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Abstract

We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of

short optical pulses in dielectric materials with resonant non-degenerate transitions. The general

Nth-order periodic solutions are provided by means of the Darboux transformation, and from

two different limiting cases of the obtained general periodic solutions, the Nth-order degenerate

periodic and Nth-order rational solutions containing several free parameters with compact de-

terminant representations are derived, respectively. Explicit expressions of these solutions from

first to second order are presented. Typical nonlinear wave patterns for the four components

of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip

structures in the second-order rational solutions are shown. This kind of the rational solutions

correspond to rogue waves in the reduced Maxwell-Bloch equations.

Keywords: Periodic solution; rational solution; Darboux transformation; reduced

Maxwell-Bloch equations

1. Introduction

The associated reduced Maxwell-Bloch (RMB) equations play a fundamental role to describe

wave phenomena in nonlinear optics related to self-induced transparency [1]. In dimensionless

form, as

ux = −µv, (1a)

vx = Ew + µu, (1b)

wx = −Ev, (1c)

Et = −v, (1d)

with E(x, t) the electric field, u(x, t) atomic dipole, v(x, t) phase information and w(x, t) the atomic

inversion. The integrability such as the Painlevé test and Lie-algebra-valued differential forms of

the RMB equations have been investigated in Refs. [2, 3], and the explicit N -soliton solutions

of the RMB equations have been respectively studied by the inverse scattering transform, Hirota

bilinear technique and Darboux transformation (DT) during the past few decades [4–8].

Recently, it is well known that the generation of unexpectedly huge waves (termed as “rogue

waves”) has received widespread attention in quite a lot of researches including oceanography,

optical fields, Bose-Einstein condensates, plasma physics, etc. [9–12]. The straightforward de-

scription of a single rogue wave in mathematics is the Peregrine soliton [13], a special solution of
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the nonlinear Schrödinger (NLS) equation, which is a combination of the second-order rational

polynomials and exponential function, and simulates the evolution of a wave of large amplitude

that is localized in both space and time. More recently, beyond the NLS equation and its rele-

vant physical systems [14–21], explicit periodic solutions, rational solutions and the generation of

rogue waves in the modified Korteweg-de Vries (mKdV) equation have been studied by Chowdury,

Slunyaev and He et al. [22–24]. As is pointed out by them, the existences of periodic and rational

solutions in the mKdV equation reveal that breather and rogue wave phenomena are not confined

to the deep ocean, and rogue wave phenomena governed by the mKdV equation present quite

different descriptions in hydrodynamics from that related to the NLS equation.

In this paper, we demonstrate that Eq. (1) can also possess periodic and rational solutions

like the mKdV equation, which will be helpful to understand the complicated rogue wave phe-

nomena in nonlinear optics governed by the RMB equations. We present the general Nth-order

periodic solutions on a finite constant background by using the classical DT with N eigenvalues

that are different from each other [25–28]. Then, by taking advantage of the limit approach,

namely the generalized DT [29–36], the Nth-order degenerate periodic and Nth-order rational

solutions in the compact determinant representations can be respectively derived from two kinds

of limiting cases of the general periodic solutions. As an application, explicit periodic, degener-

ate periodic and rational solutions up to second order are presented. We hereby show that the

doubly-periodic lattice-like structure, and the single periodic- peaks or dips on a periodic wave

background structure can exist in the second-order periodic and degenerate periodic solutions,

respectively. Particularly, we demonstrate that, the second-order rational solutions for the four

components E, v, w and u in Eq. (1) can provide distinctive patterns as a result of the collisions

of a fixed number of dark and bright solitons, namely, the single-peak, double-peak-double-dip,

double-peak and single-dip structures, respectively. Further, it is computed that the maximum

amplitudes of the rational solutions from first to fourth order for the electric field E are the same

as that of rogue waves from first to fourth order for the NLS equation [29]. Finally, it is confirmed

that the free parameters can produce an important “differential shift”[22] effect on the peaks or

dips with maximum or minimum amplitudes in the rational solutions.

The present paper is constructed as follows. In section 2, the general Nth-order periodic so-

lutions are given by utilizing the classical DT. In sections 3 and 4, the Nth-order rational and

Nth-order degenerate periodic solutions are derived through two different limit approaches, re-

spectively. Explicit expressions of these obtained solutions from first to second order are presented,

and some interesting wave patterns are shown. The last section is the conclusion of this paper.

2. Periodic solutions

For our studies, we begin with the Lax pair of Eq. (1) which can be given through the

Ablowitz-Kaup-Newell-Segur (AKNS) technique [37–40]:

Φx = UΦ, U =




−iη −1

2
E

1

2
E iη


 , (2)

Φt = V Φ, V =
1

4η2 − µ2




−iηw −iηv + 1

2
µu

−iηv − 1

2
µu iηw


 . (3)

The compatibility condition Ut − Vx + UV − V U = 0 can directly give rise to Eq. (1).
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Next, in order to obtain periodic solutions from the classical DT, we choose the following

constant seeding solutions

E[0] = e0, v[0] = 0, w[0] = −µu0
e0

, u[0] = u0. (4)

By substituting the above solution into the linear system (2) and (3), and setting the eigenvalue

η = ie0(1/2 + ǫ2) with ǫ being the pure imaginary small parameter such that |ǫ| < 1, we have the

following solution

Φ(ǫ) =

(
ψ

ϕ

)
=

(
C1e

A − C2e
−A

C2e
A − C1e

−A

)
, (5)

where

C1 =
(1 + 2ǫ2 + 2ǫ

√
1 + ǫ2)

1

2

2ǫ
√
1 + ǫ2

, C2 =
(1 + 2ǫ2 − 2ǫ

√
1 + ǫ2)

1

2

2ǫ
√
1 + ǫ2

,

and

A = e0ǫ
√
1 + ǫ2

[
x+

µu0
e0(4e20ǫ

4 + 4e20ǫ
2 + e20 + µ2)

t

]
.

After that, by letting Φj = (ψj, ϕj)
T = Φ(ǫ)|ǫ=ǫj (j = 1, 2, · · · , N) be N special solutions of the

linear system (2) and (3) with the constant seeding solutions (4) and ηj = ie0(1/2 + ǫ2j ), here

ǫi 6= ǫj for i 6= j. Thus, we can obtain the general Nth-order periodic solutions via the classical

DT, viz.

E[N ] = e0 − 4i
det(M1)

det(M)
, (6)

v[N ] = 4i
∂

∂t

det(M1)

det(M)
, (7)

w[N ] = −µu0
e0

+ 4i
∂

∂t

det(M2)

det(M)
, (8)

and

u[N ] = u0 +
4i

µ

[
∂2

∂x∂t

det(M1)

det(M)
− e0

∂

∂t

det(M2)

det(M)
− µu0

e0

det(M1)

det(M)
+ 4i

det(M1)

det(M)

∂

∂t

det(M2)

det(M)

]
, (9)

where

M =




M11 M12 · · · M1N

M21 M22 · · · M2N

...
...

. . .
...

MN1 MN2 · · · MNN


 ,

M1 =




M11 M12 · · · M1N ϕ1

M21 M22 · · · M2N ϕ2

...
...

. . .
...
...

MN1 MN2 · · · MNN ϕN

ψ1 ψ2 · · · ψN 0



,
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M2 =




M11 M12 · · · M1N ψ1

M21 M22 · · · M2N ψ2

...
...

. . .
...
...

MN1 MN2 · · · MNN ψN

ψ1 ψ2 · · · ψN 0



,

with

Mij =
ψjψi + ϕjϕi

ie0(1 + ǫ2j + ǫ2i )
, 1 ≤ i, j ≤ N.

At this point, by following the formulas (6)-(9) with N = 1, we can present the first-order

periodic solutions

E[1]p = e0

[
1− 2

(2κ21 − 1) + cos(2ρ1)

1/(2κ21 − 1) + cos(2ρ1)

]
, (10)

v[1]p = −2e0
∂

∂t

[
(2κ21 − 1) + cos(2ρ1)

1/(2κ21 − 1) + cos(2ρ1)

]
, (11)

w[1]p = −µu0
e0

+ 2e0
∂

∂t

[
2κ1
√

1− κ21 sin(2ρ1) + (2κ21 − 1) cos(2ρ1) + 1

1/(2κ21 − 1) + cos(2ρ1)

]
, (12)

and

u[1]p = u0 +
4i

µ

[
∂2

∂x∂t

G
[1]
p

F
[1]
p

− e0
∂

∂t

H
[1]
p

F
[1]
p

− µu0
e0

G
[1]
p

F
[1]
p

+ 4i
G

[1]
p

F
[1]
p

∂

∂t

H
[1]
p

F
[1]
p

]
, (13)

where ǫ1 = iκ1 with κ1 being a real small parameter and satisfying |κ1| < 1,

ρ1 = e0κ1
√
1− κ21

[
x+

µu0
e0(4e20κ

4
1 − 4e20κ

2
1 + e20 + µ2)

t

]
,

F
[1]
p =

2κ21 cos(2ρ1)− cos(2ρ1) + 1

ie0κ21(2κ
2
1 − 1)(κ21 − 1)

, G
[1]
p = −1

2

[2κ21 + cos(2ρ1)− 1]

κ21(κ
2
1 − 1)

,

H
[1]
p =

1

2

[2κ1
√
1− κ21 sin(2ρ1) + 2κ21 cos(2ρ1)− cos(2ρ1) + 1]

κ21(κ
2
1 − 1)

.

The first-order periodic solutions (10)-(13) are shown in Fig. 1. It is seen that these solutions

are periodic in both x and t and maintain constant amplitudes. The maximum amplitudes of the

components E, v, w and u are 2, 0.88, 0.20 and -0.59, respectively.

For N = 2 in the formulas (6)-(9), the second-order periodic solutions can be worked out as

E[2]p = e0 − 4i
G

[2]
p

F
[2]
p

, (14)

v[2]p = 4i
∂

∂t

G
[2]
p

F
[2]
p

, (15)

w[2]p = −µu0
e0

+ 4i
∂

∂t

H
[2]
p

F
[2]
p

, (16)

and

u[2]p = u0 +
4i

µ

(
∂2

∂x∂t

G
[2]
p

F
[2]
p

− e0
∂

∂t

H
[2]
p

F
[2]
p

− µu0
e0

G
[2]
p

F
[2]
p

+ 4i
G

[2]
p

F
[2]
p

∂

∂t

H
[2]
p

F
[2]
p

)
, (17)
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where
F

[2]
p = F11F22 − F12F21, G

[2]
p = −F11c2d2 + F12c1d2 + F21c2d1 − F22c1d1,

H
[2]
p = −F11c

2
2 + F12c1c2 + F21c1c2 − F22c

2
1,

with

F11 =
2κ21 cos(2ρ1)− cos(2ρ1) + 1

ie0κ
2
1(2κ

2
1 − 1)(κ21 − 1)

, F22 =
2κ22 cos(2ρ2)− cos(2ρ2) + 1

ie0κ
2
2(2κ

2
2 − 1)(κ22 − 1)

,

F12 = F21 =
2i[
√
1− κ21

√
1− κ22 sin(ρ1) sin(ρ2) + κ1κ2 cos(ρ1) cos(ρ2)]

e0κ1κ2(κ
2
1 + κ22 − 1)

√
1− κ21

√
1− κ22

,

c1 =

√
1− κ21 sin(ρ1) + κ1 cos(ρ1)

κ1
√

1− κ21
, c2 =

√
1− κ22 sin(ρ2) + κ2 cos(ρ2)

κ2
√
1− κ22

,

d1 =

√
1− κ21 sin(ρ1)− κ1 cos(ρ1)

κ1
√
1− κ21

, d2 =

√
1− κ22 sin(ρ2)− κ2 cos(ρ2)

κ2
√
1− κ22

,

ρj = e0κj

√
1− κ2j

[
x+

µu0
e0(4e20κ

4
j − 4e20κ

2
j + e20 + µ2)

t

]
, j = 1, 2.

Here we take ǫj = iκj with κj being a real parameter and yielding |κj| < 1.

In this circumstance, the doubly-periodic lattice-like structures can be displayed, see Fig.

2. The maximum amplitudes of the peaks for the components E, v and w are 3.75, 1.41 and

1.41. While for the component u, the doubly-periodic lattice-like dip structure appears, and the

minimum amplitude of the dips is 0.17.

3. Degenerate periodic solutions

In this section, we derive the degenerate periodic solutions of Eq. (1) from one limiting case of

the general Nth-order periodic solutions (6)-(9). To this end, we give the following Taylor series

ψ(ǫ) =

N−1∑

i=0

ψ
[i]
1 (ǫ− ǫ1)

i +O
(
(ǫ− ǫ1)

N
)
, ϕ(ǫ) =

N−1∑

i=0

ϕ
[i]
1 (ǫ− ǫ1)

i +O
(
(ǫ− ǫ1)

N
)
, (18)

and define

ψ(ǫ∗)ψ(ǫ) + ϕ(ǫ∗)ϕ(ǫ)

ie0(1 + ǫ2 + ǫ∗2)
=

N∑

i,j=1

P [i,j](ǫ− ǫ1)
j−1(ǫ∗ − ǫ1)

i−1 +O
(
(ǫ− ǫ1)

N(ǫ∗ − ǫ1)
N
)
, (19)

where

ψ
[i]
1 = lim

ǫ→ǫ1

1

i!

∂iψ1

∂ǫi
, ϕ

[i]
1 = lim

ǫ→ǫ1

1

i!

∂iϕ1

∂ǫi
,

and

P [i,j] =
1

(i− 1)!(j − 1)!

∂i+j−2

∂ǫj−1∂ǫ∗i−1

ψ(ǫ∗)ψ(ǫ) + ϕ(ǫ∗)ϕ(ǫ)

ie0(1 + ǫ2 + ǫ∗2)

∣∣∣∣
ǫ,ǫ∗→ǫ1

.

Here ǫ∗ is the other introduced complex small parameter, and ǫ1 is a pure imaginary small param-

eter such that ǫ1 6= 0. At this time, the Nth-order degenerate periodic solutions can be expressed
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as

E[N ] = e0 − 4i
det(P1)

det(P )
, (20)

v[N ] = 4i
∂

∂t

det(P1)

det(P )
, (21)

w[N ] = −µu0
e0

+ 4i
∂

∂t

det(P2)

det(P )
, (22)

and

u[N ] = u0 +
4i

µ

[
∂2

∂x∂t

det(P1)

det(P )
− e0

∂

∂t

det(P2)

det(P )
− µu0

e0

det(P1)

det(P )
+ 4i

det(P1)

det(P )

∂

∂t

det(P2)

det(P )

]
, (23)

where

P =




P [11] P [12] · · · P [1N ]

P [21] P [22] · · · P [2N ]

...
...

. . .
...

P [N1] P [N2] · · · P [NN ]


 ,

P1 =




P [11] P [12] · · · P [1N ] ϕ
[0]
1

P [21] P [22] · · · P [2N ] ϕ
[1]
1

...
...

. . .
...
...

P [N1] P [N2] · · · P [NN ] ϕ
[N−1]
1

ψ
[0]
1 ψ

[1]
1 · · · ψ

[N−1]
1 0



,

P2 =




P [11] P [12] · · · P [1N ] ψ
[0]
1

P [21] P [22] · · · P [2N ] ψ
[1]
1

...
...

. . .
...
...

P [N1] P [N2] · · · P [NN ] ψ
[N−1]
1

ψ
[0]
1 ψ

[1]
1 · · · ψ

[N−1]
1 0



.

Explicitly, for simplicity, we now choose a special small parameter of ǫ1 = 1/2i, then the

degenerate periodic solutions take the form as

E[2]d = e0 − 4i
G

[2]
d

F
[2]
d

, (24)

v[2]d = 4i
∂

∂t

G
[2]
d

F
[2]
d

, (25)

w[2]d = −µu0
e0

+ 4i
∂

∂t

H
[2]
d

F
[2]
d

, (26)

and

u[2]d = u0 +
4i

µ

(
∂2

∂x∂t

G
[2]
d

F
[2]
d

− e0
∂

∂t

H
[2]
d

F
[2]
d

− µu0
e0

G
[2]
d

F
[2]
d

+ 4i
G

[2]
d

F
[2]
d

∂

∂t

H
[2]
d

F
[2]
d

)
, (27)

where the explicit expressions of the mixed functions containing rational polynomials and trigono-

metric functions are given in appendix A.

For N = 1, the degenerate periodic solutions in the above formulas are reduced to the first-

order periodic solutions (10)-(13) given in the above section. For N = 2, the simplest nontrivial
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degenerate periodic solutions can be shown, see Fig. 3. The patterns of these solutions for the

components E, v and w consist of a single periodic- peaks on a periodic wave background, and

the maximum amplitudes of the peaks are 3, 1.40 and 1.24, respectively. While for the component

u, it is exhibited that a singe periodic- dips on a periodic wave background structure exists, and

the minimum amplitude of the dips is -0.15.

4. Rational solutions

In this section, let us take a further look at the general periodic solutions by employing the

limit approach of ǫ1 → 0. We now adjust the expression A in (5) as

A = e0ǫ
√
1 + ǫ2

[
x+

µu0
e0(4e

2
0ǫ

4 + 4e20ǫ
2 + e20 + µ2)

t +
N−1∑

i=1

siǫ
2i

]
,

here si are (N − 1) new introduced complex free parameters. Accordingly, the Taylor series (18)

and (19) can be rewritten as

ψ(ǫ) =
N−1∑

i=0

ψ̂
[i]
1 ǫ

2i +O
(
ǫ2N
)
, ϕ(ǫ) =

N−1∑

i=0

ϕ̂
[i]
1 ǫ

2i +O
(
ǫ2N
)
, (28)

and
ψ(ǫ∗)ψ(ǫ) + ϕ(ǫ∗)ϕ(ǫ)

ie0(1 + ǫ2 + ǫ∗2)
=

N∑

i,j=1

Q[i,j]ǫ2(j−1)ǫ∗2(i−1) +O
(
(ǫǫ∗)2N

)
, (29)

where

ψ̂
[i]
1 = lim

ǫ→0

1

2i!

∂2iψ1

∂ǫ2i
, ϕ̂

[i]
1 = lim

ǫ→0

1

2i!

∂2iϕ1

∂ǫ2i
,

and

Q[i,j] =
1

2(i− 1)!2(j − 1)!

∂2(i+j−2)

∂ǫ2(j−1)∂ǫ∗2(i−1)

ψ(ǫ∗)ψ(ǫ) + ϕ(ǫ∗)ϕ(ǫ)

ie0(1 + ǫ2 + ǫ∗2)

∣∣∣∣
ǫ,ǫ∗→0

.

At present, we can put forward the Nth-order rational solution as

E[N ] = e0 − 4i
det(Q1)

det(Q)
, (30)

v[N ] = 4i
∂

∂t

det(Q1)

det(Q)
, (31)

w[N ] = −µu0
e0

+ 4i
∂

∂t

det(Q2)

det(Q)
, (32)

and

u[N ] = u0 +
4i

µ

[
∂2

∂x∂t

det(Q1)

det(Q)
− e0

∂

∂t

det(Q2)

det(Q)
− µu0

e0

det(Q1)

det(Q)
+ 4i

det(Q1)

det(Q)

∂

∂t

det(Q2)

det(Q)

]
, (33)
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where

Q =




Q[11] Q[12] · · · Q[1N ]

Q[21] Q[22] · · · Q[2N ]

...
...

. . .
...

Q[N1] Q[N2] · · · Q[NN ]


 ,

Q1 =




Q[11] Q[12] · · · Q[1N ] ϕ̂
[0]
1

Q[21] Q[22] · · · Q[2N ] ϕ̂
[1]
1

...
...

. . .
...
...

Q[N1] Q[N2] · · · Q[NN ] ̂
ϕ
[N−1]
1

ψ̂
[0]
1 ψ̂

[1]
1 · · · ̂

ψ
[N−1]
1 0




,

Q2 =




Q[11] Q[12] · · · Q[1N ] ψ̂
[0]
1

Q[21] Q[22] · · · Q[2N ] ψ̂
[1]
1

...
...

. . .
...
...

Q[N1] Q[N2] · · · Q[NN ] ̂
ψ

[N−1]
1

ψ̂
[0]
1 ψ̂

[1]
1 · · · ̂

ψ
[N−1]
1 0




.

With these formulas for N = 1, we can get the explicit first-order rational solutions, viz.

E[1]r = −e0 +
4e0(e

4
0 + 2e20µ

2 + µ4)

F
[1]
r

, (34)

v[1]r =
8e0µu0(e

2
0 + µ2)2(e30x+ e0µ

2x+ µu0t)

F
[1]2
r

, (35)

w[1]r = −µu0
e0

− 4e0µu0(e
2
0 + µ2)H

[1]
r

F
[1]2
r

, (36)

u[1]r = −u0 +
4µ2u0(e

2
0 + µ2)

F
[1]
r

, (37)

where

H
[1]
r = (e30x+ e0µ

2x+ µu0t + e20 + µ2)(e30x+ e0µ
2x+ µu0t− e20 − µ2),

F
[1]
r = e60x

2 + 2e40µ
2x2 + e20µ

4x2 + 2e30µu0xt + 2e0µ
3tu0x+ µ2t2u20 + e40 + 2e20µ

2 + µ4.

The above solutions correspond to the Peregrine soliton of the NLS equation [13]. Nevertheless,

unlike the Peregrine soliton that is doubly localized, these solutions look more like the solitons on

a finite constant background. For the component E, there is one ridge with maximum amplitude

3e0 on the temporal-spatial distribution, see Fig. 4(a). The critical line is given by

t = −e0(e
2
0 + µ2)

µu0
x. (38)

For the component v, it is displayed in Fig. 4(b) that, there are one ridge with maximum amplitude

and one valley with minimum amplitude on the coordinate plane. The maximum and minimum
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values of v[1] are ±3
√
3e0µu0/2(e

2
0 + µ2), and occur at

t = −e0(e
2
0 + µ2)

µu0
x±

√
3(e20 + µ2)

3µu0
.

Moreover, w[1] is shown in Fig. 4(c), and there exist one ridge with maximum amplitude and two

valleys with minimum amplitude on the temporal-spatial plane. The maximum value of w[1] is

(3e20 − µ2)µu0/e0(e
2
0 + µ2) and the critical line is defined by Eq. (38). While the minimum value

of w[1] is −(3e20 + 2µ2)µu0/2e0(e
2
0 + µ2) and is reached at

t = −e0(e
2
0 + µ2)

µu0
x±

√
3(e20 + µ2)

µu0
.

In succession, the maximum amplitude of u[1] is −(e20 − 3µ2)u0/(e
2
0 + µ2) and the critical line is

defined by Eq. (38), see Fig. 4(d).

Additionally, it can be checked that

∫
∞

−∞

(E[1]r −E[1]r0)
2dx = 8πsgn(e0)e0,

∫
∞

−∞

(v[1]r − v[1]r0)
2dx =

∫
∞

−∞

(w[1]r − w[1]r0)
2dx =

4πµ2u20sgn(e0)e0
(e20 + µ2)2

,

∫
∞

−∞

(u[1]r − u[1]r0)
2dx =

8πµ4u20sgn(e0)

e0(e20 + µ2)2
,

where E[1]r0, v[1]r0, w[1]r0, w[1]r0 = lim
x→±∞

E[1]r, v[1]r, w[1]r, u[1]r, which indicate that energies of

the Peregrine pulses of the first-order rational solutions keep a constant.

Afterwards, by applying N = 2 in the formulas (30)-(33), we can present the second-order

rational solutions

E[2]r = e0 − 4i
G

[2]
r

F
[2]
r

, (39)

v[2]r = 4i
∂

∂t

G
[2]
r

F
[2]
r

, (40)

w[2]r = −µu0
e0

+ 4i
∂

∂t

H
[2]
r

F
[2]
r

, (41)

and

u[2]r = u0 +
4i

µ

(
∂2

∂x∂t

G
[2]
r

F
[2]
r

− e0
∂

∂t

H
[2]
r

F
[2]
r

− µu0
e0

G
[2]
r

F
[2]
r

+ 4i
G

[2]
r

F
[2]
r

∂

∂t

H
[2]
r

F
[2]
r

)
, (42)

where the polynomials are explicitly provided in appendix B.

Shown in Fig. 5 are the second-order rational solutions (39)-(42). It is exhibited that some

typical nonlinear wave patterns can emerge and they are seemingly a result of the collisions of

a fixed number of dark and bright solitons. For the component E, we can see the single-peak

structure in Fig. 5(a). The maximum amplitude of E[2] is 5 and is localized at (0, 0), which

coincides with the second-order fundamental rogue wave in the NLS equation [14, 29]. For the

component v, it is interestingly found that the double-peak-double-dip structure can arise, see

Fig. 5(b). We calculate that the maximum amplitude of v[2] is 1.41 and occurs at (0.05, 1.18)
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and (0.94,−1.40), and the minimum amplitude of it is -1.41 and arrives at (−0.05,−1.18) and

(−0.94, 1.40). Furthermore, the nonlinear wave in Fig. 5(c) for the component w is the double-

peak structure, which has the maximum amplitude of 1.41 and reaches at the two points of

(0.27,−0.91) and (−0.27, 0.91). More interestingly, it is worthwhile to emphasize that, for the

component u in Fig. 5(d), the single-dip structure can be exhibited, which is quite different from

the single-peak case for the component E and the relevant structure in the mKdV equation [22].

The minimum amplitude of u[2] is 0.56 and is acquired at the original point. At the same time,

we can see that in Fig. 6, the nonzero free parameter s1 can produce an important shift effect on

the peaks or dips along the wave trough in the second-order rational solutions. But, it does not

affect the maximum or minimum amplitudes of these solutions.

For the higher-order cases, we only show the evolution plots of the third- and fourth-order

rational solutions for the component E, and omit writing down the corresponding cumbersome

expressions, see Figs. 7 and 8. We exhibit that the third-order rational solutions can be viewed as

the collisions of a dark and two bright solitons, and the fourth-order rational solutions are likely

the result of the collisions of two dark and two bright solitons. It is computed that when setting

all of the free parameters si be zero, then the maximum amplitudes of the third- and fourth-order

rational solutions are 7 and 9, respectively, which are the same as that of the third- and fourth-

order rogue waves in the NLS equation [14, 29]. While when taking one of the free parameters

be nonzero such as s1 6= 0, then the highest peaks in these higher-order rational solutions can

also have a shift along the depressed wave trough. In this circumstance, unlike the second-order

rational solutions, the maximum amplitudes of the higher-order solutions are changed due to the

interactions among the multiple solitons. The maximum amplitudes of the highest peaks in Figs.

7(b) and 8(b) become 4.77 and 5.96, respectively.

5. Conclusion

In summary, we proposed the general Nth-order periodic, Nth-order degenerate periodic and

Nth-order rational solutions with the compact determinant representations for the RMB equa-

tions, which serve as the fundamental model in nonlinear optics associated with self-induced

transparency. The explicit first- and second-order periodic and rational solutions are presented.

Some interesting nonlinear wave patterns described by the second-order periodic solution, the sim-

plest degenerate periodic solutions, and especially the higher-order rational solutions are shown.

Also, it is notable to remark that the limit approach using in this paper can be directly applied to

the mKdV equation [22, 24], the variable-coefficient mKdV equation [41] and other mKdV-type

equations. We hope our results given in this paper may be helpful to interpret the intricate rogue

wave phenomena in nonlinear optics governed by the RMB equations.

Appendix A: mixed functions in Eqs. (24)-(27)

F
[2]
d = − 256

27e20(e
2
0 + 4µ4)4

[−2352e40µ
2u20t

2 − 2688e20µ
4u20t

2 − 768µ6u20t
2 − 168e70µ u0tx

− 1440e50µ
3u0tx− 3456e30µ

5u0tx− 1536e0µ
7u0tx− 3e100 x

2 − 48e80µ
2x2 − 288e60µ

4x2

− 768e40µ
6x2 − 768e20µ

8x2 + 16(e20 + 4µ2)4 cos(ω)4 + 80(e20 + 4µ2)4 cos(ω)2

+ 16
√
3(28e20µu0t+ 16µ3u0t+ e50x+ 8e30µ

2x+ 16e0µ
4x)(e20 + 4µ2)2 sin(ω) cos(ω)

− 108e80 − 1728e60µ
2 − 10368e40µ

4 − 27648e20µ
6 − 27648µ8],
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F
[2]
d =

512i

9e0(e20 + 4µ4)4
[10(e20 + 4µ2)2 cos(ω)2 +

√
3(28e20µu0t+ 16µ3u0t+ e50x+ 8e30µ

2x

+ 16e0µ
4x) sin(ω) cos(ω)− 9(e20 + 4µ2)2],

H
[2]
d = − 256

27e20(e
2
0 + 4µ4)4

[2352e40µ
2u20t

2 + 2688e20µ
4u20t

2 + 768µ6u20t
2 + 1536e0µ

7u0tx

+ 3456e30µ
5u0tx+ 168e70µu0tx+ 1440e50µ

3u0tx+ 288e60µ
4x2 + 768e40µ

6x2 + 768e20µ
8x2

+ 3e100 x
2 + 48e80µ

2x2 + 4608µ7u0t+ 504e60µu0t+ 4320e40µ
3u0t+ 10368e20µ

5u0t

+ 288e70µ
2x+ 1728e50µ

4x+ 4608e30µ
6x+ 4608e0µ

8x+ 18e90x+ 10368e40µ
4 + 27648e20µ

6

+ 16
√
3(e20 + 4µ2)4 sin(ω) cos(ω)3 − 8(e20 + 4µ2)2(84e20µu0t+ 48µ3u0t+ 3e50x

+ 24e30µ
2x+ 48e0µ

4x+ 10e40 + 80e20µ
2 + 160µ4) cos(ω)2 − 16(e20 + 4µ2)4 cos(ω)4

+ 1728e60µ
2 + 27648µ8 + 108e80 − 8

√
3(56e20µu0t+ 32µ3u0t+ 2e50x+ 16e30µ

2x

+ 32e0µ
4x− 3e40 − 24e20µ

2 − 48µ4)(e20 + 4µ2)2 sin(ω) cos(ω)],

in which ω =
√
3(e30x+ 4e0µ

2x+ 4µu0t)/4(e
2
0 + 4µ2).

Appendix B: polynomials in Eqs. (39)-(42)

F
[2]
r = − 4

9e20(e
2
0 + µ2)6

[µ6u60t
6 + 6e0µ

5u50(e
2
0 + µ2)t5x+ e60(e

2
0 + µ2)6x6 + (15e20µ

4u40(e
2
0 + µ2)2x2

+ 3µ4u40(9e
2
0 + µ2)(e20 + µ2))t4 + 3e40(e

2
0 + µ2)6x4 + (20e30µ

3u30(e
2
0 + µ2)3x3

+ 12e0µ
3u30(7e

2
0 + µ2)(e20 + µ2)2x− 6e0µ

3s1u
3
0(e

2
0 + µ2)3)t3 − 6e40s1(e

2
0 + µ2)6x3

+ (15e40µ
2u20(e

2
0 + µ2)4x4 + 18e20µ

2u20(5e
2
0 + µ2)(e20 + µ2)3x2 − 18e20µ

2s1u
2
0(e

2
0

+ µ2)4x+ 9µ2u20(11e
4
0 − 2e20µ

2 + 3µ4)(e20 + µ2)2)t2 + 27e20(e
2
0 + µ2)6x2

+ (6e50µu0(e
2
0 + µ2)5x5 + 12e30µu0(3e

2
0 + µ2)(e20 + µ2)4x3 − 18e30µs1u0(e

2
0

+ µ2)5x2 − 18e0µu0(e
2
0 − 3µ2)(e20 + µ2)4x− 18e0µs1u0(3e

2
0 − µ2)(e20 + µ2)4)t

+ 18e20s1(e
2
0 + µ2)6x+ (9(e20s

2
1 + 1))(e20 + µ2)6],

G
[2]
r =

4i

3e20(e
2
0 + µ2)6

[µ4u40t
4 + 4e0µ

3u30(e
2
0 + µ2)t3x+ e40(e

2
0 + µ2)4x4 + (6µ2u20e

2
0(e

2
0 + µ2)2x2

− 6µ2u20(3e
2
0 − µ2)(e20 + µ2))t2 + 6e20(e

2
0 + µ2)4x2 + (4e30µu0(e

2
0 + µ2)3x3

+ 12u0µe0(e
2
0 − µ2)(e20 + µ2)2x+ 6e0µs1u0(e

2
0 + µ2)3)t+ 6e20s1(e

2
0 + µ2)4x

− 3(e20 + µ2)4],

H
[2]
r =

4i

9e20(e
2
0 + µ2)6

[µ6u60t
6 + e60(e

2
0 + µ2)6x6 + (6e0µ

5u50(e
2
0 + µ2)x+ 3µ5u50(e

2
0 + µ2))t5

+ 3e50(e
2
0 + µ2)6x5 + (15e20µ

4u40(e
2
0 + µ2)2x2 + 15e0µ

4u40(e
2
0 + µ2)2x

+ 3µ4u40(9e
2
0 + µ2)(e20 + µ2))t4 + 3e40(e

2
0 + µ2)6x4 + (20e30µ

3u30(e
2
0

+ µ2)3x3 + 30e20µ
3u30(e

2
0 + µ2)3x2 + 12e0µ

3u30(7e
2
0 + µ2)(e20 + µ2)2x

− 6µ3u30(e
2
0 + µ2)2(e30s1 + e0µ

2s1 − 7e20 − µ2))t3 − 6e30(e
2
0 + µ2)6(e0s1 − 1)x3

+ (15e40µ
2u20(e

2
0 + µ2)4x4 + 30e30µ

2u20(e
2
0 + µ2)4x3 + 18e20µ

2u20(5e
2
0

+ µ2)(e20 + µ2)3x2 − 18e0µ
2u20(e

2
0 + µ2)3(e30s1 + e0µ

2s1 − 5e20 − µ2)x

− 9µ2u20(e
2
0 + µ2)2(e50s1 + 2e30µ

2s1 + e0µ
4s1 − 11e40 + 2e20µ

2

− 3µ4))t2 − 9e20(e
2
0 + µ2)6(e0s1 − 3)x2 + (6e50µu0(e

2
0 + µ2)5x5 + 15e40µu0(e

2
0 + µ2)5x4

+ 12e30µu0(3e
2
0 + µ2)(e20 + µ2)4x3 − 18e20µu0(e

2
0 + µ2)4(e30s1

+ e0µ
2s1 − 3e20 − µ2)x2 − 18e0µu0(e

2
0 + µ2)4(e30s1 + e0µ

2s1 + e20 − 3µ2)x

− 9µu0(e
2
0 + µ2)4(6e30s1 − 2e0µ

2s1 + e20 − 3µ2))t+ 9e0(e
2
0 + µ2)6(2e0s1 + 3)x

+ 9(e20s
2
1 + e0s1 + 1)(e20 + µ2)6].
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Fig. 1: (a)-(d) The first-order periodic solutions (10)-(12) for the components E, v, w with µ = 1 and (13) for the
component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1, κ1 = 0.5.

Fig. 2: (a)-(d) The second-order periodic solutions (14)-(16) for the components E, v, w with µ = 1 and (17) for
the component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1, κ1 = 0.5, κ2 = 0.25.
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Fig. 3: (a)-(d) The degenerate periodic solutions (24)-(26) for the components E, v, w with µ = 1 and (27) for
the component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1.

Fig. 4: (a)-(d) The first-order rational solutions (34)-(36) for the components E, v, w with µ = 1 and (37) for the
component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1.
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Fig. 5: (a)-(d) The second-order rational solutions (39)-(41) for the components E, v, w with µ = 1 and (42) for
the component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1, s1 = 0.

Fig. 6: (a)-(d) The second-order rational solutions (39)-(41) for the components E, v, w with µ = 1 and (42) for
the component u with µ = 0.2. The other parameters are e0 = 1, u0 = 1, s1 = 10.
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(a) (b)

Fig. 7: (a),(b) The third-order rational solutions for the component E with s1 = 0 and s1 = 10. The other
parameters are e0 = 1, µ = 1, u0 = 1, s2 = 0.

(a) (b)

Fig. 8: (a),(b) The fourth-order rational solutions for the component E with s1 = 0 and s1 = 10. The other
parameters are e0 = 1, µ = 1, u0 = 1, s2 = s3 = 0.

17


