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Statement on the Revisions and Responses to Reviewing Comments 

 

The reviewing comments have been carefully studied. They are very constructive and helpful 

for us to revise and improve our paper. Accordingly, the revisions were made. To be clear, the 

manuscript was revised in the format of modification tracing. The main revisions in the paper and 

the point-to-point response to the reviewing comments are as follows: 

 

Responses to Reviewer #1: 

1.1. Comments: The authors present a new method for computing the extreme value response 

of systems excited by Poisson white noise. The computation of the time-varying extreme value 

response is a challenging task and not many methods are available to deal with this this problem. 

The method presented by the authors consists in forming an augmented Markov vector process 

by combining the extreme value process and the system state. The joint pdf of this vector is 

computed by path integration. These are rather standard techniques, however applied to a new and 

challenging problem, and they are limited to low dimensional state vectors. 

In summary, the paper is acceptable and adequate for the journal, but there are several minor 

corrections that have to be carried out. Most of them concern language and grammar issues.  

Response: Thanks a lot for the positive comments. 

1.2. Comments: Page 2: "trucks" instead of "tracks", "airplane" instead of "airplanes", "the 

response" instead of "response", Kolmogorov equations" instead of "Kolmogorov equation", 

"numerical methods" instead of "the numerical methods", "are available in" instead of "available". 

"Such a treatment is inconvenient": Give a justification! 

Response: Thanks for the reminding. The language expression has been modified accordingly. 

A justification of the drawback of absorbing boundary condition method has been given in the end 

of the 2nd paragraph of Sec.1. 

*Detailed Response to Reviewers
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1.3. Comments: Page 3: "errors" instead of "error", "is then elaborated" instead of "are then 

elaborated". 

Response: Thanks for the reminding. The language expression has been modified accordingly. 

1.4. Comments: Page 4: "Heaviside" instead of "Heaviside's". 

Response: Thanks for the reminding. The language expression has been modified in the paper. 

1.5. Comments: Examples: Please indicate the deviation of the Poisson excitation from a 

Gaussian white noise excitation and also that of the response and the extreme values from those 

obtained by a comparable Gaussian excitation. Justify the choice of the values for lambda.  

Response: To make it clear, the difference between Gaussian white noise excitation and 

Poisson excitation and the response are visualized by showing two typical samples of the Poisson 

excitation in the newly added Fig. 13 in Example 4. Because the Gaussian white noise is well known, 

it is not shown here. It is seen clearly from Fig. 13 that in the compound Poisson process are stepwise 

and thus the Poisson white noise is discrete spikes, which is quite different from the white noise. 

For Poisson white noise excitation, the rate  is a finite value, such as  which is taken in 

the examples in the paper. When the rate , and , the Poisson white noise excitation 

becomes Gaussian white noise.  

1.6. Comments: Conclusion: Please rewrite the following statement "programming can be 

processed to have higher numerical storage and computational efficiency". 

Response: Thanks for the reminding. The Ref.[36] has been added behind the Sec.4. (Chen JB, 

Lyu MZ. A new approach for the time-variant probability density function of the maximum value 

of a Markov process. Physica A, 2019 (under review).) The numerical technology has also been 

mentioned in the 2nd last paragraph of Sec.4 and has been elaborated in detail in Ref.[36]. Therefore, 

the numerical technology will not be repeated to avoid lengthiness.  

Again, thank you for your positive and constructive comments, especially for the details to be 

corrected. 
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Responses to Reviewer #2: 

2.1. Comments: The present paper investigates the evaluation of the probability density 

function (PDF) of the time-variant extreme value process for a dynamical system driven by Poisson 

White Noise.  

The authors propose a method based on the "augmented Markov vector" (AMV) process for 

the PDF which combines the extreme value process and its underlying response process. 

The Path Integral Solution is used to evaluate the joint probability density of the AMV. 

The topic of the paper is interesting and the presented results show the efficiency of the 

numerical procedure; however some comments arise.   

Response: Thanks a lot for the positive comments. 

2.2. Comments: In the reviewer opinion the section 2 related to the Poisson White Noise 

excitation is recurring and not so clear. In particular: 

- Eq.5 is not clear; some more explanatory comments have to be added. 

- The definition of <DELTA>WP(t) is reported before Eq.5 and after Eq.8. 

Response: Thanks for the reminding. Eq.(5) has been modified, and more explanatory has 

been added after Eq.(5). The definition of  after Eq.(8) has been deleted. 

2.3. Comments: The sentence "monotonous in the sense of sample" in section 3 is not clear. 

Response: Thanks for the reminding. More explanatory has been added after Eq.(10). 

2.4. Comments: Some more comments concerning the augmented vector process and its 

property of Markovian process could be added. 

Response: Thanks for the reminding. More explanatory has been added in the last paragraph 

of Sec.3. 

2.5. Comments: An effort with some more comments on the cited procedure to implement the 
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PIS could be help the reader. 

Response: Thanks for the reminding. The numerical technology has been mentioned in the 2nd 

last paragraph of Sec.4 and has been elaborated in detail in Ref.[36]. (Chen JB, Lyu MZ. A new 

approach for the time-variant probability density function of the maximum value of a Markov 

process. Physica A, 2019 (under review).) Therefore, the numerical technology has not been 

repeated to avoid lengthiness. For clarity, we added the reference. 

2.6. Comments: Several numerical examples with different distributions for the Compound 

Poisson Noise are considered and results are reported for different expressions provided for the 

transition probability density. The section 5 appears again repetitive. In all the reported figures the 

axis label is "P" which maybe stands for "PDF" Is it correct? However some graphics show the CDF.  

Response: Thanks for the reminding. In all the reported figures, the axis label ‘P’ stands for 

‘probability’, and ‘p’ for ‘probability density’. Considering that the two symbols are easily 

confusing, the axis label ‘CDF’ is used to stand for ‘probability’, and ‘PDF’ for ‘probability density’ 

in all the figures of the modified version. 

2.7. Comments: Moreover I suggest that the authors have to read carefully the final version of 

the manuscript in order to always have grammatically correct English. Many errors and misprints 

are present. 

Response: Thanks for the reminding. The grammar and spelling errors in the paper has been 

modified furtherly. 

2.8. Comments: On the understanding that the authors will elaborate the manuscript 

complying with the arised points, the paper could be considered for publication in Communications 

in Nonlinear Science and numerical simulations. 

Response: Thanks a lot for the positive comments. 

We appreciate your constructive and kind suggestions which help us to improve our statements 

greatly. 
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Responses to Reviewer #3: 

3.1. Comments: The extreme value distribution is very important in various science and 

engineering fields, especially for the systems driven by Poisson white noise. However, it is very 

difficult to obtain such information either by analytical or numerical methods. In the present 

manuscript, a novel method was proposed. The basic idea is to introduce an auxiliary extreme value 

process, and then an augmented vector process combining the extreme value process and the state 

variables was constructed and proved to be Markov. The Chapman-Kolmogorov equation was thus 

advocated and facilitated by the path integral solution. Several examples were exemplified in detail, 

showing the effectiveness of the proposed method by comparing with the Monte Carlo simulation. 

In particular, the jumps/discontinuity in PDF of extreme value can be captured. 

Response: Thanks a lot for the positive comments. 

3.2. Comments: In the third line of the second paragraph of the Introduction, the author 

mentioned that "It is difficult to capture the analytical solution of its PDF, but the numerical results 

can be obtained by solving the Kolmogorov-Feller equation or the corresponding integral equation, 

Chapman-Kolmogorov equation using the numerical method, e.g. the finite element method…… ". 

Here, I would suggest the update the literature to include J. Appl. Mech 84(9), 091004 (Jul 12, 

2017) ，doi: 10.1115/1.4037158; J of Comp Phys（2019），https://doi.org/10.1016/j.jcp.2019.05.023. 

Response: Thanks for the reminding. Two suggested references have been added in Sec.1 as 

Refs.[7] and [15]. These references are very valuable in this field, and closely relevant to the present 

paper. 

3.3. Comments: The manuscript is on the whole well organized with innovations. The 

reviewer believe it will be a valuable contribution to the literature and can be accepted for 

publication. 

Response: Thanks a lot for the positive comments. 

Great thanks to you for your valuable suggestions that make our paper more completed. 
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Taking this opportunity, we also smooth the manuscript thoroughly once again. In the modified 

version, all the figures have been regenerated, and 106 samples in Monte-Carlo simulation have 

been taken for each example to compare with the proposed method in more detailed in the tail of 

PDF. 

In summary, encouraged by reviewers and distinguished editor to revise our previous 

manuscript, we did our best to improve it and completed some changes in the revision. These 

changes improve our paper greatly. All responses on the reviewing comments are listed above after 

our careful discussions. We hope the revisions and responses meet the reviewing comments. Once 

again, thank the reviewers very much for the constructive comments and suggestions. 
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ABSTRACT 

The probability density function (PDF) of the time-variant extreme value process for structural 

responses is of great importance. Poisson white noise excitation occurs widely in practical 

engineering problems. The extreme value distribution of the response of systems excited by Poisson 

white noise processes is still not yet readily available. For this purpose, in the present paper, a novel 

method based on the augmented Markov vector process for the PDF of the time-variant extreme 

value process for a Poisson white noise driven dynamical systems is proposed. Specifically, the 

augmented Markov vector (AMV) process is constructed by combining the extreme value process 

and its underlying response process. Then the joint probability density of the AMV can be evaluated 

by solving the Chapman-Kolmogorov Equation, e.g., via the path integral solution (PIS). Further, 

the PDF of the time-variant extreme value process is obtained, which and can be used, say, to 

estimate the dynamic reliability of a stochastic system. FinallyFor the purpose of illustration and 

verification, several numerical examples are illustrated studied and compared with Monte Carlo 

solution. Problems to be further studied are also discussed. 
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1 Introduction 

Poisson white noise excitations are not uncommon in science and engineering fields. In many 

practical problems, the dynamical systems of concern are usually enforced by pulse excitations 

which occurs sparsely with occurrence time and intensity being random. Poisson white noise 

processes are reasonable models in these cases, e.g., highway bridges under traffic loads [1,2], 

vehicles or truacks traveling on rough roads [3], buffeting airplanes tails [4], and earthquake excited 

structures [5], etc. 

The probability density function (PDF) of the response for of stochastic dynamical systems 

enforced by Poisson white noise processes satisfies a class of generalized Kolmogorov equations, 

i.e., the Kolmogorov-Feller equation. It is difficult to capture the analytical closed-form solution of 

its PDF, but the numerical results can be obtained by solving the Kolmogorov-Feller equation or the 

corresponding integral equation, Chapman-Kolmogorov equation using the numerical methods, e.g., 

the finite element method [6,7], the spectral finite difference method [78], the stochastic averaging 

method [89], the complex fractional moments method [910], the generalized cell mapping method 

[110], and the path integral method [121-153], etc. Further, if the first-passage reliability for in terms 

of a certain specified threshold is of interest, an absorbing boundary condition can be applied 

imposed on the differential or integral equation that the PDF satisfies, namely, the probability 

density evolution equation, to yield the remaining probability density [164-186]. However, if the 

threshold is time variant, say due to the deterioration of materials in the long service life [197], or 

the reliability for in terms of different thresholds is of concern, such treatment is not convenient. 

The remaining probability density needs to be calculated again and againrepeatedly under 

eachcorresponding absorbing boundary condition for different thresholds, which consumes 

prohibitively large computational efforts will take a huge calculation cost. 

An alternative approach for the first-passage reliability is to capture the probability distribution 

of the extreme value (e.g., maximum value, minimum value, and or absolute maximum value) of 

the response in a certain specified time period. For a long time gGreat challenges exist in, and 

intensive efforts have been devoted to the extreme value distributions (EVD) for long time 
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[1820,1921]. The limit or asymptotic distributions of random sampling/sequences in different cases 

were studied and available in literature [220]. However, even much less understanding has been 

achieved for the EVD of stochastic processes in continuous time domain. Only some very special 

results were achieved for some particular stochastic processes [21-23-25]. Alternatively, some 

approximate approaches were studied based on the level-crossing process theory. However, in the 

level-crossing process theory, needed in the Rice formula is the joint probability density of the 

stochastic process and its derivative [264], which is usually unavailable for practical non-linear 

stochastic dynamical systems [275,286]. Besides, the assumptions on the property of crossing-

events usually leads to extra errors. To circumvent the difficulties, a new approach was developed 

based on the probability density evolution method (PDEM) [286,297], by which the EVD can be 

evaluated through constructing a virtual stochastic process and calculating the PDF of its equivalent 

extreme-value event by PDEM [2830]. The structural system dynamic reliability can then be 

captured [2931]. However, the equivalent extreme-value event is constructed for a certain specified 

time interval. If the time-variant reliability is of interest, the equivalent extreme-value events for 

different time intervals should be constructed and thus huge computational costs are needed. 

Besides the above approaches, for the purpose of capturing EVD, an extreme value process of 

a stochastic process, i.e., the value of this new process is the extreme value of the underlying 

stochastic process during the time interval from the initial time to the present time of concern, can 

be defined. Clearly, an extreme value process is, in the sense of sample, non-decreasing monotonous. 

As a result, the EVD of an extreme value process is of coursecertainly also time variant. Once this 

time-variant EVD is available analytically or numerically, then on the one hand, it is not limited to 

a specified time interval, and on the other handmoreover, it is not limited to the specified constant 

threshold. However, capturing the analytical solution of PDF of the time-variant extreme value 

process is still  difficult. Monte Carlo simulation (MCS), usually regarded as the final choice, is 

useful to obtain the EVD for systems of relatively low dimensions by numerically solving the Itô 

stochastic differential equation for each sample [320-353]. But the computational cost for MCS is 

necessarily usually very high to ensure required accuracy. The augmented Markov vector process 

incorporated with the path integration solution (PIS) provides an alternative approach for solving 

the PDF of the time-variant extreme value process, and shows the effectiveness for low-dimensional 

stochastic dynamical systems enforced by Gaussian white noise [364]. 
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Based on the above research, in this paper, the time-variant extreme value process of response 

of stochastic dynamical systems response enforced by Poisson white noise is investigated. Although 

the time-variant extreme value process is not Markovian, an augmented Markov vector (AMV) 

process is constructed by combining the time-variant extreme value process and the underlying 

Markov response process. The numerical solution method via PIS based on the Chapman-

Kolmogorov equation are is then elaborated. Several examples, including linear and non-linear, one-

dimensional and multi-dimensional systems, are illustrated, showing the effectiveness of the 

proposed method. Problems to be further studied are also discussed. 

 

2 Poisson white noise excitation 

A Poisson white noise, , can be defined as [375] 

  (1) 

in which  is a Poisson point process with the rate , i.e. ;  is Dirac’s 

delta function;   is the  -th realization of the Poisson random events; 

 , where   are the time intervals between two adjacent Poisson 

random events, and they are independent random variables following exponential distribution with 

the mean value , i.e. ;  are another set of random variables 

which have independent and identically distributions, and they are also independent to  and can 

may have follow arbitrary known distribution whose PDF is denoted as . 

For clarity, firstly Cconsider a one-dimensional process   enforced by Poisson white 

noise. The equation of motion can be written as 

  (2) 

where   is a deterministic function. Eq.(2)(2) can be rewritten into a stochastic differential 

equation 

设置了格式: 字体颜色: 蓝色
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  (3) 

in which  is a compound Poisson process, i.e. 

  (4) 

where   is the Heaviside’s’s unit step function, i.e.,   and 

. 

Denote , where  is an arbitrary small time increment 

at time instant . According to the Poisson assumption, there is  

  (5) 

Wwhich means that if the Poisson event occur in the time interval , the increment  is 

a random variable with the distribution  ; otherwise, the value of   is zero. 

andTherefore, there is  , where   denotes the probability of 

event. In Eq.(5)(5),  is a random variable whose with PDF is . Therefore, if , 

the probability that the value of  will still be  is , and the probability that 

it will change to be  is . Hence, the process  is Markovian, and its transition 

probability density (TPD) for small values of time increment  can be written as 

  (6) 

Further, it is easy to verify that the process  driven by Eq.(3)(3) is Markovian, and its 

PDF satisfies the Chapman-Kolmogorov equation, namely 

  (7) 

in which  is an arbitrary time increment;  is the transition probability density 

conditional on . According to Eq.(3)(3), for an arbitrary small time increment , we 

have 
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  (8) 

in which  . According to the definition of compound Poisson 

process, the probability of  , which means   is 

deterministic, is  ; the probability of   is   when 

  is a random variable. Therefore, the TPD of   can be 

written as [132] 

  (9) 

Once the TPD of  is known, the PDF of  can be calculated according to Eq.(7)(7) 

step by step, which is the so-called path integral method [121]. 

 

3 The time-variant extreme value process and augmented Markov vector 

process 

Consider a one-dimensional stochastic process . Define the time-variant extreme value 

process as 

  (10) 

in which  denotes the extreme value of the bracketed quantity, which can be the maximum, 

the minimum, or the maximum absolute value, etc., depending on the practical issues of concern. It 

is easy to know that  is also a stochastic process which is monotonous in the sense of sample. 

For instance, if  is the maximum or maximum absolute value process, one arbitrary sample 

of  is monotoneically undiminishednon-decreasing; if  is the minimum value process, 

one arbitrary sample of  is monotoneically non-increasing incremental. 

Such a time-dependent extreme value is of great significance in sciences and engineering fields. 

For instance, the excursion (first-passage) problem is widely encountered. In this case, the 

probability without any excursion (reliability) of the system is 

  (11) 
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If  is defined as the maximum value process of , namely 

  (12) 

then the reliability function is given by 

  (13) 

in which  is the PDF of process . A differentiation of the failure probability function, 

which is the complementary of reliability function, in terms of time will yield further the PDF of 

the first excursion time [386]. 

UnfortunatelyHowever, as discussed in the preceding section, for a general process, it is 

difficult to obtain the analytical closed-form solution of the PDF of its time-variant extreme value 

process, except several very special conditions [164, 37-39-41]. HoweverFortunately, its PDF can 

be evaluated numerically, which is the main task of the present paper. 

If   is a Markov process, the probabilistic information of   for an 

infinitesimal time increment   depends only on the information of   and  . For 

instance, for the maximum value process , there is 

  (14) 

Therefore, the time-variant extreme value process  itself is not Markovian. 

However, an augmented vector process  can be constructed. It is known from 

Eq.(14)(14) that the probabilistic information of  only depends only on 

that of . Thus, according to the definition of Markov process, it is easy to know that 

the augmented vector process  is Markovian. Though the analytical solution for the 

augmented Markov vector (AMV) process is still unavailable for general problems, numerical 

methods are feasible and will be elaborated in the following sections. 

 

4 The path integral solution of probability density function of the augmented 

Markov vector process 

设置了格式: 字体颜色: 蓝色
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4.1 The extreme value process of a scalar process 

According to the Markov property of the augmented vector process , its joint 

PDF can be captured numerically using PIS by the Chapman-Kolmogorov equation, i.e. 

  (15) 

in which  is the joint PDF of  ;  is an arbitrary small time 

increment. According to Eq.(10)(10), the initial condition can be written specified as 

  (16) 

where  is the PDF of . If the initial value of the process  is deterministic, 

e.g., , then . Therefore, once the TPD  

is known,  can be solved step by step numerically by Eq.(15)(15). 

When the joint PDF  is obtained, the PDF of the time-variant extreme value 

process  can be further obtained by 

  (17) 

Simultaneously, the PDF of  can also be obtained as a marginal PDF 

  (18) 

According to the theorem of total probability, the TPD  can be given 

by 

  (19) 

where  is denotesd as the probability density of  conditional on 

. Specifically, if   is the maximum value process of process 

 as defined in Eq.(12)(12), then according to Eq.(14)(14), there are two different cases to be 
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considered: (1) if , there is ; (2) if , there is . Therefore, the conditional 

TPD  can be given by 

  (20) 

Substituting Eq.(20)(20) in Eq.(19)(19) yields 

  (21) 

where  is Heaviside’s’s unit step function;  is the TPD of . If  

is a response process enforced by Poisson white noise, i.e., governed by Eq.(3)(3), then 

 can be obtained by Eq.(9)(9). 

 

4.2 The extreme value process of a vector process 

The similar ideas elaborated above can be extended to capture the PDF of the time-variant 

extreme value process of any arbitrary component of a multi-dimensional Markov vector process. 

Without loss of generality, consider an -dimensional Markov vector process 

, where  are the components. Then the 

maximum value process of a component  can be defined as 

  (22) 

Based on the similar reasoning in the preceding section, the augmented vector process 

 is an -dimensional Markov vector process. 

Denote the TPD of  as , then Eq.(19)(19) and 

(20)(20) can be expended to multi-dimensional cases. Hence, there will be 

  (23) 

in which  is the TPD of . 
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Therefore, once the TPD of  has been obtained, the joint PDF can be 

calculated numerically by PIS, namely 

  (24) 

The initial condition is 

  (25) 

where   is the PDF of  . If the initial value of   is deterministic, e.g. 

, then . 

Furthermore, the PDF of  can be obtained by 

  (26) 

Then the time-variant reliability, if interested, can be evaluated by Eq.(13)(13). 

The specific procedure of numerical implementation for PIS of time-variant extreme value 

process was elaborated by Chen and Lyu [364] and thus will not be repeated to avoid lengthiness. 

The above method will be illustrated below through several numerical examples. 

For convenience, the proposed method for obtaining the PDF of the maximum value process 

can be called the augmented Markov vector process method in conjunction with PIS (AMV-PIS for 

short). 

 

5 Numerical examples 

5.1 Uniform compound Poisson process 

Firstly, the maximum value process of a compound Poisson process  is considered. 

The sample process is governed by Eq.(4)(4) [375]. Let  obey the uniform 

distribution, i.e., , in which  is a constant. For an arbitrary small time increment, 

the TPD of  can be written by 

  (27) 

设置了格式: 字体颜色: 蓝色
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If  is considered as the maximum value process of , according to Eq.(21)(21), 

the TPD of augment vector process  is governed by 

  (28) 

Therefore, the joint PDF   of   can be captured using the proposed 

AMV-PIS by Eq.(15)(15) and (16)(16), then the PDF  of  can be obtained. 

In this case, the rate of the Poisson process takes ; the constant is ; the time step 

is  ; the solving domains are   and  ; the grid sizes are 

. The PDF surfaces of  and  against time  obtained by 

the proposed numerical method elaborated in Sec.4 are shown in Fig.1. 
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Fig.1. The PDF surfaces of  and  of the uniform compound Poisson process. (a) PDF surface of 

; (b) PDF surface of . 

 

At the time instant , the comparison between the numerical results using the proposed 

AMV-PIS and Monte-Carlo simulation (MCS) in terms of the PDF and the cumulative distribution 

function (CDF) of   is shown in Fig.2, in which   samples are performed in the 

MCS to generate the histogram. 
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(b)                                          (c)  

Fig.2. The comparison between AMV-PIS and MCS in terms of the PDF and CDF of the uniform compound Poisson 

process  at . (a) PDF; (b) CDF (in linear coordinates); (c) CDF (in logarithmic coordinates). 

 

Simultaneously, the comparison between the numerical results using the proposed AMS-PIS 

MCS of the PDF and CDF of  is shown in Fig.3, in which  samples are performed 

in the MCS as well to generate the histogram. Perfect agreement is observed. 
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(b)                                           (c) 

Fig.3. The comparison between AMV-PIS and MCS of in terms of the PDF and CDF of the maximum value process 

 of the uniform compound Poisson process at . (a) PDF; (b) CDF (in linear coordinates); (c) 1-CDF (in 

logarithmic coordinates). 

 

It's noted that at the point  there is a jump in the CDF of , which means the PDF 

is a Dirac’s delta value at the point . This is also shown in Fig. 3 as a spike (arrow) at the 

origin with the value identical to the jump of CDF at the origin. Noting that 106 times of MCS will 

yield accuracy in the tails in the order of magnitude of 10-4 in a confidence of 10% coefficient of 

variation. From Eq.3 it is seen that the accuracy of the proposed method reaches the order of 

magnitude of 10-4. 

The PDFs of  at some typical time instants are shown in Fig.4. 

 

 
Fig.4. The PDFs of  of the uniform compound Poisson process at different time instants. 

 

It is observed that the PDFs of maximum value process becomes wider and lower as the time 

increase, which is consistent with the diffusion property of compound Poisson process. Remarkably, 

there is a jump in the PDF curve at . This is because  vary in the range 

of . Besides,  holds with probability one at any time, though the value of  can 

be positive or negative. Such property verifies the results also qualitatively. 
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5.2 Gaussian compound Poisson process 

Consider   as a compound Poisson process whose sample process is governed by 

Eq.(4)(4) as well, but  follow Gaussian distribution, i.e., , in 

which  is the standard deviation. In this case, for an arbitrary small time increment, the TPD of 

 can be written by 

  (29) 

If  is considered as the maximum value process of , according to Eq.(21)(21), 

the TPD of augment vector process  is governed by 

  (30) 

Therefore, the joint PDF  of  can be calculated using the proposed 

AMV-PIS by Eq.(15)(15) and (16)(16), then the PDF  of  can be obtained. 

In the following numerical illustration, the rate is taken also as ; the standard deviation 

is  ; the time step is  ; the solving domains are   and 

 ; the grid sizes are  . The PDF surfaces of   and  

against time  obtained by the proposed numerical method are shown in Fig.5. 
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(a)                                          (b) 

Fig.5. The PDF surfaces of  and  of the Gaussian compound Poisson process. (a) PDF surface of 

; (b) PDF surface of . 

 

At the time instant , the comparison between the numerical results using the proposed 

method (AMV-PIS) and MCS in terms of the PDF and CDF of  is shown in Fig.6, where 

  samples are performed in the MCS to generate the histogram. 

 

 
(a) 

p
PD

F
p PD

F

带格式的: 两端对齐

域代码已更改



17 
 

  

 

(b)                                          (c)  

Fig.6. The comparison between AMV-PIS and MCS of the PDF and CDF in terms of the Gaussian compound Poisson 

process  at . (a) PDF; (b) CDF (in linear coordinates); (c) CDF (in logarithmic coordinates). 

 

Simultaneously, the comparison between the numerical results using the proposed AMV-PIS 

and MCS in terms of the PDF and CDF of  is shown in Fig.7, where  samples are 

performed in the MCS as well. Again perfect agreement is observed in Figs.6 and 7. Besides, 

compared to Fig. 4(a), it is noted that there is no jump (discontinuity) at the PDF in the range . 

However, similarly, at the point  there is a concentrated probability in the PDF and thus a 

finite jump in the CDF. Interestingly, the finite jump of CDF at the origin is the same as in Fig. 3. 

This is because the occurrence rate of the two Poisson process are the same, though the distributions 

of the random variables are different, and the CDFs in Figs. 7 and 3 are at the same time instance of 

. Again, this consistence between the two figures verifies the numerical results quantitatively. 
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(a) 

  

 
(b)                                           (c) 

Fig.7. The comparison between AMV-PIS and MCS in terms of the PDF and CDF of the maximum value process 

 of the Gaussian compound Poisson process at . (a) PDF; (b) CDF (in linear coordinates); (c) 1-CDF 

(in logarithmic coordinates). 

Similarly, from Fig.7 it is observed that the accuracy of the proposed method reaches the order 

of magnitude of 10-4～10-5. 
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Consider a one-dimensional process   determined by the following stochastic 

differential equation [132] 

  (31) 

where   is the linear coefficient;   is the non-linear coefficient;   is the uniform 

Poisson white noise, whose sample process is governed by Eq.(4)(4), where  

follow uniform distributions, i.e., , in which  is a constant. For an arbitrary small 

time increment, according to Eq.(9)(9), the TPD of  can be written by 

  (32) 

If  is considered as the maximum value process of  defined by Eq.(12)(12), then 

according to Eq.(21)(21), the TPD of the augment vector process  can be written 

by 

  (33) 

Therefore, the joint PDF   of   can be captured using the proposed 

AMV-PIS by Eq.(15)(15) and (16)(16), then the PDF  of  can be further obtained 

by a marginal integral. 

In the present example, the initial value is taken as ; the occurrence rate is ; the 

linear coefficient is ; the non-linear coefficient is ; the constant is ; the time 

step is  ; the solving domains are   and  ; the grid sizes are 

. The PDF surfaces of  and  against time  obtained by 

the proposed numerical method are shown in Fig.8. 
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(a)                                          (b) 

Fig.8. The PDF surfaces of  and  of the one-dimensional non-linear process. (a) PDF surface of 

; (b) PDF surface of . 

 

At the time instant , the comparison between the numerical results using the proposed 

AMV-PIS and MCS in terms of the PDF and CDF of  is shown in Fig.9, where  

samples are performed in the MCS. These results are also consistent with those obtained in Di Paola 

and Santoro [132]. 
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(a) 

  

 

(b)                                          (c)  

Fig.9. The comparison between AMV-PIS and MCS of the PDF and CDF of the one-dimensional non-linear process 

 at . (a) PDF; (b) CDF (in linear coordinates); (c) CDF (in logarithmic coordinates). 

 

Simultaneously, the comparison between the numerical results using AMV-PIS and MCS in 

terms of the PDF and CDF of  is shown in Fig.10, where  samples are performed 

in the MCS as well. Interestingly, there is also a discontinuity in the PDF in, and a finite jump is 

observed in the CDF of  at the time  in Fig. 10(c). 
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(a) 

  

 
(b)                                           (c) 

Fig.10. The comparison between AMV-PIS and MCS in terms of the PDF and CDF of the maximum value process 

 of the one-dimensional non-linear process at . (a) PDF; (b) CDF (in linear coordinates); (c) 1-CDF (in 

logarithmic coordinates).  

 

5.4 Duffing oscillator enforced by Gaussian Poisson white noise 

Finally, consider a non-linear, Gaussian Poisson white noise excited, two-dimensional systems, 

the Duffing oscillator [420]. The equation of motion is written as 

p PD
F
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  (34) 

in which  is the linear damping coefficient;  is the non-linear stiffness coefficient;  

is the Gaussian Poisson white noise, whose sample process is governed by Eq.(1)(1), in which 

 follow Gaussian distributions, i.e., , where  is the standard 

deviation. Denote , then the oscillator can be regarded as a two-dimensional Markov 

vector process , whose stochastic differential equation can be written as 

  (35) 

  (36) 

in which  is the corresponding Gaussian compound Poisson process. For an arbitrary small 

time increment , the TPD of  can be written as [132] 

  (37) 

If   is considered as the maximum value process of  , which is defined by 

Eq.(12)(12), according to Eq.(23)(23), the TPD of augment vector process   is 

governed by 

  (38) 

Therefore, the joint PDF  of  can be calculated using the proposed 

AMV-PIS by Eq.(24)(24) and (25)(25), then the PDF   of   can be obtained as a 

marginal distribution. 

In this example, the initial values are taken as  and ; the rate is ; the 

linear damping coefficient is ; the non-linear stiffness coefficient is ; the standard 
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deviation is  ; the time step is  ; the solving domains are  , 

 and ; the grid sizes are . The PDF surfaces of 

 and  against time  obtained by the proposed numerical method are shown 

in Fig.11. 

 

 

 
(a)                                          (b) 

Fig.11. The PDF surfaces of  and  of Duffing oscillator. (a) PDF surface of ; (b) PDF surface of 

. 

 

At the time instant , the comparison between the numerical results using the proposed 

AMV-PIS and MCS of the PDF and CDF of  is shown in Fig.12, where performed are  

 samples in the MCS. 
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(a) 

  

 

(b)                                          (c)  

Fig.11. The comparison between AMV-PIS and MCS in terms of the PDF and CDF of the displacement response 

  of Duffing oscillator at  . (a) PDF; (b) CDF (in linear coordinates); (c) CDF (in logarithmic 

coordinates). 

 

Simultaneously, the comparison between the numerical results using the AMV-PIS and MCS 

in terms of the PDF and CDF of  is shown in Fig.12, where  samples are performed 

in the MCS as well. Again, fairly good agreement is observed.  
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(a) 

  

 
(b)                                           (c) 

Fig.12. The comparison between AMV-PIS and MCS in terms of the PDF and CDF of the maximum value process 

 of Duffing oscillator at . (a) PDF; (b) CDF (in linear coordinates); (c) CDF (in logarithmic coordinates). 

 

It can be seen from the results of the above four examples that the results of the proposed AMV-

PIS method are in good agreement with the results of MCS, which demonstrates convincingly that 

using the proposed method to obtain the PDF of time-variant extreme value process of Markov 

processes is effective and promising. 
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Furthermore, to clarifycapture the visualized properties of samples of response enforced by 

Poisson white noise, two samples of compound Poisson excitation and underlying response of 

Duffing oscillator are shown in Fig.13. It can be seen from the figure that compound Poisson process 

(described by Eq.(4)) is sparse with jumped shorter or longer steps, which means that the Poisson 

white noise process is consisting of discrete spikes (described by Eq.(1)). This is significantly 

different from the Gaussian white noise excitation. Therefore, the response of a dynamical system 

enforced by Poisson excitation has also considerably different statistic property from the Gaussian 

excited systems. 

 

 

(a)                                            (b) 

Fig.13. Two samples of compound Poisson excitation  and underlying response  and  of the 

Duffing oscillator. (a) The 1st sample; (b) The 2nd sample. 

 

It can be seen from Fig.13 that the Poisson white noise excitation is sparse and significantly 

different from the Gaussian excitation. Therefore, the response of a dynamic system enforced by 

Poisson excitation has different statistic property. 

 

6 Concluding remarks 

In the present paper, the augmented Markov vector process incorporated with the path integral 

solution for capturing the PDF of the time-variant extreme value process is further extended to the 

stochastic dynamical system enforced by Poisson white noise excitation., and itsThe theoretical 

basis and numerical implementation are elaborated in detail. In this method, the time-variant 

extreme value process is defined as the stochastic process whose value at a time instant is the 

extreme value (e.g. maximum value, minimum value, or absolute maximum value, etc.) of the 

underlying stochastic process during the interval from the initial time to the present time. An 
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augmented Markov vector process is then constructed by combining the time-variant extreme value 

process and the underlying Markov process. The numerical algorithm, AMV-PIS, is then proposed 

based on the Chapman-Kolmogorov equation. Several examples, including linear and non-linear, 

one-dimensional and multi-dimensional systems, are illustrated to obtain the probability density of 

the time-variant extreme value process. The conclusions include: 

(1) For different impulses of Poisson white noise excitation, the PDF of the time-variant 

extreme process can be obtained numerically by the proposed method, which is applicable to general 

linear or nonlinear, one-dimensional or multi-dimensional stochastic dynamic systems. 

(2) The numerical results of this method are of highhave ideal accuracy. Even the calculation 

accuracy ofin the order of magnitude 10-4～10-5 can be achieved at the tail of the PCDF, which 

is in good agreement with the MCS results. It is of great significancet for the calculation evaluation 

of engineering reliability. 

(3) For low-dimensional stochastic dynamical systems, this method has ideal computational 

efficiency. Due to the sparsity of the TPD of the augmented vector process, programming can be 

processed to have higher numerical storage and computational efficiency. 

The basic idea in the present paper can be extended to more complex systems and is also 

possible, in principle, for non-Markov processes. However, extensive further studies are still needed 

in the future. 
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