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Abstract

We investigate generalized nonlocal coupled nonlinear Schorödinger equation containing Self-Phase Modulation,
Cross-Phase Modulation and Four Wave Mixing involving nonlocal interaction. By means of Darboux transforma-
tion we obtained a family of exact breathers and solitons including the Peregrine soliton, Kuznetsov-Ma breather,
Akhmediev breather along with all kinds of soliton-soliton and breather-soltion interactions. We analyze and empha-
size the impact of the four-wave mixing on the nature and interaction of the solutions. We found that the presence of
Four Wave Mixing converts a two-soliton solution into an Akhmediev breather. In particular, the inclusion of Four
Wave Mixing results in the generation of a new solutions which is spatially and temporally periodic called “Soliton
(Breather) lattice”.
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1. Introduction

Since the invention of the laser, optical solitons [1] have played an important role in nonlinear physics. The
optical soliton in fibres is probably the best studied form of solitons because of its remarkable behavior that agrees
well with theoretical predictions and its potential as optical information carrier. The propagation of optical pulses
through optical birefringent fibres is described by the celebrated Manakov model of the following form [2],

iq1t + q1xx + 2
(
g11|q1|

2 + g12|q2|
2
)

q1 = 0, (1a)

iq2t + q2xx + 2
(
g21|q1|

2 + g22|q2|
2
)

q2 = 0, (1b)

where, q1 and q2 are wave envelopes, x, t are space and time variables and i is the imaginary unit. The interaction
coefficients g11 and g22 correspond to the Self-Phase Modulation (SPM) and g12 and g21 represent the Cross-Phase
Modulation (XPM) [3]. Eq. (1) has been shown to be integrable if either (i) g11 = g12 =g21 =g22 or (ii) g11 =

g21 =-g12 =-g22 [4]. The first choice corresponds to Manakov model [5] while the second choice represents the
modified Manakov model [6]. The above coupled nonlinear Schrödinger equation (CNLSE) involving local nonlinear
interactions has been extensively studied in diverse fields such as nonlinear optics [7], bio-physics [8], finance [9] and
oceanographic studies [10] etc.

After the discovery of new integrable model named “nonlocal integrable NLSE ” by Ablowitz and Mussilimani
[11], the integrable models involving nonlocal interactions have attracted considerable attention. In ref.[11] Ablowitz
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et al., introduced the model of the following form

iqt(x, t) = qxx(x, t) + 2 g q(x, t)q∗(−x, t) q(x, t). (2)

This equation (2) is PT symmetric in the sense that the equation brings a self-induced potential of the form V(x, t) =

q(x, t)q∗(−x, t) and satisfies the PT symmetric condition V(x, t) = V∗(−x, t). It is nonlocal in the sense that the
evolution of the field at transverse coordinate x always requires the information from the opposite point −x [11].
Interestingly, in this study Ablowitz et al., have shown the new model given by Eq. (2) to be fully integrable since
it possesses linear Lax pair and infinite number of conserved quantities. Unlike the integrable model considering
local nonlinear interaction, the above new integrable model involving nonlocal interactions is very rich in the sense of
giving rise to new results and possessing some new behaviors, e.g., it simultaneously admits both the bright and dark
soliton solutions for the same nonlinearity [12]. In addition, several studies involving nonlocal PT symmetric optics
can lead to alternative classes of optical structures and devices with unique properties. These include the effect of
nonlinearity on beam dynamics in PT symmetric potential [13], solitons in dual-core waveguides [14, 15], and Bragg
solitons in PT symmetric potentials [16]. Finally PT symmetric concepts have also been studied in plasmonics [17],
optical metamaterials [18, 19] and coherent atomic medium [20].

Four wave mixing (FWM) is one of the most important nonlinear phenomena having practical applications, par-
ticularly in nonlinear optics [3, 21] such as optical processing [22], real time holography [23], Phase conjugate optics
[24], measurement of atomic energy structures and decay rates [25]. In addition, the FWM phenomenon also has
wider applications in communication networks to create new waves and reduce loss in the signals. The easiest way to
obtain FWM in a fibre is to propagate two waves at angular frequencies ω1 and ω2 that will create new frequencies
ω3 and ω4 such as ω1 +ω2 = ω3 +ω4. On the other hand, the coupled version of the above nonlocal equation, Eq. (2),
has also received considerable attention and its dynamics has also been studied [26]. Unlike the classical Manakov
model, this coupled nonlocal equation admits all classes of solitonic solutions for the same nonlinearity and it does so
only in the presence of nonlocal interactions.

Motivated by the above results involving nonlocality and its unique behaviors with wide range of applications in
diverse fields, we consider the model of coupled NLSE with nonlocal SPM and XPM along with FWM parameter.
The latter is particularly important since FWM is an essential feature of optical solitons while carrying signals through
the birefringent fibre under suitable conditions. The details of the model are given in detail in the next section.

We employ the powerful method of Darboux transformation to find the new solutions of the present model. We
found that i) the inclusion of FWM in the nonlocal NLSE leads to conversion of a soliton-soliton pair , namely
Bright(B)-Dark(D), B-B, or D-D, into an Akhmediev breather, and ii) the manipulation of FWM parameters gives a
chance to observe a new solution of a breather-soliton pair. In addition, we also find some interesting exact solutions
including the Peregrine, Kuznetsov-Ma breather, Akhmediev breather, and a breathing travelling solitonic wave, we
called it as Soliton (Breather) lattice.

The plan of the paper is as follows. In section II, we present the mathematical (integrable) model governing the
dynamics of nonlocal PT symmetric coupled NLSE with nonlocal FWM. In section III, we present the corresponding
Lax pair and then derive the explicit soliton solution for zero and non-zero seed. In section IV, we investigate the
impact of FWM in nonlocal CNLSE. In section V, we derive the special cases of the Peregrine, Ma, Akhmediev
breathers. The results are then summarized in section VI.
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2. Model Equations

We consider the generalized PT symmetric nonlocal NLSE with nonlocal SPM, XPM and FWM of the following
form,

i
∂q1(x, t)

∂t
+
∂2q1(x, t)
∂x2 +

[
a q1(x, t) q∗1(−x, t) + b q1(x, t) q∗2(−x, t)

+ c q2(x, t)q∗2(−x, t) + d q∗1(−x, t) q2(x, t)
]
q1(x, t) = 0, (3a)

i
∂q2(x, t)

∂t
+
∂2q2(x, t)
∂x2 +

[
a q1(x, t) q∗1(−x, t) + b q1(x, t) q∗2(−x, t)

+ c q2(x, t)q∗2(−x, t) + d q∗1(−x, t) q2(x, t)
]
q2(x, t) = 0, (3b)

where, q1,2(x, t) are two complex field variables and the coefficients a, c correspond to the nonlocal SPM and XPM
while b, d represent the nonlocal FWM terms. The subscripts x, t denote the derivatives with respect to the spatial and
temporal variables. For the sack of simplicity, the local interactions in the above coupled NLSE [|q1|

2 + |q2|
2]q1 and

[|q1|
2 + |q2|

2]q2 is replaced by theirPT symmetric counterparts, namely, [q1q∗1(−x, t)+q2q∗2(−x, t)]q1 and [q1q∗1(−x, t)+
q2q∗2(−x, t)]q2, along with nonlocal FWM interactions to obtain generalized coupled nonlocal NLSE given by Eqs. (3)
by using the transformation given by Eqs. (6).

3. Lax-Pair and Darboux transformation

3.1. Lax-Pair
Applying the Darboux transformation (DT) [27] method on nonlocal generalized CNLS equation requires finding

a linear system of equations for an auxiliary fields Φ(x, t). The linear system is usually written in compact form in
terms of the pair of matrices as follows

Φx = UΦ, (4a)
Φt = VΦ, (4b)

where, U and V, known as the Lax pair, are functionals of the solutions of the model equations. The consistency
condition of the linear system Φxt = Φtx must be equivalent to the model equation under consideration.

We find the following linear system which corresponds to the class of generalized nonlocal coupled NLS with
cross-phase and self-phase modulation,

Φx = U0Φ + U1ΦΛ (5a)

Φt = V0Φ + V1ΦΛ + V2ΦΛ
2 (5b)

where,

Φ =


ψ1(x, t) ψ2(x, t) ψ3(x, t)

φ1(x, t) φ2(x, t) φ3(x, t)

χ1(x, t) χ2(x, t) χ3(x, t)

 , U0 =

0 −1 0

0 0 −1

 ,

Λ =


λ1 0 0

0 λ2 0

0 0 λ3

 , V0 =
i
2


q1(x, t)r1(x, t) + q2(x, t)r2(x, t) q1x(x, t) q2x(x, t)

r1x(x, t) −q1(x, t)r1(x, t) −q2(x, t)r1(x, t)

r2x(x, t) −q1(x, t)r2(x, t) −q2(x, t)r2(x, t)

 ,
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V1 =


0 −q1(x, t) −q2(x, t)

r1(x, t) 0 0

r2(x, t) 0 0

 , V2 = i


1 0 0

0 −1 0

0 0 −1

 ,

along with the transformation on the complex conjugates

r1(x, t) = aq∗1(−x, t) + bq∗2(−x, t) (6a)
r2(x, t) = dq∗1(−x, t) + cq∗2(−x, t) (6b)

where λ1,2,3 is the spectral parameter. The consistency condition Φxt = Φtx leads to Ut − Vx + [U,V] = 0 which
should generate the model equation (3).

Using the DT we have solved the above model equations using trivial (zero) seed to obtain a single soliton solution
and non-zero seed to obtain the higher order soliton solutions.

3.2. Darboux Transformation with zero seed: Single soliton solution

Considering the following version of DT [27]

Φ[1] = ΦΛ − σΦ,

where,Φ[1] is the transformed field and σ = Φ0 Λ Φ−1
0 andΦ0 is a known solution of the linear system (5), we apply

the DT on the linear system given by Eqs. (4), and the stipulation that the transformed linear system be covariant with
the original one requires

U0[1] = U0 + [U1, σ]. (6)

The new solution to the nonlinear equations given by, Eqs. (3), in terms of the seed solution is obtained from the last
equation.

Following this procedure, we derive the simple first order soliton solution,

q1(x, t) =
A c C1 e−(2 i t+2 x)

2 c C2 e2(2 i t+2 x) + C3(δ1 +
√
δ2) e2(2 i t+2 x)

(7a)

q2(x, t) =
A c C1 (δ1 +

√
δ2) e−(2i t+2 x)

2 c C2 e2(2i t + 2 x) + C3 (δ1 +
√
δ2) e2(2 i t +2 x)

(7a)

with A a complex constant and C1,2,3 are arbitrary real constants with, δ1 = −b − d, δ2 = b2 − 4 a c + 2 b d + d2.
It should be noted that in order to obtain such a localized solution we have set the following values to the spectral
parameters: λ1 = λ3 = −i and λ2 = iλ3.

We observe from Eqs. (7) that the nonlocal FWM alongwith nonlocal SPM and XPM merely varies the amplitudes
of the solutions of the nonlocal CNLSE. Hence, we focus on the impact of FWM alongwith SPM and XPM with
nontrivial seed in the next section.

3.3. Darboux Transformation with Constant-Wave seed: Breathers and soliton pairs

Here we apply the DT using a nonzero seed, namely the so-called Constant-Wave (CW) solution

q1(x, t) = α1ei φ t, (8a)
q2(x, t) = α2ei φ t, (8b)

where φ = aα2
1 + dα2

2 + 2bα1α2.
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The derivation of the new solution is lengthy but straightforward. We show here only the final results. The general
soliton solutions, in this case, have the following form

qk[1] = αk


1 +

2∑
l=1

2∑
m=1

c∗1,lc1,meθ
∗
1,l(−x,t)+θ1,m(x,t)

ξ1,m
+ c1,3αk

2∑
l=1

c∗1,le
θ∗1,l(−x,t)

−

2∑
l=1

2∑
m=1

c∗1,lc1,meθ
∗
1,l(−x,t)+θ1,m(x,t)

ξ∗1,l + ξ1,m
+
|c1,3|

2B
2(λ∗1 + λ1)


eiφt, (9)

where

θi,1(x, t) = iξi,1

(
x +

1
2
ξi,1t

)
, θi,2(x, t) = iξi,2

(
x +

1
2
ξi,2t

)
, (10a)

β1 = −(bα1 + dα2 − icα1), β2 = aα1 + bα2 + icα2, (10b)

ξi,1 = λi +

√
φ + λ2

i , ξi,2 = λi −

√
φ + λ2

i . (10c)

with B = a|β1|
2 + d|β2|

2 + (b + ic)β1β
∗
2 + (b − ic)β∗1β2.

This solution corresponds to a family of solitonic solutions including breathers. Each member of the family of solu-
tions is obtained for specific values of the parameters. In the following, we present a detailed analysis of the nature
and dynamics of these solutions.

4. Impact of FWM on solutions of the nonlocal coupled NLSE

In this section, we show the effect of FWM on the solutions of the nonlocal CNLSE. In Sec. 4.1, we show how
FWM converts a two-soliton pair into an Akhmediev breather. In Sec. 5, we show that FWM supports new family of
solutions such as a pair of breather and a soliton and a breathing solitary wave, in addition to the previously all known
breathers including Akmediev and Kuznetsov-Ma breathers and the Peregrine soliton.

4.1. Two soliton solution

With no FWM, the higher order solitonic solutions are shown to be a pair of B-B, D-D, or B-D solitons [28]. For
completeness, and to show the effect of FWM, we present these solutions here, which may be obtained from Eq. (9)
by choosing c1,3 = 0 and c1,1c1,2 , 0, rendering Eq.(9) into the following compact form:

qk[1] = αk

[
cosh(ϕ1r) cosh(A − 2iϕ1i) + cos(ϕ1i) cosh(B + 2ϕ1r)

cosh(ϕ1r) cosh(A) + cos(ϕ1i) cosh(B)

]
eiφt (11)

where

A = 2i
√
−φ sinh(ϕ1r) cos(ϕ1i)x + φ cosh(2ϕ1r) sin(2ϕ1i)t + a1, (12a)

B = 2
√
−φ cosh(ϕ1r) sin(ϕ1i)x + iφ sinh(2ϕ1r) cos(2ϕ1i)t − ib1, (12b)

and exp [(a1 + ϕ1r) + i(b1 + ϕ1i)] = c1,1/c1,2. When
√
−φ < λ1 <

√
φ, or ϕ1r = 0, 0 < ϕ1i < π, b1 , (2k + 1)π, the

solutions (11) correspond to the two-soliton solution. Along the line

2
√
−φ sin(ϕ1i)x = φ sin(2ϕ1i)t + a1 ± ln

(
1

| cos(ϕ1i)|

)
, t → ∓∞

the height of soliton |qk[1]|2 is

H1 = |αk |
2
[
1 +

2 sin (ϕ1i) sin (b1 − ϕ1i)
1 + cos (b1)

]
,

5



while along the trajectory

2
√
−φ sin(ϕ1i)x = −

[
φ sin(2ϕ1i)t + a1

]
± ln

(
1

| cos(ϕ1i)|

)
, t → ±∞

the height of soliton |qk[1]|2 is

H2 = |αk |
2
[
1 −

2 sin (ϕ1i) sin (b1 + ϕ1i)
1 + cos (b1)

]
.

There are three different kinds of solutions: If H1,H2 > |αk |
2, it is two-bright (B-B) soliton. If H1,H2 < |αk |

2, it is
two-dark (D-D) soliton. If H1 > |αk |

2, H2 < |αk |
2 (H2 > |αk |

2, H1 < |αk |
2), it is bright-dark (B-D) soliton, where

α1, β1, a1, b1 are real arbitrary parameters and H1,2 represents the heights of components q1,2 respectively.

Figure 1: Bright-Dark soliton given by Eq. (11) without FWM for the parameters α1 = 1, α2 = 1
2 ,a1 = 8, b1 = 2.5, a = c = −4, b = d = 0, ϕ1r = 0

and ϕ1i = 0.2π. Similar profile occurs also for q2 component (not shown here).

Figure 2: Impact of FWM with b=d =5 in Eq. (11) leading to the conversion of B-D soliton of Fig. 1 into breathers. Similar Profile occurs also for
q2 component (not shown here).

4.2. Two-Soliton-Breather Conversion

The effect of the FWM on the group of B-B, D-D, and B-D solitons is predominant on the B-D soliton. Introducing
FWM renders the B-D soliton into an Akhmediev breather. To understand the impact of FWM parameters b and d
on the nonlocal coupled NLSE along with a, c, we, initially we take the B-D soliton without FWM (b & d = 0)
alongwith a = c, as shown in Fig. 1. Introducing the FWM through b and d namely, b = d = 5, we obtain the
remarkable conversion of B-D solitons into Akhmediev breather, as shown in Fig. 2. The manipulation of a and c
in Fig. 2 with for instance, a < c, a > c, or a , c), results only in the compression of breathers along with marginal
shift towards positive or negative time scale depending upon the choice a and c. Choosing FWM parameters b and
d unequally such as b=-5, d=5, the breather in Fig. 2 will reverse to B-D soliton, as shown in Fig. 3. One can also
retrieve the breathers, shown in Fig. 4, by interchanging the signs between b and d like 5 and -5, respectively, as shown
in Fig. 3. The right panels are the corresponding density plots for the left panels with reduced time and space axes

6



Figure 3: Impact of FWM with b , d, namely b = −5, d = 5 in Eq. (11) converting the breathers in fig. 2 into a B-D Soliton. Similar Profile
occurs also for q2 component (not shown here).

Figure 4: Retrieval of breathers from B-D solitons of Fig. 3 by changing the signs of the FWM parameters as b = 5 and d = −5 given by Eq. (11).
Similar Profile occurs also for q2 component (not shown here).

for better view. Another interesting impact of FWM on the nonlocal coupled NLSE is that it destroys the sensitivity
to the parameter b1. In other words, we found earlier [28] that the manipulation of the different classes of soliton
solutions such as B-B, B-D, D-B, D-D solitons can be performed sensitively by the parameter b1. The inclusion of
FWM parameters in the model makes the free parameter b1 a passive member in the group of parameters, which
means the change of b1 arbitrarily will not affect the density of the profiles shown in Fig. 1-4 in any sense, as long as
FWM parameters , 0. Instead of b1, the FWM parameters b &d play an active role in the conversion of any type of
solitons like B-B,B-D,D-B,D-D to breathers and viceversa. We would like to add that wherever the two components
exhibit similar behavior with a mere change in amplitude, we have plotted only one component (q1) while we plot two
components (q1 and q2) when they exhibit different behavior.

5. Family of higher order soltions with FWM

Here, we present a family of unique solitonic solutions and breathers. Some of these solutions are obtained only
with FWM such as the breather-soliton solution in, Fig. 5, solitonic waves in, Fig. 6, and a new breather that is periodic
in both time and space axes, as shown in Fig. 7d, which we denote here as “Soliton (Breather) lattice”.

5.1. Breather-Soliton solution
The breather-soliton solution is obtained for c1,1c1,2c1,3 , 0, exp 1

2 [(a1 + ϕ1r) + i(b1 + ϕ1i)] = c1,1 and
exp− 1

2 [(a1 + ϕ1r) + i(b1 + ϕ1i)] = c1,2. Since the non-singularity condition for this type of solution is very complex,
we merely give a sufficient condition

cos(ϕ1i) sin(b1) > 0,

1 +
|c1,3|2

4
|B| + cos(ϕ1i) cos(b1) > 0.

7



In this breather-soliton solution, one dark soliton or bright soliton is replaced by the breather, as shown in Fig. 5.

Figure 5: (color online): Breather-Soliton solution given by Eq. (11): bright soliton-breather (left) and dark soliton-breather (right) for the choice
of parameters: α1 = 1, α2 = 1

4 , a = c = −1, b = 1, d = 1, c1,1 = c−1
1,2 = e

iπ
4 , c1,3 = 1, ϕ1r = 0 and ϕ1i = π

4

5.2. Solitonic waves

In this section, we present a unique solitonic wave which is a travelling wave with time-dependent amplitude, as
shown in Fig. 6, and is obtained by a careful choice of parameters, as given below. When we choose |λ1| >

√
−φ,

λ1 ∈ R, or ϕ1r ∈ R, ϕ1i = 0: There are three kinds of periodic solutions.
If c1,3 = 0, the solution (9) can be rewritten as

qk[1] = αk

[
sinh(ϕ1r) sinh(A − 2iϕ1i) − cos(ϕ1i) cosh(B + 2ϕ1r)

sinh(ϕ1r) sinh(A) + cos(ϕ1i) cosh(B)

]
eiφt (13)

where

A = 2i
√
φ cosh(ϕ1r) cos(ϕ1i)x − φ cosh(2ϕ1r) sin(2ϕ1i)t + a1, (14)

B = 2
√
φ sinh(ϕ1r) sin(ϕ1i)x − iφ sinh(2ϕ1r) cos(2ϕ1i)t − ib1, (15)

and exp [(a1 + ϕ1r) + i(b1 + ϕ1i)] = c1,1/c1,2. Here, we consider a special case ϕ1r ∈ R/{0}, ϕ1i = 0. When
| sinh(ϕ1r) sinh(a1)| > 1, then one can obtain periodic solution. Similar to the defocusing case, we can obtain an-
other periodic solution when c1,3 , 0. We ignore here the analysis of the non-singularity condition since it is very
complex.

If c1,2 = 0, c1,1 = 1, c1,3 , 0 and 2 cosh(ϕ1r) , eϕ1r |c1,3|
2|B|, or c1,1 = 0 and c1,2c1,3 , 0, then solution (9) is also a

periodic solution.
We have shown periodic solution here in Fig. 6 for the choice c1,1 = 0, c1,2c1,3 , 0 given by Eq. (13).

5.3. Breathers: Kuznetsov-Ma breather, Akhmediev breather, and Peregrine soliton

In addition to the above effect of FWM, we found that the nonlocal coupled NLSE given by Eq. (3) supports some
interesting profiles such as Peregrine solitons, Kuznetsov-Ma breather, Akhmediev breathers, Space-Time breather
[29]. Peregrine solitons are obtained for the choice of parameters such that the oscillatory and exponential terms in the
solution given by, Eq. (13) vanish each other. This is obtained by the choice ϕ1r = 0 and ϕ1i , 0, as shown in Fig. 7a.
For the choice of parameter ϕ1r , 0 and ϕ1i = 0, one obtains spatially localized temporally periodic Kuznetsov-Ma
breather as shown in Fig. 7b. One can also obtain temporally localized and spatially periodical Akhmediev breathers
as shown in Fig. 7c for the choice of parameter ϕ1r = 0 and ϕ1i = 0.3π. We also notice an interesting profile which
is both spatially and temporally periodic which can be also viewed as a travelling breathing wave along the time axis
with a phase shift. We called it as Soliton (breather) lattice, as shown in Fig. 7d. We believe that these breathers are
found for the first time in the literature for the model involving nonlocal interactions with FWM.
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Figure 6: (color online): Periodic solutions given by Eq. (13) for the choice of parameters α1 = 1, α2 = 1
4 , a = c = −1, b = 1

2 , d = 1
2 , c1,1 = 0,

c1,2 = e
−iπ
4 , c1,3 = 1, ϕ1r = arccosh(2) and ϕ1i = 0.

Figure 7: Different types of breathers given by Eq. (13): (a) Peregrine solitons for the choice of parameters α1 = 1, α2 = 1
2 , a = c = −1, b = 5,

d = 5, a1 = 0, b1 = 2.5 ϕ1r = 0 and ϕ1i = 0.00013π, (b) Kuznetsov-Ma breathers for the choice of parameters ϕ1r = 0.3 and ϕ1i = 0, with a1 = −1,
b1 = 1 other parameters are same as in (a). (c) Akhmediev breather for the choice of parameters a = c = −4, b = 5, d = 5, a1 = −2, b1 = 2.5,
ϕ1r = 0 and ϕ1i = 0.3π, (d) Soliton (breather) lattice for the choice of parameters a = c = −1, b = 0.1, d = 0.1, a1 = 0, b1 = 1 ϕ1r = 0.8 and
ϕ1i = 0.

6. Conclusion

In this paper, we investigated PT symmetric coupled nonlinear schrödinger equation with nonlocal four-wave
mixing employing Darboux transformation to generate a family of exact solitonic solutions including the Peregrine
soliton, Kuznetsov Ma-breather, Akhmediev breather, and a breather which is periodic in both space and time (we
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named it them Soliton (breather) lattice). In addition, two soliton solutions including bright-bright, dark-dark, and
bright-dark turn out to be solutions of the model. We have shown that the inclusion of four-wave mixing in the
nonlocal nonlinear schrödinger equation leads to conversion of bright-dark solitons into breathers. We also observe
that by manipulating the four-wave mixing parameters associated with other arbitrary parameters of the system, one
can observe all possible conversions between soliton-soliton interaction into breathers and vice versa. We believe that
the above phenomenon occurs due to the nonlocal nature of the dynamical system with nonlocal four-wave mixing.
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