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Abstract

We study the maximum norm behavior of L2-normalized random Fourier cosine series
with a prescribed large wave number. Precise bounds of this type are an important
technical tool in estimates for spinodal decomposition, the celebrated phase separation
phenomenon in metal alloys. We derive rigorous asymptotic results as the wave number
converges to infinity, and shed light on the behavior of the maximum norm for medium
range wave numbers through numerical simulations. Finally, we develop a simplified
model for describing the magnitude of extremal values of random Neumann Fourier series.
The model describes key features of the development of maxima and can be used to predict
them. This is achieved by decoupling magnitude and sign distribution, where the latter
plays an important role for the study of the size of the maximum norm. Since we are
considering series with Neumann boundary conditions, particular care has to be placed
on understanding the behavior of the random sums at the boundary.
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1 Introduction

Random series of functions play a significant role in many branches of mathematics and
have been studied extensively. Of particular interest in a number of applications is the
problem of estimating the maximum norm of random series. For example, in quantum chaos
applications the maximum norm of the eigenfunctions of the Laplacian on bounded domains
is a measure for localization effects, and it was shown in [1] that one can estimate these
norms of deterministic eigenfunctions through random superpositions of plane waves and
using methods due to Kahane [12].

This interplay between stochastic techniques and deterministic applications can also be
seen in other contexts. Consider for example one of the standard models for phase separation
in binary alloys which is due to Cahn and Hilliard [5, 6]. They proposed the fourth-order
parabolic partial differential equation

∂tu = −∆(ε2∆u+ h(u)) in G , (1)

subject to homogeneous Neumann boundary conditions ∂νu = ∂ν∆u = 0 on ∂G, and for
some sufficiently smooth domain G ⊂ Rd. In this model, the unknown function u is an order
parameter which represents the concentration difference of the two alloy components, i.e.,
values of u close to ±1 represent the pure components, while values in between correspond to
mixtures, with u = 0 implying equal concentrations of both components. Moreover, the small
parameter ε > 0 is a measure for interaction length which is usually on an atomistic length
scale, and the nonlinearity is the negative derivative of a double-well potential. A typical
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example is h(u) = u− u3, while the h in original work of Cahn and Hilliard had logarithmic
poles.

If one observes the evolution of the Cahn-Hilliard model originating at some almost con-
stant homogeneous state u(0, ·) ≈ m, and if the initial concentration difference m satisfies
the condition h′(m) > 0, then it is well-known that provided sufficiently small ε > 0 (1)
exhibits spontaneous phase separation through a process called spinodal decomposition. The
resulting dynamics of the phase variable u exhibits the formation of complicated and in-
tricate patterns, which are generated by the local convergence of the function values of u
to ±1, while at the same time keeping the number of separating interfaces as small as pos-
sible, see for example [3] and the references therein. From a mathematical point of view,
spinodal decomposition in the classical Cahn-Hilliard model (1) has been studied in a series
of papers [15,16,18,19] through deterministic methods, and they provide an explanation for
both the observed complicated patterns and their generation. In particular, it is shown that
the Cahn-Hilliard equation exhibits surprising linear behavior even far from the constant
stationary state u ≡ m, and [18, 19] provide lower bounds for the region of linear behavior.
Unfortunately, however, these lower bounds turn out to be suboptimal.

It was shown in [20] that optimal lower bounds can be obtained, if instead of the de-
terministic estimates used in [18, 19] one employs a probabilistic approach. More precisely,
the suboptimality of the deterministic results is due to the possibility of large ratios between
the maximum norm and the L2(G)-norm of functions representing spinodally decomposed
patterns, since the deterministic approach needs to incorporate the value of these ratios for
all possible patterns. In practice, however, the ratios are reasonably small, and by studying
random Fourier series in combination with randomly chosen initial conditions for the deter-
ministic problem (1) one can show that for “typical” initial conditions linear behavior prevails
up to much larger distances from the homogeneous state. For more details, see [11,20].

As a model, the deterministic Cahn-Hilliard equation (1) ignores thermal fluctuations
which are present in any material. This can be resolved by adding a stochastic additive term,
see for example [7, 14], and leads to the stochastic Cahn-Hilliard-Cook model

∂tu = −∆(ε2∆u+ h(u)) + ∂tW in G , (2)

which is again considered subject to Neumann boundary conditions ∂νu = ∂ν∆u = 0 on ∂G,
and for some sufficiently smooth domainG ⊂ Rd. While the nonlinearity h and the interaction
parameter ε are as before, the additive noise term ∂tW is the derivative of a small Q-Wiener
process W , which will be described in more detail below. Ideally, one would expect space-time
white noise with a small noise strength, which is on the order of an atomistic length scale,
too. For a survey of the phase separation dynamics of the Cahn-Hilliard-Cook model (2) see
for example [3].

Spinodal decomposition can also be observed in the stochastic Cahn-Hilliard model, and
some of the above-mentioned results could be extended to the case of (2). More precisely,
in [2] it was shown that results analogous to [15, 16] hold, while [4] generalizes the approach
of [18, 19]. We would like to stress that even though the basic explanation of spinodal
decomposition as a phenomenon driven by unexpectedly linear behavior remains, the proof
techniques used in the stochastic setting are completely different.
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Despite the above results, a complete description of spinodal decomposition which gen-
eralizes the approach described in [20] to the stochastic case remains elusive, and we now
describe this somewhat surprising fact in more detail. During spinodal decomposition, an
initially flat surface u ≈ m separates and closely follows the linearized dynamics for unex-
pectedly large times. In the stochastic setting, the linearized dynamics near the constant
solution u ≡ m is described by the evolution equation

∂tu = Au+ ∂tW in G , (3)

where the linearized operator is given by A = −ε2∆2−h′(m)∆, subject to Neumann boundary
conditions and average mass zero. Since m is constant, this operator is self-adjoint and has
a complete orthonormal system of eigenfunctions ek ∈ L2(G), for k ∈ N, with associated
eigenvalues

λk = µk
(
h′(m)− ε2µk

)
for k ∈ N . (4)

One can easily see that the eigenfunctions ek are the eigenfunctions of the negative Laplacian
subject to homogeneous Neumann boundary conditions, with corresponding ordered eigen-
values 0 < µ1 ≤ µ2 ≤ . . .→∞. It is well known [10] that the solution of (3) starting at zero
is the stochastic convolution

WA(t) =

∫ t

0
e(t−s)AdW (s) =

∑
k∈N

αk

∫ t

0
e(t−s)λkdBk(s) · ek , (5)

where the second identity holds for independent Brownian motions Bk if theQ-Wiener process
has a joint eigenbase with A such that Qek = α2

kek, which for simplicity of discussion we
assume throughout this paper.

But why can the probabilistic method used in [20] not easily be applied in the stochastic
setting? In the deterministic case, we studied random initial conditions u0, which are selected
in such a way that their ratio of maximum norm and L2(G)-norm is small. Then the solution
of the linearized equation is given by etAu0, and this allows us to obtain estimates on the norm
ratios along the solution due to the differentiability of the solution with respect to time. In
contrast, in the stochastic Cahn-Hilliard-Cook setting, the linearized solution always starts at
zero, and the probabilistic aspects enter through the above representation of the stochastic
convolution — and the previous approach of bounding the norm ratios cannot easily be
applied.

Motivated by the above discussion the present paper is concerned with obtaining a better
understanding of when random Fourier series of the type given in (5) exhibit small ratios
between their maximum norm and their L2(G)-norm. We are interested in particular in
characterizations which would allow us to extend the results of [20] to the stochastic partial
differential equation case. More precisely, we consider the following situation, which is based
on the available spinodal decomposition explanations.

Return for the moment to the eigenvalue formula presented in (4). This so-called dis-
persion relation shows how the eigenvalues λk of the linearized Cahn-Hilliard operator can
be computed from the eigenvalues µk ≥ 0 of the negative Laplacian subject to homogeneous
Neumann boundary conditions. If we define the quadratic polynomial p(s) = s ·(h′(m)−ε2s),
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then one clearly has λk = p(µk) for all k ∈ N. We would like to point out that the polyno-
mial p is positive between its two zeros at s = 0 and s = h′(m)/ε2, i.e., any value of µk in this
interval gives rise to a positive eigenvalue λk > 0. These positive eigenvalues are of course
responsible for the instability of the homogeneous state, and in fact, the most positive eigen-
values λk are the driving force for pattern formation during spinodal decomposition. One
can readily see that the quadratic polynomial p achieves its maximum λmax = h′(m)2/(4ε2)
at s = h′(m)/(2ε2), and therefore superpositions of the eigenfunctions ek which correspond
to values µk ≈ h′(m)/(2ε2) accurately describe the microstructures observed during phase
separation, see again [15,16,18,19]. We now choose a constant 0� γ < 1 and define

Λ := {k ∈ N : λk > γλmax} , where λmax =
h′(m)2

4ε2
.

Since the eigenvalues µk are ordered by their size, there exist suitable integers 1 ≤ k	 ≤ k⊕

such that Λ can be rewritten as

Λ =
{
k ∈ N : k	 ≤ k ≤ k⊕

}
with k⊕ − k	 ∼ ε−d as ε→ 0 , (6)

where the last proportionality is due to standard results on the asymptotic distribution of
Laplacian eigenvalues on bounded domains G ⊂ Rd, see for example [8]. In [15,16,18,19], the
finite-dimensional function space which is spanned by the eigenfunctions ek for k ∈ Λ is called
the dominating subspace, and the functions in this space exhibit the characteristic patterns
which are observed during spinodal decomposition. Furthermore, it was shown in these papers
that solutions of the Cahn-Hilliard model which originate close to the homogeneous state are
very likely to stay close to the dominating subspace, and [20] uncovered that most functions in
the dominating subspace exhibit small maximum-L2(G)-norm ratios. As mentioned before,
this is the principal reason for the unexpectedly linear behavior observed during spinodal
decomposition.

Based on the above discussion, the present paper focuses on the behavior of the stochastic
convolution in the invariant dominating subspace. More precisely, let PΛ : L2(G) → L2(G)
denote the orthogonal projection onto the dominating subspace, then we have

PΛWA(t) =
∑
k∈Λ

αkck · ek with ck =

∫ t

0
e(t−s)λkdBk(s) .

Note that due to Itō’s isometry the random variables ck for k ∈ Λ are real-valued Gaussian
random variables with mean zero and variance

Ec2
k =

∫ t

0
e(t−s)2λkds =

1

2λk
(1− e−2λkt) ≈ 1

2λk
≈ 2ε2

h′(m)2

for times t � 1/λmax which on the order ε2. Here we have used the fact that λk > 0 for all
eigenvalues which correspond to indices in Λ and that γ is close to one. Moreover, we used
that spinodal decomposition usually happens on a time-scale of order ε2 ln(ε−1), see [2].

If we assume that the noise process acts on each of these modes with the same intensity,
then also the constants αk are of the same size. After normalization, in the remainder of this
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paper we therefore study random sums of the form

f(x) =
∑
k∈Λ

ckek(x) ,

where the coefficients ck are independent and identically distributed standard Gaussian ran-
dom variables with mean zero and variance one. Our point of view is that sums of this form
can act as a surrogate for the mild solution of the linearized Cahn-Hilliard-Cook equation in
the dominant subspace. For the random functions f , we study the size of their L∞(G)-norms
in relation to their L2(G)-norms. While the above simplification removes the time depen-
dence from the problem, our study focuses on understanding the maximum norm behavior
of f in a way which we believe will allow for a straightforward inclusion of time later on.
More precisely, we will show that

P

(
‖f‖L∞(G)

‖f‖L2(G)
< C · log ε−1

)
ε→0−−−→ 1 ,

yet in doing so we will shed light on the actual mechanism that controls the size of the
maximum norm. This is accomplished through a mixture of analysis, modeling, and numerical
simulations. In order to keep the presentation simple, much of the paper concentrates on the
one-dimensional case d = 1, although we do address extensions to higher dimensions as well.

The remainder of the paper is organized as follows. In Section 2 we introduce the specific
one-dimensional setting that is used for most of the paper. In addition, we obtain a first crude
estimate for the asymptotic behavior of the maximum norm of f as ε → 0 through purely
probabilistic means. While this result will provide a first step, it is indirect in nature and
does not explain exactly how the maximum norms are generated. This question is addressed
in Section 3, where we study the effect of the signs of the random coefficients ck in the
definition of f on the maximum norm. For this, we will have to treat the boundary and
the interior of the domain G separately. We show that only equal signs force the worst-
case norm behavior, which of course is an extremely rare event. Finally, in Section 4 we
try to explain how local extrema are generated, and how this relates to matchings between
the signs of the eigenfunctions ek and their respective random coefficients ck. In addition,
we introduce a simplified model which exhibits the properties of the random function f
in relation to the generation of local extreme values. This in turn leads to an intuitive
explanation of the behavior of maximum norms of the random functions f . The section
closes with generalizations to higher dimensions.

2 Moment-Based Probabilistic Bounds

This section lays the groundwork for our study of the maximum norms of normalized random
functions subject to Neumann boundary conditions. In addition to introducing our precise
setup, we provide some intuition into the norm ratio behavior. We then review indirect
probabilistic approaches for estimating the ratio.
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2.1 Random Fourier Cosine Sums

Beginning with this section, we consider only the one-dimensional special case G = [0, 1].
Furthermore, we consider the Cahn-Hilliard-Cook model with total mass m = 0, i.e., the
identity h′(m) = 1 holds. In this situation, the eigenfunctions of the negative Laplacian are
cosines with varying wave numbers, and one can easily see that after L2(0, 1)-normalization
they are given by ek(x) =

√
2 cos(kπx), with associated eigenvalues µk = k2π2 for k ∈ N.

Notice that the constant eigenfunction is excluded from consideration, since the Cahn-Hilliard
model is usually studied on function spaces which respect the mass constraint. For more
details we refer the reader to [15,16,18,19]. One can easily see that the dispersion relation (4)
now takes the form

λk = k2π2
(
h′(m)− ε2k2π2

)
= k2π2 − ε2k4π4 for k ∈ N ,

which provides a direct link between the wave number k of the eigenmode ek and the as-
sociated eigenvalue λk of the linearization A of the Cahn-Hilliard equation. Furthermore, a
simple calculation shows that the index set for the dominating subspace is given by

Λ =
{
k	, . . . , k⊕

}
=

{⌈
α	

ε

⌉
, . . . ,

⌊
α⊕

ε

⌋}
, where α⊕,	 =

√
1±
√

1− γ
2π2

. (7)

As a model for the projected stochastic convolution PΛWA(t) in the dominating subspace we
consider random weighted sums of the cosine basis functions whose wave numbers lie in Λ.
More precisely, we consider the following setting.

Definition 1. For γ ∈ (0, 1) let Λ = {k	, . . . , k⊕} = {dα	/εe, . . . , bα⊕/εc} denote the index
set of dominating wave numbers defined in (7). Furthermore, let ck for k ∈ Λ denote a family
of independent and identically distributed standard normal random variables. Then we define
a random Fourier cosine sum f : [0, 1]→ R via

f(x) =
∑
k∈Λ

ck
√

2 cos(kπx) =
∑
k∈Λ

ckek(x) . (8)

Notice that the basis functions ek are orthonormal in L2(0, 1).

Our goal is to understand the relation between typical maximum norm values of func-
tions f as in (8) and their L2(0, 1)-norms. As mentioned in the introduction, part of this
study will be rigorous, while other parts will be numerical in nature. For the numerical
simulations in the remainder of this paper, unless otherwise noted, we assume that

γ = 0.8 , and therefore α	 ≈ 0.16735 and α⊕ ≈ 0.27077 ,

and we generally pick the ε-values listed in Table 1. In this table, we also list the values of k	

and k⊕ for each of these cases, as well as the dimension |Λ| of the dominating subspace. The
final column will be discussed in more detail later on.

Random Fourier cosine sums as defined in Definition 1 usually exhibit highly oscillatory
behavior for small values of ε, since the wave numbers of all involved basis functions are
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r ε = 10−r k	 k⊕ |Λ| 2
√
|Λ|/π

2.0 0.01 17 27 11 3.7424
2.5 0.003162 53 85 33 6.4820
3.0 0.001 168 270 103 11.4518
3.5 0.0003162 530 856 327 20.4046
4.0 0.0001 1674 2707 1034 36.2840

Table 1: Simulation parameters used throughout the paper. For the shown values of ε, the
table lists the bounds k	 and k⊕ of the index set Λ defined in (7), as well as its size. The
last column will be explained in more detail later.

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

Figure 1: A typical instance of a random Fourier cosine sum f as defined in Definition 1. For
the image we chose the parameters ε = 10−3 and γ = 0.8.

of the order 1/ε. In fact, a classical result due to Karlin [13] shows that every f as in (8)
contains between k	 and k⊕ zeros. This is demonstrated in Figure 1, where we show a
sample random Fourier cosine sum for ε = 10−3. Notice that f exhibits fast oscillations at a
frequency of order ε with a slow modulation. A fundamental difference to many other studies
of random Fourier sums is, that not only the number of terms increases with ε→ 0, but also
the functions over which the sum is taken changes.

As a first step towards understanding the behavior of the maximum norm of f in rela-
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Figure 2: Monte Carlo simulations of random Fourier cosine sums for ε-values between 10−6

and 10−2. In each case, the ratio of the maximum norm and the L2-norm of the function f
is indicated by a square. The thick blue line shows the mean values of the simulations.

tion to its L2-norm, we would like to point out that the worst-case behavior can easily be
determined, see also [20].

Observation 2 (Worst-Case Behavior). Consider an arbitrary random Fourier cosine sum
as in Definition 1. Since all cosines are uniformly bounded by one, the Cauchy-Schwarz
inequality immediately yields the estimate

‖f‖L∞(0,1)

‖f‖L2(0,1)
≤
∑

k∈Λ

√
2|ck|√∑

k∈Λ c
2
k

≤

√
2 ·
√
|Λ| ·

√∑
k∈Λ c

2
k√∑

k∈Λ c
2
k

=
√

2 · |Λ| ∼ ε−1/2 .

Moreover, one can easily see, for example by choosing all coefficients ck equal to one, that
both of the above inequalities can be turned into equalities. For this one only has to notice
that the cosines attain their maximum value at the left interval endpoint x = 0, and therefore
we have ‖f‖L∞(0,1) = f(0) whenever the coefficients ck are positive for all k ∈ Λ.

The observation shows that as we choose ε closer and closer to zero, the norm ratio grows
proportional to ε−1/2. In fact, the observation even provides explicit functions f for which
this asymptotic behavior is realized.

But what happens in the stochastic setting? How do the ratios behave for typical instances
of the random Fourier cosine sum? To gain some intuition, we performed Monte Carlo type
simulations for values of ε between 10−6 and 10−2, with sample size 250 in each case, and
recorded the norm ratio. The results are shown in Figure 2, which also depicts the expected
value of the simulations for each ε-value in blue. This leads to the following observation.

Observation 3 (Typical Behavior). For typical instances of the random Fourier cosine sum f
introduced in Definition 1, the norm ratio ‖f‖L∞(0,1)/‖f‖L2(0,1) appears to level off as ε
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approaches zero. In addition, the variances observed in the Monte Carlo simulations seem to
decrease as ε approaches zero.

This second observation identifies a large disparity between the worst-case and the typical
behavior of the norm ratios, and as mentioned in the introduction, this lies at the heart of
spinodal decomposition. We would like to point out, however, that one should not expect
the norm ratios shown in Figure 2 to converge to a fixed value. In fact, we do anticipate a
small logarithmic growth of the norm ratios as ε→ 0.

2.2 Bounds on the Moments

For the remainder of this section, we briefly review probabilistic estimates for the maximum
norms of random Fourier cosine sums. These estimates are indirect in the sense that they do
not provide information on which specific instances of f realize the norm bounds.

Probabilistic methods for deriving uniform bounds for Gaussian random functions are
well-known. In the following, we present an approach based on fractional Sobolev spaces,
which originated in [9]; see also [10]. To adapt this approach to our setting, we first establish
an asymptotic moment bound. Rather than giving almost sure bounds for the norm ratio
of interest to us, namely ‖f‖L∞(0,1)/‖f‖L2(0,1), this first result only provides bounds on the

ratio (E‖f‖pL∞(0,1))
1/p/(E‖f‖2L2(0,1))

1/2, which involves the expected values of the norms of
the random Fourier cosine sum f .

Theorem 4. Consider random Fourier cosine sums f as in Definition 1. Then for arbitrary
constants p > 1 and 0 < η < 2 there exists a constant C > 0 which is independent of ε such
that

E‖f‖pL∞(0,1) ≤ C

(∑
k∈Λ

kη

)p/2
+ C |Λ|p/2 .

Note that the constant in the previous theorem will depend very badly on p. It grows
faster than exponential, and we will need large p in the sequel.

Before proving the theorem, we demonstrate how it can be used to bound the above-
mentioned moment ratio (E‖f‖pL∞(0,1))

1/p/(E‖f‖2L2(0,1))
1/2. Recall that we are interested in

the asymptotic behavior as ε → 0. In this case, it has already been shown that |Λ| ∼ ε−1,
as well as k ∼ ε−1 for all k ∈ Λ. This leads to the following bound for the maximum norm
moment in terms of ε.

Corollary 5. Consider random Fourier cosine sums f as in Definition 1. Then for any
choice of p > 1 and δ > 0 there exists a constant C > 0 such that for 0 < ε ≤ 1 we have(

E‖f‖pL∞(0,1)

)1/p
≤ Cε−δ/2

(
E‖f‖2L2(0,1)

)1/2
= Cε−(1+δ)/2 .

Proof. Let η = min{δ, 1}. Then there is a constant C > 0 such that for 0 < ε ≤ 1 we have

E‖f‖pL∞(0,1) ≤ C

(∑
k∈Λ

kη

)p/2
+ C|Λ|p/2 ≤ C

(
ε−p(η+1)/2 + ε−p/2

)
≤ Cε−p(δ+1)/2 .

10



Moreover, we have already seen that our assumptions on the random coefficients ck imply
the identity E‖f‖2L2(0,1) = |Λ| ∼ ε−1, i.e., one has (E‖f‖2L2(0,1))

1/2 ∼ ε−1/2. Taking the p-th
root finally yields the result.

We would like to point out that the constant C in both of the previous results is usually
not small. In fact, it usually grows exponentially in the moment exponent p. We now turn
our attention to the proof of Theorem 4.

Proof of Theorem 4. Our proof is based on the fractional Sobolev spaces Wα,p(G), and we
refer the reader to [?,17] for more details. For the moment, recall that for α ∈ (0, 1) and G =
[0, 1] the definition of the Wα,p(G)-norm is given by

‖u‖pWα,p =

∫
G

∫
G

|u(x)− u(y)|p

|x− y|1+αp
dx dy + ‖u‖pLp .

Note further that as long as the inequality αp > 1 holds, one has the continuous Sobolev
embedding Wα,p(G) ⊂ C0(G). For sufficiently large p > 1/α we then obtain

E‖f‖pL∞(0,1) ≤ C E‖f‖pWα,p = C E
∫ 1

0

∫ 1

0

|f(x)− f(y)|p

|x− y|1+αp
dx dy + C E‖f‖pLp .

Note that according to Definition 1, the random variables f(x) and f(x) − f(y) are real-
valued Gaussian random variables, as they are the sum of independent Gaussians. Thus we
can bound higher moments by the second to obtain the estimate

E‖f‖pL∞(0,1) ≤ C
∫ 1

0

∫ 1

0

(
E|f(x)− f(y)|2

)p/2
|x− y|1+αp

dx dy + C

∫ 1

0

(
E|f(x)|2

)p/2
dx .

One can easily see that

E|f(x)|2 = 2
∑
k∈Λ

cos2(kπx) ≤ 2|Λ| ,

and for any η ∈ (0, 2) there exists a constant Cη such that

E|f(x)− f(y)|2 = 2
∑
k∈Λ

|cos(kπx)− cos(kπy)|2

≤ Cη
∑
k∈Λ

|cos(kπx)− cos(kπy)|η ≤ Cη
∑
k∈Λ

kηπη|x− y|η .

Combined, these estimates imply

E‖f‖pL∞(0,1) ≤ C

∫ 1

0

∫ 1

0

(
Cη
∑

k∈Λ k
ηπη|x− y|η

)p/2
|x− y|1+αp

dx dy + C

∫ 1

0
(|Λ|)p/2 dx

≤ C
(∑
k∈Λ

kη
)p/2 ∫ 1

0

∫ 1

0
|x− y|ηp/2−1−αp dx dy + C|Λ|p/2 ,
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where the constants C depend on p and η. Finally, choose η ∈ (2α, 2) and p > 1/α. Then we
have ηp/2− 1− αp > −1, and the above estimate yields

E‖f‖pL∞(0,1) ≤ C
(∑
k∈Λ

kη
)p/2

+ C|Λ|p/2 .

for some constant C > 0. Thus, we have proved the result for large p, which in combination
with Hölder’s inequality also establishes its validity for smaller values of p.

2.3 Probabilistic Maximum Norm Bounds

After the preparations of the last section, we can now finally derive probabilistic bounds on
the norm ratio ‖f‖L∞(0,1)/‖f‖L2(0,1). These bounds will be true only asymptotically and with
high probability. Unfortunately, however, they will not shed any light on which instances of
the random Fourier cosine sum f realize the small norm ratios. Moreover, they do not cover
the range of moderately small values of ε. This is due to the fact that the involved constants
depend in a highly nonlinear way on the parameters q and δ below.

Theorem 6. Consider random Fourier cosine sums f as in Definition 1. Then for any
choice of δ > 0 and any q > 1 there exists a constant C > 0 such that

P
(
‖f‖L∞(0,1) ≤ ε−δ‖f‖L2(0,1)

)
≥ 1− Cεq .

As before, the constant C is independent of ε. In other words, with probability close to one
the norm ratio ‖f‖L∞(0,1)/‖f‖L2(0,1) grows at most like ε−δ as ε→ 0.

Proof. Let y > 0 be an arbitrary constant, whose precise value will be fixed later in the proof.
Then we obtain

P
(
‖f‖L∞(0,1) ≤ ε−δ‖f‖L2(0,1)

)
≥ P

(
‖f‖L∞(0,1) ≤ ε−δy and y ≤ ‖f‖L2(0,1)

)
≥ 1− P

(
‖f‖L∞(0,1) > ε−δy

)
− P

(
y > ‖f‖L2(0,1)

)
≥ 1− E‖f‖pL∞(0,1) ·

(
εδ

y

)p
− P

(
y2 > ‖f‖2L2(0,1)

)
.

The remaining two terms will be bounded separately. For the second one, we can use the fact
that the random variable ‖f‖2L2(0,1) is chi-squared distributed with N = |Λ| ∼ ε−1 degrees of
freedom. Using the explicit representation of its density, one then obtains

P
(
y2 > ‖f‖2L2(0,1)

)
=

∫ y2

0

xN/2−1e−x/2

2N/2 Γ(N/2)
dx ≤

∫ y2

0

xN/2−1

2N/2 Γ(N/2)
dx

=
(y2)N/2

2N/2 Γ
(
N
2 + 1

) ≤ CN−1/2

(
ey2

N

)N/2
,

12



where we used Stirling’s formula for the last inequality. Thus, this probability is exponentially
small in ε as long as y is not too large. More precisely, if we now define

y =

√
|Λ|
2e
∼ ε−1/2 ,

then ey2/N = 1/2, and the probability P(y2 > ‖f‖2L2(0,1)) decays exponentially fast in ε. We
now turn our attention to the first term in the first estimate. Using Corollary 5 one obtains

E‖f‖pL∞(0,1) ·
(
εδ

y

)p
≤ Cε−p(1+δ)/2 · εp(δ+1/2) ≤ Cεδp/2 .

Choosing p > 2q/δ completes the proof of the theorem.

3 Boundary Behavior and Sign Forcing

3.1 Random Fourier Cosine Sums with Forced Signs

While for the asymptotic regime ε → 0 the results of the last section provide some initial
insight into the typical behavior of norm ratios for random Fourier cosine sums (8), they do
not indicate for what instances of f the smaller norm ratios are realized. Therefore, our next
step is an attempt to understand the behavior of functions of the above type by forcing the
signs of the normal coefficients. This approach is motivated by the fact that the worst-case
behavior is observed if all signs of the coefficients ck are equal. Throughout this section, we
consider random functions of the form

g(m)(x) =
∑
k∈Λ

sk · |ck| ·
√

2 cos(kπx) , (9)

where Λ and the coefficients ck are defined as in Definition 1. Newly introduced are the sign
coefficient factors sk ∈ {−1, 1} for k ∈ Λ, where we assume that |{k ∈ Λ : sk = 1}| = m,
for some integer m ∈ {0, . . . , |Λ|}. In other words, the superscript m in (9) determines
the number of positive coefficients in the random Fourier cosine sum. Note, however, that
the locations of the positive signs are randomly distributed among all of the involved mode
functions.

In order to get a first impression of the effects of sign forcing on the behavior of random
Fourier cosine sums, Figure 3 depicts five instances of g(m) for the parameter ε = 10−2.5. In
the simulations, the set of modes for which the sign sk is positive gets chosen by a standard
urn model. These first simulations lead to a number of observations.

Observation 7. Consider the sample random Fourier cosine sums shown in Figure 3. In
the associated Table 2, we have recorded a number of norm ratios for these five instances
of g(m). In addition to the function value at zero, we consider the maximum norm over the
interval [0.2, 1], and the maximum norm over the whole interval [0, 1], in each case normalized
by the L2(0, 1)-norm of the function. These computations indicate the following:

• The function value |g(m)(0)| is more or less linearly decreasing as the sign parameter m
increases from 0 to Λ/2.

13
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Figure 3: Sample random instances of the normalized functions g(m)/‖g(m)‖L2(0,1) defined
in (9) for the parameter value ε = 10−2.5. In this case, the random sums involve |Λ| = 33
modes. From top to bottom the images correspond to the sign parameters m = 0, 4, 8, 12, 16.

m |g(m)(0)|
‖g(m)‖L2(0,1)

‖g(m)|[0.2,1]‖L∞(0.2,1)

‖g(m)‖L2(0,1)

‖g(m)‖L∞(0,1)

‖g(m)‖L2(0,1)

0 4.8 1.4 4.8

4 3.2 1.5 3.2
8 2.3 1.8 2.2

12 2.0 1.5 2.0

16 0.3 1.8 1.8

Table 2: Specific norm ratios for the instances of g(m) shown in Figure 3. The table contains
the size of the function value at zero, the maximum norm over the interval [0.2, 1], as well as
the maximum norm over the whole interval [0, 1], in each case normalized by the L2(0, 1)-norm
of the function.

• The largest function values over the interval [0.2, 1] seem to be more or less of the same
order as m changes, with fluctuations only due to the presence of noise.

• For small values of m, the maximum norm of g(m) over the interval [0, 1] is attained at
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Figure 4: Boxplot of Monte Carlo simulations to determine typical values of the restricted
norm ratios ‖g(m)|[0,c]‖L∞(0,1)/‖g(m)‖L2(0,1) for varying values of c. In all images, the hori-
zontal axis represents the sign forcing parameter m, and for each m we performed N = 150
simulations. All graphs are for ε = 10−3, and from top left to bottom middle we consider the
cases c = 0.01, c = 0.1, and c = 0.3, respectively.

the point x = 0, while for larger values of m the largest function value occurs somewhere
in the interval [0.2, 1].

While the above observation is merely based on a few sample functions, it does seem to
indicate that depending on the number m of positive coefficient signs sk, the maximum norm
of typical functions g(m) is either attained at the left domain boundary, or somewhere away
from this boundary point.

At first glance, the above observation might seem surprising. For a fairly large contiguous
range of sign forcing parameters which start at m = 0, the maximum norm of the random
Fourier cosine sum f is attained exactly at the left boundary point, while from some m-
value onwards, the maximum is suddenly observed in the interval [0.2, 1]. To study this
phenomenon further, we performed Monte Carlo simulations to determine typical values of
the restricted norm ratios ‖g(m)|[0,c]‖L∞(0,1)/‖g(m)‖L2(0,1) for varying intervals [0, c]. For three
different values of c and every value of m between 0 and |Λ|, we determined the norm ratios
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Figure 5: Boxplots of the norm ratios ‖g(m)‖L∞(0,1)/‖g(m)‖L2(0,1) determined via Monte Carlo
simulations with sample size N = 1000 for each m-value. From top left to bottom right the
images correspond to the parameter values ε = 10−2, 10−2.5, 10−3, and 10−3.5, respectively.
While the vertical axis measures the norm ratios, the horizontal axis representsm+1, wherem
is the sign forcing parameter ranging from 0 to |Λ|. All four graphs resemble “tubs,” with
linearly growing sides and flat bottoms. Notice that while the ratio values at the bottom
seem to vary only slightly with ε, the upper reaches of the sides increase with decreasing ε.

for ε = 10−3 via N = 150 simulations. The results are shown in the boxplots of Figure 4.
Notice that for c = 0.01, the normalized maximum norm over the interval [0, c] decays linearly
from about 11.5 to almost zero, as m ranges from zero to |Λ|/2. As m increases further, the
behavior reverses. In this case, one would expect that the maximum norm closely resembles
the behavior of g(m) at x = 0, due to the smallness of the interval. If instead of c = 0.01
we consider intervals with right endpoint c = 0.1 or c = 0.3, the norm ratios do not get as
close to zero as before. In fact, they seem to bottom out at about 3. We have observed that
as c increases beyond around c ≈ 0.2, the bottom horizontal part shows hardly any change
anymore.
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n ε = 10−n E
|g(0)(0)|
‖g(0)‖L2(0,1)

E
‖g(|Λ|/2)‖L∞(0,1)

‖g(|Λ|/2)‖L2(0,1)

2 0.01 4 2.5
2.5 0.003162 7 2.8
3 0.001 11 3.0

3.5 0.0003162 21 3.2

Table 3: Quantitative information for the tub plots in Figure 5. The third column gives
the expected value of the ratio |g(0)(0)|/‖g(0)‖L2(0,1), which corresponds to the height of the
linear tub sides, while the fourth column represents the heights of the tub bottoms. The
latter value is given by ‖g(m)‖L∞(0,1)/‖g(m)‖L2(0,1) for m = |Λ|/2.

Combined, Figures 3 and 4 indicate that in order to study the maximum norm behavior
of random Fourier cosine sums, it makes sense to relate the norm ratios to the number m of
positive coefficients. As a final numerical experiment, we created plots similar to the ones in
Figure 4, but this time for c = 1 and varying ε-values. The results from these Monte Carlo
simulations are shown in Figure 5, and associated quantitative numerical values can be found
in Table 3. For this experiment, we have performed Monte Carlo simulations with sample
size N = 1000 for each m-value, and we considered the parameter values ε = 10−2, 10−2.5,
10−3, and 10−3.5, from top left to bottom right, respectively. As before, the vertical axis
measures the norm ratios, while the horizontal axis represents m + 1, where m is the sign
forcing parameter ranging from 0 to |Λ|. We would like to point out the striking similarity
between the plot for ε = 10−3 with the last image in Figure 4 — increasing the value of c
from 0.3 to 1 has hardly any effect on its shape.

The four plots in Figure 5 share some interesting common features. All four graphs
resemble “tubs,” with linearly decaying or growing sides and flat bottoms. The ratio values
at the bottom of the tubs seem to vary only slightly with ε, whereas the upper reaches of the
sides increase sharply with decreasing ε. This leads to the following observation.

Observation 8. The largest norm ratio values are achieved when there is a strong dominance
of one sign in the coefficients, i.e., most coefficients are positive or most are negative. This
occurs close to the extreme values m = 0 and m = |Λ|. If this sign dominance decreases, the
observed norm ratios decline approximately linearly up to the point where they reach a more
or less constant level. The graphs are clearly symmetric with respect to m = |Λ|/2, due to
our definition of g(m) in (9).

Together with our observations surrounding Figure 3 this makes the case for the following
scenario. For strongly asymmetric sign distributions, where for example all signs are positive
or all are negative, the global maximum of the function g(m) occurs at x = 0, and in this
case, one observes linear norm ratio decay as the sign distribution becomes more even. In
the latter case, the function value at x = 0 is dominated by the function behavior away from
the left endpoint of the domain. Consequently, the maximum is attained somewhere in the
interior of the domain, and the maximum norm ratio stays more or less constant.

While the next two sections will be devoted to a more quantitative explanation of the
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above observations, we close this section with a brief remark on the likelihood of encountering
asymmetric sign distributions.

Remark 9. As we will see in more detail later, the norm ratios observed in the middle
of the tubs shown in Figure 5 are precisely the norm ratios that are responsible for typical
instances of the random Fourier cosine sum f defined in (8). One can readily see that the
sign distribution of the sequence s0, . . . , s|Λ| follows a standard binomial distribution. In
other words, sign distributions with m-values close to 0 or |Λ| are extremely unlikely, while
distributions with m close to |Λ|/2 are most probable. If we now assume that m is not
chosen by us, but rather assigned randomly according to a binomial distribution, then the
probability of the sign forcing parameter m taking a value along the flat tub bottom is given
by an expression of the form

P (` ≤ m ≤ r) =
r∑

m=`

Bin(|Λ|, 0.5,m) ,

where ` and r denote the left and right endpoints of the bottom part of the tub. For each
of the ε-values used in Figure 5, this probability can be computed as 0.9077, 0.9887, 0.9999,
and almost 1, from top left to lower right, respectively. In other words, as ε decreases, the
probability that a random Fourier cosine sum has a sign forcing parameter m which lies in the
bottom of the tub is basically one — and this explains why typical f exhibit small maximum
norm ratios.

3.2 The Role of the Left Endpoint of the Domain

Our simulations have already shown that the left endpoint of the interval G = [0, 1] plays a
special role in the formation of the maximum norm of a random Fourier cosine sum. Since
this special role seems to occur only for strongly asymmetric sign distributions, we consider
in the present section the case where all signs are equal. For the sake of definiteness, we
assume that all signs sk are equal to +1, and in this case the random Fourier cosine sum is
given by

g(|Λ|) =
∑
k∈Λ

|ck| ·
√

2 cos(k · π · x) .

Since the cosine functions all attain their maximum value 1 at x = 0, one can easily see that
the maximum norm of g(|Λ|) is given by∥∥∥g(|Λ|)

∥∥∥
L∞(0,1)

= g(|Λ|)(0) =
√

2 ·
∑
k∈Λ

|ck| .

The sum of the absolute values of the standard normally distributed coefficients ck is half-
normally distributed, and it therefore has the expected value |Λ| ·

√
2/π with variance |Λ|.

In other words, one has

E
∥∥∥g(|Λ|)

∥∥∥
L∞(0,1)

=
2|Λ|√
π
.

We now turn our attention to the L2(0, 1)-norm of the function g(|Λ|). Due to the orthonor-
mality of the basis functions ek, this norm can be computed via ‖g(|Λ|)‖2L2(0,1) =

∑
k∈Λ c

2
k.
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The last sum is distributed according to a χ2-distribution with |Λ| degrees of freedom. As
mentioned several times, our interest in the norm ratios is their behavior as ε→ 0, and there-
fore we focus on the case that the number of degrees of freedom is large. In this situation,
the above random variable becomes indistinguishable from a normal random variable with
mean value µ = |Λ| and variance σ2 = 2|Λ|. But even more can be said. The L2(0, 1)-norm
of the function g(|Λ|) follows a χ-distribution with

mean value µ =
√

2 ·
Γ
(
|Λ|+1

2

)
Γ
(
|Λ|
2

) ∼
√
|Λ| and variance σ2 = |Λ| − µ2 .

Note that the mean value µ is proportional to
√
|Λ| with proportionality constant 1, which

can easily be deduced from Stirling’s formula. This in turn implies that the variance σ2 does
in fact grow much slower than |Λ|. In other words, as a rule of thumb we can assume that
the L2-norm of g(|Λ|) satisfies ‖g(|Λ|)‖L2(0,1) ≈

√
|Λ| with little variation.

The above discussion finally allows us to estimate the norm ratio for the function g(|Λ|).
We expect that in fact ∥∥g(|Λ|)∥∥

L∞(0,1)∥∥g(|Λ|)
∥∥
L2(0,1)

≈
2
√
|Λ|√
π

. (10)

In the right-most column of Table 1 we have tabulated the values of the fraction on the
right-hand side. These are in remarkable agreement with the numerically determined values
shown in Table 3, see also Table 2.

What about values of the sign forcing parameter m which are different from |Λ| or 0? The
property that the maximum norm of g(m) is attained at x = 0 is somewhat stable, even if
not all signs sk are equal to +1, but only a majority of them. This is due to the fact that the
point x = 0 is the only point in the interval G where all peaks of the cosine basis functions
are at exactly the same spot, or in other words, are in phase. If we therefore consider m 6= 0,
but still suppose that ‖g(m)‖L∞(0,1) = |g(m)(0)|, then one can easily see that ‖g(m)‖L∞(0,1)

is — up to a factor
√

2 which comes from the normalization of the ek — still half-normally
distributed with expected value µ = (|Λ| − 2m) ·

√
2/π, and this implies that

E
∥∥∥g(m)

∥∥∥
L∞(0,1)

= (|Λ| − 2m) · 2√
π
.

Heuristically one would therefore expect that∥∥g(m)
∥∥
L∞(0,1)∥∥g(m)
∥∥
L2(0,1)

≈
2
√
|Λ|√
π
− 4m√

π|Λ|
. (11)

This heuristic formula does indeed describe the linear decay which was observed in Figure 4,
particularly in the top left image. Since this image only considers a small interval to the right
of x = 0, we have performed essentially a Monte Carlo simulation to determine the expected
value of the random variable g(m)(0). We expect its expected value to decay linearly to 0
as m increases from 0 to Λ/2, and then increase again in a symmetric way. Note, however,
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Figure 6: By forcing the signs of the coefficients ck in the random Fourier cosine sum f
according to very specific sign patterns, one can create worst-case behavior norm ratios at
any point x̂ ∈ [0, 1], not just at the left endpoint x = 0. The above image demonstrates this
for the particular choice x̂ = 2/π ≈ 0.6366.

that as we increase the size c of the interval [0, c], the point x = 0 loses its importance as
maximum norm defining argument for m ≈ |Λ|/2. In this window, oscillations on the rest of
the interval, which have the similar magnitude for all sign distributions, yield the norm of
the function. The above-described effect is even more pronounced in the context of Figure 5,
where we choose c = 1.

To summarize, we have shown in this section that the height and the linear behavior of
the tubs shown in Figures 4 and 5 can be described accurately by the formulas (10) and (11),
respectively. What still has to be explained is the horizontal behavior along the bottom of
the tub, and this will be the subject of subsequent sections.

3.3 The Behavior at the Remaining Points

While the special role of the left endpoint x = 0 can easily be explained using the fact that
all cosine basis functions are equal to their maximum at this point, it does make one wonder
about the right end point x = 1. Also here, the basis functions realize their maximum norm,
but this time the actual function value alternates between −1 and 1. This implies that the
random function g(m) follows the same probability law at both the right endpoint x = 1 and
at the left endpoint of the interval G. However, this fact does not materialize in our previous
simulations, since we considered events parametrized by the sign forcing variable m. In order
for x = 1 to lead to high extremal values we would need to require that the signs sk alternate
as well, in order to compensate for the alternating signs of the basis functions.

The above reasoning can also be extended to arbitrary points in the domain G = [0, 1].
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For this, let x̂ ∈ G be arbitrary. Our goal is to create random Fourier cosine sums f which
exhibit large norm ratios ‖f‖L∞(0,1)/‖f‖L2(0,1), but for which the maximum norm is attained
at x̂. For this, we need to imitate our considerations at the left endpoint. They were based
on the idea that all of the signs of the values ckek(x) had to be the same. While for x = 0 this
can be done explicitly, for x = x̂ we need to understand the signs of ek(x̂) =

√
2 cos(kπx̂). If

we choose the sign of the coefficient ck equal to the sign of ek(x̂), then the function values of f
at x = x̂ accumulate to a large positive value. Notice that this value does not automatically
have to be the maximum norm of f , since the values ek(x̂) are usually not equal to ±1.
However, At points x 6= x̂ one would expect that the function values of ek(x) and ek(x̂)
are generally out of sync, and therefore the computation of f(x) should lead to numerous
cancellations. This in turn should make it more difficult for f(x) to reach the size of the
function value f(x̂). More precisely, consider an arbitrary point x̂ ∈ G. Then one can show
that as long as cos(kπx̂) 6= 0 we have

cos(kπx̂) > 0 if and only if `k(x̂) := max

{
l ∈ Z :

2l + 1

2k
≤ x̂

}
is odd .

If we now define
γk(x̂) := (−1)1+`k(x̂) ,

then, as long as ek(x̂) 6= 0, the statement γk(x̂) = +1 is equivalent to ek(x̂) > 0. Finally,
define γk(x̂) = 1 if cos(kπx̂) = 0, and consider the random Fourier cosine sum

g
(m)
x̂ (x) =

∑
k∈Λ

sk · |ck| · γk(x̂) ·
√

2 cos(kπx) ,

where we assume that the number of signs sk ∈ {±1} which are equal to +1 is given by m.

Then one can show that the functions g
(0)
x̂ and g

(|Λ|)
x̂ do in fact exhibit exceedingly large norm

ratios, see for example Figure 6 for the case x̂ = 2/π. In this way, we can also create functions
which exhibit worst-case norm ratio behavior, but for which the maximum is attained in the
interior of the domain — since the coefficient signs are in sync with the signs of cos(kπx̂).

4 Modeling Extreme Values

4.1 The Typical Oscillation Magnitude

This final section is devoted to understanding the formation of the plateaux or tub bottom
in Figures 4 and 5, i.e., we will try to understand what determines the almost constant norm
ratio in the regime where formula (11) no longer applies. This study focuses on the local
extreme values of random Fourier cosine sums, their spatial distribution, and how precisely
they are generated through the random sum. Moreover, we will develop a simplified model
using binomial random variables to explain the main features of this process.

We begin by considering the following natural question. How does the function f develop
its extreme values? Based on our discussion of the last section, it seems reasonable to expect
that the formation of a local extreme point is likely near a point x̂ if many of the function
values ek(x̂) =

√
2 cos(kπx̂) have the same sign as the corresponding normal coefficients ck.

This can be quantified in the following way.
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Figure 7: Relation between the match ratios and local extreme points. The first image shows
a typical random Fourier cosine sum f for ε = 10−2 with highlighted extremal values. The
second image contains the match rations for every point in the domain G = [0, 1]. One can
detect a high correlation between properties of “being a local extremum” and “having an
extreme match ratio.” For the shown images, the correlation factor is roughly 0.87.

Definition 10. We define the match number of a point x̂ ∈ [0, 1] as

match(x̂) = |{k : sgn(ck · cos(kπx̂)) = 1}| ,

and the match ratio as its normalized equivalent given by

match(x̂) =
match(x̂)

|Λ|
∈ [0, 1] .

If a given point x̂ has a high match number, close to |Λ|, then many of the basis functions ek
are multiplied by a coefficient ck of the same sign so that the sum attains a high value. If a
point has a low match number, i.e., close to 0, then most products ckek(x̂) are negative, and
thus f(x̂) becomes highly negative.

The suspected relation between match ratio and local extreme values can be observed in
numerical simulations, see Figures 7 and 8. These computations have consistently resulted
in average correlation factors over 0.8 between local extreme values and the match ratio.
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Figure 8: Understanding the relation between the match number and local extrema. The
top image shows a scatter plot of the match ratio (horizontal axis) and the function value
(vertical axis) for a fine grid of x-values in a numerically simulated Fourier cosine sum f
with ε = 10−3.5. The image indicates a high correlation between both quantities. The images
on the bottom row depict boxplots of the correlation coefficients of 500 simulations analogous
to the top panel, each time for ε = 10−2, ε = 10−2.5, and ε = 10−3. The left picture depicts
correlation of function value and match number in any point, the right picture shows the
correlation only in extremal values.

We now turn our attention to the spatial distribution of local extrema. Their number is
bounded above by the highest wave number of the involved cosine basis functions ek, and
bounded below by the lowest such wave number. In order to see this, note that the critical
points of f are the zeros of its derivative, which is a Fourier sine function. The statement
then follows from a classical result [13, Theorem 6.2, p. 35]. This leads to the following
observation.

Observation 11. Empirical simulations show that local extreme values are almost equidis-
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Figure 9: Histogram plot of the match ratio of the global extremum of the random Fourier
cosine sum f from N = 50000 Monte Carlo simulations. The left image is for ε = 10−2 while
the right panel shows the case ε = 10−3.

tantly distributed over the interval G = [0, 1], with characteristic distance proportional to 1/k̄,
where k̄ ≈ (k	 + k⊕)/2 is the average mode wave number, see also (6).

The observation shows that the function f has only about k̄ opportunities to generate a
large L∞(0, 1)-norm value. Moreover, in the direct vicinity of a local extremum there cannot
be a second one, since the involved cosine basis functions oscillate too quickly. This indicates
that in general, another local extremum can only be observed after a characteristic distance
which is proportional to 1/k̄.

Suppose now that we have found a local extremum of f at the point x̂. The signs of
the cosine basis function values ek(x̂) =

√
2 cos(kπx̂) are distributed over the modes in a

more or less random fashion, which in fact is chaotic in a discrete dynamical systems sense.
Apart from points of resonance, one would essentially expect equal numbers of positive and
negative signs. These basis functions are then multiplied by the random coefficients ck,
which are standard normally distributed. From our previous discussion one can infer that
the magnitude of the function value of f is larger if the fit between the signs of the cosine
basis functions and the signs of the coefficients ck is large as well, i.e., if the match number
is either large or small. In addition to this requirement for the match number, the size of the
function value of f is also affected by the magnitude of the random coefficients ck.

Unfortunately, extremely large or small match numbers are rare events, since we can
assume that they follow a binomial distribution. This means that match ratios equal to 0
or 1 occur with probability 2−|Λ|, while the most likely event is a match ratio of 1/2, which
usually leads to a function value close to 0 due to cancellations. Nevertheless, even slight
variations from this match ratio value quickly result in much higher function values.

Observation 12. Essentially, the size of the L∞(0, 1)-norm is the result of a trade-off be-
tween sharply declining binomial probabilities, which model the likelihood of match numbers,
and the creation of function values of large size through match number ratios away from the
center ratio 1/2. This trade-off is visualized in Figure 9, which shows histograms of the match
ratio of the global extremum of f from Monte Carlo simulations for ε = 10−2 and ε = 10−3.
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4.2 A Model for the Magnitude of Extreme Values

We still have to understand what the characteristic magnitude of the middle part of the plots
in Figure 5 is. For this, we will develop a model which captures the essential aspects of the
generation of extreme values. This will be based on our observations of the previous sections.

As we have already seen, extrema are formed at approximately equidistant points in the
domain, with average distance roughly equal to 1/k̄, where we defined k̄ = (k	 + k⊕)/2.
In other words, in general the random Fourier cosine sum f has about k̄ local minima and
maxima. Since both k	 and k⊕ are of the same order in ε, the same can be said about their
average k̄. In order to develop our model, we now fix some x ∈ [0, 1] and define the two index
sets

Λ1 = {k ∈ Λ : sgn (ck · cos(kπx)) = 1} and Λ2 = Λ \ Λ1 .

This immediately implies the identity∑
k∈Λ

ck · cos(kπx) =
∑
k∈Λ1

|ck| · | cos(kπx)| −
∑
k∈Λ2

|ck| · | cos(kπx)| ,

where for the moment we the remove the normalization factor
√

2 in the cosine basis functions
for the sake of simplicity. It follows from a standard result in discrete dynamical systems
that the function values cos(kπx) are ergodic with respect to iteration in k as long as the
product πx is irrational. We can therefore model each term | cos(kπx)| by a random variable
which is drawn according to the average magnitude of sinusoidal functions on their positive
regime, i.e., we can assume that

|cos(kπx)| = sin (πdk) ,

where the random variables dk are independent and uniformly distributed on the interval [0, 1],
to ensure the positivity of the function value. These random variables model the fact that
the peaks of the cosine functions do not coincide exactly, so we have to account for imper-
fect summation on positivity sets. Using the central limit theorem, one then obtains the
approximation ∑

k∈Λ1

|ck| · sin(πdk)−
∑
k∈Λ2

|ck| · sin(πdk) ' N
(
µ, σ2

)
,

where

µ = (|Λ1| − |Λ2|) · E (|ck| sin(πdk)) = (|Λ1| − |Λ2|) ·
(

2

π

)3/2

and

σ2 = (|Λ1|+ |Λ2|) ·Var (|ck| sin(πdk)) = |Λ| ·
(

1

2
− 8

π3

)
.

We now need to model how the mode index sets Λ1 and Λ2 are chosen. For each x ∈ [0, 1] this
will be accomplished according to the match number M ∼ Bin(|Λ|, 0.5). This yields updated
formulas for the mean µ and variance σ2 in the form

µ = (2M − |Λ|) ·
(

2

π

)3/2

and σ2 = |Λ| ·
(

1

2
− 8

π3

)
.
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Our rationale for modeling the match number M by a binomial distribution can easily be ex-
plained. In every local extremum x̂, the coefficient sequence (ck)k∈Λ yields a sign distribution
on the basis functions cos(kπx̂). Since we consider x̂ as being picked randomly in the inter-
val [0, 1], the ergodic property of the system of mainly non-resonant cosine functions gives
another sequence of independent signs (cos(kπx̂))k∈Λ. Thus, their product is also a mixture
of signs, and we can assume that the number of positive signs is binomially distributed with
probability parameter 1/2.

We now take our simplified model one step further. Using the Moivre-Laplace theorem
one can approximate the random variable M−|Λ|/2 by a normal distribution with mean zero
and variance |Λ|/4. Hence, using the abbreviations C1 = 2(2/π)3/2 and C2 = 1/2− 8/π3 we
obtain

ym ∼ N (C1(M − |Λ|/2), C2|Λ|)

∼ N
(
µ = N

(
0, σ2 = C2

1 |Λ|/4
)
, σ2 = C2|Λ|

)
)

= |Λ|1/2 · N
(
µ = 0, σ2 = C2

1/4 + C2

)
= |Λ|1/2 · N

(
0, σ2 = 1/2

)
,

where the second-to-last step is an elementary calculation. Note also that C2
1/4 + C2 = 1/2

holds. The above derivations can now be summarized and condensed into our simplified
extreme value model.

Definition 13 (Simplified Extreme Value Model). In order to draw the values (ym) of the
extreme values of a random Fourier cosine sum, we choose ym as an independent copy of

ym ∼ N
(
µ = 0, σ2 = |Λ|/2

)
,

and the match number approximation will be given by choosing Mm as an independent copy
of

Mm ∼ N
(
µ = |Λ|/2, σ2 = 8|Λ|/π3

)
.

Moreover, in our model we treat the L2(0, 1)-norm of the random Fourier cosine sum f
as being fixed with value

√
|Λ|, see the discussion in Section 3.2. All of these choices are

significant simplifications, but we will see later that they lead to a model which captures the
key features of the extreme values. For abbreviation purposes, we define∥∥fModel

∥∥
L∞(0,1)

=
√

2 · max
m=1,...,k̄

|ym| =
√

2|ym̂| and
∥∥fModel

∥∥
L2(0,1)

=
√
|Λ| .

Notice that the extra factor
√

2 accounts for the normalization of the basis functions ek.

Using numerical Monte Carlo simulations, we have tested the performance of the above
model for a variety of different values of ε. The results can be found in Figures 10 through ??,
and they demonstrate that both the match number and the absolute magnitude of local
and global extrema are approximated fairly well. More precisely, Figure 10 compares the
actual distribution of local extreme values with the ones generated by the simplified model in
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Figure 10: Comparison of the actual distribution of local extreme values (lower panel) with
the ones generated by the model in Definition 13 (upper panel) for ε = 10−3. Except for
a neighborhood around zero, both yield similar distributions. Notice, however, that the
extreme values near zero do not affect the L∞(0, 1)-norm of f anyway.

Definition 13, while Figure 11 does the same for the match numbers of local extrema. Both
of these figures consider the parameter ε = 10−3.5. The remaining Figures 13 through ??
compare the actual global extreme values of the random Fourier cosine sum f to the ones
generated by the simplified model for ε = 10−2, ε = 10−3, and ε = 10−4, respectively.

4.3 Growth Rate of the Maximum Norm

Can we use the simplified model in Definition 13 to derive the height of the plateaux in
Figure 5, and in particular its dependence on ε? For this, notice that the Moivre-Laplace
theorem can be used in combination with the strong law of large numbers to obtain a precise
approximation result for the m-th local extremal values, which in the model are given by

ym
‖fModel‖L2(0,1)

∼ N
(
µ = 0, σ2 = 1/2

)
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Figure 11: Comparison of the actual distribution of the match numbers of local extrema
(upper panel) with the ones generated by the model in Definition 13 (lower panel) for ε =
10−3.

Note that in this formulation, we again ignore the normalization factors
√

2, as they can be
absorbed into the proportionality constant later on. We then obtain the approximation

P

(
max

m=1,...,k̄

|ym|
‖fModel‖L2(0,1)

< t

)
=

∏
m=1,...,k̄

P

(
|ym|

‖fModel‖L2(0,1)

< t

)
≤

(∫ t

−∞

e−s
2

√
π
ds

)k̄
.

The improper integral can be bounded below in the form∫ t

−∞

e−s
2

√
π
ds = 1−

∫ ∞
t

e−s
2

√
π
ds ≥ 1− C

∫ ∞
t

e−cs ds = 1− Ce−ct

for every positive constant c > 0 and all sufficiently large t. If we now use Definition 13 and
choose t =

√
2 ln(1/ε), then one obtains from the above calculations the estimate

P

(∥∥fModel
∥∥
L∞(0,1)

‖fModel‖L2(0,1)

< t

)
=

(∫ ln(1/ε)

−∞

e−s
2

√
π
ds

)(α⊕+α	)/(2ε)

≥ (1− Cεc)D/ε ,
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Figure 12: Histogram of the match numbers of global extrema. Compare with the upper
panel in figure 11. A comparison with the model doesn’t make sense as the match numbers
do not correspond to model extrema.

see also (7). One can easily see that the term on the right-hand side satisfies

lim
ε→0

(1− Cεc)D/ε = lim
δ→0

(1− δc)E/δ = 1 for all c > 1 .

This finally furnishes the following result.

Theorem 14. Consider the simplified extreme value model introduced in Definition 13. Then
for any fixed constant C > 0 we have

P

(∥∥fModel
∥∥
L∞(0,1)

‖fModel‖L2(0,1)

< C log ε−1

)
−→ 1 as ε→ 0 .

Theorem 14 improves the estimate obtained in Theorem 6, but for the simplified extreme
value model. In fact, numerical simulations indicate that the logarithmic bound describes
the growth of the plateaux heights in Figure 5 precisely.

Before closing this section, we would like to point out a number of shortcomings of our
simplified model. First of all, the model ignores any dependencies between close extrema.
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Figure 13: Comparison of the actual global extreme values (lower panel) with the ones
generated by the model in Definition 13 (upper panel) for ε = 10−2.

While this simplifies our model tremendously, it does not seem to alter the quality of its
prediction in a significant way. Subsequent extrema are strongly dependent, but also of
roughly the same magnitude. Since we are only interested in the order of magnitude of the
norm ratio growth as ε→ 0, we do not expect any large negative effects.

Another shortcoming, however, is more serious. As shown in Figure 10, while the local
extrema do indeed exhibit a binomially shaped match number distribution, the distribution
of their function values differs from the model in a major point — only rarely are local
extrema observed whose values are close to zero. For our purposes, however, this is not too
important. We are interested in the behavior of the L∞(0, 1)-norm, and therefore in the
global extremal value. The latter one is realized via local extrema with high match numbers.
On the other hand, our modeling error only affects extremal values with low match numbers.
For simulating and predicting the L∞(0, 1)-norm, this can be ignored. We refer the reader
again to Figures 13 through ??.
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Figure 14: Comparison of the actual global extreme values (lower panel) with the ones
generated by the model in Definition 13 (upper panel) for ε = 10−3.

4.4 Generalization to Higher Dimensions

While the bulk of the paper considered the case of random Fourier cosine sums on one-
dimensional domains, the extension to higher dimensions is not difficult. First the results
of Section2 hold almost verbatim with only minor modifications. In section 3 in case of a
square or cube domain, the role of the boundary points is taken over by the corners, and,
when we force the signs, we expect similar numercial results with a plateau in the middle.
They would just be significantly more time consuming, as the number of terms in the series
is on the order of ε−d and grows with the dimension d.

Finally, we give a brief discussion of the simplified model derived in section4. We only
consider the case of a two-dimensional square domain, and leave the straightforward gener-
alization to higher dimensions to the reader. Consider the domain G = [0, 1]2 and define

Λ =
{

(k, `) ∈ N2 : k	 ≤
√
k2 + `2 ≤ k⊕

}
,

as well as independent and identically distributed random normal variables ck,` for (k, `) ∈ Λ,
with mean zero and variance one. Finally, define the random Fourier cosine sum in two
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Figure 15: Comparison of the actual global extreme values (lower panel) with the ones
generated by the model in Definition 13 (upper panel) for ε = 10−4.

dimensions by

f(x, y) =
∑

(k,`)∈Λ

ck,` cos(kπx) cos(`πy) .

In this new situation, the index set is a quarter annulus. As before, the local extreme values
can be modeled as

ym ∼
∑

(k,`)∈Λ1

|ck,`| sin(πdk,`) sin(πd̃k,`)−
∑

(k,`)∈Λ2

|ck,`| sin(πdk,`) sin(πd̃k,`) ,

where Λ1 and Λ2 denote the modes for which the product ck,` cos(kπx) cos(`πy) is strictly pos-
itive or negative, respectively, were (x, y) ∈ G is the location of a local extremum. Moreover,
the random variables dk,` and d̃k,` are uniformly distributed in [0, 1]. Through elementary
calculations similar to the ones in the one-dimensional case one obtains

ym ∼ N (µ, σ) with µ = (|Λ1| − |Λ2|)
(

2

π

)5/2

and σ2 = |Λ|
(

3

8
− 2

π2
− 2

π3

)
.

As before we assume that |Λ1| − |Λ2| = 2M − |Λ| ∼ 2 Bin(|Λ|, 0.5) − |Λ| ∼ N (0, |Λ|/4). In
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addition, the number of modes contained in Λ is now asymptotically given by

|Λ| ∼
π
(
(α⊕)2 − (α	)2

)
4ε2

.

Analogously to the one-dimensional proceeding, one can then derive

ym
‖fModel‖L2(G)

∼ N (0, C) ,

where C denotes some ε-independent constant, and the number of extrema is empirically
given by

k̄2 =
(k⊕ + k	)2

4
=

(α⊕ + α	)2

4ε2
.

Using the highest possible mode frequency we can now say that the number of extrema is
bounded by (k⊕)2 ∼ (α⊕/ε)2. Hence, the probability distribution can be derived as above as

P

(
max

m=1,...,k̄2

|ym|
‖fModel‖L2(G)

< t

)
>

(∫ t

−∞
C1e

−s2/C2 ds

)(α⊕)2/ε2

,

and as in Section 4.3, this yields an estimate for the L∞(G)-norm growth rate in two dimen-
sions, if one chooses t = C log ε−1. This implies

lim
ε→0

P

(∥∥fModel
∥∥
L∞(G)

‖fModel‖L2(G)

< C log ε−1

)
= 1 ,

where we assumed that ‖fModel‖L2(G) = Cε−1 is roughly constant also in two dimensions.
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