoring/of plasma glucose concentrations non-invasively.
Thus, all current’therapies are followed by the so-called open-loop approach
in which glucese concentrations are not measured automatically. When an
accurate nen-imyasive glucose monitoring technique is developed, the open-
loop treatment,can be replaced by closed-loop therapy, with an ”artificial
pancreas” delivering insulin automatically according to variations in blood
glucose levéls [9-11].

However, the need for reliable predictive models and the lack of effective
and efficient control algorithms are two major impediments in the develop-
ment of the artificial pancreas [12]. To conquer these issues, several reliable
mathematical models which can determine the time and the dose of insulin
injections for control algorithms have been proposed and investigated [13-15].
Such models reflect the interaction mechanisms between glucose and insulin
in a kinetic system. Meanwhile, periodic insulin administration has been



employed to mimic impulsive injections for type 1 or type 2 diabetes mellitus
treatment regimes [14, 15]. Inspired by Wang et al. [14, 15|, Huang et al.
[12] formed a new model which takes impulsive insulin injection into account
either periodically or by monitoring the plasma glucose concentration leyel.
The model can be described by:

e kI(D)
at) _ aG) o

dt a? + G2(t)
G(t) = G1), } t— b

| I(tT) =1(t) + o,
where G(t) is the glucose concentration at time fpd(t) is the insulin con-
centration at time ¢, G;, is the estimated“average constant rate of glucose
input, o, indicates the insulin-independent glucose uptake rate, the term
aG(t)(c + miI(t)/(n + I(t))) stands for\thejinsulin-dependent glucose uti-
lization, b represents the hepatic glueose\production, o;G?(t)/(a? + G?(t))
is insulin secretion stimulated bymelevated glucose concentration caused by
complex pathways including chemieal-electrical processes, d indicates the in-
sulin degradation rate. Furthermore, all parameters are positive [12] and the
initial conditions are G(0)'= Go > 0,1(0) = I, > 0. 7 is the period of the
impulsive injection, .¢ dénotes the dose of insulin in each injection and is
injected as an impulse at, discrete times t = hr,h € ZT ={1,2,3,...}.
Although the authors’obtained many meaningful results theoretically [12],
for the sake of simplicity, they assumed that the constant glucose exogenous
infusion rate Gy is described by a continuous process in a period. However,
this can“net’'reflect reality very well because constant glucose exogenous in-
fusion is usually a discrete process with an impulse at discrete times [2], for
example, uptake from food (i.e., from breakfast, lunch and dinner) or the
rate of intravenous glucose infusion at intervals [3], although this might be
provided continuously in a hospital context. Therefore, in order to better re-
flect reality and model the treatment currently available for clinical use, we
consider that glucose infusion is applied only at each impulsive point 7,,, and
at each impulsive point \,, there is an impulsive injection of insulin. These
modifications result in the following model based on the two impulsive point
series [16, 17]:
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where 7,(n = 1,2,...) and A\, (m = 1,2,...) are impulsive point series at
which glucose infusion and insulin injection are applied, respectively. It is
thus possible to rank the different patterns of gliucese infusion in terms of their
dynamic effects in relation to the timing of insulin“injection. Furthermore,
it has been revealed that the oscillatory insulin delivery with a periodicity
is more efficient in reducing plasma glueese concentration level [15, 18], and
the main characteristic of system (1:2) is.in agreement with how the insulin
pump works in an open-loop fashion.

Although the insulin pumps with\open-loop approach have made major
contributions to clinical practice, open-loop therapy changes the life styles
of the patients and increases their likelihoods of becoming hyperinsulinemic
or hyperglycaemic. Therefore,/ from a theoretical point of view, the most
effective insulin therapy for,patients is to control their glucose levels within
a desirable range Once the’blood glucose reaches a critical glucose threshold
(CGT) instead. of periodic injections of insulin, as shown in Fig. 1. The
critical glucese threshold can be defined as the glucose level in the blood
when insulin, injections must be taken to prevent the dangerous glucose level
(DGL) froma being reached and exceeded, where the DGL is the blood glucose
level that will’ cause harm to patients. For example, insulin injections must
be*taken once the critical concentration of glucose is observed by a glucose
monitoring system so that the DGL can not be exceeded, that is, sufficient
lead. time is needed between the time when the critical concentration of glu-
eose is observed and the time when a treatment is applied (Obviously, CGT
is less than DGL). Thus the most reasonable treatment is that insulin is
injected automatically in a closed-loop technique integrated with the glu-
cose monitoring system. Based on system (1.2), we propose a novel hybrid



impulsive model with threshold:

( dG(t)
7 = —O'QG(t) —a (C—|—
dI(t) o1G2(t)

o 704%+G2(t)_d[(t)’ G<Ge or I>Ig,
G(r7) = G(1a) + Gin,
I(r)) = I(7a),
G()‘jv_z) = G()‘m)u
IO‘;) - [()‘m) + o0,

kI(t)
I+ 1()
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(1.3)

t=Tp,

} G>Ge and 1< g,
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where 7,(n = 1,2,...) is an impulsive point series at{whieh glucose infusion
works normally, and A, is the time series at which the glucose level reaches
the CGT and the injection of insulin should be applied’) The initial condition
G(0) = Gy < Gg, 1(0) = Iy, G¢ is an adjustable eenstant threshold value
for the glucose level, I is another adjustable constant threshold value for
the insulin level. When the blood glucose levelyreaches G (CGT), then the
injection of insulin with dose of o is performed and the glucose level must
decrease when the insulin level surpasses I¢.

The paper is organized as follows:\ In section 2, we focus on system (1.2)
and investigate its dynamic behaviors. The existence and stability of the pos-
itive periodic solution is sttidiedsunder different cases. Furthermore, by using
the comparison theorem, wehaye proved that the system (1.2) is permanent.
In addition, numerical simulations have confirmed our theoretical work and
insulin therapies for patients are also discussed. Moreover, in section (3),
system (1.3) is_investigated numerically and the simulation results revealed
that the blood glucose level could be controlled very well within the normal
range. Finally, we discuss our results combined with insulin therapies, but
additionalwork:is needed to provide reliable predictive models and efficient
control algorithms for developing the artificial pancreas.

2. Mathematical analysis of system (1.2) for open-loop technique

As mentioned before, for type 1 diabetes there is no insulin produced or
secreted, this case corresponds to o7 = 0 in system (1.2) and (1.3). Now we
investigate the dynamics of system (1.2) for type 1 diabetes.



2.1. Ezistence and stability of the periodic solution of system (1.2) for type
1 diabetes

There are two impulsive point series when glucose infusion and insulin
injection are applied. Therefore, it is possible to rank the different patterns
of glucose infusion in terms of their dynamic effects in relation to the timing
of insulin injection. We consider several different cases in terms of thé timing
of controlling the blood glucose level from a practical point of view.

Case 1 Glucose infusions are more frequent than insulin.injections.

Assume \,y1 — Ay = Ty for all m(m € N), where Ty, is'¢hesperiod of
impulsive injections of insulin. For this case, the system (1.2) is said to be a
Ty periodic system if there exists a positive integer kyssuch that

Totky = Tn T TN

where £, denotes the times of glucose infusions during the period 7. This
implies that in each period Ty, k, times glucosevinfusions are applied.

When o, = 0, the variable GG does not appear in the second equation of
system (1.2). Therefore, for the dynamies,of insulin /(¢) we only need to
consider the following subsystem:

dil_(:) = —dI{{),"  tF#TutF# A,
I =Wr), b= Y
IAN W= L(\n) + 0, t= A,

Denote A; = 711 —Tind= 0,1,2, ..., ky, where Ay = 71, Ay, =Ty — 7,

It is shown inAppendix A that there exists a globally stable Ty periodic
solution I”¥ (t)for system (2.1), substituting /7~ (¢) into the first equation
of (1.2) for 4(t), we get a positive T periodic solution with the complete
expression’ (17 (#); G™V (t)) over the h—th time interval hTy <t < (h+1)Ty
of system (1.2)/for type 1 diabetes. Now we prove that the positive periodic
solution (IT¥(t), G™ (t)) is globally stable under Case 1.

Theorem 2.1 If o, = 0, then the positive Tl periodic solution (17~ (t), GT~(t))
of system (1.2) for type 1 diabetes is globally asymptotically stable.

Proof. The local stability of the periodic solution (I7%(t), G™(t)) can
be determined by considering the behavior of small amplitude perturbations
(u(t),v(t)) of the solution. Define

Gt)=G™(t) +u(t), I(t)=I™(t)+v(t),



then it follows that

where ®(t) satisfies

akITN (t) akGTN (1)
do(t) N B IO IO K105
dt 0 —d ’

with ®(0) = I the identity matrix. The linearization of thesresetting impul-
sive condition of (1.2) becomes

(oo )= (o v) (et

u((hTN + TZ‘)+) o 1 0 u(hTN + Ti)
o(RTy +m)T) ) \ 0_1 v(hTn + 1) )
Then the stability of the periodic solutiow”(I7~ (t), G*~(t)) is determined by

the eigenvalues of
T 0
0= ( O 1 ) O(Ty).

Therefore, all eigenvaluestof 6 are given by
LN akI™ (1) o
= exp Y e S N T = I ny = e 4IN,
T (/hTN |: 5 Z+ITN(t):| ]HOU 12

where

j—1
' rie1+hTy ak‘[*exp[—d(z A+t —T1; —hTy)]
wh=exp / —£— ljzo dt |,

—1
JthIN I+ I*exp[—d(Y_ Aj+t — 75 — h1y)]
i=0

from the expression of I7%(t), when t € (1; + hTw, 7j+1 + hTx], we get

j—1

I'™(t) = I'exp[—d Y AjJexp[—d(t — 7 — hTy)](j = 0--- k),

=0



substitute it into 77, by calculation,

J
ogexp[—d Y Al +1 — exp(—dTn)
i = exp(—EA;) = ,
oexpl—d > A+ 1 — exp(—dTy)
i=0

it is obvious that 7/ < 1. Besides, 1, < 1 always hold. According, to Eloquet
theory [19, 20], the positive Ty periodic solution (I7¥(t), GTN(¢))=is-locally
asymptotically stable.

In the following, we prove that the periodic solution (/7¥(£), GT~(t)) is
a global attractor. According to the proof of boundedness for the system
(2.1), we can get I(t) — I'¥(t) as t — oo. Choosing.e; > 0 and &5 > 0 small
enough such that (1 — ;)" (t) < I(t) < (1 +%&)I™(¢t) for all t > t; > 0.
From the first equation of system (1.2), we note, that

aG (1) ahBE)(1 + &) 1™ (1)
R R N Ul s w7y
and
4c(0) akG(t)(1 — )™ (t)
g =0t a6l - = S

then we obtained the following two impulsive equations

dG'(t akG'(t)(1 4 e5) ™ (t
dt( )y (02 Hae)G' (1) — = +<(i(+—;)§)TN(t)( ),t £ oot £ A,
G' (1) =G\ (1,) % Gin, t=Tp,
G' (ALY =G (M), t= Am,
(2.2)
and
dG" (t akG"(t)(1 — ) I™N (¢t
T == )G ) = T S e £
G"(1,7) = G" (1) + Gin, t="Tn,
G"(\E) = G" (M), = A
(2.3)

According to the subsystem (A.2), we replace I (t) by (1 + &)™ (t) in
equation (A.6), which yields a unique globally asymptotically stable positive



periodic solution G'*¥(t) in interval (hT, (h + 1)Ty] for subsystem (2.2),

G&(t), t e (hTN,Tl + hTN],

G’TN(t) _ gé(t),t c (T1 + Wy, 7o + hTN},

for1 (1) € (Th, + hTn, (h+1)Ty].

Similarly, we get the expression of the periodic solution G~ (t) fér subgystem
2.3),
Gi(t),  te (hTy,7 +hTy],
"
GIITN <t) _ :C;’Q (t>7t S (7—1 + hTN, T2 + hTN],
,kip—i-l(t)?t € (Tkp + hTN7 (h + 1)TN]

According to the Comparison theorem, for any e >0 small enough, there
exists a ty > t; such that

GTN(t) —e < G'(t) < G(t)'SOHt) < G"™N () + ¢

for all t > ty. Let €,61,69 — .0, themyG'™¥(t) — GI~(t) and G"~(t) —
G~ (t), which leads to

GU(t) —e < G(t) < G™(t) + ¢

for all t > t,, that is'G(f) » G~ (t) as t — oo. It follows that the periodic
solution (17~ (t), G~ (t))}is a global attractor, and consequently the global
stability followss This,completes the proof.
Case 2 _“Insulin injections are more frequent than glucose infusions.
Assunte 7,41 =7, = 1), for all n(n € N), where T}, is the period of glucose
infusions. “For this case, system (1.2) is said to be a T}, periodic system if
there exists a positive integer ky such that

)\m_;,_kN - )\m + Tp.

This implies that in each period T),, ky times insulin injections are applied.

For this case, there are ky times insulin injections during the period 7,.
Similarly, denote A; = A\jy1 — N, @ = 0,1,2, ... ky, where Ay = A\, Ay =
T, — Aiy - Because o1 = 0, then the variable G' does not appear in the second
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equation of system (1.2). Therefore, for the dynamics of insulin 7(¢) we only
need to consider the following subsystem:

ﬂit):_d](t)v t#Tnat#)\ma
I =I(\n) 40, t=An, (2.4)
I(TJ):I(Tn% L= Ty,

It is shown in Appendix B that there exists a globally stable ), periodic
solution with the complete expression (I7¢(t), G™*(t)) over.the F=th time
interval hT, < t < (h + 1)T, of system (1.2) for type 1/diabetes. Now we
prove the stability of the positive periodic solution (I*2(#),G*#(t)) for Case
2.

Theorem 2.2 If 5; = 0, then the positive T, periodic solution (I'7(t), GTr(t))
of system (1.2) for type 1 diabetes is global asymptetically stable.

The Proof is similar to that for Theorem™l, so we omit it here.

Case 3 Insulin injections and glucosesinfusions are employed with dif-
ferent periods.

Assume \,41 — Ay, = Ty for all mpand 7,41 — 7, = 1), for all n. In this
case, Ty is the period of impulsive injections of insulin, 7}, is the period of
glucose infusions, m, n(n €M), Denote p = T,/T, then p either is rational
(i.e. T, and T are ratienal dependent)or is irrational (i.e. T, and Ty are
rational independent)s If pis rational, then p = p/q, p,q € N and p,q are
relatively prime. Let Ty =/pTn(= ¢1},), then system (1.2) is a T periodic
system. This means that’'if p is rational, model (1.2 ) can be investigated
by using similafimetheds as those in Cases 1 and 2; if p is irrational, then
the dynamical\behavior of model (1.2) becomes more complex and is quite
difficult 40 inwestigate theoretically; see more details in reference ([21]).

From the analysis of Case 1 and Case 2 for type 1 diabetes, there is no
insulin produced or secreted from the pancreas and the subcutaneous injec-
tions ofwimsulin can stabilize the glucose-insulin concentration. It is shown
that no matter whether glucose infusions are more frequent than insulin in-
jections or insulin injections are more frequent than glucose infusions, there
exists a positive globally stable periodic solution in system (1.2) for type 1
diabetes, and the periodic solution reflects the periodic oscillations of the
glucose-insulin concentration when glucose infusions and insulin injections
are applied.

11



When o; > 0, then the pancreas of the patients can produce and secrete
a little but not enough insulin. However, it is quite difficult to show the
existence of a periodic solution in this case, so we turn to investigate the
permanence of the system (1.2).

2.2. Permanence of system (1.2) for type 2 diabetes: i.e. o1 >0

The main feature of the diagnostics for type 2 diabetes are hyperglycemia
and hyperinsulinemia which are most probably caused by ingsulin resistance.
In order to compensate for the insulin resistance, pancreatic-5-cells need to
secrete more insulin. Therefore, the insulin secretion rate o; > 0 in model
(1.2). Now, we investigate the range of variation for glucese“Concentration
G(t) under impulsive infusions of glucose and insulin‘concentration /(¢) under
impulsive injections of insulin with the open-logp technique for sufficiently
large t > 0. This qualitative result could previde, important advances for
developing the artificial pancreas, precludingsbeth hyperglycemia and hypo-
glycemia.

Theorem 2.3 If 0; > 0, then system\(1.2) for type 2 diabetes is perma-
nent.

Proof. From the second equation of system (1.2), we have
di(t
~dI(t) £ % <oy —dI(t).

When —dI(t) < di(t)/dtyeonsidering the impulsive effects of Case 1 and Case
2. Then from section'2.1, both subsystems have unique global asymptotically
stable positive, periodic solutions, denoted as I IT N(t) with the period Ty and
IQT ”(t) with the period T, respectively. We get

( Ijexp[—d(t — hTy)], t € (W, m + hTx],
Ifexp[—dAolexp[—d(t — 7 — hTN)],
te (T1 + hTN,TQ + hTN],

kp—1

Itexp[—d Y AjJexp[—d(t — 7, — hTN)],
i=0
L tc (Tkp + hTN, (h + 1)TN],

12



where I = o /(1 — exp[—dTy]).

Lyexp[—d(t — hT,)], t € (hT,, \ + hT,),
(Lyexp(—dAg) + o)exp[—d(t — M1 — hT},)],

t € (A + hT,, Ay + hT,],

m-{

kny—1

(Leapl=d( ¥ A)]+ Cheap[~d(t — My ~ KT}
t€ (Mg + Ty, (h+ 1T,

where I = Cy /(1 — exp[—dT})).

When dI(t)/dt < o1 — dI(t), similarly, we can get two global asymptot-
ically stable positive periodic solutions by consideting the impulsive effects
of Case 1 and Case 2, denoted as I1™ (t) and I,2(¢).

o+ (I3 = eapl—d(t — WLl T € (W, 7 + WTy),
A+ (I3 — 2 )exp(—dAg)expl~d(t — 71 — hTy)],
t e (7'1 + hTN77—2 + hTN]?

kp—b
o+ (05— eaplRBL Aleap[-d(t -, — hTw),

7=

. te (Tkp -+ hTN, (h + 1>TN],

where I = o1/d + o /{1 — exp[—dTy]),

(%M — Beapl—d(t —hT,)],  te (W, m+NT),
I+ (I Z)exp(—dAo)exp|—d(t — 7y — hT,)],
£ (1 + WDy, > + hT,),

kn—1

2+ {(1; — D )eap|—d( ; Aj)] + Cleapl—d(t — Ak — hT,)],
[t € (T + 1Ty, (R + VT,

where [} = 01/d+ Cy/(1 — exp[—dT},)).

Denoted as I;(t) = max{II™(t), 1,7 ((t)} and L(¢) = min{II™ (t), 1,7 (¢)},
then according to the comparison theorem, for any sufficient small ¢ > 0,
there exists a ty such that

L(t)—e < L(t) <I(t) < Lt) < Lt)+e, t>t,

13



and denoted as
L(T) = max{I]¥ ((h+ 1)T), " ((h + 1)T},)}
and .
I(T) = min{I{™ (KT, 11" (hT})},

then we have

L(T) = lim inf [(¢) < tlim inf I(t) < tllglo sup I(t) < (1), (2.5)

t—o00 —00

From equation (2.5) and the second equation of system (1.2), it is easy
to see that

akG(t)Io(T) dG(t)
b— (03 +ac)G(t) — l+fz(;) S T (2.6)

akG) (T
<b— (g + ac)G(t) — H—(I—)(T())
considering the impulsive effects of Casé'lvand Case 2 for equation (2.6). By
the same methods, we can get GG,,, and G4, such that

G < lim inf G#) im sup G(t) < Gy (2.7)
t—r00 t—00

According to (2.5) and (2(7), the system (1.2) for type 2 diabetes is perma-
nent. This completes the proof!

2.83. Numerical gnvestigations for open-loop control and its biological impli-
cations

In insulin therapies, the use of an insulin pump not only provides the
basic treatment, for type 1 diabetes but also provides a feasible alternative
to ingtlin injections for type 2 diabetes [6-8]. System (1.2) is based on the
open-loop technique with glucose infusions and insulin injections periodically
at different impulsive point series. In this section, we will investigate the
applications of model (1.2) numerically in clinical insulin therapies with the
aim of mimicking the natural pattern of insulin injections by pumps so that
the plasma glucose levels in blood can be controlled at normal levels.

The parameter values presented in Table 2.1 in our simulations are either
determined by previous research [2, 3, 12, 22, 23], or from the models for the
intravenous glucose tolerance test (IVGTT) [24-26]. Besides, the necessary

14



Table 2.1: Parameter values for the model (1.2) and (1.3)

Parameters | Values Units Parameters | Values Units
o1 1.27 | u U/min o9 5x 1076 | min~
0.03 mg~* b 100 | mg/min
c 40 mg/min d 0.008 min
k 900 | mg/min [ 80 my
aq 350 mg

conversions of units are made and the values are adjusted’within reasonable
ranges.

For type 1 diabetes, i.e., o1 = 0, there is no insulin seereted from the pan-
creas. Then an insulin pump is needed for patients te help/their cells to take
up glucose. From the analysis of Case 1 and Case 2 in section 2.1, we know
that with different frequencies of glucose infusions and insulin injections, for
the system (1.2) there always exists a globally stable periodic solution for
type 1 diabetes. To substantiate our theoretical results and supply clinical
insulin therapies in the practice, it is reasonable to take 12 hours (i.e., 720
minutes) as a period for insulin injectionsyand in this period, people always
take up glucose every 4 hours. This,is consistent with the character of Case
1, and with other parameters fixed, the numerical results are as shown in
Fig. 2(a) and Fig. 2(b). At is'shown that the blood glucose concentrations
and insulin concentrationstef the patients change periodically. After three
glucose infusions, wefsee that the blood glucose level is beyond the reason-
able range (for exampley DGL is 125 mg/dl [15]), which can be dangerous
for patients. Therefore, with the help of insulin, the blood glucose level is
maintained within a normal range when glucose infusions are applied at most
twice. That . is the reason why doctors advise their patients not to take up
glucose, athdinner time. For Case 2, the patients take up glucose every 12
hourg and insulin is injected three times in this period (see Fig. 2(c) and
Fig. 2(d))./ The stable periodic solution is shown in Fig. 2(c) and Fig. 2(d),
and the results show that the blood glucose level will be always maintained
atpa dow range, but excessive insulin infusions increase the risk of severe
hypoglycemia [27]. Therefore, to be clinically acceptable, it is not only es-
sential for a model based controller to prevent hyperglycaemia by reducing
the frequencies of glucose infusions, but also to reduce the frequencies of in-
sulin injections to prevent hypoglycemic and hyperinsulinemia episodes by
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making accurate predictions.

For type 2 diabetes, i.e., 07 > 0, and with all other parameters fixed,
Fig. 3 shows the numerical results for cases when glucose infusions are more
frequent than insulin injections and insulin injections are more frequent than
glucose infusions, respectively. However, it is different from type 1 diabetes
as patients can take up glucose three times without reaching the abnormal
blood glucose level since the pancreases of these patients can secréte a‘small
amount of insulin. So it presents a direct result of the differences<n treatment
between different types of diabetes mellitus.

When a patient injects insulin before he or she takes up’glucoses how does
this affects the dynamics of the glucose-insulin system,? To address this, we
assume that a patient injects insulin 15min before helor.she takes up glucose
for type 1 diabetes, then we fix all other parameters as_shown in Table 2.1
and the simulation result is shown in Fig. 4(a)-and Fig. 4(b). Clearly, if the
dose of injected insulin ¢ is 60ulU, then the blood glucose level is beyond the
normal range. When o = 80uU, then the blood glucose level is within the
normal range. For type 2 diabetes, theyblood glucose level is under control
if o = 60pU (see Fig. 4(c) and Fige 4(d)), the reason is that the pancreas
can produce and secrete a little insulin. ¥When ¢ = 80uU, this regime is
more efficient. Thus this regimeérean control the blood glucose level easily
within a normal range if the dose of injected insulin is chosen appropriately.
In contrast, when a patient injects insulin after he takes up glucose, the
blood glucose level increases immediately and is beyond the normal range
(not shown here), thas insulin injections are not useful.

The numerical(results show the periodic solutions which reflect the pe-
riodic oscillations ofithe glucose concentration and insulin concentration for
the type 1 diabetes and type 2 diabetes, respectively. It is revealed that the
glucose infusionyperiod, the insulin injection period, the dose of impulsive
injection of insulin and the dose of impulsive infusion of glucose play key
roles/in affecting the dynamics of the system (1.2).

3. Hybrid impulsive model (1.3) with critical glucose threshold

As mentioned before, insulin injections with the open-loop approach are
widely used in clinical insulin therapies for patients. However, a drawback
of the open-loop control is that this regime changes the life styles of patients
and risks hypoglycemia or hyperinsulinemia. In recent years, with the aims
of improving the life styles of patients, researchers have been making great
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efforts in developing an artificial pancreas [9-11], that is, insulin is injected
once the blood glucose level reaches a threshold which is observed by a glucose
monitoring system. Accordingly, the hybrid impulsive model (1.3) meets the
requirements, and it can serve as a prototype to offer reliable predictive
models and efficient control algorithms for designing an artificial pancreas.

In system (1.3), we assume that G¢ is an adjustable constant tlhireshold
value for glucose level, and

l(b — GC(UQ + (lC))

_[ pr—
7 Golog+alc+ k) —b

which is determined by the intersection of the null-line

—G(t) —a <c + l’f %)) G@) + b=

and the critical glucose threshold G¢. At impulsive point series 7,, (we assume
that 7, — 7,1 = T), we do not change the\life style of patients because
they take up glucose normally. When the bleod glucose level reaches CGT,
observed by the glucose monitoring'system, then insulin is injected to bring
down the blood glucose level and,the \DGL can not be reached and exceeded.
In the following, we will investigate the dynamic behaviors of system (1.3)
numerically.

Now, we focus on typeyl diabetes, i.e., 03 = 0, when there is no insulin
secreted from the pantreas. We fixed parameters as shown in Table 2.1. For
a given CGT (Gg/~= 100mg/dl), when T" = 60min, the simulation results
indicate that system (1.3) is free from closed-loop control after two insulin
injections, and the glucose is infused twice at the first small period of insulin
injections and ‘three times at the other (Fig. 5(a) and Fig. 5(b)). It is
revealed“hat the’blood glucose level may exceed 100mg/dl (CGT) at insulin
injection times However, the blood glucose level will never reach the DGL,
that is, it takes a few minutes for the injected insulin analogues to be absorbed
and start to help the patients to bring down their blood glucose, and that
18, why we select CGT as a control parameter rather than DGL. Once the
period T increases to 120min, system (1.3) is free from closed-loop control
after insulin injection, and during the insulin injection period the patients
take up glucose once too, as shown in Fig. 5(c) and Fig. 5(d). Looking back
to Fig. 2(a) and Fig. 2(b), after three glucose infusions, the blood glucose
level is beyond the reasonable range, which can be dangerous for patients,
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and the smaller the period between successive glucose infusions is, the more
dangerous it is for the patient. Compared to Fig. 2(a) and Fig. 2(b), the
results show that the blood glucose level never reaches DGL, which indicates
that the patients will be relieved from hyperinsulinemia and hyperglycaemia.
Meanwhile, if we fix T" and other parameters, and change the dose of insulin
within a reasonable range, then the blood glucose concentration.ds more
easily controlled because the change of insulin leads to the change of the
blood glucose level (Not shown here).

For type 2 diabetes, the parameters are shown in Table 2:l./Adso, for a
given CGT (G¢ = 100mg/dl), we choose G;,, as a control parameter because
the change of T can only lead to a slight change in the amplitude compared
with type 1 diabetes (the numerical results is similar_te,type 1 diabetes).
When G, = 60mg/dl, the simulation result indicates that the system (1.3)
is free from closed-loop control after insulin injeetion once, and the glucose
is infused twice during the period of insulin mjection (see Fig. 6(a) and
Fig. 6(b)). If we select G, = 80mg/dl, during the insulin injection period,
the patients take in glucose once (Fig.wh(c) and Fig. 5(d)). When G;, =
100mg/dl, then the insulin is injected once the glucose infusion is applied
because the blood glucose level reaches €GT immediately (Fig. 6(c) and
Fig. 6(d)). Accordingly, when wesincrease the dose of the glucose infusions,
more frequent injections of insulinvare efficient. If we fix other parameters
and choose ¢ as a controlling parameter, then the results are similar to type
1 diabetes.

Furthermore, we.denote the time points at which the blood glucose level
reaches G¢ as t, (1 = 1324 --). If mod(t,,T) = 0, then glucose and insulin
are both injected atithe same time ¢,. If mod(t,,T) # 0, then only insulin
is injected. Besides, denote

Ap =ty — to1, (3.1)

with'ty = 0, where n denotes the maximum number at which the G(t) com-
ponent inicreases and reaches G¢ within the given time interval and A, is
its relatively duration (n may be finite or infinite, which depends on the
solutions of the model (1.3)).

We fix parameters as shown in Table 2.1 and the baseline control param-
eter values are set as G;, = 60mg/dl, o = 60uU and T' = 60min, then the
effect of control parameters on the number n and consequently on the period
A, can be calculated from the model (1.3) and formula (3.1) numerically
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for a fixed time interval ¢ € [0,1000] (Fig. 7). The results indicate that the
number n is 10 and the duration A,, stabilizes after 300min. The effects of
the injection dose of insulin o on the number n and the period A,, are shown
in Fig. 7(a). It can be seen that the larger the injection dose of insulin gds,
the smaller is the number n and consequently the larger is the period 4. Tt
suggests that increasing the dose o will decrease the number n and postpone
the CGT from being reached. Conversely, the number n is increasing, and
the period A, is decreasing as the glucose infusion rate G, inereases (Fig.
7(b)). This implies that larger Gy, will cause harms to patients. Insaddition,
it is interesting to see that the duration A, switches between 180min and
240min when the glucose infusion rate Gy, is set as 80mg/dl. Therefore,
the glucose infusion rate Gy, should be chosen carefullysto bring down the
blood glucose concentration for a fixed dose o. Moreover, it is revealed that
the number n and the period A,, are both increasing as the glucose infusion
period T increases (details see Fig. 7(c)).

These results clarify that model (1.3) preposed-here can help us to bring
down the blood glucose level, to protectyagainstyhyperinsulinemia and hyper-
glycaemia, to offer reliable predictive modelsiand efficient control algorithms
and to help clinicians to design an artificial pancreas to cure diabetes.

4. Conclusion

Since the pioneering work on the dynamics of plasma insulin concen-
trations that led to.therglucose-insulin regulatory system contributing to
insulin therapies 28], mumerous of research papers have appeared on the
topic [1, 2, 9, 12, 14, 15; 29]. In recent years, many results have been ob-
tained from the glucose-insulin regulatory system via a mathematical model
of delay differential equations. Recently, Huang et al. proposed two novel
mathematical models with impulsive injections of insulin or its analogues for
type 4 and type 2 diabetes mellitus [12], and they assumed that the constant
glucose infusion rate G, is described by a continuous process in an impulsive
injection period. However, such models cannot reflect the reality very well
because the constant glucose exogenous infusion is usually a discrete process
[3]. Therefore, we developed a novel glucose-insulin system (1.2) with open-
loop control based on two impulsive point series in order to better reflect the
reality and model the treatment currently available for clinical use. More-
over, in clinical insulin therapies, the most satisfactory treatment would be
one in which glucose infusions could be administered periodically without
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changing the life styles of patients, combined with automatic insulin injec-
tions in a closed-loop technique integrated with a glucose monitoring system.
So we proposed a novel hybrid impulsive model (1.3) with a critical glucose
threshold.

The dynamics of our models were investigated by using the theoty of
impulsive differential equations [19, 20]. In particular, the existence and
uniqueness of a positive globally asymptotically stable periodic selution of
system (1.2) for type 1 diabetes was studied analytically, and thespermanence
of system (1.2) for type 2 diabetes was shown, which also, meanssthat the
glucose concentration level is uniformly bounded above and belowy By exten-
sive numerical investigations, we found that when choesing different control
parameters, an attractor from which the concentration ofsglucose and insulin
oscillates with different amplitudes always exists. The results indicates that
the dynamic behaviors of the glucose-insulin system may be affected dra-
matically by the period, the frequency and the‘dose"of glucose infusions and
insulin injections, and these elements are ¢rucial for insulin therapies.

In practice, a good insulin therapy issone inywhich the blood glucose level
can be brought down to a normal range (here CGT) without changing the life
style of patients. System (1.3) is propesed-based on this ideal. To avoid hy-
perinsulinemia and hyperglycaemiiagwe assumed that insulin is injected only
when the blood glucose level reaches CGT and periodic repeated intakes of
glucose are applied. The simulation results indicate that the blood glucose
level never reaches or exceeds /DGL, the times of insulin injections would
be reduced under certain“cenditions, and increasing the dose of the glucose
infusions, more frequentiinjections of insulin are efficient. More importantly,
the factors which affect the number n (i.e. the number at which the blood
glucose reaches G¢) and its relatively duration A,, are discussed. The sim-
ulation results indicate that the number n and duration A,, largely depends
on the injeetion'dose of insulin, glucose infusion rate GG, and glucose infusion
period T'. Therefore, hybrid system (1.3) with closed-loop control is suitable
forpreviding reliable predictive models and efficient control algorithms for
the deyvelopment of an artificial pancreas.

Note that two time delays always exist in the normal glucose-insulin reg-
ulatory system: one is the hepatic glucose production delay and the other
is the time delay for insulin-dependent glucose utilization by cells [14]. So
it would be more reasonable for system (1.2) and system (1.3) to take two
delays into account. Furthermore, in this paper, for the sake of simplicity,
the insulin degradation rate is assumed to be proportional to insulin concen-
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tration. However, it is more realistic to assume that the insulin degradation
rate obeys Michaelis-Menten kinetics [15]. Moreover, the effect of physical
exercise on the dynamics of glucose and insulin has been investigated [30],
thus it is interesting to show how does this affects the dynamics if we put this
into our proposed models. Recently, non-smooth dynamic systems or Filip=
pov systems have been applied widely in many fields of science [31-33], as a
result, the dynamical behaviors of the glucose-insulin system could,be inves-
tigated more clearly once we consider such models. Consequently; to address
these with the aim of improving strategies for the treatment of'diabetes, such
research is planned for the near future and will be reportéd elsewhere.
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tional Natural Science Foundation of China (NSEC,11471201, 11171199).

Appendix A. Analyzing system (1.2)for Case 1

Now, we investigate the periodic solutionef system (2.1). Since the insulin
dynamics is linear and not affected by the more frequent glucose infusions,
hence the solution of (2.1) is notspiecewise-continuous but it is strictly con-
tinuous even at 7y, 7o, - - -, 7, Thexefore, we consider any given time interval
(hTn, (h+1)Ty], where h is"@'positive integer. Integrating the first equation
of system (2.1) from ATy %o (h+ 1)Ty yields

I(t) = I(hT\)expl—d(t — hTy)], t€ (hTn,(h+1)Ty].
At time (h + 1)Z, then insulin is injected once and
I((h+ 1)Ty) = I(hTx)exp[—dTN] + o.
Denoté T, =.I(hTy), then we have the following difference equation:
In1 = exp|—dTN|I} + o,

solving the equation yields a unique steady state:

g

I" = .
1 — exp[—dTy]

Clearly, exp[—dTy] < 1, therefore, the system (2.1) has a globally stable Ty
periodic solution (denoted by I7(¢)), which can be calculated as follows:
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I'™(t) = I"exp[—d(t — hTy)], t € (WTn,(h+ 1)Tn]. (A.1)
Substituting I7¥(¢) into the first equation of (1.2) for I(¢), we have
dG(t) akG(t) 1™ (t)
— - ) — g t# A
dt (02 + CLC)G( ) l+ ITN<t) ) # Tns 7£ ms (A 2)
G(ry) = G(1a) + Gin,  t =T, '
G(AL) = G(An), t= A,

Denote £ = 09 + ac, and then integrating the first equatign of system (A.2)
from hTy to 7 + hTy yields

G(t) = G(hTy)exp|— th+ ¢ 4 LN ) ds]

l+ITN(s)
0 g lenp(- 16 + 2475
T
= G(hTY)exp|—&(t — hTw)]etp[—ak f;T+ RLIOWR

I+1TN (s)

+b [y {eap[=€(t —w)|&pl=ak [, 7 ds]du.

From system (2.1), when ATy < by <y < (11 + hTy), we have

(A.3)

ITN (¢ a by —dITN (t)
exp|—ak fbf l+]TI\§()t dt] = rexp[ b, IHTN((t dt|

a b n
_ 61’]9[ k b12(d1 (l+dItN(t)))dﬂ

a I+I b
— cap|ek 1n<lLT§§bj§>1

(l—i-ITN (b2) ki ak
I4+1TN (by)

From equation (A.3) and (A.4), when hTy <t < (7; + hTy), it follows

(A.4)

Gft) = GhT¥)exp[—€(t — hTy))(Fooh o)

I+ITN (hTY,)
T ak
+b fupe {eap[=€(t — 0] () Ydu
_ G(hT+)exp[—§(t — hTN)](%)“%

Tv (¢t “’“ exp[—€£(t—u)]
+b(l + I fh’TN (l+ITN( )) dk d

At time 71 + ATy, glucose infusion is applied once and

G((r1 + hTw)") = G(AT)ewp(—EAg) (ELHm TN y o

I-+ITN (RTH)
L+ T (0 + W) )% [ el gy 1 Gy,
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Again, integrating the first equation of system (A.2) from 71 +hTy to To+hTy
yields

T ak
G(t) = G((ﬁ + hTN)+)exp[ Et—m — hTN)](lHTy((fﬁj S)TNW) 7
Tn (4 exp[—€(t—u)]
er(l +1 f(T1+hTN)+ (I+ITN (u))%C ak

- G(hTJJ\?)el’P[—f(Ao +t—7 — hTN)](HTTINT%)T
(I + I ()% feap[—€(t — m — KTy)] [0S0 el iy,

: S M (AT (a)
exp|—&(t—u
+ f(T1+hTN (l+ITN s d u}

I+17. ak
+Gm€37p[ §(t —T1— hTN)](l+ITN—~(_(T1]j-§1t;N)+)) )

du

At time 7 + hTy, glucose is taken up again and, it i3 easy to get G((m2 +
hTy)"),

G((r2 + WTn)") = G(RT)eap[E(Do A )](l“fj;;ﬁ;’;?;”)“ff
+b(1 + I (72 + WTw)")) & {eap(-46L1)

(T1+hTN)T eaxp|— 5(7’1+hTN u)]
, My vy F
(re+hTN)T exp[— (Tz-‘rhTN u)] LHITN ((r2+hTw) 7)ok
ey = iy F NG+ erp(—CA) (G man) )

by induction, we can seesthat

G(t) = G(hIy)eap|~¢( il A)exp(t — my, — Ty ) (oA )

= I+ITN (hT7)
+b(1 PN (1)) T A+ Gin B,
for all t &7y, +W TN, (h + 1)Tx], where
. o (ri+hTw)*t exp[— é(Tl—i-hTN u)]
= exp(F§ Z Aiexp(—E(t — v, — hTN)) W 1N () du

teap(—€ & Aerp(—(t =7, — hT)) [ ety

TARTNT TN (u) T
exp[—¢(t—u)]
ot f(Tk HRTNY (11T (u)) au,
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and
kep—1

I+17 ak
B = ewp<_§ ; Ai)exp(_é(t = Tky — hTN»(HITNJE(nZ%N)*)) !
kp— 1 A WT 117N (1) iy
+eazp(—f ; i)exp(—f(t = Tkp, — N))(H]TN((TQMTN)H) d
TN (1) ak
+ e + (l+ITN((Tkp+hTN)+))

At time (h + 1)Ty, glucose is not taken up, and we get G((hé& 1)),

T +\ a
G((h+1)Ty) = G(hTmem—gTNx%ﬁ

+b(I 4 I ((h 4+ 1)T3)) CApt Gin B,
where

— _ _ (T1+hTN )t eap[— 5(7—1+hTN u)]
4 6xp( €<TN n )) hTy L (417N (u)) o du
- . (re+hTNn)™" exp[— §(Tg+hTN u)]
+eap(=§(Ty — 1) f(Tl-i-hTJ\r)Jr (17N (u) T du

N (DTS Leap[ §((r )Ty —u)]
+ + f(Tkp +hTN)T (IHITN (u)) ak du

and

TN (A D)T) ek
B, = exp<_§(TN—7'1))<l+ITN(((T(1+h:)FN]§i))

I+ITN (h4+1)TR) | ak
+ep(—E(Tn — 7)) (v i)
+'.'+( I+ITN ((h+1)T3) )%e

I+ITN (7, +hTN) )

Besides it is easy toysee IV (h + 1)Ty = I'™(hTy) = exp|—dTn|I* + o
Denote Gj, =(G(hT}:), then we get the following difference equation:

IS

Gt o=""Grexp(—ETy) + b(l+ I™ ((h + )TH)) % AL+ G By, (A5)

where .
0 < b(l+I™((h+ 1)T¥)) T A + Gin By,

L+ TN ((h +1)TT g
0 < exp(=¢Ty) ( +l T I(T(N(ZT]é)N))

then for equation (A.5) there exists a unique positive steady state

— cap(—€Ty) < 1

b(l + exp|—dTn]I* + U)%Al + G B
1 —exp(—€Tw) ’
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consequently, the subsystem (A.2) has a globally stable Ty periodic solution
(denote by G™¥), which can be calculated as follows:

Gl(t), te (hTN, T + hTN},

Gs(t),t € (11 + W, 72 + hTN|,
G () =4 . 2(t) (71 N, T2 N] (.0)

ka—H (t), te (Tkp + hTN, (h + 1)TN],

where LeITN (1) ak
_ * + o
Gi(t) = G exp[—Tf(t— hkTNﬂ(W))]d
b(l + T~ < ud
T ak
Ga(t) = Greap[~€(Do +t = 71— WTW)| (s )
T ak _ _ (Tl-i-h,TN)7L exp|—&(T1+hTN —u))
(1 + 17V (1)) d[{e(:cp[)] §(t =1 — WTw)] [yt T
exp u
+f(T1+hTN)+ (l+ITN( )) d d } i
I+ ITN(¢ ak
+Gm€$p[ f(t i hTN)]<l+ITN+((T1+(h;N)+)) s
and
g I+HITN (1) \ak
Crypalt) = Greapl—¢( 32 Aleap(t =, — W) (rimrry)

b1 L7 (3 )) + A+ GiB.

Appendix B. Analyzing system (1.2) for Case 2

Here, we investigate the periodic solution of subsystem (2.4). We con-
sider any given time interval (hT),, (h + 1)T,], where h is a positive integer.
Integrating the first equation of system (2.4) from hT), to A\ + hT), yields

IKt) = I(hT,] )exp|—d(t — hT,)], te (hT,, A\ + hT).
At time M + hT),, insulin injection occurs and
(M + hT,)") = I(WT,) exp(—dAy) 4+ o = I(hT,) Jexp(—dAy) + 0.

Similarly, integrating the first equation of model (2.4) from A\ + AT, to
A2 + hT,, yields

I(t) = I((\ +hT,)")exp[—d(t — N\ — hT},)]
= (I(hT;)exp(—dAo) + o)exp|—d(t — A\, — hT,)],
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where t € (A +hT,, Ao+ hT,]. And at time Ay + AT}, insulin injection occurs
again and
I((Ae +RT,)T) = I((M + hT,)T)exp[—dA] 4+ o
= (W )exp[—d(Do + Ay)] + oexp(—dA;) + o,
By induction, we can see that

kn—1

I(t) = {I(WT;} )exp[—d( Z A)] 4 CYexp[—d(t — My —hd},)];

kn—2

for all t € (A\yy + hT},, (h + 1)T,], and denote C' = oleaxp(—d( > A;) +
i=1

ky—2

exp(—d >, Aj)+---+exp(—dAy,_2)]. At time (h-+1)T, there is no insulin
j=2

injected and

kn—1

I((h+ D)T)) = I(WT))exp[—dTp] olexp(—d( > A)
f—) =1
+exp(—d Y. D)+ - +exp(—dAy,_1)]
=2
= I(hTNewp[—dT,] + C\.
Denote I;, = I(hT,}), then.wethave the following differential equation:
Iyt = exp[—dT, ]I, + Ch,
solving the equation-yields,a unique positive steady state:
11— exp[—dT,)
Clearly, £ » 0jand exp[—dT,] < 1 always holds, therefore, system (2.4)

has a_glebally stable T, periodic solution (denoted by I77(t)), which can be
calculated as follows:

I*exp[—d(t — hT})], t € (hT,, \ + W1,
(I*exp(—dAo) + o)exp[—d(t — \1 — hT},)],
t e ()\1 + th, Ao + th],

I*

17 (t) = (B.1)

kn—1

{I*exp[—d( Z:l A+ Clexp[—d(t — \gy — hT)],
|t € (Ao + 1T, (h+1)T;),
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Substituting I77(¢) into the first equation of (1.2) for I(t), we have

Tp
dG(t) _, (02 + a0)C() akG(t)I (t)) Lt A,
dt l + ITP (t) (B 2)
G\ = G(\n), t= An, {
G(rh) = G(1n) + Gin, t =Ty,
then integrating the first equation of (B.2) from hT), to Ay + hT, yields
G = G<hT+>exp[ f(t — Wi

k [ l+]Tp§]hT+)
b(l+ ITe(t)) % epl L)l
+b(l + th (1T () X
obviously,

ak

G((M +hT,)*) = G(RT; )eap(— 5&»(%)7

p
U (O B )¥ [ g g,

=8

Again, integrating the first equation of (B.2)from A\, + hT}, to Ay +hT), yields

k

G(t):G(()\1+hT ) eaplmE(t - N — BTy (pmr )

<8 O
T, exp u
+b(1 + I"7( f(,\1+hT) I du

— G(th+)exp[—§(A0 Lt —\ — AT, )](M)%k

l+1TP(th+)+
b l ]’Tp t ak o t o )\ ()\1+th) eacp[fg()quthfu)]d
U 1) = 0 = 2
exp|—&(t—u
+ f(A1+th)+ (—l—i-ITP(u))“Tf du},

at time Ao A WAy, it is easy to get G((A\2 + hT,)T),

ak

GUA S NT) ) = G(NT Yeap[—€(Ag + Ay)](HLAQo T 1)y 5

I+17P (KT0)
b1+ ((\ hT)+ ak _EA (M +RTp) T exp[— §(A1+th u)}d
R <( 2+ ) )) ! {€$p< § 1) hT (17 (u)) o

(A2+hTp)T exp[— ()\2+th u)]
+ f‘()\l‘i’th)+ (l—‘,—ITp(u)) d d }

By induction, we can see that

kny—1 ok

G) = GUT)eanl—€( 5 Aleaplt — Moy — WT,) (L)
1+ I5(0)% D,
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for all t € (Mg + W1}, (h + 1)T},], where

ky—1 .
D = A, t— Ao —hT (M +RTp) T expl— £(A1+hT —u)] 1.
pr( 5 12:1 )Bﬁp( 5( kn ))th+ (41T () o

ky—1
Ao+hTp)t ex u
+exp(—¢ Z Ay)exp(—E(t — My — f(()\lzjhé)L P=EQe Ty —u)] g

(1T ()
. exp[—£(t—u)]
+ -+ j“(/\kN+th)+ (l+ITP(u))% dU7

At time (h + 1)T,, glucose is taken up once, and we get

Tp + ak
GUh+1)TF) = GUNT Jemp(~€T,) (i

(1 + I ((h + 1)TH) F Dy 4 G,

where

B (M+RTp) ™ expl=(A\1 +hTp—u)]
Dy = exp(—&(T, — \)) th+ (l+ITP(u)) o3 du

Aoy exp[—E(Aa+hTp—u)]
) 32 Jo\nry (177 (u)) F du
(h+1)T}, exp[— £((h+1)Tp u)]
+ ﬁAkN+th)+ (l+1Tp (’LL)) d du

—I—e:cp(

Denote G, = G(RT,), then weyget the following difference equation:

I+ TP (A1) Ty ) | ak
G A= )Gy oep(—ET,) (M)

o1+ 1% ((h+ 1)T,")) T Dy + Gin,

where .
0 <b(l+I"((h+1)T;)) Dy + G,
ak
L+ 1% ((h+ )T\ “ .
[+ I (W) s

0 < exp(—£T),) (
Then _for equation (B.3) there exists a unique steady state

b(l + 1% ((h + 1)T,)) 4 Dy + G

IHI1Tp (h41)T) | ak
1~ cap(—€T,) (AT

*_
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consequently, the subsystem (B.2) has a globally stable T}, periodic solution
(denote by G'r), which can be calculated as follows:

Gi(t), t € (hT,, M\ + hT,),
Gy(t),t € (A + hT,, Ay + hT),
GTp(t) _ | 2() ( 1 p 2 p] (B4)

GllcNJrl(t)vt S ()\kN + th’ (h + 1)Tp]7

where X ) LT ek
Gi(t) = Greap[—¢{(t— hT)](W)d

bl + ITo(0))% [, corieluly
+b(I + iy

GL(t) = Grexp[—E(Ag +t — Ay — BT))| (A2 )T

lJrITzo(hT;)+
o A exp[— —u
(1 + 17 (1) T {eapl—£(t — M = BT;)] [ p([l fl(;:};;k ) g
¢ exp[—£(t—u)]

+ f()\1+th)+ 1+ 17 % du}

and
k<
I+1Tp ak
Ghyalt) = Greapl=60 > &eaplt = My — Ty (mries) ¥
+b(1 AT (¢ )) 4 D.
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ACCEPTED MANUSCRIPT

Figure Legends

Glucose Level

Time1

DGL)=lowest blood level that will cause harm to
GT)= blood glucose level at which insulin should be
ood glucose concentration from reaching the dangerous
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Figure 2: Numerical results for type 1 diabetes of system (1.2). (a) and (b) for Case 1
with o = 60pU5G i = 100mg, ky = 3, Ty = 720min, Gy = 100mg/dl, Iy = 50pU/ml and
A; = A. (a)Glucose profile with three glucose infusions within an insulin injection period,
(b) Insulin‘profile jwith three glucose infusions within an insulin injection period. (c) and
(d) forCase 2ywith o = 60pU, G, = 100mg, ky = 3, T, = 720min, Gy = 100mg/dl,
Iy = B0uU/ml"and A; = A. (c) Glucose profile with three insulin injections within an
glicosetinfusion period, (d) Insulin profile with three insulin injections within a glucose
infusion; period.
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Figure 3: Numerical results for type 2 diabetes of system (1.2). (a) and (b) for Case 1
with o = 60pU(G;y) = 100myg, k, = 3, T, = 720min, Gy = 100mg/dl, Iy = 50pU/ml and
A; = A. (a) Glucese profile with three glucose infusions within an insulin injection period,
(b) Insulin{profile, with three insulin injections within a glucose infusion period. (c¢) and
(d) for Case'2 with o = 60pU, Gin, = 100myg, ky = 3, T, = 720min, Gy = 100mg/dl,
Iy = B0uU/mland A; = A. (c) Glucose profile with three insulin injections within a
glueose. infusion period, (d) Insulin profile with three insulin injections within a glucose
infusion period.
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Figure 4: Numerical results of system (1.2). (a) and (b) for type 1 diabetes with G;,, =
100mg, Ty =4165min, T, = 180min, Gy = 100mg/dl, Iy = 50pU/ml, and A; = A. (a)
Glucose profile with insulin injections 15min before uptakes of glucose, (b) Insulin profile
with insulinyinjections 15min before uptakes of glucose. (c¢) and (d) for type 2 diabetes
with G, = 100mg, Tn = 165min, T, = 180min, Gy = 100mg/dl, Iy = 50uU/ml and
A; =lA. (a))Glucose profile with insulin injections 15min before uptakes of glucose, (b)
InSulin profile with insulin injections 15min before uptakes of glucose.
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Figure 5: Numerical results for type 1 diabetes of system (1.3) with o = 60uU, Gin =
80mg, G& =A00mg/dl, Gy = 100mg/dl, Iy = 50uU/ml, T = 60min for (a) and (b),
T = 120min for(c) and (d). (a) and (c) Glucose profile with insulin therapy, (b) and (d)
Insulin profil¢ with insulin therapy.
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Figure 6: Numerical results for type 2 diabetes of system (1.3) with o = 60uU, T =
120min, Gen= 100mg/dl, Gy = 100mg/dl, Iy = 50pU/ml , G, = 60mg for (a) and (b),
Gin =A100mgfer/(c) and (d). (a) and (¢) Glucose profile with insulin therapy, (b) and (d)
Insulin profil¢ with insulin therapy.
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Figure 7: The effects of control parameters o, G;, and T on the number of n and period
A, for type 2/ diabetes of system (1.3). The baseline parameter values are as follows:
o = 60aU; T'= 60min, Go = 60mg/dl, Go = 100mg/dl, Iy = 50uU/ml, other parameters
are fixed in Table 2.1. Here we run the model (1.3) from 0 to 1000 and plot the effects of
the injeetion’ dose of insulin ¢ on the number of n and period A, in (a), glucose infusion
rate Gy, in (b) and glucose infusion period T in (c).
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