
Sparse eigenbasis approximation: multiple feature
extraction across spatiotemporal scales with application

to coherent set identification

Gary Froyland, Christopher P. Rock, and Konstantinos Sakellariou
School of Mathematics and Statistics

University of New South Wales
Sydney NSW 2052, Australia

December 18, 2018

Abstract

The output of spectral clustering is a collection of eigenvalues and eigenvectors
that encode important connectivity information about a graph or a manifold. This
connectivity information is often not cleanly represented in the eigenvectors and must
be disentangled by some secondary procedure. We propose the use of an approximate
sparse basis for the space spanned by the leading eigenvectors as a natural, robust,
and efficient means of performing this separation. The use of sparsity yields a nat-
ural cutoff in this disentanglement procedure and is particularly useful in practical
situations when there is no clear eigengap. In order to select a suitable collection of
vectors we develop a new Weyl-inspired eigengap heuristic and heuristics based on the
sparse basis vectors. We develop an automated eigenvector separation procedure and
illustrate its efficacy on examples from time-dependent dynamics on manifolds. In this
context, transfer operator approaches are extensively used to find dynamically discon-
nected regions of phase space, known as almost-invariant sets or coherent sets. The
dominant eigenvectors of transfer operators or related operators, such as the dynamic
Laplacian, encode dynamic connectivity information. Our sparse eigenbasis approxi-
mation (SEBA) methodology streamlines the final stage of transfer operator methods,
namely the extraction of almost-invariant or coherent sets from the eigenvectors. It
is particularly useful when used on domains with large numbers of coherent sets, and
when the coherent sets do not exhaust the phase space, such as in large geophysical
datasets.

1

ar
X

iv
:1

81
2.

02
78

7v
2

 [
m

at
h.

N
A

]
 1

6
D

ec
 2

01
8

Contents

1 Introduction 3

2 Background 6
2.1 Separation of spectral clustering output by hard clustering 6
2.2 Sparse principal component analysis . 6
2.3 Markov- and Laplace-type operators arising in nonlinear dynamics 7

3 Sparse eigenbasis approximation 11

4 Using the SEBA Algorithm 3.1 13
4.1 Ordering the sparse vectors in terms of “reliability” 13
4.2 Selecting an appropriate number of input vectors 13

4.2.1 Heuristics based on the spectrum . 13
4.2.2 A heuristic based on sparse vectors 15

4.3 Extraction of a (sub)-partition from a sparse basis output 15
4.4 Weighting entries of the data vectors . 17

5 Examples 18
5.1 Bickley jet . 19
5.2 Turbulent flow . 21

5.2.1 A sparse vector heuristic for simultaneously selecting the number of
input vectors r and number of features k 23

5.2.2 Extraction of a subpartition from sparse vector output 25
5.2.3 Extraction of a partition with k-means 27

5.3 North Atlantic surface currents . 27

6 Discussion 34

7 Acknowledgements 35

A Code 35
A.1 MATLAB code for Algorithm 3.1 . 35
A.2 MATLAB code for Algorithm 4.1 . 36
A.3 MATLAB code for Algorithm 4.2 . 36
A.4 MATLAB code for producing a “natural spatial scales” plot of (k, r) combi-

nations . 36
A.5 MATLAB code for producing a “stacked” sparse vector minimum value plot 37

B Proof that the expression (2) can be minimised as outlined in Section 4.4 37

2

1 Introduction

Spectral clustering has found broad application in areas such as network analysis, manifold
learning (e.g. diffusion maps), Lagrangian dynamics, and stochastic processes. The output
of a spectral method is the spectrum and eigenvectors of some matrix or linear operator,
typically either of Laplace type such as a graph Laplacian or Laplace-Beltrami operator on a
manifold, or of Markov type1. The eigenvectors carry geometric structure to e.g. help discern
the topology of an unknown manifold, cluster point data, or analyse nonlinear dynamics.

For example, the Laplace-Beltrami operator arises as the generator of heat flow on a
manifold. The four leading eigenfunctions of this operator2 (corresponding to the largest
four (real) eigenvalues 0 = λ1 ≥ · · · ≥ λ4) are shown in the upper row of Figure 1. These

Figure 1: Upper: the leading four eigenfunctions of the Laplace-Beltrami operator on the
manifold shown. Lower: a sparse basis output by Algorithm 3.1, separating the four “blobs”
at the periphery of the central disk. Dark blue represents zero value. The eigenfunctions
were computed using a finite-element mesh with 10774 nodes.

eigenfunctions – beyond the first “trivial” constant eigenfunction corresponding to λ1 = 0
and shown in Figure 1 (upper left) – describe signed “heat modes” that decay most slowly
under heat flow, at rates ∼ eλit, i = 2, . . . , 4. Because the four “blobs” at the periphery of
the main disk have narrow channels connecting them to the main disk, the slowest decaying
mode (second from the left in the upper row of Figure 1) has a lot of heat (red) in the bottom
blob and lower part of the main disk and is cool (blue) in the upper blob and upper part
of the main disk. The four “blobs” are correctly detected in the upper row of Figure 1, but
they are mixed together in the leading four eigenfunctions. We wish to separate these four
features and this is what is achieved in the lower row of Figure 1, by finding an approximate
sparse basis through orthogonal rotation of the four leading eigenfunctions.

Arguably the most popular method of performing this separation is the embedding of
(discrete versions of) the second to fourth eigenfunctions in R3 and applying a hard clus-

1often there is a “spectral mapping” relationship between these two types, of the form M = exp(L),
where M is Markov type and L is Laplace type.

2with homogeneous Neumann boundary conditions.

3

Figure 2: Left: clustering an embedding of the second to fourth eigenvectors from Figure 1
in R3 (10774 points in R3) and applying k-means clustering, requesting four clusters. Right:
As per left, but requesting five clusters.

tering algorithm such as k-means; see e.g. [34] for a detailed description and the historical
development of k-means. In this example, for the k-means approach to at least partially
isolate the peripheral blobs in the example of Figure 1, one has to request a clustering of
five clusters because k-means partitions the dataset/domain, and requesting four clusters
groups each of the peripheral blobs with approximately one quarter of the large central disk;
see Figure 2. A key advantage of our approach is that we do not necessarily separate by
partitioning, but instead may classify a large part of the dataset/domain as “unclustered”.
Such an idea has been partly implemented in [31] by adding one more cluster to k-means as
a “background” cluster, but we show in Sections 5.2 and 5.3 that this is not a good approach
for more challenging dynamics. Other separation approaches are discussed in Section 2.1.

Perhaps the most similar precursor to our approach in the dynamical systems literature,
applied in the context of Markov chains, is the search for a linear transformation of the
leading eigenvectors [11] to make them as close as possible to a collection of indicator func-
tions (vectors taking a small number of distinct values) spanning a similar subspace, under
constraints of non-negativity and small intersection of support. The optimisation in [11] can
be expensive for large vectors and large numbers of vectors, and will always return a full
partition of the domain. An LU decomposition approach [4] has been effective in the case
where the eigenvectors are already close to linear combinations of indicator vectors. This
is a somewhat idealised situation and, in such a setting, all of the above methods should
perform very well.

In the context of general Markov processes and Lagrangian dynamics, there are many
situations where it is not instructive to partition all nodes or the entire manifold into almost-
disconnected pieces according to the relevant eigenvectors. Rather, it is more informative
to know that some parts of the network or manifold have a natural almost-disconnected
structure, while the remainder (possibly a large remainder) of the network or manifold is
well connected. The sparsity built in to our new sparse basis approach will automatically
identify those nodes or subsets of a manifold that do not belong to any almost-disconnected
subset; such nodes or subdomains will be zeroed out by the sparsification.

In Section 5 we illustrate our approach on spectral algorithms designed to identify almost-

4

invariant or coherent sets in dynamical systems on manifolds. The term almost-invariant
set refers to a set that is approximately invariant under autonomous dynamics. The term
coherent set refers to a time-dependent family of sets that are approximately equivariant
under time-dependent or nonautonomous dynamics. In contrast to an almost-invariant set,
which is fixed in phase space, the family of coherent sets are in general mobile in phase space
as time evolves; see [27] for a short overview. Almost-invariant and coherent sets in the
phase space of complicated dynamics are important because they are the most predictable
features in the medium term. These concepts have been used in molecular dynamics to
identify conformations to aid drug design [10], in atmospheric dynamics to identify atmo-
spheric vortices [28], in oceanography to identify ocean gyres [26] and eddies [18, 19], and
in fluid dynamics [48]. Spectral approaches to the identification of coherent features rely on
the dominant eigenvectors of transfer operators or related operators, such as the dynamic
Laplacian [16, 23]. There are various categories of constructions, based on the problem to
be solved; see Table 1. The final stage of the extraction of almost-invariant or coherent sets
from eigenvectors or singular vectors has previously proceeded either by time-consuming
hand-selected thresholds or by common clustering methods such as k-means.

A main goal of this research is to describe simple and robust procedures for automatically
separating features represented in the eigenvectors or singular vectors arising from transfer
operator methods. Our separation procedures streamlines the use of these methods on
domains with large numbers of coherent sets, particularly when the coherent sets do not
exhaust the phase space. Although the dynamical context is our primary motivation, we
believe our approach will translate well to other application domains where disentangling
the output of spectral clustering is important. We have thoroughly tested our approach on a
variety of nonlinear dynamics and have proposed heuristics that have consistently performed
well in our tests. We illustrate our new approach by separating coherent features in idealised
fluid flow dynamics and in large-scale ocean currents in the North Atlantic derived from
satellite altimetry.

Our main contributions include a refinement of the standard eigengap criterion for de-
termining suitable numbers of features. Our Weyl-inspired refinement strongly highlights
and appropriately scales gaps in the spectrum, emphasising natural time scales. We also
develop new vector-based heuristics for determining suitable numbers of features; these help
to determine good choices of dimension for the subspaces and therefore the corresponding
spatial scales of features. We develop a “reliability” heuristic for the sparse basis vectors,
including feature rejection criteria. These vector-based heuristics supplement the eigengap
criteria and we have found them to be particularly useful in realistic situations where there
is no clear eigengap. Finally, we propose automatic methods of hard thresholding of the
sparse basis to provide hard separation of features.

An outline of the paper is as follows. Section 2 provides a brief background on hard
separation of spectral clustering output, sparse principal components analysis, and trans-
fer operator and dynamic Laplace operator constructions in nonlinear dynamics. Section
3 describes in detail the variant of sparse basis approximation we will use, based on the
SPCArt algorithm [33]. Section 4 discusses the use of our sparse basis algorithm, including

5

new eigenvalue and vector based heuristics for selecting the size of the basis and assigning
reliability to the sparse basis output, and simple thresholding procedures. We present our
numerical examples in Section 5 and conclude in Section 6.

2 Background

2.1 Separation of spectral clustering output by hard clustering

Denote the eigenvalue (resp. eigenvector) output of a spectral clustering method by ordered
lists of eigenvalues λ1 ≥ λ2 ≥ · · · and their corresponding eigenvectors v1, v2, Suppose
that we wish to separate the features encoded in the vectors v1, . . . , vr. One of the most
popular separation approaches is to perform hard clustering on the p × r data array V =
[v1| · · · |vr], treating each row of this array as a Euclidean point in Rr. Figure 2 illustrates
this procedure with r = 3 using k-means for the hard clustering. In the context of nonlinear
dynamics, the k-means algorithm [34] has been applied to eigenvector data embedded in
Euclidean space, for example [31, 3, 46, 43, 21] to identify coherent sets. A “soft” variant,
fuzzy c-means, has earlier been used in the dynamics context on eigenvector data [17, 14]
to identify almost-invariant sets. Other variants include k-medians [35], k-medoids [39], and
kernel k-means [47].

Other hard separation approaches for spectral clustering include [53], who try to find a
rotation of the eigenvectors that brings them as close as possible to a collection of binary
vectors, which represent a feature partition. The work of [41] builds on [53] by proposing
rotating the eigenvectors to approximately achieve a collection of nonnonegative vectors,
followed by a maximum likelihood assignment. Related to this is [32] who search for non-
negative vectors “nearby” the eigenvectors via a penalty term. Another recent contribution
includes [42], who search for sparse orthogonal vectors that maximise the trace of the usual
bilinear form involving the Laplace matrix, followed by an application of k-means. All of
the above approaches produce a partition of the dataset/domain (as does k-means), and
this is something we wish to avoid through the use of sparse bases. Moreover, the explicit
imposition of nonnegative vectors removes what we have found to be an important indicator
of the quality of the separation, as we show in Section 4. There are several other related
methods that involve manipulating the weights in the affinity matrix, but we omit discussing
these because in our dynamical systems applications the Markov and Laplace operators that
arise have additional special properties we wish to preserve.

2.2 Sparse principal component analysis

Principal component analysis (PCA) is an unsupervised learning technique often used for
dimension reduction and feature selection. PCA may be viewed as the process of finding
a linear projection from a high-dimensional space (occupied by the dataset) onto a low-
dimensional space that preserves as much of the variance of the original dataset as possible.
One drawback of PCA is that every variable in the lower-dimensional space generally depends

6

on all of the variables in the high-dimensional space.
This shortcoming motivated sparse principal component analysis (SPCA), which modifies

PCA by imposing constraints (resp. adding a penalty) to force (resp. encourage) each variable
in the lower-dimensional space to depend on only a subset of the original variables. In
2003, Joliffe et al. proposed the first sparse principal component analysis technique, called
SCoTLASS [36], and several versions of SPCA have appeared since then. Many such versions,
termed deflation methods, find one sparse principal component at a time, then deflate the
original data in that direction and find the next orthogonal principal component, e.g. [36, 5].
To avoid sequential deflation finding a non-global optimum, so-called block methods have been
proposed, which optimise all the subspaces at once [37, 6, 54, 33].

Because of its simplicity, efficiency, and robustness, in this paper we will use a tailored
version of the sparse principal component analysis by rotation and truncation (SPCArt)
algorithm [33], which is a block method. Letting V = span{v1, . . . , vr} we implicitly assume
that the eigenvectors from our spectral clustering satisfy the following assumption.

Assumption A. There is a V-approximating, r-dimensional subspace S ⊂ Rp with a non-
negative sparse basis s1, . . . , sr whose supports have little or no intersection.

Assumption A should hold when there exist pairwise disjoint subsets of the graph or man-
ifold that are sufficiently strongly disconnected, provided suitable eigenvectors {v1, . . . , vr}
of a Laplace-type or Markov-type operator or matrix are chosen. Figure 1 (lower row) and
Figure 3 (right column) illustrate the type of sparse basis vectors we will obtain.

2.3 Markov- and Laplace-type operators arising in nonlinear dy-
namics

Our examples in Section 5 will be drawn from nonlinear dynamics and we provide a brief
overview here, referring the reader to original papers for further details. One has a smooth
domainM , typically a smooth d-dimensional manifold or subset of Rd, on which the nonlinear
dynamics acts.

There are several related linear operators that are intimately connected with the nonlinear
evolution on phase space. These operators fall into two broad classes, which we will call
Markov-type and Laplace-type. The former have their spectrum contained in {z ∈ C : |z| ≤
1}, the closed unit disk in the complex plane, and the spectrum of the latter is contained in
{z ∈ C : <(z) ≤ 0}, the closed half plane with non-positive real part.

In the most straightforward case, the dynamics is generated by repeated application of
a transformation T : M → M or by solving a differential equation ẋ = F (x). Both of these
mechanisms generate autonomous dynamics because the underlying governing dynamics does
not depend on time. In the former case one uses left3 eigenvectors of the transfer operator
(Markov type) to identify subsets of the domain that are approximately invariant under
repeated application of the dynamics; see Construction 1 in Table 1. In the latter case,

3the description of left and/or right eigenvectors has been chosen to match the original papers. For
Markov-type operators, multiplying vectors on the left of matrices is consistent with most Markov chain
texts.

7

Construction Autonomous/ Finite/ Closed/ Uses time Objects
Nonauton. Infinite Open derivative Identified
Dynamics Time Dynamics

1. Left eigenvectors of Auton. ∞ closed no almost-
transfer operator [8] invariant sets
2. Left eigenvectors of Auton. or ∞ closed yes almost-
generator [22, 23] Periodic invariant sets
3. Right eigenvectors of transfer Auton. ∞ open no Basins of
operator (resp. generator) [40, 29] (resp. yes) attraction
4. Right eigenvectors of Auton. finite closed no finite-time
symmetrised transf. op. [14, 27] almost-inv. sets
5. Singular vectors of Nonauton. finite closed no finite-time
transfer operator [28, 15] coherent sets
6. Eigenvectors of dynamic Nonauton. finite closed no finite-time
Laplacian [16, 24] coherent sets
7. Oseledets vectors of Nonauton. ∞ closed no coherent sets
transfer operator cocycle [25]

Table 1: Summary of transfer operator and dynamic Laplace operator constructions to iden-
tify almost-invariant and coherent sets, and the dynamical settings in which each construction
is used.

one uses left eigenvectors of the generator (Laplace type) to detect almost-invariant sets in
continuous time without trajectory integration; this is Construction 2 in Table 1. When there
is open dynamics created by the existence of a “hole(s)” in phase space, one is interested
in the basins of attraction; this is Construction 3 in Table 1, covering both discrete and
continuous time. In many instances, there is a natural timescale of interest and one wishes
to find subsets that are approximately invariant over this finite timescale; this is addressed
in Construction 4 in Table 1.

Nonautonomous dynamics arises when the generating law varies with time. In discrete
time one applies a sequence of different transformations Tn ◦Tn−1 ◦· · ·◦T1, and in continuous
time, one solves a differential equation with time-dependent right-hand-side ẋ = F (x, t).
Because the underlying dynamics changes over time, one wishes to find subsets that remain
“coherent” over the finite time duration; this is addressed in Constructions 5 and 6 in Table
1. Finally, identifying coherent sets in time-dependent dynamics over an infinite time period
is addressed in Construction 7 in Table 1. While we have described the dynamics above
as deterministic, each of the Constructions 1–7 can also be applied to stochastic dynamics
arising from transformations with additional noise, or stochastic differential equations.

Each of the Constructions 1–7 in Table 1 is a type of spectral clustering; Constructions 1,
3, 4, 5, and 7 produce Markov-type operators and Constructions 2, 3, and 6 produce Laplace-
type operators. The eigenvectors arising from Constructions 4, 5, and 6 are orthogonal in
a suitable inner product space, while the vectors produced by Constructions 1, 2, 3, and 7

8

need not be. For the latter constructions, one applies e.g. QR factorisation to orthogonalise
the vectors before applying Algorithm 3.1.

There are various ways in which the constructions in Table 1 can be numerically imple-
mented. A thin spline implementation of Construction 5 is introduced in [52], and a spectral
implementation in continuous time of Construction 5 is presented in [9]. A radial basis
function implementation of Construction 6 is contained in [20] and a finite element imple-
mentation is introduced in [21]; the latter is the numerical implementation we will use for all
dynamic Laplacian eigenvector computations in this paper. A graph-based method similar
to Construction 6 is described in [31]. Diffusion map implementations of Constructions 5
and 6 are described in [3].

In section 5 we will apply our method to output from Constructions 5 and 6; the former is
of Markov type and the latter is of Laplace type. While the different constructions in Table 1
solve different dynamical problems, the properties of the eigenvectors from all constructions
are strongly related because they arise from spectral approaches. We expect our methods to
perform equally well on all constructions in Table 1.

9

Figure 3: Left: the 8 leading eigenvectors v1, . . . , v8 (upper to lower) of the dynamic Laplacian
constructed from the Bickley jet (see Section 5.1). Right: an approximate sparse basis
s1, . . . , s8 output by Algorithm 3.1 separating the 8 main coherent sets; small negative values
of have been removed from the vectors s7, s8.

10

3 Sparse eigenbasis approximation

Let v1, . . . , vr ∈ Rp be a set of linearly independent eigenvectors or singular vectors; typically
r � p. These vectors form a basis for a subspace V ⊂ Rp. We wish to transform these vectors
to a basis of sparse vectors s1, . . . , sr ∈ Rp for a subspace S ⊂ Rp with V ≈ S. Without
loss of generality, we can assume that the vectors v1, . . . , vr are an orthonormal basis; if not,
we perform a QR factorisation of the matrix V = [v1| · · · |vr] and extract the orthonormal
columns. If the subspace V satisfies Assumption A, we can expect the sparse vectors s1, . . . , sr
to have supports with small overlaps, and therefore be close to orthogonal. Thus, we wish to
find an orthogonal “rotation” matrix R that transforms v1, . . . , vr into s1, . . . , sr such that
(i) the r-dimensional space S ⊂ Rp spanned by s1, . . . , sr is close to V ⊂ Rp (approximate
subspace preservation) and (ii) the vectors s1, . . . , sr are sparse.

The approach we take is based on the SPCArt algorithm (sparse PCA via truncation
and rotation [33]). We present below a simplified “full rank” version of SPCArt, tuned to
the setting of Assumption A, which we call Sparse Eigenbasis Approximation (SEBA). Let
Sr denote the Stiefel manifold {A ∈ Rr×r : A>A = Ir} of r× r orthogonal matrices, and let

Up,r = {A ∈ Rp×r : each column of A has `2 norm 1}. Define ‖A‖F :=
√∑p

i=1

∑r
j=1A

2
ij to

be the Frobenius norm and ‖A‖1,1 :=
∑p

i=1

∑r
j=1 |Aij| to be the `1,1 matrix norm. Given some

small positive sparsity parameter µ, we wish to solve the following nonconvex optimisation
problem for S ∈ Up,r and R ∈ Sr:

arg min
S∈Up,r
R∈Sr

1

2
‖V − SR‖2F + µ‖S‖1,1, (1)

The r columns of S define a sparse basis {s1, . . . , sr} for a subspace S close to V . The first
term in (1) measures how close4 the rotated columns of V , namely V RT , are to the columns
of S (recall ‖V R> − S‖F = ‖V − SR‖F for orthogonal R). The second term measures the
sparsity of the basis formed by the columns of S using the common sparsity-inducing [12] `1
penalty.

Because of the nonconvexity of the problem (1), finding a global optimum (S,R) ∈
Up,r×Sr is difficult. Hu et al. [33] proposed alternately fixing R and optimising S, and fixing
S and optimising R to find a local minimum (S,R). Each of these individual optimisation
problems are fast to solve exactly.

1. Fixed R: The optimisation for S in (1) is exactly solved by “soft thresholding” [37].
Define a thresholding transformation Cµ : R→ R by Cµ(z) = sign(z) max{|z| − µ, 0};
Cµ is applied to vectors elementwise. For j = 1, . . . , r, set the jth column of S to
Sj = Cµ((V R>)j)/‖Cµ((V R>)j)‖.

2. Fixed S: The optimisation for R becomes a Procrustes problem minR∈Sr
1
2
‖V −SR‖2F .

This problem may be efficiently exactly solved by polar decomposition [54]. Set R =

4Note that if we define S := V R> for some r × r orthogonal (in fact, R nonsingular is sufficient) matrix
R, then the columns of S will span the same subspace as the columns of V .

11

Polar(S>V), where Polar(·) is the orthonormal component of the polar decomposition;
that is, S>V = RH, where R is orthogonal and H is symmetric and positive definite. If
S>V has singular value decomposition S>V = PDQ>, then R = PQ>. In MATLAB,
we use [P,~,Q]=svd(S'*V,0);

One initialises with R = Ir and alternately applies steps 1 and 2 above until the change
in R is below a specified tolerance5. The parameter µ should be chosen less than 1/

√
p

as Cµ sends the constant unit vector to the zero vector for µ ≥ 1/
√
p. Hu et al. [33]

suggest using µ = 1/
√
p and with extensive experimentation we have found that this works

well, as do values between 75% and 100% of 1/
√
p. In our experiments we have used

µ = 0.99/
√
p because in many cases the constant unit vector is part of our initial basis V .

Alternative thresholding methods were presented in [33], but in our experiments we found
soft thresholding was the most robust and we use this in all computations. In summary, our
sparse eigenbasis approximation (SEBA) algorithm is:

Algorithm 3.1 ((SEBA) – Input orthonormal p× r matrix V ; output sparse p× r matrix
S).

1. Set µ = 0.99/
√
p and R = Ir.

2. For j = 1, . . . , r, set the jth column of S to Sj = Cµ((V R>)j)/‖Cµ((V R>)j)‖.

3. Set R = Polar(S>V).

4. If the matrix 2-norm of the difference between the revised R in step 3 and the previous
R is larger than some tolerance5, go to step 2; otherwise go to step 5.

5. For j = 1, . . . , r, set Sj → sign(
∑p

i=1 Sij)Sj.

6. For j = 1, . . . , r set Sj → Sj/max1≤i≤p Sij.

7. Reorder the columns of S so that mj := mini Sij is in decreasing order, j = 1, . . . , r.

In Step 5 we possibly change the sign of the columns of S to ensure they are predominantly
nonnegative and in Step 6 we scale the columns of S so that their maximum value is 1; we
will later interpret Sij as a likelihood of membership of index i in the jth feature. Step 7
orders the columns of S in terms of “reliability”; see Section 4.1 for a discussion.

As noted in [33], SPCArt (steps 1–4 of Algorithm 3.1) produces vectors s1, . . . , sr that
should span a similar subspace to V because of the first term of (1). Because the input vectors
v1, . . . , vr are orthonormal and the vectors s1, . . . , sr are arrived at by orthogonal rotation and
truncation, the latter should also be close to orthogonal. The sparsity should be reasonably
balanced because of the global optimisation of R in step 3 and uniform thresholding across
each vector in step 2. A short MATLAB code listing to implement Algorithm 3.1 is included
in Appendix A.1.

5We used a tolerance of 10−14 in our experiments, and we observed there is little, if any, difference if the
tolerance is increased by a few orders of magnitude.

12

4 Using the SEBA Algorithm 3.1

In this section we describe the “reliability” ordering in Step 7 of Algorithm 3.1, and introduce
some rules of thumb for selecting an appropriate basis size for input to Algorithm 3.1 and
how to extract a (sub)partition from the output of Algorithm 3.1. We also detail how to
(optionally) apply weights to vector entries. Code is provided in Appendices A.2 and A.3.

4.1 Ordering the sparse vectors in terms of “reliability”

Under Assumption A, if Algorithm 3.1 is performing well we should be able to find a subspace
S that is a good approximation of V and which is spanned by a nonnegative sparse basis
s1, . . . , sr. Nonnegativity of s1, . . . , sr is not guaranteed by Algorithm 3.1 and we have found
that if a sparse vector sj has one or more large negative entries, this is an indication that
the feature sj has not been cleanly separated from other features. We propose a “reliability
ordering” of the sparse output vectors: in Step 7 of Algorithm 3.1 we order the vectors
s1, . . . , sr so that mj := min1≤i≤p sij is in descending order. That is, j for which mj = 0
means that sj should highlight a very reliably coherent feature and appear early in the
ordering, while those sj toward the end of the ordering are potentially increasingly spurious.
In the case of the Bickley jet with r = 8, we found mj = 0, j = 1, . . . , 6, with the remaining
m7,m8 > −0.02; see the eight sparse vectors shown in Figure 3 (right column), ordered by
decreasing mj. In Section 4.2.2 we will adapt this heuristic to select the number of input
eigenvectors.

4.2 Selecting an appropriate number of input vectors

Consider a set v1, . . . , vr ∈ Rp of linearly independent eigenvectors as in Section 3. As one in-
creases r, the rth eigenvector becomes increasingly oscillatory, corresponding to increasingly
rapidly decaying modes. The “spatial scale” of the features encoded in the rth eigenvector
therefore decreases with increasing r. Similarly, the rth eigenvalue describes the exponential
decay rate of the rth eigenvector, and therefore a “temporal scale” for the corresponding
features. In the dynamical systems context, the number r controls the smallest spatial scale
at which eigenvectors identify almost-invariant or coherent sets, while the rth eigenvalue pro-
vides a lower bound on the temporal scale at which each of the almost-invariant or coherent
sets mix with the rest of phase space. In particular, gaps in the spectrum indicate a jump
in temporal scales, rather than a jump in spatial scales. The reliability ordering of Section
4.1 will guide the choice of a number k ≤ r to indicate that Algorithm 3.1 has produced k
reliable features at the spatiotemporal scale governed by r.

4.2.1 Heuristics based on the spectrum

In spectral clustering, the eigengap heuristic (see [50] and references therein) is a common
method for selecting an appropriate number of vectors for further analysis. The eigengap
heuristic suggests to look for large gaps in the spectrum, i.e. if |λr+1− λr| is large compared

13

to |λi+1 − λi| for i = 1, . . . , r − 1, one should truncate the collection of eigenvectors to
v1, . . . , vr. A potential issue with this rule (apart from the absence of an unambiguous
spectral gap) is that depending on the dimension of the underlying manifold, the natural
asymptotic behaviour of λk as a function of k given by Weyl’s law [51] is not necessarily
linear. We therefore propose a new variant of the eigengap heuristic by taking this asymptotic
into account. If our phase space is a d-dimensional Riemannian manifold, denote by N(λ)
the number of eigenvalues of the Laplace(-Beltrami) operator ∆ on M no greater than λ
(applying either homogeneous Neumann or Dirichlet boundary conditions). Weyl’s law states
that limλ→∞N(λ)/λd/2 = −(2π)−dωd|M | where ωd is the volume of the d-dimensional unit
ball and |M | is the volume of M . Thus, ordering the eigenvalues of ∆ as 0 ≥ λ1 ≥ λ2 ≥ · · · ,
we have λr ∼ −Cr2/d for a constant C as r →∞.

Laplace-type matrix/operator, Neumann boundary conditions: For example, a
graph Laplacian, a Laplace-Beltrami operator, or the dynamic Laplacian6 [16, 23] of Sections
5.1 and 5.3 with homogeneous Neumann boundary conditions. In this setting, the leading
eigenvalue is λ1 = 0 and fitting the asymptotic λr ∼ −Cr2/d to this condition suggests
plotting λr/(r − 1)2/d vs. r for r = 2, . . . , and looking for the largest drops from r to r + 1;
see Figure 4.

Figure 4: Left: plot of λr vs r for r = 1, . . . , 20 for the Bickley jet of Section 5.1. Right:
plot of λr/(r − 1) vs r for r = 2, . . . , 20. The eigengaps in the left image at r = 2 and r = 8
are highlighted even more strongly in the Weyl rescaling in the right image. The eigengap
at r = 15 in the left image has been de-emphasised in the right image relative to r = 2 and
r = 8.

Laplace-type operator, Dirichlet boundary conditions: For example, a Laplace-
Beltrami operator or the dynamic Laplacian with Dirichlet boundary conditions. The leading
eigenvalue λ1 is strictly negative (and unknown) so we plot λr/r

2/d vs. r for r = 1, . . . , and
look for the largest drops from r to r + 1.

6which is not necessarily a Laplace-Beltrami operator [38].

14

Markov-type operator: For example, a matrix or operator arising from diffusion maps
[3], the various transfer operator constructions in Table 1, or the normalised finite-time
transfer operator [28, 15] of Section 5.2. In these examples λ1 = 1 and the rest of the
spectrum is contained in the unit circle in the complex plane. Taking logs and retaining
only the real part, we obtain a Laplace-type spectrum with Neumann boundary conditions.
Thus, we plot <(log λr)/(r−1)2/d vs. r for r = 2, . . . , and look for the largest drops from r to
r + 1. In the case of transfer operators arising from continuous-time flows, this logarithmic
transformation can be made rigorous via the spectral mapping theorem, see [22, 23].

The above heuristics are applied to spectra arising from both transfer operators and the
dynamic Laplacian in Section 5.

4.2.2 A heuristic based on sparse vectors

Following the arguments of Section 4.1, for the p×r matrix S produced by Algorithm 3.1, we
create a cumulative minimum value quantity Min(S) :=

∑r
j=1−mj = −

∑r
j=1 min1≤i≤p Sij.

Denoting by S(r) the sparse array produced by Algorithm 3.1 with r input vectors, one may
then plot Min(S(r)) vs. r and select those r for which there has been a large drop from r−1;
i.e. Min(S(r)) − Min(S(r−1)) is negative. The rationale for this choice is that Min(S(r)) is
typically increasing with r because it is a sum of non-negative values. If there is a drop
from r − 1 to r it means that despite adding an extra term to the sum, the sum decreases,
and thus overall the new mj values (based on r input vectors) are smaller than the old mj

(based on r − 1 input vectors), indicating that the new sparse basis s1, . . . , sr has better
separated the r features. Note that such a heuristic implicitly assumes that all r sparse
vectors are reliable, and no sparse vector will be rejected from the collection. In Section 5.2
we will combine this heuristic with the reliability heuristic of Section 4.1 to suggest a way
to simultaneously select both r (the number of input vectors), and k (the number of reliable
sparse vectors), with k < r after some sparse vectors have been rejected.

4.3 Extraction of a (sub)-partition from a sparse basis output

Recall that we wish to separate the features encoded in the eigenvectors v1, . . . , vr resulting
from a spectral clustering. Algorithm 3.1 has already done most of the hard work by forming
a sparse approximate basis of the space spanned by the eigenvectors. Indeed one would often
be very satisfied with this separation procedure. A simple and effective way of summarising
the separated features is to create a “superposition vector”.

Superposition vector: s := min{1,
∑r

j=1 max{Sij, 0}}. This vector combines member-

ship likelihoods across features, and may be interpreted as the likelihood that the ith index
belongs to some feature. In MATLAB, this is realised as super=min(1,sum(max(S,0),2));
superposition vectors s are illustrated in Figures 9, 13, 14, and 22.

If a hard separation is required, then a final step is to threshold the sparse vectors to fix
which indices are in or out of a feature. If there is a two-dimensional phase space associated

15

to the sparse vectors, then one may apply by inspection a manual threshold τ so that feature
j consists of grid cells or nodes with index i satisfying Sij > τ .

For situations where visualisation is not possible, the main thing we desire is to ensure
that distinct features are disjoint. We consider three algorithms. Algorithm 4.1 applies
the minimum threshold τ pu to ensure that after thresholding, the columns Sj form a sub-
partition of unity: that is

∑r
j=1 Sij ≤ 1 for each i = 1, . . . , p. Algorithm 4.2 selects the

minimum threshold τ dp to ensure that after thresholding, the sj have disjoint support. In
each case, the principle of maximum likelihood is then applied to produce a feature vector
a ∈ {0, . . . , r}p with ai = j if element i belongs to feature j for i = 1 . . . , p and j = 1, . . . , r,
and ai = 0 if feature i is unassigned. A third algorithm, described at the end of this section,
simply applies the above maximum likelihood procedure without thresholding. Define a
thresholding transformation Hµ : R→ R by Hµ(z) = z if |z| > µ and Hµ(z) = 0 otherwise;
Hµ is applied to vectors elementwise.

Algorithm 4.1 (Input: vectors {s1, . . . , sr} ⊂ Rp produced by Algorithm 3.1; output:
thresholded {s1, . . . , sr} vectors and feature vector a ∈ {0, . . . , r}p).

1. For j = 1, . . . , r, set sj → max{sj, 0} to make the vectors nonnegative.

2. For each row i = 1, . . . , p, let s̃i1, . . . , s̃ir be the values of si1, . . . , sir in decreasing order.

3. Set the threshold τ pu := max1≤i≤p,1≤j≤r{s̃ij :
∑j

l=1 s̃il > 1}. For each j = 1, . . . , r, hard
threshold sj → Hτpu(sj).

4. For each i = 1, . . . , p let j∗ = arg max1≤j≤r sij (resolving ties arbitrarily). If sij∗ > 0,
set ai = j∗, otherwise set ai = 0.

Algorithm 4.2 (Input: vectors {s1, . . . , sr} ⊂ Rp produced by Algorithm 3.1; output:
thresholded {s1, . . . , sr} vectors and feature vector a ∈ {0, . . . , r}p).

1. For j = 1, . . . , r, set sj → max{sj, 0} to make the vectors nonnegative.

2. For each row i = 1, . . . , p, let s̃i1, . . . , s̃ir be the values of si1, . . . , sir in decreasing order.

3. Set the threshold τ dp := max1≤i≤p s̃i2, and for each j = 1, . . . , r hard threshold sj →
Hτdp(sj).

4. For each i = 1, . . . , p, j = 1, . . . , r, if any sij > 0 for j = 1, . . . , r, set ai = j, otherwise,
set ai = 0.

Because a disjoint partition is a stronger requirement than a partition of unity, one has
τ dp ≥ τ pu. If τ dp ≥ 0.5, then τ dp = τ pu. We illustrate both algorithms in Figure 5, where
three synthetic sparse vectors s1, s2, s3 ∈ R5000 are plotted as dotted curves. These vectors
have overlapping supports, and s1 + s2 > 1 on part of the domain. The post-thresholding
vectors are shown as solid curves in Figure 5.

One is free to apply other thresholdings to achieve specific outcomes; the above two
algorithms are of generic use for feature separation. Thresholds may be applied vectorwise

16

Figure 5: Upper left: τ pu from Algorithm 4.1 is indicated by the horizontal dotted line.
Hτpu(s1), Hτpu(s2), Hτpu(s3) (solid lines) are equal to s1, s2, s3 wherever those vectors are
greater than τ pu, and zero elsewhere. Note that Hτpu(s1) + Hτpu(s2) + Hτpu(s3) ≤ 1 as
required for a partition of unity. Lower left: The resulting partition a, obtained by performing
maximum likelihood on Hτpu(s1), Hτpu(s2), Hτpu(s3). Upper right: τ dp from Algorithm 4.2
is indicated by the horizontal dotted line. Hτdp(s1), Hτdp(s2), Hτdp(s3) are plotted as solid
lines. Lower right: The resulting partition a obtained by performing maximum likelihood
on Hτdp(s1), Hτdp(s2), Hτdp(s3).

to individual vectors, or they may be computed from individual vectors and applied uniformly
across the vectors as in the two algorithms above. In Section 5.2 we illustrate another option
specifically related to coherent sets in nonlinear dynamical systems.

If no thresholding method is effective for a particular system (for example, when feature
separations are not clear), maximum likelihood can be applied directly to the output of
Algorithm 3.1; that is, one can apply the last step of Algorithm 4.1 to obtain a feature
vector a. This can be realised in MATLAB by [m,a]=max(S,[],2); a(m<=0)=0. The
support of a coincides with the positive support of maxj sij.

4.4 Weighting entries of the data vectors

In certain situations, one may wish to apply a weight vector 0 < ν ∈ Rp to the calculation of
the objective in (1). The weight vector ν allows one to emphasise (or deemphasise) specific
indices i = 1, . . . , p. One situation where this may be appropriate is if one is constructing
a transfer operator from a grid with differently sized grid cells; larger cells can be weighted
according to their area or volume.

We define a weighted inner product 〈v, w〉ν :=
∑p

i=1 νiviwi, denote the corresponding

17

norm by ‖ · ‖`2,ν , and denote a weighted Frobenius norm by ‖A‖F,ν :=
√∑p

i=1

∑r
j=1 νiA

2
ij.

Let Up,rν = {A ∈ Rp×r : each column of A has `2,ν norm 1}. We define a weighted `1,1
matrix norm by ‖A‖1,1,ν :=

∑p
i=1

∑r
j=1 νi|Aij|. Let V ∈ Rp×r be a matrix whose columns

are pairwise orthonormal in the inner product 〈·, ·〉ν . Problem (1) can be generalised to

arg min
S∈Up,rν
R∈Sr

1

2
‖V − SR‖2F,ν + µ‖S‖1,1,ν . (2)

Denoting byDν the diagonal matrix with ν on the diagonal, we have that ‖A‖1,1,ν = ‖DνA‖1,1
and ‖A‖F,ν = ‖D1/2

ν A‖F . Substituting V ′ = D
1/2
ν V and S ′ = D

1/2
ν S, problem (2) is equiva-

lent to

arg min
S′∈Up,r
R∈Sr

1

2
‖V ′ − S ′R‖2F + µ

∥∥∥D 1
2
ν S
′
∥∥∥
1,1
. (3)

We generalise the soft threshold function Cµ to C ′µ,ν : Rp → Rp, defined by [C ′µ,ν(v)]i =
C
µν

1/2
i

(vi). We prove in Appendix B that Problem (3) can be solved using Algorithm 3.1

with V replaced with V ′, µ = 0.99/
√
p replaced with µ = 0.99/

√
‖ν‖1 in Step 1, Cµ replaced

with C ′µ,ν in Step 2, and Step 5 replaced with Sj → sign(ν>Sj)Sj. After running Algorithm

3.1, set S = D
−1/2
ν S ′ to obtain a solution for Problem (2). The parameter µ should be chosen

less than 1/
√
‖ν‖1 to ensure C ′µ,ν(D

1/2
ν v) is nonzero for every v ∈ Rp with ‖v‖2,ν = 1; taking

µ ≥ 1/
√
‖ν‖1 will result in C ′µ,ν(D

1/2
ν v) being the zero vector when v is the constant `2,ν-unit

vector.

5 Examples

We perform numerical experiments on three systems: the Bickley jet, a turbulence simulation
obtained from the Navier-Stokes equations, and North Atlantic ocean currents derived from
satellite altimetry. We use the transfer operator (Construction 5 in Table 1) and the dynamic
Laplacian (Construction 6 in Table 1) to detect coherent sets.

We can quantify the goodness of fit and sparsity of our solutions using the corresponding
parts of the objective (1) being minimised.

• `2 subspace error: For subspace approximation, note that for p×r orthogonal V , one
has ‖V ‖2F = r. Thus, reporting 1

r
‖V − SR‖2F quantifies the subspace approximation

error relative to the “zero” estimate S = 0; this value should lie between 0 and 1 (lower
value means better approximation).

• Absolute sparsity: We report the absolute sparsity as ‖S‖0,1/(pr), where ‖S‖0,1 :=∑p
i=1 ‖Si‖0. The absolute sparsity is the proportion of elements of S that are nonzero,

and therefore lies between zero and one (lower value means sparser).

18

• Relative sparsity: We report the relative (`1) sparsity ‖S‖1,1/‖V ‖1,1. The ‖ · ‖1,1
norm is used as the sparsity penalty term in Algorithm 3.1. The relative sparsity
should lie between 0 and 1 (lower value means sparser).

In Sections 5.1 and 5.3 all time integrations are carried out using an explicit Runge-
Kutta method of order (4,5) with adaptive step size, as implemented by MATLAB’s ode45

integrator, using the absolute and relative error tolerance 10−3. The methodologies listed
in Table 1 apply to any finite dimension, we restrict ourselves to 2-dimensional examples to
present our results with greater transparency.

5.1 Bickley jet

The Bickley jet is an idealised system introduced as a model of “banded chaos” by [7], which
has become a popular test case for coherent set detection methods [44, 52, 31, 46, 43, 30, 21].
The Bickley jet is a Hamiltonian system modeling a meandering jet with vortices on either
side. Its stream function is

ψ(x, y, t) = −U0L0 tanh(y/L0) +
3∑
i=1

AiU0L0 sech2(y/L)cos(ki(x− cit)). (4)

We use parameter values U0 = 62.66 m/s, L0 = 1770 km, A1 = 0.0075, A2 = 0.15, A3 = 0.3,
c1 = 0.1446U0, c2 = 0.205U0, c3 = 0.461U0, k1 = 2/re; k2 = 4/re, k3 = 6/re, re = 6371 km as
in [30]. We consider the associated flow on the initial domainM = [0, 20]× [−3, 3], periodic
in the x-direction, over the time interval [0, 40] days. We calculate the dynamic Laplacian
using the “adaptive transfer operator method” of [21] on a Delaunay triangulation (alpha
complex with α = 0.06) ofM with nodes on an initial grid of 600× 180 points, on the time
set T = {0, 40}. There are clear eigengaps after the second and eighth eigenvalues, in both
the unnormalised and Weyl-normalised plots (Figure 4). These two eigengaps characterise
two natural spatiotemporal scales for the Bickley dynamics.

We applied Algorithm 3.1 with r = 2 and r = 8 to the eigenvectors of the dynamic
Laplacian. With r = 2, the two eigenvectors are the leading (constant) eigenvector and a
second non-constant eigenvector. Algorithm 3.1 produces two sparse vectors whose supports
separate the domain into upper and lower pieces; see Figure 6a. The six vortices are also
highlighted within the supports of the two sparse vectors. The span of these two sparse
vectors is a reasonable approximation of the span of the two leading eigenvectors (subspace
error of 11.8%). The sparse vectors have an absolute sparsity of 45.2% and a relative sparsity
of 65.0%.

We apply Algorithm 4.1 and 4.2 to obtain a partition of the domain A1 t A2 ⊂ M .
Since the sparse vectors in Figure 6a have disjoint support, both algorithms return the same
sub-partition, formed by the supports of the two sparse vectors; see Figure 6b. Note that
the central jet between the upper and lower halves is also visible (zeroed as dark blue), using
only information from the first nontrivial dynamic Laplacian eigenvector. k-means clustering
creates a partition of the entire phase space; see Figure 6c.

19

(a) Sparse vectors approximating the sub-
space spanned by the two leading eigenvec-
tors of the dynamic Laplacian (r = 2).

(b) Hard thresholding result from Algo-
rithms 4.1 and 4.2.

(c) Result of k-means (requesting two clus-
ters) applied to the two leading eigenvectors
of the dynamic Laplacian.

Figure 6: Bickley jet, with r = k = 2.

With r = 8, Algorithm 3.1 produces the sparse vectors in Figure 3 (right column). The
subspace error is low at 6.4%, as are the absolute sparsity and relative sparsity at 14.1% and
44.6%, respectively. The low absolute sparsity indicates that we have effectively separated
the domain into disjoint features, with little overlap between the features.

We can again use either Algorithm 4.1 or Algorithm 4.2 to obtain a partition of the
domain; see Figures 7a and 7b respectively. Algorithm 4.1 produces a sub-partition of the
domain consisting of almost the entire domain, while Algorithm 4.2 produces a sub-partition
of the domain with a larger gap between the upper and lower regions corresponding to a
central jet. Both of these results are similar to the k-means clustering result with k = 8
clusters, as shown in Figure 7c.

Remark 5.1. The k-means algorithm can be viewed as a coarse type of sparse eigenbasis
approximation in the following way. Apply k-means to the vectors v1, . . . , vr arising from a
spectral clustering, requesting r clusters. For j = 1, . . . , r define vectors ŝj ∈ Rp as ŝij = 1
if index i is contained in cluster j, and ŝij = 0 otherwise. In the “ideal” situation where
data points are very clearly separated into distinct clusters, the eigenvectors v1, . . . , vr will be
approximately constant, and the (sparse) vectors ŝ1, . . . , ŝr will approximately span the same
space. By solving a Procrustes problem, one can also infer an orthogonal rotation implicitly

20

3r ---------------------------------,

2

1

� 0

-1

-2

2 4 6 8 10

X

12 14 16 18

(a) Algorithm 4.1 (b) Algorithm 4.2 (c) k-means

Figure 7: State space partition of Bickley dynamics using dynamic Laplacian eigenvectors
and Algorithm 3.1 (r = 8), followed by: (a) Algorithm 4.1; (b) Algorithm 4.2; (c) k-means
with 8 clusters.

performed by k-means to approximately rotate the vectors v1, . . . , vr to the vectors ŝ1, . . . , ŝr.
This relationship with sparse eigenbasis approximation can help explain why k-means can
be very effective in some (closer to “ideal”) cases where one expects to classify every data
point (i.e. one partitions the dataset into features that exhaust the dataset).

5.2 Turbulent flow

We consider a numerical solution to the Navier-Stokes equations in two dimensions with
random-in-phase forcing, introduced in [13]. Specifically, we consider the velocity field u :
T2 × R→ R2 which solves the equations

∂tu+ u · ∇u = −∇p+ ν∆u+ f

∇ · u = 0 (5)

where the toral domain T2 = [0, 2π]× [0, 2π]; see [13] for details. We use the Ulam approxi-
mation P of the transfer operator P constructed on a 256 × 256 grid, for a flow time of 50
time units, exactly as in [30]. Using the method of [28, 15], we compute singular vectors
of the matrix L (in the notation of [28, 15], which is a slight reweighting of the stochastic
matrix P). The second left and right singular vectors of L are shown in Figure 8. The left

Figure 8: Second left singular vector (left); second right singular vector (right).

21

and right images in Figure 8 may be compared directly with [30, Figure 9(g) and Figure
11(a)], respectively, where in the latter figures, only a binary plot of positive and negative
values was displayed. In Figure 8 there are three highlighted coherent regions: two with
extreme positive values (red), and one with extreme negative values (dark blue). When ap-
plying Algorithm 3.1 to the first two left singular vectors (the leading left singular vector is
constant and the second left singular vector is shown in Figure 8 (left)), these three features
are separated and highlighted in red; see Figure 9. The sparse basis vectors shown in Figure

Figure 9: Superposition vector s (see Section 4.3 for the definition) of the two sparse vectors
generated for the turbulence flow using two singular vectors (r = 2) (left). Push forward of
the left image s by L (right).

9 are considerably more informative than either (i) a simple partition based on the sign of
the singular vectors or (ii) the result of a hard partitioning method such as k-means. The
sparsity quantifiers in the case of r = 2 are 31.6% (subspace error), 38.4% (absolute sparsity)
and 54.6% (relative sparsity).

Turbulence is often cited as a canonical example of dynamics operating over a broad
range of spatial scales. This fact is backed up by the lack of a clear eigengap for the transfer
operator singular value spectrum; see Figure 10 (left). The Weyl rescaling in Figure 10 (right)

Figure 10: Plot of log λr vs r (left) and log λr/(r − 1) vs r (right) for the turbulence flow.

shows some minor drops, which may provide weak eigengap information. In situations where

22

there is no clear eigengap, we propose to use information from the sparse vectors output by
Algorithm 3.1 to decide how many sparse vectors contain “reliable” coherent features. The
upper envelope (dotted black) of Figure 11 shows Min(S(r)) vs. r. There are several “drops”
in this envelope, with the three largest drops at r = 5, 30, and 36. In this turbulence
example, we illustrate a refinement of this choice of r, simultaneously taking into account
the “reliability” of the sparse vectors.

5.2.1 A sparse vector heuristic for simultaneously selecting the number of input
vectors r and number of features k

For some maximum number of columns rmax and each r = 2, . . . , rmax, we apply Algorithm
3.1 to the first r columns of the eigenvector matrix V , and denote the resulting arrays S(r).
For each r and k, let Min(S(r), k) :=

∑k
j=1−min1≤i≤p S

(r)
ij be the sum of the minimum

values of the first k sparse vectors. In Figure 11, for each k ≤ r, we plot Min(S(r), k) vs. r
as a coloured line, for each 2 ≤ r ≤ rmax. The kth coloured line shows the “performance”

Figure 11: “Stacked” plot of sparse vector minimum value curves.

(as determined by the minimum value heuristic) of Algorithm 3.1 at separating k features
from various r input vectors. The best performance for k features is achieved when a single
coloured line attains a minimum of Min(S(r), k) across the various values of r. For a given k,
these minimal r are denoted rmin(k) := arg mink≤r≤rmax

Min(S(r), k) (when multiple r values

give the same Min(S(r), k) value, we take rmin(k) as the smallest of these). These “optimal”

23

(k, r) combinations are shown as black diamonds on Figure 11. Figure 12 shows a plot of
rmin(k) vs. k.

Figure 12: Turbulence example: rmin(k) vs number of coherent features k.

Notice that there are rmin(k) takes on only certain r values. These common r values (e.g.
r = 30, 38, . . . in Figure 11) could be interpreted as representing natural spatial scales of
the dynamics because one expects the eigenvectors (or singular vectors) input to Algorithm
3.1 to become more oscillatory as r is increased, highlighting increasingly smaller spatial
features. One may select any of these optimal (k, r) combinations. To be conservative, in
our experiments we select k at the lower end of each “vertical strip” of black diamonds.
If we increase k we often simply obtain more coherent sets. For this example, we select
(k, r) = (7, 30) and (21, 38) for further analysis; the corresponding sparse superposition
vectors and their forward-time images are shown in Figures 13 and 14. From these two

Figure 13: Superposition vector s of the 7 most reliable features at initial time (left) according
to the minimum value reliability criterion (r = 30) and its forward-time image (right).

figures one already sees 7 (resp. 21) clearly highlighted coherent sets in red that remain
coherent after the flow time of 40 time units. The span of the collection of sparse vectors

24

Figure 14: Superposition vector s of the 21 most reliable features at initial time (left)
according to the minimum value reliability criterion (r = 38) and its forward-time image
(right).

in both the case of r = 30 and that of r = 38 produce reasonable approximations of the
span of the corresponding leading eigenvectors with a subspace error of 10.4% (resp. 9.8%).
The sparse vectors have an absolute sparsity of 7.7% (resp. 7.1%) and a relative sparsity of
26.8% (resp. 25.2%).

5.2.2 Extraction of a subpartition from sparse vector output

One could apply a single global threshold to our selected sparse vectors according to Algo-
rithms 4.1 and 4.2. We found that because Figure 13 is already a collection of vectors with
mostly disjoint supports, both of these algorithms produced a very low threshold with little
change to the sparse vectors. On the other hand, the sparse vectors that are combined in
Figure 14 have “overlaps” of large values in small parts of phase space, causing Algorithms
4.1 and 4.2 to produce very high thresholds close to 1. In place of these thresholding algo-
rithms, one could easily apply a global threshold manually by inspecting Figure 13 or 14; for
example a threshold of around 0.7–0.75 would produce coherent sets with small boundary
lengths relative to enclosed area at the initial and final times.

To end this section we apply thresholding according to the Cheeger ratio. Such a thresh-
olding has been applied to specific single vectors [16, 20, 23, 30], but because Algorithm
3.1 has automatically separated all features, we may apply this thresholding to either the
superposition vector s or to each individual vector sparse vector sj, j = 1, . . . , k. Given a
vector (corresponding to a discrete representation of a real-valued function on a manifold
M), we select a threshold by choosing the level set that minimises a quantity we call the
scale-invariant Cheeger ratio. Let M be a d-dimensional manifold and let T : M →M be a
volume-preserving transformation representing our dynamics. For simplicity of presentation,
we assume that one application of T represents the nonlinear dynamics over the full finite-
time interval and that we compute the coherence via the Cheeger ratio at only the initial and
final time; see [16, 23] for more detail and generalisations. Let Γ ⊂M be a d−1 dimensional

25

submanifold disconnecting M into two pieces M1,M2. The scale-invariant Cheeger ratio is

hD(Γ) :=
`d−1(Γ) + `d−1(T (Γ))

2(min{`d(M1), `d(M2)})
d−1
d

, (6)

where `d−1 and `d are (d − 1)- and d-dimensional volume measure, respectively. In this
example we treat each sparse vector sj separately, and each Γ will be selected as a level set
of sj, j = 1, . . . , k. In particular we choose the level set value so that (6) is minimised. In
terms of numerics, having selected a (k, r) combination, for each 1 ≤ j ≤ k, we linearly
interpolate sj on a fine regular grid on M to obtain a function uj : M → R. For threshold
values τ ranging from minx uj(x) to maxx uj(x) we calculate hD(Γτ), where Γτ is the level
set {x ∈ M : uj(x) = τ}, and select the τ yielding the minimum value. We use MATLAB’s
contourc command to calculate level sets; isosurface is the corresponding command for
three dimensions. This takes approximately two minutes for 21 interpolated sparse vectors
in R65536 on an Intel Core i7-6700 processor with 16GB RAM. Note that in contrast to
Algorithm 4.1 or 4.2, we calculate a separate threshold for each vector before applying a
hard thresholding.

We apply this thresholding procedure to the (k, r) combination (7,30) whose superposi-
tion of sparse vectors is shown in Figure 13); the result is the partition in Figure 15. All
features obtained are highly coherent, though two features are perhaps overly small. The

Figure 15: Partition (k, r) = (7, 30) of phase space showing 7 coherent sets at initial- (left)
and forward- time (right) obtained by thresholding.

scale-invariant dynamic Cheeger ratio for these two small sets has a very flat minimum over
a large range of thresholds and so these two sets could be further enlarged without changing
appreciably the Cheeger ratio (and therefore the finite-time coherence).

We also apply this thresholding procedure to the (k, r) combination (21,38), whose su-
perposition vector s is shown in Figure 14. The resulting thresholded sets are displayed in
Figure 16, coloured according to their reliability (a reliability index of 1 is the most reliable
(coherent)). We retain all the coherent sets identified in Figure 15, and gain another 15
coherent sets. In this case, while some of the additional coherent sets are relatively small,
many of these sets cannot be significantly increased without introducing filamentation; that
is, they do not have flat minima for their Cheeger ratios.

26

Figure 16: Partition (k, r) = (21, 38) of phase space showing 21 coherent sets at initial- (left)
and forward- time (right) obtained by thresholding.

5.2.3 Extraction of a partition with k-means

The use of sparse vectors via Algorithm 3.1 clearly outperforms k-means clustering of the
singular vectors. As an example, we apply k-means to the (k, r) combination (21,38), namely
using 38 eigenvectors and requesting k = 21 clusters; see Figure 17. We add one extra cluster
to give k-means a chance to find the complement of 21 coherent sets as a 22nd coherent set
The k-means clustering correctly detects some coherent sets, notably many of those in Figure
15, but also produces many more highly filamented sets, and misses several very coherent
features visible in Figure 16. To a large extent, k-means fails in difficult examples such
as turbulence because k-means imposes a partition of the phase space into coherent sets,
when a partition is not reasonable. The superposition of the sparse vectors in Figure 14
highlights the coherent sets in a much more precise way than k-means can, and we can
further refine Figure 14 by thresholding, as in Figure 16. Increasing k causes k-means to add
more filamented features, while decreasing k causes k-means to miss some of the coherent
features in Figures 14 and 16. We also experimented with the use of the k-means sum of
squared errors (the objective that k-means attempts to minimise) to determine the number
of clusters, but we failed to find any “kinks” to identify any values for k, as described for
example in [49].

5.3 North Atlantic surface currents

As our final example, we consider a real-world dataset, namely geostrophic AVISO [1] velocity
fields. We consider the 90-day period 15 January 2015 to 15 April 2015; the velocity fields
are updated every 2 hours. We consider a synthetic initial 291×224 Mercator grid of tracers
on the domainM = [−65◦,−35◦]× [30◦, 50◦]. After removing trajectories initialised on land,
we numerically integrate the remaining 56205 trajectories, linearly interpolating the velocity
field between the AVISO-provided velocity fields spaced one day apart. Using trajectory
positions7 every 3 days, we compute the dynamic Laplacian using the “adaptive transfer

7In particular, derivatives of the velocity field or flow map need not be estimated.

27

Figure 17: Initial and forward-time plot of the k-means partition of state space into 22
clusters (r = 38).

operator approach” of [21] on alpha complexes8 with zero Neumann boundary conditions;
see [21] for details on implementation.

The second eigenfunction highlights the Gulf of St Lawrence in the extreme northwest of
the 15 January 2015 domain as a coherent set evolving distinctly from the rest of the domain
(not shown), and the third eigenfunction separates the domain at the Gulf Stream; see the
sharp red/green interface in Figure 18. One may directly compare Figure 18 (lower) with [2,
Figure 9]. The latter figure shows a satellite-based map of sea surface temperature at 5 April
2015. The Gulf Stream is seen as a very strong temperature gradient emanating from the
east coast of the USA. There is a very close match with the strong red/green interface (and
also the red/orange interface between -50 and -40 longitude) in the eigenvector in Figure
18 (lower). This demonstrates that the strong temperature gradient of the surface ocean is
highly correlated with coherent transport of water parcels on the surface.

The spectrum for this dataset, shown in Figure 19 (left) reveals little separation of scales;
the largest drops in the Weyl rescaling (Figure 19; right) are at r = 3 and r = 30. Therefore,
we again select values for r and k using the heuristic described in Section 5.2.1. We construct
the cumulative minimum value plot (Figure 20) and plot rmin(k) in Figure 21. Our initial
choice of rmax = 50 as our maximum number of eigenvectors was possibly too small to
identify many of the coherent sets, because rmin(k) = 50 for almost all values of 2 ≤ k ≤ 50.
Increasing rmax to 100, the coloured curves for k = 1, . . . , 40 all start to plateau before
rmax = 100, and so we consider this rmax sufficiently large. We only plot the coloured curves
for k = 1, . . . , 40, to simplify the figure.

8With the lowest alpha such that the alpha complexes are connected.

28

Figure 18: Third eigenfunction at 15 January 2015 (upper) and its forward-time image at
15 April 2015 (lower).

As discussed in Subsection 5.2.1, we want to consider the first k value in a run of k
values with the same rmin(k). We take r = 96, k = 36. We repeated the experiment with
various k and rmin(k) pairs with rmin(k) around 77–81, but the resulting regions were similar
to a subset of those for r = 96, k = 36. The span of these 96 sparse vectors produced
an approximation of the original subspace with an error of 3.9%. The absolute sparsity is
3% and the relative sparsity is 19.1%. We plot the sum of the resulting sparse vectors in
Figure 22, together with their forward time image. We obtain many coherent features, as
well as some partial coherent features at the boundary. A zoom of two of the sparse vectors
highlighting two different eddies at 28 February 2015 is shown in Figure 23. The black dots
in Figure 23 indicate trajectory locations used in the construction of the dynamic Laplacian.
Note that we resolve high-resolution estimates of the eddy shapes using the finite-element
approach of [21] from lower-resolution trajectory data.

The eddy field in Figure 22 can be compared directly with a backward finite-time Lya-

29

Figure 19: Spectrum of the dynamic Laplacian for the North Atlantic dataset. Plot of λr vs
r (left) and λr/(r − 1) vs r (right).

punov exponent field in [2, Figure 10 (upper right)]. The FTLE field suggests a Gulf Stream
feature as in Figure 18 (lower) and some eddies of similar size as Figure 22; in both cases,
the FTLE field is not cleanly identifying these figures. Figure 4 [45] shows fields of encounter
volume, exact diffusivity, long-time diffusivity, and diffusive timescale at 11 January 2015 on
a domain approximately -75 to -45 degrees longitude by 35 to 42.5 degrees latitude. These
four (spatially smaller) fields can be directly compared with the corresponding part of the
larger domain in Figure 22 (upper). The three eddies highlighted in Figure 22 (upper) in the
subdomain of [45, Figure 4] appear in the latter figure to varying extents, but not as sharply
as in Figure 22. Other features one might find in [45, Figure 4] do not appear in Figure 22
(upper), possibly because they are less coherent than the many other features highlighted.
The partition produced by k-means again proved ineffective; see Figure 24.

30

Figure 20: North Atlantic negative proportion stacked bar chart

Figure 21: rmin vs number of coherent features.

31

Figure 22: Superposition vector s of the 36 most reliable features for the North Atlantic
dataset using Algorithm 3.1 with r = 96 at 15 January 2015 (upper) and its forward-time
image at 15 April 2015 plotting only final trajectory locations (lower).

32

Figure 23: Zoom of two sparse vectors produced by Algorithm 3.1 with (k, r) = (36, 96),
plotted at 28 February 2015. The black dots are locations of trajectory data used to compute
the dynamic Laplace operator.

Figure 24: Initial (left) and forward-time (right) plot of the k-means partition of state space
for the North Atlantic dataset into 37 clusters using r = 96 eigenvectors.

33

6 Discussion

We proposed a simple, powerful post-processing of the output of spectral clustering to sep-
arate individual features or clusters. Spectral clustering outputs a truncated eigenspectrum
of some Markov- or Laplace-type matrix or operator, with associated eigenbasis. Features
or clusters are encoded in the vectors of this eigenbasis, but may be mixed together within
several eigenvectors. We adapted sparse PCA methodologies to identify an approximate
sparse basis for the given eigenbasis. The use of sparsity (i) efficiently and reliably separates
individual features and (ii) produces a natural cutoff to identify those data points that do
not belong to any cluster.

Spectral clustering often relies on the existence of an eigengap to determine (i) the number
of clusters or features and (ii) where to truncate the eigenspectrum. In many situations, there
is no clear eigengap. We proposed a refinement of the standard eigengap procedure in Section
4.2.1 that takes into account the spectral structure of Markov and Laplace-type operators, to
correctly scale the eigenspectrum to allow fair comparison of gaps along the spectrum. We
further introduced vector-based heuristics in Section 4.2.2 based on the output of our sparse
eigenbasis approximation (SEBA) algorithm to suggest a good choice of the size of eigenbasis
r. As described in Section 4.2, these vector-based heuristics determine natural spatial scales,
while the eigenvalues at eigengaps determine natural temporal scales. A rejection criterion
to help determine suitable numbers of features or clusters k was proposed in Section 4.1. We
described a method for simultaneously selecting k and r in Section 5.2.1.

We believe that our techniques are a useful toolkit for general spectral clustering prob-
lems. One specific motivation was the identification of almost-invariant and coherent sets
in time-dependent nonlinear dynamical systems; in particular, simply and reliably extract-
ing many such sets and determining corresponding natural spatial and temporal scales. We
applied our techniques to three example nonlinear systems.

Firstly, the Bickley jet, which possesses a modest number of strongly coherent sets that
were easily separated and extracted using eigenfunctions of the dynamic Laplace operator. In
this example, other post-processing techniques such as k-means clustering also perform very
well. Secondly, turbulent, randomly forced Navier-Stokes flow on a 2-torus, with coherent
sets at multiple spatial scales and with no clear temporal scale separation. We identified
good combinations for the “number of coherent sets” and the “eigenbasis size” and produced
well-separated coherent sets through the superposition vector s. In contrast, post-processing
methods such as k-means performed poorly, as expected for the situation where much of the
phase space should not be classified as coherent. Thirdly, we analysed trajectory data in
the North Atlantic Ocean derived from satellite altimetry. We found a large separation of
natural spatial scales with a jump from scales commensurate with the entire ocean basin, to
features around one degree of longitude across. Leading eigenvectors identified the Gulf of St
Lawrence as a coherent set strongly dynamically disconnected from the rest of the domain,
and the Gulf Stream as a persistent large-scale coherent transport barrier. No intermediate
scales were identified; the next natural spatial scale occurred at the scale of mesoscale eddies,
at which we identified numerous eddies.

34

7 Acknowledgements

The authors would like to thank Anthony J. Roberts for suggesting sparse PCA as a possibly
useful methodology at a workshop in Blackheath in 2017, Mohammad Farazmand and Alireza
Hadjighasem for providing the transition matrix used in Section 5.2, and Irina Rypina for
providing the AVISO trajectory data used in Section 5.3. GF is partially supported by an
ARC Discovery Project, CPR is supported by an Australian Government Research Training
Program Scholarship, and KS is supported by an ARC Discovery Project.

A Code

A.1 MATLAB code for Algorithm 3.1

function S=SEBA(V)

%V is pxr matrix (r vectors of length p as columns , assumed orthonormal)

%S is pxr matrix with columns approximately spanning the column space of V

[V,~]=qr(V,0); %Enforce orthonormality

[p,r]=size(V);

mu =0.99/ sqrt(p);

S=zeros(size(V));

Rnew=speye(r); %Initialise rotation

R=0;

while norm(Rnew -R) >1e-14 %tolerance may be decreased

R=Rnew;

Z=V*R';
%Thresholding to solve sparse approximation problem

for i=1:r

S(:,i)=sign(Z(:,i)).*max(abs(Z(:,i))-mu ,0);

S(:,i)=S(:,i)/norm(S(:,i));

end

%Polar decomposition to solve Procrustes problem

[P,~,Q]=svd(S'*V,0);
Rnew=P*Q';

end

%Choose correct parity of vectors and scale so largest value is 1.

for i=1:r

S(:,i)=S(:,i)*sign(sum(S(:,i)));

S(:,i)=S(:,i)/max(S(:,i));

end

%Sort so that most reliable vectors appear first (starting with column 1

in S).

[~, I] = sort(min(S), 'descend ');
S = S(:, I);

35

A.2 MATLAB code for Algorithm 4.1

function [S,A,taupu] = subpartition_unity(S)

%SUBPARTITION_UNITY Apply hard thresholding to obtain a sub -partition of

% unity from the columns of S. Also create a maxmimum -likelihood

% sub -partition.

S=max(S,0); % Take non -negative part

S_descend=sort(S,2,'descend '); % Sort each row in descending order

S_sum=cumsum(S_descend ,2); % Must be <=1 for partition of unity

taupu=max([S_descend(S_sum >1) ;0]); % Largest element where row sum > 1

S(S<=taupu)=0; % Apply hard thresholding

[M,A]=max(S,[],2); % Find column with largest element , by row

A(M==0) =0; % Suppress zero rows

A.3 MATLAB code for Algorithm 4.2

function [S,A,taudp] = disjoint_support(S)

%DISJOINT_SUPPORT Apply hard thresholding to obtain disjoint supports for

% the columns of S. Also create a maximum -likelihood sub -partition.

S=max(S,0); % Take non -negative part of S

S_descend=sort(S,2,'descend '); % Sort to find largest element in each row

taudp=max(S_descend (:, 2)); % Take largest non -leading element

S(S<=taudp)=0; % Apply hard thresholding

[M,A]=max(S,[] ,2); % Find column with largest element , by row

A(M==0)=0; % Suppress zero rows

A.4 MATLAB code for producing a “natural spatial scales” plot
of (k, r) combinations

function SpatialScalesPlot(V)

%V is pxR matrix (r vectors of length p as columns , assumed orthonormal)

R=size(V,2);

column_minima=nan(R-1,R);

for i=1:R-1

S=SEBA(V(:,1:i+1)); % Column minima are in descending order

column_minima(i,1:i+1)=-min(S);

end

minimum_sums=cumsum(column_minima ,2);

[~,best_r]=min(minimum_sums);

cla reset;

plot(best_r (1:R)+1,(1:R),['o','-'],'Color ','k','MarkerSize ',4,...

36

'MarkerFaceColor ','k');% Plot best r for each k=1,..,r

A.5 MATLAB code for producing a “stacked” sparse vector min-
imum value plot

Note that the first seven lines coincide with the code in Section A.4, so these lines need not
be recomputed if one is creating both plots.

function MinValStackedPlot(V,kmax)

%V is pxR matrix (r vectors of length p as columns , assumed orthonormal)

%kmax is number of lines to output , assumed <= R

R=size(V,2);

column_minima=nan(R-1,R);

for i=1:R-1

S=SEBA(V(:,1:i+1)); % Column minima are in descending order

column_minima(i,1:i+1)=-min(S);

end

minimum_sums=cumsum(column_minima ,2);

[best_sum ,best_r]=min(minimum_sums);

cla reset; hold on

for j=1: kmax

iStart=max(j-1,1);

plot(iStart +1:R,minimum_sums(iStart:R-1,j),'o-',...
'MarkerSize ',2,'Linewidth ' ,1.5);

end

plot(best_r (1: kmax)+1,best_sum (1: kmax),'kd','MarkerSize ',4,...
'MarkerFaceColor ','k');% Plot best r for each k

plot ([2 ,2: kmax],minimum_sums ([1,R:R:R*(kmax -1)]),'k:',...
'MarkerSize ' ,2.5) % Plot upper envelope

hold off

B Proof that the expression (2) can be minimised as

outlined in Section 4.4

We wish to solve problem (3), which is equivalent to problem (2). We can apply the same
alternating optimisation scheme as in Section 3. With fixed S ′, problem (3) is the same as
problem (1) with V replaced with V ′ and S replaced with S ′. This can be solved using Step
2 of Algorithm 3.1.

With fixed R, we use the property of the (weighted) Frobenius norm that ‖A‖F,ν =
‖AR‖F,ν for every matrix A ∈ Rp×r and orthogonal R ∈ Rr×r. To see this, note that
‖A‖2F,ν = Trace(A>DνA), so

‖A‖2F,ν = Trace(A>DνA(RR>)) = Trace(R>A>DνAR) = ‖AR‖2F,ν .

37

This lets us reformulate problem (3), for fixed R, as

arg min
S′∈Up,r

1

2
‖V ′R> − S ′‖2F + µ‖D

1
2
ν S
′‖1,1 = arg min

S′∈Up,r

r∑
j=1

1

2
‖Zj − S ′j‖22 + µ‖D

1
2
ν S
′
j‖1, (7)

where Zj is the jth column of V ′R> and S ′j is the jth column of S ′. Since ‖Zj‖2 = ‖S ′j‖2 = 1,
we have ‖Zj − S ′j‖2 = ‖Zj‖2 + ‖S ′j‖2 − 2Z>j S

′
j = 2 − 2Z>j S

′
j, so problem (7) is equivalent

to arg maxS′∈Up,1 Z
>
j S
′
j − µ‖D

1/2
ν S ′j‖1. By a slight modification of equations (5)-(7) in [37],

taking p = 1, A = Z>j and x = 1 and replacing γ‖z‖1 with
∑n

i=1 µν
1/2
i |zi|, it can be shown

that our problem (7) is solved for each j by setting S ′j = C ′µ,ν((V
′R>)j)/‖C ′µ,ν((V ′R>)j)‖2,

exactly as in Step 3 of Algorithm 3.1 with V replaced with V ′ and Cµ replaced with C ′µ,ν .

Lastly, we prove that C ′µ,ν(D
1/2
ν z) is nonzero for every z ∈ Rp with ‖z‖2,ν = 1, if and only

if µ < 1/
√
‖ν‖1. We start by showing that if µ < 1/

√
‖ν‖1 then C ′µ,ν(D

1/2
ν z) is nonzero for

every z ∈ Rp with ‖z‖2,ν = 1. To see this, choose any such z, then

1 = ‖z‖2,ν =

√√√√ p∑
i=1

νiz2i ≤

√√√√ p∑
i=1

νi max
1≤j≤p

zj =
√
‖ν‖1 max

1≤j≤p
zj.

That is, there is some index j with zj ≥ 1/
√
‖ν‖1. Recalling that νi > 0 for every i = 1, . . . , p,

µ < 1/
√
‖ν‖1 implies |ν1/2j zj| − µν1/2j > 0, i.e. the jth element of C ′µ,ν(D

1/2
ν z) is nonzero

as required. To prove the reverse direction, note that the vector c ∈ Rp with every element
equal to 1/

√
‖ν‖1 has ‖c‖2,ν = 1. But for µ ≥ 1/

√
‖ν‖1, |ν1/2i ci| − µν

1/2
i ≤ 0 for every

i = 1, . . . , p, so C ′µ,ν(D
1/2
ν c) = 0, and the proof is complete.

References

[1] https://www.aviso.altimetry.fr/en/data.html and http://marine.copernicus.eu/.

[2] S. Balasuriya, N. T. Ouellette, and I. I. Rypina. Generalized Lagrangian coherent
structures. Physica D, 372:31–51, 2018.

[3] R. Banisch and P. Koltai. Understanding the geometry of transport: Diffusion maps
for Lagrangian trajectory data unravel coherent sets. Chaos, 27(3):035804, 2017.

[4] T. Berry and T. Sauer. Spectral clustering from a geometrical viewpoint. Technical
report, 2015.

[5] A. d’Aspremont, F. Bach, and L. El Ghaoui. Optimal solutions for sparse principal
component analysis. J. Mach. Learn. Res., 9:1269–1294, 2008.

[6] A. d’Aspremont, L. El Ghaoui, M. Jordan, and G. Lanckriet. A direct formulation for
sparse PCA using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

38

http://marine.copernicus.eu/

[7] D. del-Castillo-Negrete and P. J. Morrison. Chaotic transport by Rossby waves in shear
flow. Physics of Fluids A: Fluid Dynamics, 5(4):948–965, 1993.

[8] M. Dellnitz and O. Junge. On the approximation of complicated dynamical behavior.
SIAM Journal on Numerical Analysis, 36(2):491–515, 1999.

[9] A. Denner, O. Junge, and D. Matthes. Computing coherent sets using the Fokker-Planck
equation. Journal of Computational Dynamics, 3(2):163–177, 2016.

[10] P. Deuflhard and C. Schütte. Molecular conformation dynamics and computational
drug design. In Applied Mathemetics Entering the 21st Century. Proceedings ICIAM,
pages 91–119, 2004.

[11] P. Deuflhard and M. Weber. Robust Perron cluster analysis in conformation dynamics.
Linear Algebra and its Applications, 398:161–184, 2005.

[12] D. L. Donoho. For most large underdetermined systems of linear equations the minimal
1-norm solution is also the sparsest solution. Communications on Pure and Applied
Mathematics, 59(6):797–829, 2006.

[13] M. Farazmand and G. Haller. Attracting and repelling Lagrangian coherent structures
from a single computation. Chaos, 23(2):023101, 2013.

[14] G. Froyland. Statistically optimal almost-invariant sets. Physica D, 200(3):205–219,
2005.

[15] G. Froyland. An analytic framework for identifying finite-time coherent sets in time-
dependent dynamical systems. Physica D, 250:1–19, 2013.

[16] G. Froyland. Dynamic isoperimetry and the geometry of Lagrangian coherent structures.
Nonlinearity, 28(10):3587–3622, 2015.

[17] G. Froyland and M. Dellnitz. Detecting and locating near-optimal almost-invariant sets
and cycles. SIAM Journal on Scientific Computing, 24(6):1839–1863, 2003.

[18] G. Froyland, C. Horenkamp, V. Rossi, N. Santitissadeekorn, and A. Sen Gupta. Three-
dimensional characterization and tracking of an Agulhas ring. Ocean Modelling, 52-
53:69–75, 2012.

[19] G. Froyland, C. Horenkamp, V. Rossi, and E. van Sebille. Studying an Agulhas ring’s
long-term pathway and decay with finite-time coherent sets. Chaos, 25(8):083119, 2015.

[20] G. Froyland and O. Junge. On fast computation of finite-time coherent sets using radial
basis functions. Chaos, 25(8):087409, 2015.

[21] G. Froyland and O. Junge. Robust FEM-based extraction of finite-time coherent sets us-
ing scattered, sparse, and incomplete trajectories. SIAM Journal on Applied Dynamical
Systems, 17(2):1891–1924, 2018.

39

[22] G. Froyland, O. Junge, and P. Koltai. Estimating long-term behavior of flows with-
out trajectory integration: The infinitesimal generator approach. SIAM Journal on
Numerical Analysis, 51(1):223–247, 2013.

[23] G. Froyland and P. Koltai. Estimating long-term behavior of periodically driven flows
without trajectory integration. Nonlinearity, 30(5):1948–1986, 2017.

[24] G. Froyland and E. Kwok. A dynamic Laplacian for identifying Lagrangian coherent
structures on weighted Riemannian manifolds. Journal of Nonlinear Science, Jun 2017.

[25] G. Froyland, S. Lloyd, and N. Santitissadeekorn. Coherent sets for nonautonomous
dynamical systems. Physica D, 239(16):1527–1541, 2010.

[26] G. Froyland, K. Padberg, M. H. England, and A. M. Treguier. Detection of coherent
oceanic structures via transfer operators. Phys. Rev. Lett., 98:224503, 2007.

[27] G. Froyland and K. Padberg-Gehle. Almost-invariant and finite-time coherent sets: di-
rectionality, duration, and diffusion. In W. Bahsoun, C. Bose, and G. Froyland, editors,
Ergodic Theory, Open Dynamics, and Coherent Structures, pages 171–216. Springer,
2014.

[28] G. Froyland, N. Santitissadeekorn, and A. Monahan. Transport in time-dependent
dynamical systems: Finite-time coherent sets. Chaos, 20(4):043116, 2010.

[29] G. Froyland, R. M. Stuart, and E. van Sebille. How well-connected is the surface of the
global ocean? Chaos, 24(3):033126, 2014.

[30] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, and G. Haller. A crit-
ical comparison of Lagrangian methods for coherent structure detection. Chaos,
27(5):053104, 2017.

[31] A. Hadjighasem, D. Karrasch, H. Teramoto, and G. Haller. Spectral-clustering approach
to Lagrangian vortex detection. Phys. Rev. E, 93:063107, 2016.

[32] J. Han, K. Xiong, and F. Nie. Orthogonal and nonnegative graph reconstruction for
large scale clustering. In Twenty-Sixth International Joint Conference on Artificial
Intelligence, pages 1809–1815, 2017.

[33] Z. Hu, G. Pan, Y. Wang, and Z. Wu. Sparse principal component analysis via rota-
tion and truncation. IEEE Transactions on Neural Networks and Learning Systems,
27(4):875–890, 2016.

[34] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters,
31(8):651–666, 2010.

[35] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1988.

40

[36] I. T. Jolliffe, N. T. Trendafilov, and M. Uddin. A modified principal component
technique based on the LASSO. Journal of Computational and Graphical Statistics,
12(3):531–547, 2003.

[37] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method
for sparse principal component analysis. J. Mach. Learn. Res., 11:517–553, 2010.

[38] D. Karrasch and J. Keller. A geometric heat-flow theory of Lagrangian coherent struc-
tures. arXiv e-print, 2016.

[39] L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. In Reports of
the Faculty of Technical Mathematics and Informatics. Delft University of Technology,
1987.

[40] P. Koltai. A stochastic approach for computing the domain of attraction without tra-
jectory simulation. Disc. Cont. Dynam. Sys., Supplement, page 854–863, 2011.

[41] M. Lee, J. Lee, H. Lee, and N. Kwak. Membership representation for detecting block-
diagonal structure in low-rank or sparse subspace clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1648–1656, 2015.

[42] C. Lu, S. Yan, and Z. Lin. Convex sparse spectral clustering: Single-view to multi-view.
IEEE Transactions on Image Processing, 25(6):2833–2843, 2016.

[43] K. Padberg-Gehle and C. Schneide. Network-based study of Lagrangian transport and
mixing. Nonlinear Processes in Geophysics, 24(4):661–671, 2017.

[44] I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Koçak, M. J. Olascoaga, and I. A.
Udovydchenkov. On the Lagrangian dynamics of atmospheric zonal jets and the per-
meability of the stratospheric polar vortex. Journal of the Atmospheric Sciences,
64(10):3595–3610, 2007.

[45] I. I. Rypina, S. G. Llewellyn Smith, and L. J. Pratt. Connection between encounter vol-
ume and diffusivity in geophysical flows. Nonlinear Processes in Geophysics, 25(2):267–
278, 2018.

[46] K. L. Schlueter-Kuck and J. O. Dabiri. Coherent structure colouring: identification of
coherent structures from sparse data using graph theory. Journal of Fluid Mechanics,
811:468–486, 2017.

[47] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural Comput., 10(5):1299–1319, 1998.

[48] M. A. Stremler, S. D. Ross, P. Grover, and P. Kumar. Topological chaos and periodic
braiding of almost-cyclic sets. Physical Review Letters, 106(11):114101, 2011.

41

[49] C. A. Sugar, L. A. Lenert, and R. A. Olshen. An application of cluster analysis to
health services research: empirically defined health states for depression from the SF-
12. Technical Report 203, Stanford University, 1999.

[50] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–
416, 2007.

[51] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dif-
ferentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung).
Mathematische Annalen, 71(4):441–479, 1912.

[52] M. O. Williams, I. I. Rypina, and C. W. Rowley. Identifying finite-time coherent sets
from limited quantities of Lagrangian data. Chaos, 25(8):087408, 2015.

[53] S. X. Yu and J. Shi. Multiclass spectral clustering. In Proceedings of the Ninth IEEE
International Conference on Computer Vision-Volume 2, page 313, 2003.

[54] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of
Computational and Graphical Statistics, 15(2):265–286, 2006.

42

	1 Introduction
	2 Background
	2.1 Separation of spectral clustering output by hard clustering
	2.2 Sparse principal component analysis
	2.3 Markov- and Laplace-type operators arising in nonlinear dynamics

	3 Sparse eigenbasis approximation
	4 Using the SEBA Algorithm 3.1
	4.1 Ordering the sparse vectors in terms of ``reliability''
	4.2 Selecting an appropriate number of input vectors
	4.2.1 Heuristics based on the spectrum
	4.2.2 A heuristic based on sparse vectors

	4.3 Extraction of a (sub)-partition from a sparse basis output
	4.4 Weighting entries of the data vectors

	5 Examples
	5.1 Bickley jet
	5.2 Turbulent flow
	5.2.1 A sparse vector heuristic for simultaneously selecting the number of input vectors r and number of features k
	5.2.2 Extraction of a subpartition from sparse vector output
	5.2.3 Extraction of a partition with k-means

	5.3 North Atlantic surface currents

	6 Discussion
	7 Acknowledgements
	A Code
	A.1 MATLAB code for Algorithm 3.1
	A.2 MATLAB code for Algorithm 4.1
	A.3 MATLAB code for Algorithm 4.2
	A.4 MATLAB code for producing a ``natural spatial scales'' plot of (k,r) combinations
	A.5 MATLAB code for producing a ``stacked'' sparse vector minimum value plot

	B Proof that the expression (2) can be minimised as outlined in Section 4.4

