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Abstract 
We present a three-dimensional model, based on cohesive spherical particles, of rain-induced 

landslides. The rainwater infiltration into the soil follow the either the fractional or the fractal 

diffusion equations. We solve analytically the fractal diffusion partial differential equation 

(PDE) with particular boundary conditions to simulate a rainfall event. Then, for the PDE, we 

developed a numerical integration scheme that we integrate with MD (Molecular Dynamics) 

algorithm for the triggering and propagation of the simulated landslide. Therefore we test the 

numerical integration scheme of fractal diffusion equation with the analytical solution. We 

adopt the fractal diffusion equation in term of gravimetric water content that we use as input 

of triggering scheme based on Mohr-Coulomb limit-equilibrium criterion, adapted to particle 

level. Moreover, taking into account an interacting force Lennard-Jones inspired, we use a 

standard MD algorithm to update particle positions and velocities. Then we present results for 

homogeneous and heterogeneous systems (i.e. composed by particles with same or different 

radius respectively). Interestingly, in the heterogeneous case, we observe segregation effects 

due to the different volume of the particles. Finally we show the parameter sensibility 

analysis both for triggering and propagation phase. Our simulations confirm the results of our 

previous two-dimensional model and therefore the feasible applicability to real cases. 
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1 Introduction 

Landslides are extreme events [1,2] that often cause environmental damages and human 

losses. In Sarno, Italy, a single landslide caused 160 victims in 1998, [3]. Landslide 

prevention is a problem which has received a lot of attention in a variety of fields: civil 

protection [4,5], urban planning [6] and scientific research [7-9]. The scientific research 

usually focus on the understanding of the complex phenomenology observed in a landslide 

[10], on the reproduction of landslide formation and dynamics [11-13] and on the prediction 

of a landslide trigger [14-16]. Despite great experimental, theoretical and numerical efforts 

[17], many aspects still remain unclear about the landslide process itself.  
A major cause of the landslides triggering is represented by hydrogeological factors (surface 

and groundwater flow, amount and distribution of internal pressure) which are caused by 

rainfall. The latter point has lately received a lot of attention of the scientific community. 

Some empirical models [18-23] allow to define, on a statistical basis, rainfall thresholds for 

the prediction of landslides events. These thresholds are used by authorities for population 

protection. Raising computing power has permitted increasingly sophisticated  numerical 

simulations to predict landslides dynamics and trigger. Most of landslides trigger prediction 

models are based on Richards equation for water infiltration [24,25]. The models used to 

study landslide dynamics are built on either a fluid-like eulerian approach, [11,26] or a 

granular-lagrangian one [27-30]. 
The main motivation of this work is to present a three-dimensional model for rainfall 

triggered landslides based on cohesive spherical particles that, initially, are at equilibrium. 

2 Materials and method 

In previous works [29,30], we proposed a 2D rain induced landslide model for shallow 

landslides (without water diffusion, but with lubrication effects) and one model for “deep” 

landslide (considering infiltration effects modeled by means of classical diffusion equation, 

see [25]). Here, we present a 3D molecular dynamics model with rainwater anomalous 

diffusion schematized by fractal diffusion equations [31]. The model is mesoscopic and 

consists of a lagrangian schematization of the soil based on cohesive spherical interacting 

particles, initially placed in equilibrium (see an example of initially configuration in figure 1). 

The output of the fractal infiltration scheme represents the input of the triggering model based 

on Mohr-Coulomb criterion applied at particle level [30,32], while the particle positions are 

updated using a first and second order algorithm. 



 

Fig. 1: example of initially configuration of the system with all particles at rest placed on an 

inclined plane with vertical infiltration due to the simulated rainfall. In this figure the particle 

radii are not explicated as we use a simple representation with circles. 

 

2.1 Hydrological model 

We simulate the effects of infiltration into the soil, due to rainfall, by means of the fractal and 

fractional diffusion equations which have found wide application in recent decades in the 

study of these processes starting from physical justifications, i.e., the anomalous diffusion 

[33]. The porous materials, as the soils, have a natural fractal structure, i.e., have non-integer 

dimension that gives a measure how the space is filled by the material itself. Moreover, the 

diffusion equations derived in fractals and fractional form are mathematically compatible 

with no-Gaussian statistic of diffusion processes where the mean square displacements of the 

particles fluid trajectory exhibit a power lows time dependence. While the classical diffusion 

equation is compatible with the central limit theorem for which we have a Gaussian 

distribution of spatial jumps with linear time dependence of mean square displacements [34]. 

Therefore, in general, anomalous diffusion (sub or super-diffusion) deal with the break of the 

central limit theorem and the corresponding processes do not follow a Gaussian statistical 

type [35,36]. Furthermore experimental evidence show the correctness of a fractal-fractional 

approach to porous systems [37] and specifically for the infiltration in the unsaturated soil 

[31,38]. Thus, fractional and fractal diffusion equations, applicable to volumetric (or 

gravimetric) water content  as shown in [31], can be expressed respectively by the following 

equations, where we neglect the term of gravity [25] and we consider only vertical infiltration 

(one spatial dimension), 
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In equations (1), t represents the time, z the depth, (1,1) and (2,2) are not integer (for 

(1,1)=(1,2) and (2,2)=(1,2) we obtain the classical diffusion equation), while D1 (L
1

T
-1

) 

is the fractional diffusion coefficient in the first of eq.(1) and D2 (L
2

T
-2

) the fractal diffusion 

coefficient in the second one. Considering the fractional equation we have sub-diffusion if 

21<1, super-diffusion if 21 >1, while in the fractal we have sub-diffusion if 2< 22/(6-

2) and super-diffusion if 2 > 22/(6-2) as shown in [34]. The fractional time derivative 

describes memory effects, the fractional Laplacian the non-locality of the phenomenon, while 

the fractal time derivative and the Laplacian describe respectively the magnitude variations 

with respect to temporal and spatial ones whose exponents 2 and 2 are related to the fractal 

dimension of the system, as well as 1 and 1 of the fractional equation [39]. Furthermore we 

note that there are equivalences between classes of fractional and fractal equations in terms of 

the fundamental solution (stretched Gaussian), as for example in [40]. 

The fractional diffusion equation, with the diffusion coefficient constant, can be solved 

analytically for different boundary conditions as shown in [41]. The fractal one, denoting with 

D the fractal diffusion coefficient and with  and  the time and spatial derivative order 

respectively, can be solved analytically with a simple change of variables (t* = t

, z* = z

/2
) as 

shown in [34]. Moreover with another change of variables we can find the analytical solution 

considering  D non constant [42]. In general D depends directly on the water content [31], but 

here, for simplicity and in the absence of experimental data, we consider D constant or depth 

dependent [43]. In the case of fractal equation we develop a numerical integration method 

(implicit scheme of Adams-Bashforth-Moulton), both to integrate the infiltration scheme in 

the calculation of the landslide triggering discrete model and to consider a stochastic forcing 

(z,t), required for modeling the heterogeneity of a porous system, i.e. a soil, and also to 

consider different boundary condition. Therefore the second of eq. (1) becomes: 
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We note that the eq. (2) is analogous to the fractional one as shown in [43]. To test the 

numerical integration scheme we solve analytically the second of eq. (1) by means of Fourier 

series method considering D constant, (z,t) = 0 and =2. In particular we use non 

homogeneous boundary conditions ((0,t)=at, (L,t)=d, (z, 0)=0). The first boundary 

condition represents the schematization of progressive soil saturation (rain induced) starting 

from ground-level, the rain is assumed uniform (a = constant); the second one is the condition 

at depth L where the soil is saturated due to the presence of a groundwater (d constant  0), or 

with a rock layer (d = 0); finally the third one is the initial condition of dry soil. Therefore we 

solve the following problem: 
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Consequently applying the variable transformation t* = t

, we obtain the new problem: 
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Now it is possible to apply, at the latter problem, the method of Fourier series to obtain the 

following solution replacing t* with t
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where Г(s,x) is the incomplete gamma function and Г(1/) is the gamma function calculated 

in 1/. In the Figure 2 we compare the theoretical solutions and numerical one and some 

results are reported for the normal and sub-diffusive case: as one might expect, in the latter,  

is minor than the classical one. Then in Figure 3 we show some other cases obtained by 

means of numerical integration: in particular we consider fractal laplacian in eq. 2 (=1, 2) 

and we analyze the response of eq.(2) considering also (z,t)0 and D=D0z
-
 (D0 and  are 

constants), i.e., the diffusion coefficient varies according to a power law, and finally an 

example of super-diffusive case with =1.6. 

 

 

Fig. 2: comparison between theoretical (solid line) and numerical solution (upward-pointing 

triangle) of fractal diffusion equation with =2, D=constant and  (z,t)=0 – from the top left 

clockwise we have respectively =1 (normal diffusion), =3/4, =1/2 and =1/3 (sub-

diffusion in the last three cases).  



 

 

Fig. 3: numerical solution of fractal diffusion equation with =1 – from the top left clockwise 

we have respectively =2.5 (D=constant and (z,t) = 0, sub-diffusive case), =2.5 

(D=constant and (z,t)0, sub-diffusive case), =2.5 ( D=D0z
-
 (where D0 and  are constants) 

and (z,t)0, sub-diffusive case) and =1.6 (D=constant and (z,t) = 0, super-diffusive case). 

 

2.3 Triggering and propagation molecular dynamics scheme 

The triggering scheme is based on the Mohr-Coulomb law [30], 

cpf
  tan)(         (6)  

where f is the shear stress at failure,  the normal stress, ϕ the friction angle and c the 

cohesion term. As the eq. (6) represents a simple friction law, short of the term of cohesion, it 

can be adapted for a single particle, rewriting  eq. (6) as  
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In eq. (7)  is the slope angle, Mi represents the total mass mi+wi(t), i.e., respectively the dry 

mass of each particle and the cumulative amount of absorbed water per particle (wi= mi), 

while p(x,y,z,t) is the pore pressure interpreted as a scalar field (see [30]). 

The cohesion term is not constant in our simulations, as it is affected by water content: in 

particular cohesion decreases quickly with  as show in [44] and therefore, in absence of 

experimental data, we consider cexponentially dependent on , i.e., c= ckexp(-kc), where 

kc is constant, while ck varies linearly with depth to take into account the higher consolidation 



of the deeper soil layers, therefore higher cohesion with depth. This choice is due to linear 

relation between cohesion and critical shear stress as shown in [45]. 

To explicit the pore pressure p as a function of the gravimetric water content  (the ratio 

between water mass wi and dry mass mi) we adopt the simple relation of hydrostatic law: 
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where kp is a normalization constant (volume dimension) and k(x,y) is a stochastic function 

generated by means a Gaussian random number generator in order to extend the water content 

in three dimension and considering the natural variability of the infiltration processes in the 

soil. 

Therefore the triggering mechanism is defined for each particle i [30,32] and based also on a 

velocity threshold vd: 
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where Fi represents the active force on particle i, i.e., the force of gravity Fgi plus a force Fij, 

similar to a Lennard-Jones potential, expressed by means of the following pseudo-code: 
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In eq. (10) Fij is the interaction force and it is interpreted as the force that acts on particle i 

due to j one, rij is the distance between the two center of mass, D is the diameter (constant=1) 

of the particles, while k1 and k2 are constants.  

Moreover we utilize another expression for the interaction force varying the radius of the 

particles (small stochastic variation around 0.5), i.e., we consider this pseudo-code (see 

simulations and results section): 
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where Ri and Rj represent the radius of two interacting particle (see Figure 4). The latter 

expression is in agreement with the common technique used for the collisions in a granular 

matter [46] and it is equivalent to the classical cross section method for the diffusion of a 

particle in a material medium in which the spreading particle is considered point-like and its 

radius is added to each particle of the medium. 

 
Fig. 4: geometric 2D description of interaction force acting between two spherical particles. 

 

 

Then for the moving particles we take into account, in addition to the third of eq. (9), the 

dynamic friction and viscosity force, proportional to velocity by means of coefficient , i.e., 
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where the dynamic friction force, acting on the particles in contact with the sliding surface, is 

expressed by 
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where D is the friction dynamic coefficient, d and dlow are respectively the upper and lower 

limit of D. Moreover the eq. (13) is similar to the one used in [30], but here the friction 

dynamic force is set in relation with the gravimetric water content .  

The positions r and the velocities v of the masses are updated with a standard molecular 

dynamics scheme based respectively on algorithm of the first or second order (that take into 

account a better approximation in case of the dumping term presence, as in our case): 
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In eqs. (14-15) v is the velocity, a the acceleration and F the resulting force. Moreover we test 

a symplectic version of the algorithm described by eq. (15) and we observe very similar 

results due to the dissipative term of eq. (12). 

Finally the particle positions are recalculated within a sphere of assigned radius Lr, according 

to the illustrative scheme of Figure 5: 

      2,2222
 rriii LLzzyyxx .     (16) 

In eq. (16) we consider Lr equal to the square root of 2 according to the initial interaction to 

second neighbors in a regular grid. 

 

 

Fig. 5: scheme of interaction re-calculus for each particles of the system according to the 

action and reaction principle.  

Finally, regarding the landslide propagation, i.e., after the triggering phase, it is possible to 

consider an effective one dimensional model of the movement along an inclined plane. 

Indeed, obviously, we do not consider the interaction force, that are internal one, and the 

second principle of dynamics is expressible by means of the gravity, the frictional and the 

viscosity force: 

    vγgmgmvγFFamF Ddg   cossin ,  (17) 

where m is the average mass of the particles and D the average friction dynamic 

coefficient. Therefore we obtain the simple following one dimensional equation of motion for 

the velocity v along the inclined plane: 
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D   cossin .      (18) 

The eq. (17) is a differential equation of first order, whose solution is given by 
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where v0 is the initial condition, i.e., the velocity at the failure instant. 

 

3 Simulations and results 

In this section we show some numerical experiments and we present the main results, e.g., 

parametric sensibility of the model and statistical analysis. In particular we present the results 

for two landslide simulation respectively with the same and different radii of the spherical 

particles. As in the previous works regarding two-dimensional schemes [29,30], we imposed 

stochastic variation for the model parameters according to variability of real slopes. In 

particular the multiplicative factor of cohesion function ck varies with coordinates x and y of 

the reference system of the inclined plane according to ck = ck0 +0.05ck0rn1(x,y), where rn1 is 

a uniform random number (rn1 [0,1]). We use a uniform random number generator as ck0 

represents a static minimum threshold that regulates the triggering mechanism according to 

Mohr-Coulumb failure criterion. Then the dynamic parameter d and dlow vary respectively 

following the functions d = d0 +0.1d0rgn1(t,x,y) , dlow = dlow0 +0.1dlow0rgn2(t,x,y), 

where rgn1(t,x,y) and rgn2(t,x,y) are Gaussian random number depending on time and 

coordinates x and y. Also the particle positions, as we can see in figure 1, are initialized 

casually, with variations (normally distributed) in a range of 20% compared to a regular grid. 

The particle masses varies depending on numerical experiments, while the other parameters 

(slope, friction angle, fractal order derivatives, fractal diffusion coefficient, viscosity 

coefficient, interacting force coefficients and gravity acceleration) are constant in a single 

simulation. 

 

3.1 Simulation 1 

In this simulation we consider a system of spherical particles with the same radius in a 

random configuration, arranged in an inclined plane with vertical infiltration, as shown in 

Figure 6. Moreover we impose rigid boundary condition, i.e., the particles are confined within 

an open “container” so that the particles can slide along the inclined plane. In this simulation 

we use the force scheme of eq. (10) and the first order algorithm to update positions and 

velocities (eq. 14) with temporal step t = 0.001. We simulate a system of 3000 particles with 

a duration of 10
5
 temporal steps, i.e., 10

2
 in time). The masses are varied in a range of  40% 

(normally distributed) respect to a reference value of the particle mass m0 (with m0 = 0.007 the 

masses vary in the range [0.0048, 0.0097]). As the model is theoretical and not applied to 

real case at the moment, we do not express the unit of measurement of the physical 

magnitudes involved in the model. Therefore we adopt the values indicated in Table 1. 

 

Slope angle () 60° 

Friction angle (ϕ) 40° 

Fractal order temporal derivative () 1 

Fractal order space derivative () 2.5 

Fractal diffusion coefficient (D) 100 

Repulsive coefficient of interacting force (k1) 0.006 

Attractive coefficient of interacting force (k2) 0.002 

Gravity acceleration (g) 1 

Coefficient of cohesion (ck0) 0.5 

Upper friction coefficient (d0) 0.69 

Lower friction coefficient (dlow0)  0.4 

Viscosity coefficient () 0.01 

Table 1: values of the model constant for simulation 1. 



 

Fig. 6: water content in space (thickness of the system) and in time (curve from bottom to top 

of the figure) for a single vertical layer in simulation 1. 

In Figure 6 we show the trend of water content curve in time and space for a single vertical 

layer. We adopt non homogeneous boundary conditions ((0,t)=at, (L,t)=d, (z, 0)=0) with 

d = 0 as explain above. The duration of the rain is imposed to 10
3 
time steps in order to induce 

the triggering, according to the choice of the model parameters. In Figure 7 we report some 

configuration of the system at different times, where the red particles are at rest and the green 

ones are in motion. Moreover the right bottom graph of Figure 7 represents the final 

configuration (the same of  bottom left graph) exploiting the real dimension of the slope and 

masses of the landslide. In the latter figure we note the progressive infiltration of water that 

perturbs the pore pressure field causing the motion of the particles. Once the landslide go out 

from rigid boundary, it expands with height reduction as it occurs in real cases or in setup 

experiments [26]. As in [30], we measure the distribution of the time intervals between two 

subsequent triggering events of particle motion starting. A power law distribution of these 

durations is observed in this simulation (see Figure 8). Then we analyze the behavior of mean 

energy in correspondence of the time of subsequent particle triggering. We report in Figure 9 

the mean kinetic energy and the mean kinetic energy increments, observing a rapid increasing 

due to landslide triggering. In Figure 10 we report the distribution of mean kinetic increments 

during the triggering phase, observing a transition in time from Gaussian to power law. This 

result is consistent with our simulations for two-dimensional landslide models [30]. Finally in 

Figure 11 we show the comparison between the mean velocity (component along inclined 

planed) obtained from this simulation (green line) and the velocity of the one-dimensional 

effective model. The result is similar and demonstrate the consistent of our simulation. 

Obviously the effective model cannot consider all 3D effects. We also analyze the distribution 

of each component of velocity and possible transition in time (we do not report the 

correspondent trend). The component vx and vy present Gaussian distribution, only the 

component vz exhibit a transition in time from Gaussian to power law due to repulsive force, 

i.e., we observe many small velocities along the z axis of the inclined plane. 



 

 

 

          

Fig. 7: configuration of the landslide at different time starting from left to right and from top 

to bottom. Red particles are at rest, while green particles are in motion. 



 

Fig. 8: power law fitting of the distribution of subsequent time intervals relative to all 

triggering phase, up to complete landslide detachment (R-square=1). 

 

Fig. 9: mean kinetic energy (red line) and mean kinetic energy increments (blu line), the latter 

is rescaled only for visualization. 



 

 

Fig. 10: in the top the Gaussian distribution of mean kinetic energy increments relating to the 

initial phase of triggering (R-square=0.9903), in the bottom the power law distribution 

relating to all times up to final phase of triggering (R-square=0.9994). 



Fig. 11: comparison between the mean velocity (component along inclined planed) obtained 

from simulation (green line) and the velocity of the one-dimensional effective model. 

3.2 Simulation 2 

In the second numerical experiments we consider a system of spherical particles with 

different radii in a random configuration, arranged in an inclined plane with vertical 

infiltration, as shown in Figure 1. As in simulation 1 we impose rigid boundary condition and 

we use the force scheme of eq. (11) and the second order algorithm to update positions and 

velocities (eq. 15) with t = 0.001. Also in this case we simulate a system of 3000 particles 

with a duration of 10
5
 temporal steps, i.e., 10

2
 in time). Now we consider the density of the 

spherical particles constant and equal to 810
-3

 and the radii vary uniformly: with this choice 

the radii vary in the range [0.5, 0.6666] and the masses in the range [0.0042, 0.0099]. In 

this simulation we adopt the constant values indicated in Table 2. 

 

Slope angle () 60° 

Friction angle (ϕ) 40° 

Fractal order temporal derivative () 1 

Fractal order space derivative () 2.5 

Fractal diffusion coefficient (D) 100 

Repulsive coefficient of interacting force (k1) 0.003 

Attractive coefficient of interacting force (k2) 0.001 

Gravity acceleration (g) 1 

Coefficient of cohesion (ck0) 0.5 

Upper friction coefficient (d0) 0.69 

Lower friction coefficient (dlow0)  0.4 

Viscosity coefficient () 0.01 

Table 2: values of the model constant for simulation 2. 



 
Fig. 12: water content in space (thickness of the system) and in time (curve from bottom to 

top of the figure) for a single vertical layer in simulation 2. 

In Figure 12 we report the trend of water content curve in time and space. We adopt non 

homogeneous boundary conditions ((0,t)=at, (L,t)=dt, (z, 0)=0). In this case we consider 

the possibility of water accumulation in the soil depth in time according to the condition 

(L,t)=dt, where d is a constant and L is the thickness of the soil. In Figure 13 we report some 

configuration of the system at different times where the red particles are at rest and the green 

ones are in motion. Moreover the right bottom graph of Figure 13 represents the final 

configuration (the same of  bottom left graph) exploiting the real dimension of the slope and 

masses of the landslide as in simulation 1. In this simulation we observe a segregation effect 

due to different volume of the particles as we can see in Figure 14. The particles with greater 

volume tend to segregate to the bottom and to the front of landslide. For the final 

configuration we study the statistic of the particles with greater radius (range [0.62, 

0.6666]), i.e., the “blue” particle in Figure 14. As the landslide tends to reduce in thickness 

we consider 4 horizontal layers and we calculate the number of “blue” particles in each layer. 

The results is a power law as shown in Figure 14. Then we report the same statistical analysis 

of simulation 1 regarding the triggering time intervals and the mean kinetic energy 

increments. The results are similar to simulation 1 (see Figure 15-17). In Figure 18 we show 

the comparison between the mean velocity (component along inclined planed) obtained from 

simulation (green line) and the velocity of the one-dimensional effective model. The result is 

similar, but more accurate then simulation 1 due to the use of a second order algorithm to 

update positions and velocities of the particles. Analyzing the distribution of each component 

of velocity, we confirm the results of simulation 1. 



           

Fig. 13: configuration of the landslide at different time starting from left to right and from top 

to bottom. Red particles are at rest, while green particles are in motion. 



 

 

Fig. 14: in the top figure we report the final configuration of the landslide where the blue 

particles have radius in the range [0.62, 0.6666] and the green in [0.5, 0.62), in the bottom 

figure we show the power law fitting regarding the statistic of blue particle that segregate 

downword (R-square=0.9998). 



 

Fig. 15: power law fitting of the distribution of subsequent time intervals relative to all 

triggering phase, up to complete landslide detachment (R-square=0.9996). 

 

Fig. 16: mean kinetic energy (red line) and mean kinetic energy increments (blu line), the 

latter is rescaled only for visualization. 



 

Fig. 17: in the top the Gaussian distribution of mean kinetic energy increments relating to the 

initial phase of triggering (R-square=0.9769), in the bottom the power law distribution 

relating to all times up to final phase of triggering (R-square=0.9985). 



Fig. 18: comparison between the mean velocity (component along inclined planed) obtained 

from simulation (green line) and the velocity of the one-dimensional effective model. 

3.3 Sensitivity analysis 

In this section we report the sensitivity analysis on the main parameters of the model as in the 

previous work [29,30]. Regarding the simulations, for a better understanding of the parameter 

influence on the model behavior, we remove all stochastic variations. First of all we study the 

static constants, i.e., triggering related ones, in particular the order derivatives of fractal 

diffusion PDE. We do not report the sensibility analysis of some parameters as cohesion, 

friction or slope angle as this simulations do not produce significant relevance compared to a 

previous work (see [30]): really, for example, if we study the variation of triggering time as a 

function of cohesion or slope angle, considering the first particle in motion, this behavior is 

not influenced by the spatial dimension of the model (2D or 3D). Therefore in Figure 19 and 

in Figure 20 we show respectively the trend of landslide triggering time varying the time and 

the space derivative fractal order. Moreover we report, for further information, some curves 

varying the slope angle. We note that, maintaining constant the derivative spatial order (equal 

to 2) and decreasing the time derivative fractal order starting from 1 (sub-diffusive behavior), 

we obtain a lower water content and accordingly a higher triggering time. The triggering time 

exhibits the same behavior in the sub-diffusive regime varying the spatial derivative fractal 

order (Figure 20). All obtained curves are fitted by power law. Then we report some trends 

regarding the parameters that influence the landslide dynamics and propagation. We analyze 

the landslide final mean velocity (the simulations are stopped after 10
4
 time step) varying the 

friction coefficients dlow0 and maintaining constant d0 (equal to 1.4). We consider the lower 

friction coefficient as the infiltration effects induce a rapid reduction of friction force and 

therefore dlow0 influence the landslide dynamics more than d0. In Figure 21 we show the 

trend (fitted by power law) of the sensibility analysis of the lower friction coefficient. Then in 

Figure 22 we report the final mean velocity of the simulated landslide versus the viscosity 

coefficient. Also in this case we obtain a power law curve fitting. Finally in Figure 23 we 

report the final mean velocity versus the coefficient k1 and k2 of the interacting force. In each 



simulation we vary a single interacting force coefficient, while the second one is maintained 

constant. As one might expect, noting that we have small variations in the value of the 

landslide final mean velocity, the trend is not regular due to the non-linear expression of the 

interacting force.  

 

 

Fig. 19: the triggering time varying the time derivative fractal order, we report 4 trends for 4 

slope angle (40° blue diamonds, 50° green diamonds, 60° magenta diamonds, 70° red 

diamonds); the black curves represent the power law fitting (R-square=0.9998). 

 

Fig. 20: the triggering time varying the spatial derivative fractal order, we report 4 trends for 

4 slope angle (40° blue diamonds, 50° green diamonds, 60° magenta diamonds, 70° red 

diamonds); the black curves represent the power law fitting (R-square=0.9996). 



 

Fig. 21: the landslide final mean velocity versus the lower friction coefficient; the black 

curves represent the power law fitting (R-square=0.9929). 

 

Fig. 22: the landslide final mean velocity versus the viscosity coefficient; the black curves 

represent the power law fitting (R-square=0.983). 

 



 

 

Fig. 23: the landslide final mean velocity versus the interacting force coefficients, in the top 

graph we report the trend of the repulsive coefficient k1 (k2 = 0.002), while in the bottom the 

attractive one k2 (k1 = 0.004). 

 

4 Discussion and conclusions 

In this paper we propose a three-dimensional lagrangian model of rain induced landslide in 

which we consider both triggering and propagation phases. Here we extend previous two-

dimensional model illustrated in [29,30]. A 3D scheme is more realistic and in particular 

permits a better representation of the propagation dynamics. The main originality of the 



manuscript lies in the use of fractal calculus to take into account the water infiltration 

processes that perturb the pore pressure, considered in the model as a scalar field. The 

increasing of the latter represents the main triggering factor of rain induced landslide. 

Moreover a fractal/fractional approach, as discussed in this paper, is suitable for a correct 

physical description of the infiltration processes in porous system. We calculate analytically 

the solution of fractal diffusion PDE and we develop a numerical integration scheme of the 

latter. Thus this numerical scheme is integrated in the MD algorithm to consider the 

triggering mechanism. In the model we introduce stochastic variations of the parameters, 

necessary to consider the variability of the real soils. Therefore we have discussed two 

different simulations analyzing the behavior of the system from statistical point of view. As 

shown, some statistical observables exhibit a power law distribution that confirms the 

complex and extreme nature of this type of phenomena. Indeed also a minimal schematization 

of a landslide shows a variety of behaviors [47]. It is known that other natural hazards 

(earthquakes and forest fire) exhibit similar distribution [48,49]. We confirm the results of the 

previous works [29,30], observing characteristic energy and velocity pattern typical of real 

landslides [50]. It is possible also to observe fracture, detachment, arching phenomena and 

zones with higher compression. To demonstrate the coherence of the simulations, we test the 

component of the mean velocity, along the propagation axis, with a one-dimensional effective 

model. Then our simulations, using particles of different radius and same density, exhibit 

segregation effects as shown in Figure 14. Finally we report a sensitivity analysis of main 

parameters that confirm the consistency of the model and simulations. In conclusion our 

model can reproduce the behavior of real landslides, it is congruent with granular matter 

behavior (see for example [51]) and therefore it could be tested for the application to real 

cases using, eventually, data integrated in a digital terrain model. 
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