Numerical detection of patterns in CPGs: gait patterns in insect movement

R. Barrio $^{\text {a }}$, Á. Lozano $^{\text {b }}$, M. Rodríguez ${ }^{\text {c }}$, S. Serrano ${ }^{\text {a }}$
${ }^{a}$ IUMA, CoDy and Dpto. Matemática Aplicada. Universidad de Zaragoza, E-50009 Zaragoza, Spain
${ }^{b}$ IUMA. Centro Universitario de la Defensa, Academia General Militar, Universidad de Zaragoza, E-50090 Zaragoza, Spain
${ }^{c} C o D y$ group. Matemática Aplicada. Universidad de Zaragoza, E-50009 Zaragoza, Spain

Abstract

The study of the synchronization patterns of small neuron networks that control different biological processes has become a growing discipline. This paper is focused on numerical techniques to detect patterns in Central Pattern Generators (CPGs). We develop two techniques that can be used directly in general CPG models: a lateral phase lag analysis based on a graphic representation of some Poincaré maps, and a quasi-Monte Carlo sweeping with an optimized classification of the different patterns.

As test example we consider a CPG of insect movement consisting of six coupled neurons following the model developed by Ghigliazza and Holmes (2004) for motoneurons in cockroaches. Previous studies in literature analyzed reduced models of dimension two obtained using phase resetting curves and averaging theory. This approach introduces a lot of simplifications that do not cover numerous non-symmetric patterns. We present an analysis of the complete model developed by combining the two proposed techniques, showing symmetric and non-symmetric patterns coexisting for different parameter values, and how the dominant patterns evolve to the tripod movement.

Keywords: insect movement gaits, CPGs, neuronal networks, bifurcations
PACS: 87.19.lj, 87.19.lm, 05.45.-a
2000 MSC: $37 \mathrm{Mxx}, 37 \mathrm{G} 35$

1. Introduction

Last few years the study of small networks of oscillators and neurons has been an active research subject due to the very large number of applications in several fields $[1,2,3,4,5,6,7,8,9]$.

The production of coordinated and rhythmic behaviors in organisms, such as chewing, respiration, walking, crawling and swimming, is a fundamental question in the study of motor control and neuroscience. Many of these behaviors are driven by Central Pattern Generators (CPGs), which are groups of neurons (small biological neuron networks) whose interactions can output rhythmic patterns $[10,11,12,13]$ resembling normal "rhythmic motor pattern production" (like in locomotive patterns $[14,15,16]$ or in the direct-reverse flow of the circulatory system in leeches $[17,18])$ even in isolation from motor and sensory feedback from limbs and other muscle targets. Although anatomical details of CPGs are only known in few cases, they have been shown to originate from the spinal cord of various vertebrates and to depend on relatively small and autonomous neuron networks. The classical view of

[^0]CPGs, as specific networks of neurons dedicated to this function alone, has been supported by numerous experiments with invertebrates. In these cases, it is possible to identify many of the key neuronal elements (mostly interneurons) composing a CPG, leading to an easier analysis. Besides, it is possible to record and to biophysically analyze these neurons and their synaptic interactions. There is a growing interest in the analysis of basic CPG structures for different animal motion [19], like biped [20], quadruped [6] and hexapod motion [21]. In the case of insect movement, the basic CPGs models use a set of six connected motoneurons [21, 22, 23, 24], but more complex models have been developed that also take into account the biomechanics of the legs $[25,26,27]$. Moreover, these studies have applications in robotics [28, 29, 30, 31].

Different animals have different gaits in their locomotion characterized by the number of legs they use. In the case of insects, hexapods, the basic observed movement patterns are slow metachronal gait, where the hind, middle and front legs on one side swing in succession followed by those on the other side (one leg is in swing at any time), tetrapod gait (four legs on the ground every time) and tripod gait (three legs on the floor). The use of one or another gait is mainly due to the locomotion speed of the animal [22]. Figure 1 illustrates tetrapod and tripod theoretical patterns [21], and experimental data analysis for the tripod case (taken from Figure 1 of [23]).

Figure 1: Panels A and B illustrate the schematic tetrapod and tripod movement gaits [21], and boxes indicate times when each leg is in swing. Panel C (taken from Figure 1 of [23]) shows experimentally the tripod gait pattern for a cockroach on a tether.

In this paper we propose numerical techniques to detect patterns in CPGs, focusing on locating gait patterns in insect locomotion. The two proposed techniques are applied to a particular CPG model but it can be used as well in generic small networks. In the description of the numerical methods we provide some comments on possible generalizations. The test example is a CPG with six coupled neurons, where each neuron follows the model of Ghigliazza and Holmes [24] for motoneurons in cockroaches. Note that this model develops a bursting behavior for the interesting parametric region [24], but in literature, for other insects, models that do not generate a bursting regime are used [32]. Since this model is four dimensional for connected neurons, the complete CPG model is a 24 -dimensional ODE system. We use an inhibitory nearest neighbor coupling. In order to analyze insect locomotion, several simplification approaches are commonly used. For instance, in $[30,33]$ a basic CPG consisting of 6 oscillators was studied using symmetries and algebraic techniques. More recently, several studies in literature [24, 32, 34] focus on the analysis of reduced two dimensional models obtained using infinitesimal Phase Resetting Curves (iPRC) $[35,36]$ and averaging theory. These small reduced models allow several analytical studies. The
main limitations of these approaches are that they introduce simplifications that do not cover numerous non-symmetric patterns, shown, for example, in [37], and it is difficult to introduce complicated models. Therefore, the aim of this paper is to develop techniques to study the complete CPG without any simplification. For that purpose, a previous study of the dynamics of an isolated neuron allows us to develop a "roadmap" that guides the changes in the different gaits. Later, we present two techniques that can be used directly in the complete model. The first one (an extension of the technique introduced in [51] for 3-cell CPGs), lateral phase lag analysis, is based on a graphic representation of Poincaré maps for suitable 2D sets of initial conditions. The second one, a quasi-Monte Carlo sweeping, uses an optimized classification of the different patterns of the complete problem. The combined use of both techniques shows symmetric and non-symmetric patterns that coexist for different parameter values and how the dominant patterns evolve towards the tripod movement. In addition, the techniques introduced in this document also allow to study heterogeneous CPGs in future works, and also to consider other CPGs. Recently, a small heterogeneity has been considered in [38, 39], where it is shown that the introduction of heterogeneities eliminates several patterns in CPGs.

This paper is organized as follows. In Section 2, we introduce the ion-channel model for bursting motoneurons in cockroaches developed in [24] and we study the different parametric behaviors and bifurcations. In Section 3, we describe the insect movement CPG, and different reductions used in references [24, 32, 34]. In Section 4, we introduce a technique based on the phase lag analysis of the two sides of the insect and on the coupled middle legs. The potential of this technique is illustrated on the test problem. In Section 5, we describe a technique based on a quasi-Monte Carlo method to study the complete model in order to detect non-symmetric patterns as well. With this technique we develop a transition panel that shows the dominant patterns along a selected parametric line (which represents a generic situation). Finally, some conclusions are presented.

2. Isolated neuron dynamics

In this paper, we consider as test example the mathematical neuron burster of Ghigliazza and Holmes [24]. It models the neurons of the local network driving the movement of a cockroach. This model takes into account a fast nonlinear calcium current, $I_{C a}$, a slower potassium current I_{K}, an additional very slow current $I_{K S}$, a linear leakage current I_{L} and an external current $I_{\text {ext }}$. The system is described by an ODE system of dimension three:

$$
\left\{\begin{align*}
C \dot{v} & =-\left[I_{C a}+I_{K}+I_{L}+I_{K S}\right]+I_{e x t} \tag{1}\\
\dot{m} & =\frac{\epsilon}{\tau_{m}(v)}\left[m_{\infty}(v)-m\right] \\
\dot{w} & =\frac{\delta}{\tau_{w}(v)}\left[w_{\infty}(v)-w\right]
\end{align*}\right.
$$

with the auxiliary ionic current functions defined by

$$
\begin{array}{ll}
I_{C a}=g_{C a} n_{\infty}(v)\left(v-E_{C a}\right), & I_{K}=g_{K} m\left(v-E_{K}\right) \\
I_{L}=g_{L}\left(v-E_{L}\right), & I_{K S}=g_{K S} w\left(v-E_{K}\right)
\end{array}
$$

and where the different time scales and steady state gating variables are

$$
\begin{array}{ll}
\tau_{m}(v)=\operatorname{sech}\left(k_{0_{K}}\left(v-v_{K}^{t h}\right) / 2\right), & \tau_{w}(v)=\operatorname{sech}\left(k_{0_{K S}}\left(v-v_{K S}^{t h}\right) / 2\right), \\
m_{\infty}(v)=\left(1+e^{-2 k_{0_{K}}\left(v-v_{K}^{t h}\right)}\right)^{-1}, & w_{\infty}(v)=\left(1+e^{-2 k_{0_{K S}}\left(v-v_{K S}^{t h}\right)}\right)^{-1}, \\
n_{\infty}(v)=\left(1+e^{-2 k_{0_{C a}}\left(v-v_{C a}^{t h}\right)}\right)^{-1} . &
\end{array}
$$

In Section 3, we will add an extra variable $s(t)$ to take into account the synapsis of the CPG. In our analysis, we will fix all the parameters except $I_{\text {ext }}$ and $v_{K S}^{t h}$, which we will leave free as bifurcation

Figure 2: Different regions of the biparametric space based on the number of equilibria and their stability. Such regions are bounded by bifurcation curves in which some equilibrium point changes its stability (Hopf) or collides with another one and disappear (fold). In the upper right corner picture (plot (B)) a larger region of the parametric space is shown, and it can be observed how a new Hopf bifurcation curve appears for large values of the parameter $I_{\text {ext }}$.

Figure 2 presents a biparametric plot showing together the number of equilibria, their stability and
parameters. Other parameters depend mainly on the kind of insect. We use along the paper the values of the fixed parameters taken from [24]:

$$
\begin{array}{lllll}
C=1.2, & E_{C a}=120.0, & E_{K}=-80.0, & E_{L}=-60.0, & \delta=0.005, \\
\epsilon=4.9, & g_{C a}=4.4, & g_{K}=8.0, & g_{K S}=0.15, & g_{L}=2.0, \tag{2}\\
k_{0_{C a}}=0.055, & k_{0_{K}}=0.1, & k_{0_{K S}}=0.4, & v_{C a}^{t h}=-1.2, & v_{K}^{t h}=2.0 .
\end{array}
$$

We begin to study the model (1) of an isolated neuron because it will give us a "roadmap" to know where to analyze the complete model of the CPG. Moreover, it provides dynamical information used to calibrate the numerical tools of the next sections. To find out which region to start studying, we use numerical techniques for detection and continuation of bifurcations (the software AUTO [40]).
,

. 2
,

several bifurcation lines. Note how the curves for Hopf and fold bifurcations of equilibria delimit regions with different number of equilibria or with different stability. There is a stable equilibrium point in the green, orange and gray regions, while in the others all are unstable. On the other hand, we can see that there is a region (marked in cyan) around which there are different changes in the number and type of equilibria. This region and the adjacent one in blue are the areas in which all equilibria are unstable. This fact explains why the bursting and spiking regions are in the cyan and blue areas. These areas constitute the most interesting region for us, since bursting behavior is the dynamic considered for cockroaches in $[24,34]$. Therefore, we will study this region in detail. The upper right plot presents a larger region of the parametric space to show that, for larger values of the external current $I_{\text {ext }}$, a new Hopf bifurcation curve appears (note that most of the fold/hom burster models have two Hopf bifurcations).

Figure 3 shows the slow-fast decomposition (first developed in [41]) of the model (1) taking the small parameter $\delta=0, v_{K S}^{t h}=-25$ and for two values of $I_{e x t}\left(I_{e x t}=35.5\right.$ and 100), located in the bursting and spiking regions, respectively. The spiking (or fast) manifold, $\mathcal{M}_{\text {fast }}$ (formed by stable limit cycles of the limit case), is shown in blue; the slow manifold, $\mathcal{M}_{\text {slow }}$ (formed by the equilibria of the limit case), is shown in green. The stable periodic orbit of the complete model is shown in red, and we can observe the well-known phenomenon, explained by singular perturbation theory and Fenichel's theorems, that

Figure 3: Classical slow-fast decomposition of model (1) illustrating the slow manifold of equilibria ($\mathcal{M}_{\text {slow }}$) and the fast (spiking) manifold ($\mathcal{M}_{\text {fast }}$) of limit cycles of the fast subsystem of the neuron model. Fold stands for fold (or saddle-node) bifurcations of equilibria, Hopf denotes the Hopf bifurcation points and HOM the homoclinic bifurcation points.

Figure 4: Different bifurcation curves and bifurcation points of codimension two superimposed on the spike-counting plate. Different colors mark different number of spikes in the attracting orbit (up to 15 spikes). We can see how some parts of different bifurcation curves delimit the region of bursting.
the orbit (for small enough parameter δ) follows both manifolds on some parts of its trajectory. On the first case, $I_{\text {ext }}=35.5$, the orbit is a classical bursting orbit of fold/homoclinic type [42] because the termination of the fast subregime is due to the existence of a homoclinic bifurcation in the phase space of the fast subsystem. This point is marked in the Figure 3. Note that, for this value of the external current, there is just one supercritical Hopf bifurcation on the upper depolarized branch of $\mathcal{M}_{\text {fast }}$. If $I_{\text {ext }}$ grows, the neutral-saddle point crosses the fold bifurcation becoming another supercritical Hopf bifurcation, as the picture for $I_{\text {ext }}=100$ shows. Now the orbit presents a depolarized spiking state rotating around the spiking manifold.

In the following, since we are only interested in the fold/hom bursting region, we will focus on that part of the parametric phase space. That is why, in Figure 4, we represent in the area of interest, along
with some bifurcation curves, the number of spikes of the limit cycle of the system on each point of the biparametric plane when starting from fixed initial conditions. This figure shows how some parts of the bifurcation curves delimit the fold/hom bursting region. Other bifurcation curves, in particular a curve of homoclinic bifurcations, are represented, as well as some codimension two bifurcation points. Note that recently several codimension two homoclinic bifurcation points have been linked with the spike-adding process [43, 44].

Figure 5: Analysis of the bursting region using different techniques: (A) spike-counting, (B) duty cycle and (C) Lyapunov exponents $\left(\lambda_{1}\right.$ and $\left.\lambda_{2}\right)$. All of them provide similar information but with a different point of view. Small zoom on plot (C) shows the narrow chaotic band and a period-doubling (PD) bifurcation curve. In plot (D) different stable periodic orbits are represented. These orbits are attractors for the pointed values of parameters in the figure of the spike-counting (A), by the circle of the corresponding color. Some of the limit cycles show a period-doubling bifurcation that finally leads to chaotic behavior.

From previous studies in literature, it has been shown that the main characteristics of the model, that is, the bursting frequency, spiking frequency and the duty cycle can be easily modulated by changing most of the parameters. We have observed that we can use $I_{e x t}$ or $v_{K S}^{t h}$ as our main parameters in our neuron model. Note, as indicated in [24], that the bursting frequency and duty cycle of CPG interneurons are the main responsible for speed adjustment, while spiking frequencies are involved in force production.

Figure 6: Analysis of the line $I_{e x t}=35.5$ on the region of bursting using different techniques: (A) spike-counting in a band around this value and (B) the first two Lyapunov exponents $\left(\lambda_{1}\right.$ and $\left.\lambda_{2}\right)$. The small chaotic interval is pointed as well as two period-doubling (PD) bifurcation points.

Therefore, we will focus on the changes of bursting frequency and duty cycle since our aim is to study the different gait patterns.

Once we have fixed our parametric plane $\left(v_{K S}^{t h}, I_{e x t}\right)$ and the region of the "roadmap" that we want to study, we use different techniques to analyze the dynamics existing there. Thus, Figure 5 shows the results obtained with different brute force techniques: in the upper left corner (A), the spike-counting technique; in the upper right corner (B) the value of the duty cycle (quotient between the time in which the neuron is active and the period of the orbit, so this value will always be between 0 and 1); in the lower left corner (C) the first (in the chaotic region) and the second (in the regular region) Lyapunov exponents (λ_{1} and λ_{2}, respectively). Note that there is a narrow band of chaotic behavior (orange color) close to the edge of the bursting region, and curves of period-doubling bifurcations in the spiking area (see the zoom on the bottom-left part of plot (C)). The color circles that appear in the picture corresponding to the spike-counting technique, plot (A), indicate the values of the parameters for the orbits shown in (D), which are the attractors of the system. If we move along the horizontal line, from left to right, we observe an increase in the number of spikes due to the spike-adding process (and, if we see the corresponding duty cycle picture, an increase in its value). For the region with depolarized spiking state (on the right part) we present four orbits showing a period-doubling bifurcation. We can see that the three techniques mark bands in the bursting region corresponding to bursters with the same number of spikes. The plotted orbits show that the behavior within each strip is qualitatively identical, being different from one band to another.

Note that although the global image in Figure 5 provided by the three sweeping techniques is similar, each one has its own peculiarities. For example, the spike-counting technique unambiguously marks each of the bands. The other two techniques mark the edges of the bands, but it is difficult to distinguish one band from another. On the contrary, although the duty cycle increases with the number of spikes, points with the same number of spikes appear with different duty cycle values. The Lyapunov exponents detect both the spike-adding and period-doubling (the reason is that in the spike-adding process fold and period-doubling bifurcations of periodic orbits are involved) and the existence of chaos. However, its value is not unique along a strip, nor necessarily different between different bands. Figure 6 shows
an analysis of the line $I_{\text {ext }}=35.5$ for the bursting region. This study points the existence of a narrow chaotic region close to $v_{K S}^{t h}=-22$, at the limit between bursting and spiking behavior (Terman [45] studied this chaotic behavior in the change from spiking to bursting). Moreover, we can observe a chain of period-doubling bifurcations leading to this chaotic region. In the plots of Figure 5(D) there are some examples of the limit cycles before and after the first period-doubling bifurcation, and on Figure 6 the Lyapunov exponents curve also marks this bifurcation (note that for the period-doubling bifurcation the second Lyapunov exponent reaches the value 0 and goes down $[46,47]$).

3. Insect movement CPG: complete model and reductions

After studying in some detail the dynamics of one isolated motoneuron, we study now a CPG (we follow the formalism of [24]) modelling the insect movement: a network of six mutually inhibiting identical neurons (see the left picture of Figure 7). The inhibitory coupling can be achieved via synapses that produce negative postsynaptic currents, or presynaptically by depressing a synapse. In our case we consider negative postsynaptic currents generated via the additional term, $\left(I_{\text {syn }}\right)_{i}$, in the potential differential equation for each neuron

$$
C \dot{v}_{i}=-\left[\left(I_{C a}\right)_{i}+\left(I_{K}\right)_{i}+\left(I_{L}\right)_{i}+\left(I_{K S}\right)_{i}\right]+I_{e x t}-\left(I_{s y n}\right)_{i} .
$$

The current $-\left(I_{\text {syn }}\right)_{i}$ can be positive (depolarizing) giving excitatory synapses, or negative (hyperpolarizing) giving inhibitory synapses. The different values of the extra current $\left(I_{s y n}\right)_{i}$ for each neuron potential v_{i} are:

$$
\begin{aligned}
& \left(I_{s y n}\right)_{1}=c_{1} g_{s y n} s_{4}\left(v_{1}-E_{s}^{\text {post }}\right)+c_{5} g_{s y n} s_{2}\left(v_{1}-E_{s}^{\text {post }}\right), \\
& \left(I_{s y n}\right)_{2}=c_{2} g_{s y n} s_{5}\left(v_{2}-E_{s}^{\text {post }}\right)+c_{4} g_{s y n} s_{1}\left(v_{2}-E_{s}^{\text {post }}\right)+c_{7} g_{s y n} s_{3}\left(v_{2}-E_{s}^{\text {post }}\right), \\
& \left(I_{\text {syn }}\right)_{3}=c_{3} g_{\text {syn }} s_{6}\left(v_{3}-E_{s}^{\text {post }}\right)+c_{6} g_{\text {syn }} s_{2}\left(v_{3}-E_{s}^{\text {post }}\right), \\
& \left(I_{s y n}\right)_{4}=c_{1} g_{s y n} s_{1}\left(v_{4}-E_{s}^{\text {post }}\right)+c_{5} g_{s y n} s_{5}\left(v_{4}-E_{s}^{\text {post }}\right), \\
& \left(I_{s y n}\right)_{5}=c_{2} g_{s y n} s_{2}\left(v_{5}-E_{s}^{\text {post }}\right)+c_{4} g_{s y n} s_{4}\left(v_{5}-E_{s}^{\text {post }}\right)+c_{7} g_{s y n} s_{6}\left(v_{5}-E_{s}^{\text {post }}\right), \\
& \left(I_{s y n}\right)_{6}=c_{3} g_{s y n} s_{3}\left(v_{6}-E_{s}^{\text {post }}\right)+c_{6} g_{s y n} s_{5}\left(v_{6}-E_{s}^{\text {post }}\right),
\end{aligned}
$$

using the additional synapse variables s_{i} defined by the differential equation

$$
\dot{s}_{i}=\alpha s_{\infty}\left(v_{i}\right)\left(1-s_{i}\right)-\beta s_{i},
$$

where

$$
s_{\infty}(v)=\frac{T_{\max }}{1+e^{-k_{s}\left(v-E_{s}^{p r e}\right)}} .
$$

The parameter $g_{\text {syn }}$ denotes the synaptic strength, and we have considered a voltage based synapse model as in $[24,32,34]$.

Along all the paper we have used the same parameter values as in [24]:

$$
g_{s y n}=0.015, \quad E_{s}^{\text {pre }}=2.0, \quad E_{s}^{\text {post }}=-70.0, \quad T_{\max }=0.002, \quad \alpha=5000.0, \quad \beta=0.18, \quad k_{s}=0.22 .
$$

In the selection of the network parameters $\left\{c_{i}\right\}$, we assume contralateral symmetry (between left and right side) and the balance conditions

$$
c_{1}+c_{5}=c_{2}+c_{4}+c_{7}=c_{3}+c_{6}
$$

and

$$
c_{4}=c_{7}, \quad c_{5}=c_{6}, \quad c_{1}=c_{3} .
$$

Figure 7: Complete CPG model and reduced phase differences model.

Figure 8: Phase space evolution showing phase differences of the reduced model for the values $v_{K S}^{t h}=-28$ and -24 in the line $I_{\text {ext }}=35.5$. Left phases diagram (A) contains two attracting points (triangles) corresponding with tetrapod gait (in addition to the equilibrium point represented in blue); while plot (B) shows a single attracting point in blue corresponding with tripod gait. Note that both blue patterns satisfy $\theta_{1}=\theta_{2}$, but with different delay with respect to the middle leg.

So, by symmetry, we do not differentiate forward and backward movements in our tests. On the other hand, we have set their values as

$$
c_{4}=c_{7}=\frac{1}{2}, \quad c_{1}=c_{2}=c_{3}=c_{5}=c_{6}=1
$$

In order to simplify the study of the insect movement CPG, different approaches have been adopted in the literature, such as the use of symmetries to obtain the basic patterns of the CPG [30, 33]. More recently, several studies [24, 32, 34] use infinitesimal Phase Resetting Curves (iPRC) [35, 36] and averaging theory to analyze reduced models of the complete CPG. It allows us to perform several analytical studies, to detect most of the main patterns in the system, and to study the transitions between them. Using iPRC, they reduce the problem of dimension 24 to 6 oscillators and, later, using symmetries, to just 3 oscillators with phases ϕ_{i} (and therefore only 2 equations for the phase differences, $\theta_{1}=\phi_{1}-\phi_{2}$ and
$\theta_{2}=\phi_{3}-\phi_{2}$, and so the problem is reduced to the dynamics in a torus):

$$
\left\{\begin{array}{l}
\dot{\theta}_{1}=\left(c_{1}-c_{2}\right) H\left(\frac{2}{3}-\eta ; \xi\right)+c_{5} H\left(-\theta_{1} ; \xi\right)-c_{4} H\left(\theta_{1} ; \xi\right)-c_{7} H\left(\theta_{2} ; \xi\right), \\
\dot{\theta}_{2}=\left(c_{3}-c_{2}\right) H\left(\frac{2}{3}-\eta ; \xi\right)+c_{6} H\left(-\theta_{2} ; \xi\right)-c_{4} H\left(\theta_{1} ; \xi\right)-c_{7} H\left(\theta_{2} ; \xi\right) .
\end{array}\right.
$$

For details of these reductions and the coupling function H see [34]. In this case, moving in the line defined by $I_{e x t}=35.5$ in the parametric plane of Figure 5 we obtain, with the above phase differences model, the results of Figure 8. This figure shows that, increasing the value of $v_{K S}^{t h}$, the reduced model has different gait patterns (associated with the attracting points on the phase diagrams). Note that the time evolution of the voltages shows that at the points marked with a triangle on plot (A), and considering the complete network and the symmetries used to reduce the system, we have a tetrapod movement with two legs moving at the same time. The point marked with a square on plot (B) will develop a tripod movement with three legs moving simultaneously. Similar results can be observed in Figures 10, 13 and 14 of [34] with different values of δ and $I_{\text {ext }}$. The main limitation of this approach is that it introduces a lot of simplifications that do not cover numerous non-symmetric patterns. Therefore, the main goal of this paper is to develop numerical techniques to study the complete network without simplifications. This will allow, in subsequent works, to perform studies breaking any symmetry or homogeneity in the complete CPG, or to study different CPGs.

4. Lateral phase lag analysis: basic patterns

To obtain an analysis similar to the one developed in [34] but for the complete model, we have to overcome two difficulties. First of all, we want to work with the original neuron model, without approaching it by an oscillator. Secondly, we are going to work with the model of six neurons, so that we can later analyze models of the CPG eliminating symmetries or with different neurons within the CPG. To solve the first point, we follow the techniques described in [5] to study a CPG of three neurons. For the second point, we can decompose the CPG dynamics of 6 neurons into two blocks, the left and the right side of the animal.

4.1. Numerical method: lateral phase lag analysis

In the case of having oscillators, one may obtain directly the equations of the delays of the different oscillators with respect to a leading one, providing an easy representation in terms of the phase space directly (as commented briefly in the previous section using the iPRC approach for small CPGs). When using neurons, detailed studies of rhythms generated by neuronal circuits show that they can be reduced to the analysis of fixed points (FPs) and invariant circles (ICs) of Poincaré return maps for phase lags between constituent bursters [5].

The case of 3 -neuron CPGs has been studied in detail in [4, 5] and their approach is the following (we include it for completeness): by choosing the second neuron (in our case) as the reference one, we introduce the absolute phase lags $\left\{\phi_{12}^{(n)}, \phi_{32}^{(n)}\right\}$, as shown in Figure 9(A). Note that the main difference of this approach to the one of the network of oscillators of Figure 8 is that now we do not plot the phase space but a set of discrete points (giving a polygonal line once connected) corresponding to the Poincaré return map at a selected value of the voltage variable. Once obtained the phase lags, we normalize them, $d_{12}^{(n)}=\phi_{12}^{(n)} / P(n)$ and $d_{32}^{(n)}=\phi_{32}^{(n)} / P(n)$, with $P(n)$ the period or recurrent time of the reference burster on the n-bursting cycle, giving the relative phase lags. The resulting curves, using enough initial phase lags, give us the desired 2D return map showing time evolutions of phase lags transitioning toward stable FPs corresponding to phase-locked rhythms (the patterns) produced by the network under consideration. Left plot of Figure 9(C) shows the relative phase lags corresponding to the three neurons of the left side of the insect, studying in this case the delays with respect to the middle-leg neuron (neuron 2). The

Figure 9: (A): 3-cell network (left side of the CPG) voltage waveforms with one recurrent time P and absolute phase lags ϕ_{12}, ϕ_{32} relative to the reference burster 2 at a selected value of the voltage variable for this recurrent time. (B) Color code identifying the 2 D area of the convergence of the 2 D return map generated by the Poincaré map. (C) Lateral phase lag analysis of the complete model of CPG with 6 neurons ($I_{e x t}=35.5$ and $v_{K S}^{t h}=-28$). This representation is composed by three pictures: two lateral phase lags transitions and one central picture with the temporal evolution of the phase lag between both central neurons. We use different colors to identify the final point using different initial conditions and their relation with the evolution in the other two pictures. Therefore, the color of a point in the left picture is determined (according to the color code represented in the square of colors of plot (B)) by the final position of its transition. For the other two pictures, the color of a point corresponds with the color of delays represented in left picture. (D): Six neurons voltage corresponding to the gait pattern marked by the star, square and circle, respectively, in the three pictures of plot (C). (E): Hexagram corresponding with the same gait pattern. Black rectangles mark time and duration of activation period for each neuron. All the initial conditions taken for this figure belong to the subset $d_{52}=0.8$, with $d_{12}=d_{45}$ and $d_{32}=d_{65}$.
color code of the polygonal lines is shown in Figure 9(B) corresponding to the color of the point where each simulated curve ends. But this corresponds to the analysis of just 3 -cells of the network (CPG), and therefore, in order to study the rest of cells, we add two extra plots. The right plot of Figure 9(C) takes the same approach as the one on the left, computing the 2D return map showing time evolutions of phase lags of the neurons 4 and 6 with respect to the neuron 5 (right side middle-leg). Now we use the same initial phase lags and the same color representation as provided by the analysis of the left side (that is, we have just the freedom to choose a 2 D set of initial conditions, the rest is determined by this set). This complementary study provides us the evolution of the right side of the network. Finally, we just need to connect both sides, and this is done in Figure 9(C) on the middle plot, showing the evolution of the phase lag between the two middle neurons (note that all the delays have been computed with respect to the middle neurons). That is, the set of three plots provides us with the complete study of all the possible situations for the 2 D set of initial conditions used in the phase lag plot on the left.

An adequate selection of initial phase lags (for the complete CPG) let us generate the desired 2D return map showing time evolutions of phase lags transitioning towards stable fixed points corresponding to phase-locked rhythms produced by the subset under consideration. In all the examples of lateral phase lag analysis shown in this paper the initial conditions consider a fixed value of d_{52}, with the symmetry conditions $d_{12}=d_{45}$ and $d_{32}=d_{65}$ (therefore our free variables are d_{12} and d_{32}), but note that these particular restrictions are not a requirement of this technique.

Summarizing, we display two planes of phase differences, one for each side, and we connect both sides through a representation of the phase difference over time between the two central neurons. In this way, we can compute the lag of any neuron with respect to any other. So, we can represent any phase lags pattern by combining the three pictures. Remember that these plots are not continuous functions but discrete points joined by segments (in Figure 8 the representation was simply the continuous phase space evolution), and therefore if the convergence is fast the picture can be quite sharp. In Figure 9 we show an example of this lateral phase lag analysis (with initial central delay $d_{52}=0.8$), together with the signal of the pattern corresponding to one of the "equilibrium points" detected, in particular the pattern on the dark blue region. In addition to this pattern, at least two extra stable patterns appear, located on the green and purple regions. The green pattern is analogous to the blue one, but exchanging the front and rear legs of each side. In the purple pattern, located on the diagonal of both side panels, front and rear legs move simultaneously. It can be seen that the three patterns have the same lag between the central legs. Note that there are also a few lines in light blue color, which correspond to points that remain long time in the surroundings of a saddle pattern and therefore it takes a longer integration time of the network to converge to the corresponding stable pattern. In any case, the insect will be moving for a significant time following the pattern represented by the light blue point.

The bottom plots of Figure 9 give two representations of the voltage waveforms. In plot (D) the brackets define subsets of the six neurons voltages corresponding to the gait pattern marked by the star, square and circle, respectively, in the three pictures of plot (C). And plot (E) shows the "hexagram" corresponding with the same gait pattern. Black rectangles mark time and duration of activation period for each neuron.

The power of the lateral phase lag analysis is that it allows to detect stable, saddle and repulsor patterns in a similar way as in $[4,5,48]$, and therefore it will help to locate some bifurcations of the system $[38,48]$ and other situations like quasi-periodic lag jitter [48] or other oscillatory behaviors (shown as limit cycles in the 2D maps instead of fixed-points that correspond to periodic patterns).

We have several remarks on the methodology, first one is that it provides a complete study for the selected 2D set of initial conditions, and at this point we have a large freedom, as we have a high dimensional differential system (in our case we use as initial conditions the delays on the voltages of the neurons 1 and 3 with respect to the neuron 2). Therefore, it gives an analysis of part of all the possible situations of the network. On the second hand, and summarizing, for each block of three neurons, we
performed Poincaré return maps for phase lags between the central neuron (taken as reference neuron) and the other two neurons. This methodology can be easily extended to larger networks by performing the same approach to small groups of 3 neurons using in each set one reference neuron, and studying also the delays among the control reference neurons. Obviously, if the number of neurons grows, the approach is more and more cumbersome, but for small CPGs it can provide with some interesting studies of the dominant patterns. Note that the case of 4 -neuron models has been studied in [7] giving a 3D return map. Finally, although in this paper we have focused on a bursting model, the methodology can be applied to just active-inactive excitable models like the FitzHugh-Nagumo model (as in [4]) because we only have to select the voltage value for the Poincaré maps.

4.2. Test examples in the insect movement $C P G$

Once the technique is fine-tuned, we can use it to analyze what happens with different values of the parameters (the integration time for all the figures in this section is $10,000 \mathrm{~ms}$ and the initial central phase lag is 0.8 , unless other value is indicated). In Figure 10 we show the lateral phase lag analysis for different values of $v_{K S}^{t h}$ within the line $I_{\text {ext }}=35.5$, analyzed for the isolated neuron in Section 2. In this figure it can be seen how, as the value of $v_{K S}^{t h}$ increases, the three dominant patterns approach each other until they end up coinciding and forming the tripod gait. Apart from these dominant patterns, on this representation we can see patterns with a low number of attracting lines and also more regions with saddle or repulsor patterns.

In the pictures, as the value of the synaptic strength of the network $g_{\text {syn }}=0.015$ is not too small, the convergence speed is high, and therefore, the trajectories are abrupt because sometimes in just two or three steps they reach the attracting point. On the other hand, there are some initial conditions for which the phase lag between the central neurons ends far from the initial value. Finally, note that the three dominant patterns follow the same subpattern on both sides of the network because the colors on the right picture are located in similar positions as on the left one. However, some lines on the right picture have a color that does not correspond to their position on the left one. Those lines are ending in points that represent a pattern in which the left side of the network follows a different movement than the one on the right side (and the color is assigned from the left side as commented in Figure 9). We will see more clearly some of those patterns in the next section as they are non-symmetric gaits.

One of the advantages of this graphical representation of the lateral phase lag patterns is that it is also possible to visualize which patterns generate overlapping of active periods (see [32] for a detailed study on the iPRC reduced model) on the same side of the network. Figure 11 shows, for two different values of $v_{K S}^{t h}$, the overlapping regions of the neurons 1 and 3 (red lines) and of neuron 1 (or 3) with the neuron 2 (blue lines). We plot some dashed lines for different values of $v_{K S}^{t h}$ in order to show how the overlapping area grows as the parameter does, due to the increment of the duty cycle of the neurons, also related with the number of spikes of the neurons. For instance, in both pictures the pattern in purple has an overlapping among the extreme neurons on the same side (since the lag of both with the central neuron is the same). In contrast, the other two dominant patterns do not show any overlapping (between neurons on the same side), although in the case of $v_{K S}^{t h}=-26$ they are closer to the region of overlapping between neurons 1 and 3 . Taking into account that the duty cycle increases and the three equilibrium points approach the center of the square as the value of $v_{K S}^{t h}$ increases, there will be a value of $v_{K S}^{t h}$ from which the three dominant patterns will show overlapping between neurons on the same side.

Figure 10 was obtained for an integration time of $10,000 \mathrm{~ms}$. One remaining question is to analyze if some observed phenomena are due to some transient dynamics. Figure 12 shows the analysis of the phase lags on the left side for $I_{\text {ext }}=35.5$ and $v_{K S}^{t h}=-28$ using two integration times: $10,000 \mathrm{~ms}$ and $100,000 \mathrm{~ms}$. From the pictures, it is evident that the light blue region is originated from a saddle point that generates a long transient dynamics region. In any case, note that this transient dynamics may have interest from the biological point of view as its time duration can be significant, and so that dynamics can be observed

Figure 10: Lateral phase lag analysis for $I_{e x t}=35.5$, initial central phase lag 0.8 and different values of $v_{K S}^{t h}$.

Figure 11: Overlapping areas for the lateral phase lag analysis for $I_{e x t}=35.5$, and $v_{K S}^{t h}=-28$ and -26 , that correspond to duty cycle 0.09 and 0.15 of the isolated neuron, respectively. Continuous lines are the overlapping lines for the corresponding value of $v_{K S}^{t h}$, red color for overlapping between legs 1-3 (both ends), blue color for overlapping between leg 1 or 3 with leg 2 (central).

Figure 12: Phase lags on the left side for $I_{\text {ext }}=35.5$ and $v_{K S}^{t h}=-28$ using two integration times: $10,000 \mathrm{~ms}$ and $100,000 \mathrm{~ms}$.
in real systems. The use of two different final times permits to detect some of the transient phenomena in the lateral phase lag analysis.

The delay between the central neurons is crucial in some patterns. Figure 13 shows the lags between the central neurons starting from different initial central phase lags for the two integration times $(10,000 \mathrm{~ms}$ and $100,000 \mathrm{~ms}$) of Figure 12. The use of a larger integration time permits to eliminate some transient dynamics, and so we see more clearly the attracting central patterns. In cases with $v_{K S}^{t h}=-28$ and -27 , we observe a large number of initial conditions with different final central lag. We see that for $v_{K S}^{t h}=-28$ and -27 the value of central phase lag equal to 0.5 is not part of any stable pattern. This is most clearly seen in the longest time integration interval. On the other hand, for $v_{K S}^{t h}=-25$, that value of central delay, 0.5 , is the most common one and for $v_{K S}^{t h}=-24$ it is the only attractor that appears. Note that the value 0.5 of the central delay is the one of the perfect tripod gait.

Another conclusion that can be drawn from Figure 13 is that, depending on the initial values (in

Figure 13: Temporal evolution of phase lag between central neurons d_{52} using two integration times $(10,000 \mathrm{~ms}$ and $100,000 \mathrm{~ms}$) with $I_{\text {ext }}=35.5$, different values of $v_{K S}^{t h}$ and initial central phase lags $0.1,0.3,0.5,0.7$ and 0.9 .
our case, the lag between the central neurons), the stable patterns that are detected may be different. In addition, we are considering initial symmetries that can prevent us from detecting non-symmetric patterns if these symmetries are not broken in the temporal evolution. These facts are limitations of this technique, since, although we work with the complete model of dimension 24, we must restrict ourselves to a 2-dimensional set of initial conditions in order to get an adequate plane representation. And, although we can select any set of dimension two as initial conditions, the possible combinations are so high that they make it impossible to encompass all of them. That is why, in the next section, we will develop a different, less graphic, but more general technique that takes into account the complete space of possible initial conditions.

5. Quasi-Monte Carlo pattern sweeping: complete model analysis

The previous section has introduced a two-side analysis of the complete insect movement CPG model. In this section we develop a numerical technique to deal with the complete model without any restriction on the initial conditions.

5.1. Numerical method: quasi-Monte Carlo pattern sweeping

In order to detect all kind of patterns, we develop a strategy (quasi-Monte Carlo pattern sweeping method) that does not consider any reduction to the system. Therefore, we have to do a large number of simulations for each parametric value and to develop methodologies to classify the different patterns in an automatic way considering 24 dimensional sets of initial conditions.

For a given set of initial conditions, if we observe the variable corresponding to voltage of each neuron, we can appreciate that in most cases their bursts tend to synchronize to a certain pattern, that is, a periodic orbit. To identify this pattern, we need to determine the status of the network at any instant, that is, which neurons are active (bursting) and which ones are inactive (quiet). Once we have established the state for the six neurons, we define the status of the network at any instant with all the states of each neuron. We use an integer number, and in particular its binary representation, in order to reduce at minimum the memory size to store the status of the network at a given instant. Since we are dealing with a six neuron network, a six bit integer suffices to represent its status, assigning each neuron with each position bit, and setting it to 0 when the neuron is relaxed and 1 when it is bursting, that is, the i-th status s_{i} is given by:

$$
s_{i}=\sum_{k=1}^{6} \alpha_{k} 2^{k-1}, \quad \alpha_{k}= \begin{cases}1 & \text { if neuron } k \text { is active } \\ 0 & \text { otherwise }\end{cases}
$$

For example, the number 21 (010101 in binary) indicates that neurons 1,3 and 5 are active. If this status s_{i} is different from the one s_{i-1} on previous integration step, we can infer that at least one neuron has changed its behavior. In that case, we store the previous status s_{i-1} and the time it has lasted t_{i-1} into two output vectors to be analyzed in a post-processing stage. Each integration outputs a sequence of integer numbers representing the status of the neuron using the previous scheme, and a sequence of times at which those status are achieved.

As illustration, Figure 14 shows three different patterns, each represented by a sequence of status. The red lines show the limits of the different status. For example, in plot (A) the sequence of status is given by

$$
P^{1}=\left\{s_{1}^{1}, \ldots, s_{10}^{1}\right\}=\{1,0,32,0,4,20,16,0,10,0\} .
$$

The other two patterns are represented by the sequences of status

$$
\begin{aligned}
P^{2} & =\left\{s_{1}^{2}, \ldots, s_{10}^{2}\right\}=\{1,33,32,0,4,20,16,0,10,0\} \\
P^{3} & =\left\{s_{1}^{3}, \ldots, s_{8}^{3}\right\}=\{33,0,4,20,16,0,10,0\} \\
& 17
\end{aligned}
$$

Figure 14: Illustration of the description of three patterns using a finite sequence of status representing the active states among different legs using binary representation (see text for details). The number of status of each sequence is determined by the different active configurations of the pattern shown with the different intervals of time limited by vertical red lines.

Note that the length of each sequence can be different due to the different overlapping situations. This representation, apart from being quite natural, provides us with a formulation quite useful for comparisons among the different patterns (something extremely important if we perform a large number of simulations and we want to have an automatic tool to study all the different patterns).

We remark that in the integration time of the network we have to begin the analysis once the system has converged to a pattern (a limit cycle of the system) or in the negative case to mark as non-convergent (due to a very slow convergence or chaotic behavior). After a transient time of $10^{6} \mathrm{~ms}$ (long enough for our network as our preliminary tests reveal), we start computing the pattern produced by the network. Note that for other networks or systems this transient time has to be set previously in a preliminary analysis of the corresponding problem. When the integration for a particular set of initial conditions is finished, we have output two lists (status and time lapses) that represent the complete signal the network is producing. However, the network may generate other kind of signals starting from other initial conditions. Since we are dealing with a 24 dimension differential system, it is infeasible to perform a systematic sweep among all dimensions. Therefore a Monte Carlo approach is the only reasonable one. Instead of using classical pseudorandom number generation (like the Mersenne Twister), we sacrifice the entropy of the numbers in favor to low discrepancy (they can be used as pseudorandom for many purposes). Hence, we use 24-dimensional Halton sequences [49], that cover a hypercube uniformly, to generate up to M (in our case $M=200$) initial conditions of the network for a fixed set of parameters. In case of being interested in a much more detailed analysis of a particular set of parameters, the number of initial conditions M can be raised in order to locate pattern gaits with a small basin of attraction. In this process we have also taken into account the range of each variable in order to consider the complete space where the model evolves. For a neuron in our particular model, the initial condition of its first variable is chosen to be in $[-40,10]$ that covers all the possible values (when decoupled), since it represents a voltage. For the other variables the initial value is set in the interval $[0,1]$ as they are gating variables.

Now, after one Monte Carlo simulation for a fixed set of parameters, we have $M=200$ simulations of the network. Once the status sequence for each one is obtained, the next task is to extract the periodic pattern (if any) from each simulation and keep it in a final list, if it is different from those in the list. So, we have to determine if two patterns are the same or symmetric ones. This is a post-processing stage, where we analyze each sequence.

In more detail, the extraction of periodic patterns from a sequence is done as follows:
(1) Delete from both output lists all status that last less than $t_{\text {small }}$ in order to consider only significant changes (in our case we consider $t_{\text {small }}=0.03 \mathrm{~ms}$). The vector of time lapses is used in this stage.
(2) Compute an auxiliary list containing the logarithm of the 6 -bit status signals, so that we have small enough numbers. Small numbers perform better in Fast Fourier Transforms, since they are more balanced, and the magnitude of the numbers is meaningless in all this process.
(3) Compute the Fast Fourier Transform of the auxiliary logarithm list, and search for the best guess of the period (or quasi period) of the signal, read as number of status the signal is made of. We remark that we are counting the number of status for each period, not the time lapses (which are provided by the intervals of time list). For instance, in Figure 14(A) the pattern has a period of 10 status.
(4) Prune both the signal and time lapse lists to the last period, and compare it with all previous patterns to detect if it is the same pattern with a time shift (a rotational symmetry) or a symmetry of the network (left-right or front-back side of an insect in our case). That is, we check if it belongs to the same equivalence class as some previous pattern.
(5) If a new equivalence class is found, it is added to the list of equivalence classes using a representative of it. In the opposite case, the corresponding equivalence class counter is incremented by one (this counter will give us the percentage of each equivalence class for a selected parameter).

After this pruning, we have the dominant patterns for that network at fixed parameter values. Experience has shown us that in a system there are some dominant patterns, and marginal ones with a small basin of attraction. Note that, for this reason, depending on the number of initial conditions in the quasiMonte Carlo method, some of the marginal patterns may not be detected, but the most representative ones are always obtained.

Up to this point, we have studied in detail the network for a particular value of its parameters. Now we finally can make a sweep varying uniformly the value of one parameter to observe the transition from one dominant pattern to another. Note that the different patterns evolve when a parameter changes. For instance, in Figure 14 we show some of the observed evolutions. In this case we illustrate changes on the neurons 1 and 6 , and how the overlapping of their active states evolve from no overlapping to perfect synchronization (we allow small discrepancies). All these situations (and much more options taking into account that we have 6 neurons) can be detected with the proposed algorithm. To describe the parametric evolution we have to add a new extra final step to the algorithm after each parametric value has been analyzed and obtained a set of equivalence classes of the different patterns:

> Compare all the equivalence classes for the current value of parameters with the previously generated list with the former analyzed values of parameters. If a new equivalence class is found, it is added to the list of equivalence classes using a representative of its equivalence class.

As a result we have a list with all the patterns found (equivalence classes) and, for each value of parameters, the percentage of its appearance.

Due to the generic approach of this methodology, it can be applied to any small network, simply adapting the binary approach to the total number of neurons of the network. Obviously, increasing the dimension will also require an increase in the number of initial conditions to obtain a complete analysis.

5.2. Test examples in the insect movement $C P G$

In Figure 15 we show a summary of the results obtained by applying the technique described above (quasi-Monte Carlo pattern sweeping) in the bursting interval $v_{K S}^{t h} \in[-29.67,-22.54]$, with $I_{\text {ext }}=$ 35.5 , on the selected line indicated in Figure 5. The central panel summarizes the final result of the above numerical approach, a list with all the patterns found (equivalence classes) and, for each value of parameters, the percentage of their appearance. Note that each different color represents a particular equivalence class of patterns and some label numbers will show different patterns of the same class in order to illustrate the evolution inside each equivalence class. The sum of all the percentages shown at many points does not reach 100% because only those patterns with a minimum percentage of 5% in some value of the line are represented. We can see how the distance to 100% is greater at some points where a spike-adding process occurs for isolated neuron analysis (see the small band with the spike-counting technique showing the number of spikes of the attracting bursting periodic orbit for the isolated neuron).

\odot

(5)

8

(6)

(9)

三

(10) (11)

Figure 15: Complete pattern radiography using the quasi-Monte Carlo pattern sweeping on the horizontal line $I_{\text {ext }}=35.5$. The central panel shows the percentage of initial conditions that converge to a certain pattern. Each color identifies a equivalence class of patterns (see the text for more details). A thin spike-counting band is also shown indicating the number of spikes of the attractor orbit for an isolated neuron. At the top and bottom, some hexagrams corresponding to the main movement patterns are shown.

The reason for these "valleys" is that the isolated neuron undergoes a process of change in which two orbits with a different number of spikes coexist. This circumstance originates a large number of patterns with very little significance and low stability that are not represented in the figure. In fact, most of these patterns are unstable (saddles) but, during a long enough transient, the dynamics of the network starting at some initial conditions remains close to them.

On the top and bottom part of the figure we plot the most representative hexagrams. In the lower part of the figure we represent the hexagrams of the dominant pattern. The length of the hexagrams is proportional to the period of the pattern (periodic orbit) in order to also observe the changes in the period. If we move from pattern number $-10-$ to $-15-$, we can see how the period decreases as $v_{K S}^{t h}$ increases. This causes the active intervals of neurons 1 and 6 to approach, so that in pattern $-13-$ they partially overlap (hence the color difference in the central panel), to synchronize exactly later in the pattern $-15-$, giving the perfect tetrapod gait. The relative displacement of the active intervals of neurons 1 and 6 continues, so that neuron 1 starts to overtake neuron 6 beginning to overlap with the active intervals of neurons 3 and 5 that are simultaneous in all the dominant patterns. On the other hand, the active interval of the neuron 6 does the same with the simultaneous neurons 2 and 4 . Both overlays are increasing (due to the increased duty cycle, see Figure 11) until, in pattern $-21-$, the active intervals of neurons 1,3 and 5 on one hand and 2,4 and 6 on the other, are simultaneous, reaching the perfect tripod gait. Note that along this paper we assimilate into the same equivalence class, due to the chosen symmetric coupling coefficients c_{i}, two different patterns where one of them is the result of applying to the other a reflection of left-right and/or forward-backward. So, the patterns represented in blue and green areas in Figure 10 belong to the same equivalence class than the patterns from $-10-$ to $-20-$.

In the upper part of Figure 15, we show the evolution of non-dominant patterns, but with a significant percentage of initial conditions converging to these patterns. The second most represented pattern corresponds to the purple pattern of Figure 10 and it evolves, in Figure 15, along the patterns from $-4-$ to -9 . If we observe these patterns, we can see that from patterns $-4-$ to -7 - there is a decrease in the period as the value of $v_{K S}^{t h}$ increases. This reduction of the period originates that, in pattern -8-, the active intervals of neurons 4 and 6 (which are simultaneous) begin to overlap with that of neuron 2 until, finally, the perfect tripod gait is reached. This situation is similar to that previously described for the dominant pattern. In addition, we can see that the absorption of the three patterns by the tripod gait is detected simultaneously due to the symmetry in the coefficients c_{i}.

Finally, we discuss the evolution of the patterns from $-1-$ to $-3-$. These patterns are very difficult to detect with the technique used in the previous Section 4 since, as $d_{12} \neq d_{45}$, they do not fulfil one of the restrictions imposed on the subset from which we took the initial conditions. These patterns may correspond to some of the "dislodged" color points observed in Figure 10, which represent a different kind of movement of the insect's legs on one side and on the other. As in the previous cases, a reduction of the period is observed. The difference is that this pattern does not seem to converge to the tripod gait, but its basin of attraction decreases until it disappears.

Therefore, Figure 15 explains the process by which the tripod becomes the only dominant pattern, either by convergence or disappearance of certain patterns.

Note that the studied line crosses several spike-adding bands on the selected interval, and so we see how on these changes there are more strange (or slightly different) patterns due, in some circumstances, to very long transients. This is clearly seen, for instance, in the change from three to four spikes on the corresponding isolated neuron, where a lot of thin strips of pattern colors are present. From other numerical tests, it seems that the changes along the entire bursting region will be quite similar in all the parametric phase space and the differences will be mainly on low percentage patterns, being some of them quite strange.

Although analyzing non-dominant patterns is beyond the scope of this paper, and just to show how some odd patterns are present, we show in Figure 16 the time signal of the five dominant stable patterns

Figure 16: Time signal of different patterns for $I_{e x t}=35.5$ and $v_{K S}^{t h}=-28.784$. The color circle identifies each signal with the pattern marked in Figure 15 (see also the color band on the left side).

Figure 17: Graphic combination of sweeping techniques described in Sections 4 (lateral phase lag analysis) and 5 (quasiMonte Carlo pattern sweeping). Green points represent sinks (attractors); blue points represent saddle points and red points sources (repulsors).
detected for the value of the parameters: $I_{e x t}=35.5$ and $v_{K S}^{t h}=-28.784$. The color of the circle that accompanies each signal is the same as the color that identifies the different patterns in the central panel of Figure 15. On the left side we have extracted a color band from that central panel in order to locate the different patterns. The first two points correspond to the dominant patterns (also perfectly detected with the technique of lateral convergence). As previously mentioned, these patterns present the same movement in the legs of each side, simply with a lag between both sides. On the other hand, the other three patterns show a clear asymmetry between the movement of left and right legs. Note that these patterns cannot be detected with the methods that use several symmetry reductions. We also represent the periodic orbit of the model of an isolated neuron to show how, individually, each neuron within the network has a similar dynamical behavior to the one of the isolated neuron, both in the number of spikes and in the period of the orbit. In fact, in general, all patterns detected for a fixed set of parameters have a very similar duration, with maximum differences of less than 5% in most cases. Exceptions to this situation are some patterns that need two periods of activation of each neuron to close the orbit, and in the area near the appearance of the perfect tripod gait where differences close to 20% in the period can be reached.

Finally, we note that Figure 15 explains in more detail than Figure 10 the evolution of the dominant patterns until they end up converging to the tripod gait. However, Figure 10 shows the stable and unstable equilibria of the phase lag maps of the model and its evolution by modifying the control parameter. In order to summarize all the results, in Figure 17 we combine both figures to show how in addition to the three stable equilibria of the return map, corresponding to the three dominant patterns, there are at least four other unstable equilibria (note that other points may be present). All these points seem to end up converging to the tripod gait in a very degenerate bifurcation where all the points apparently collide into the stable tripod gait point. This situation is analogous to that observed in [34, case $\alpha=1 / 2]$ with the reduced 2D iPRC model for the symmetric case and using Matcont bifurcation software. In our case we detect that bifurcation for the complete model and without using any continuation software, just by computing a sweep (as in [48]) of the interval studied using the techniques described above. Also, it is important to remark that the mixture of techniques permits us to detect in a mathematical model most of the experimental patterns illustrated in classical references [37, 50].

Conclusions

In this paper we have adapted different numerical techniques and we have combined them to develop new tools to analyze small networks. As an important test problem, we have studied in some detail the particular case of the complete six neurons model of the CPG that controls the movement of some insects. As first step, we show how the previous study of the model of an isolated neuron provides us with valuable information to determine the parametric region of interest and some dynamical system information.

Once we have obtained the "roadmap" that gives us the analysis of an isolated neuron, we have designed a tool (lateral phase lag analysis) that visualizes the evolution of the delay of one neuron with respect to the rest of the network. This tool is based on the analysis of the lateral phase lags on both sides of the network, complemented with the study of the delay of the two central neurons. This technique (an extension of the technique introduced in [51] for 3-cell CPGs) gives us information similar to that obtained in [34] for the reduced model of oscillators, but in our case working with the complete model of neurons. With this tool we can study the evolution of the dominant patterns and the equilibrium points that generate them. However, since we work with planar representations, for the result to be significant, we have to restrict the set of initial conditions to a space of dimension two. Since the model has dimension 24, the described limitation causes that we may miss patterns whose basin of attraction has empty intersection with the selected subset of initial conditions. Using a proper selection of groups of three neurons, this methodology can be used in different models than the CPG studied in this paper.

We have developed another algorithm (quasi-Monte Carlo pattern sweeping) to eliminate the limitations of the former technique. Now we use initial conditions covering the space of dimension 24 that controls the complete model of the network. This methodology allows to study the different patterns of the model and automatically classifies these patterns. With this algorithm we are able to perform a sweep leaving one of the system parameters free to study the changes produced. The sweep results permit us to understand much better how dominant patterns are evolving until they end up converging to the tripod gait in the case of insect movement. On the other hand, we have located different odd patterns that are difficult to locate by other means and that have interesting asymmetries. Since this methodology is based only on a selection of appropriate initial conditions and on an optimal automatic pattern analysis by using Fourier techniques and a binary representation of each pattern, it can be used in small networks in general.

Besides, we have shown that the mixture of both techniques permits us to detect in a model most of the experimental patterns presented in classical papers [37], that also gives a hypothesis relating the various six-legged gaits.

The combination of all the numerical techniques described in this paper opens a door to a deeper understanding of insect movement CPGs. In addition, it also allows to study any small CPG, without restriction on symmetries or heterogeneity between the neurons of the network that comprise it.

Acknowledgments

RB, MR and SS have been supported by the Spanish Research project PGC2018-096026-B-I00, and European Regional Development Fund and Diputación General de Aragón (Ref. E24-17R and LMP12418). ÁL has been supported by the Spanish Research project MTM2016-77642-C2-2-P, and European Regional Development Fund and Diputación General de Aragón (Ref. E22-17R and). RB, ÁL and SS has been supported by the Universidad de Zaragoza-CUD project UZCUD2019-CIE-04.
[1] P. Ashwin, Symmetric chaos in systems of three and four forced oscillators, Nonlinearity 3 (3) (1990) 603-617.
[2] P. Ashwin, O. Burylko, Y. Maistrenko, Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators, Physica D 237 (4) (2008) 454-466.
[3] M. Aguiar, P. Ashwin, A. Dias, M. Field, Dynamics of coupled cell networks: Synchrony, heteroclinic cycles and inflation, Journal of Nonlinear Science 21 (2) (2011) 271-323.
[4] J. T. C. Schwabedal, D. E. Knapper, A. L. Shilnikov, Qualitative and quantitative stability analysis of penta-rhythmic circuits, Nonlinearity 29 (12) (2016) 3647-3676.
[5] J. Wojcik, J. Schwabedal, R. Clewley, A. L. Shilnikov, Key bifurcations of bursting polyrhythms in 3-cell Central Pattern Generators, PLOS ONE 9 (4) (2014) 1-27.
[6] M. Lodi, A. Shilnikov, M. Storace, Design of synthetic central pattern generators producing desired quadruped gaits, IEEE Transactions on Circuits and Systems I: Regular Papers 65 (3) (2018) 1028-1039.
[7] S. Jalil, D. Allen, J. Youker, A. Shilnikov, Toward robust phase-locking in Melibe swim central pattern generator models, Chaos 23 (4) (2013) 046105.
[8] P. Ashwin, S. Coombes, R. Nicks, Mathematical frameworks for oscillatory network dynamics in neuroscience, The Journal of Mathematical Neuroscience 6:2 (2016).
[9] S. Daun, J. E. Rubin, I. A. Rybak, Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis, Journal of Computational Neuroscience 27 (1) (2009) 3-36.
[10] E. Marder, D. Bucher, Central pattern generators and the control of rhythmic movements, Current Biology 11 (23) (2001) R986-R996.
[11] A. Selverston, Model Neural Networks and Behavior, Springer, Berlin, 1985.
[12] T. Bal, F. Nagy, M. Moulins, The pyloric central pattern generator in crustacea: a set of conditional neural oscillators, Journal of Comparative Physiology A 163 (1996) 715-727.
[13] E. Marder, R. Calabrese, Principles of rhythmic motor pattern generation, Physiol Rev 76 (1996) 687-717.
[14] W. Kristan, R. L. Calabrese, Rhythmic swimming activity in neurones of the isolated nerve cord of the leech, The Journal of Experimental Biology 65 (3) (1976) 643-668.
[15] M. A. Masino, R. L. Calabrese, Phase relationships between segmentally organized oscillators in the leech heartbeat pattern generating network, Journal of Neurophysiology 87 (3) (2002) 1572-1585.
[16] M. A. Masino, R. L. Calabrese, Period differences between segmental oscillators produce intersegmental phase differences in the leech heartbeat timing network, Journal of Neurophysiology 87 (3) (2002) 1603-1615.

17 R. L. Calabrese, B. J. Norris, A. Wenning, T. M. Wright, Coping with variability in small neuronal networks, Integrative and Comparative Biology 51 (6) (2011) 845-855.
[18] D. G. Lamb, R. L. Calabrese, Neural circuits controlling behavior and autonomic functions in medicinal leeches, Neural Systems \& Circuits 1 (1) (2011) 1-10.
[19] A. J. Ijspeert, Central pattern generators for locomotion control in animals and robots: A review, Neural Networks 21 (4) (2008) 642-653.
[20] K. Mombaur, K. E. Berns, Modeling, Simulation and Optimization of Bipedal Walking, Springer-Verlag, Berlin Heidelberg, 2013.
[21] A. Ayali, A. Borgmann, A. Büschges, E. Couzin-Fuchs, S. Daun-Gruhn, P. Holmes, The comparative investigation of the stick insect and cockroach models in the study of insect locomotion, Current Opinion in Insect Science 12 (2015) 1-10.
[22] S. Fujiki, S. Aoi, T. Funato, N. Tomita, K. Senda, K. Tsuchiya, Hysteresis in the metachronal-tripod gait transition of insects: A modeling study, Phys. Rev. E 88 (2013) 012717.
[23] R. Ritzmann, S. N. Zill, Neuroethology of Insect Walking, Scholarpedia 8 (9) (2013) 30879.
[24] R. Ghigliazza, P. Holmes, A minimal model of a central pattern generator and motoneurons for insect locomotion, SIAM Journal on Applied Dynamical Systems 3 (4) (2004) 671-700.
[25] T. I. Toth, J. Schmidt, A. Büschges, S. Daun-Gruhn, A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system, PLOS ONE 8 (11) (2013) 1-12.
[26] C. Mantziaris, T. Bockemühl, P. Holmes, A. Borgmann, S. Daun, A. Büschges, Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect, Journal of Neurophysiology 118 (4) (2017) 2296-2310.
[27] E. Tytell, P. Holmes, A. Cohen, Spikes alone do not behavior make: why neuroscience needs biomechanics, Current Opinion in Neurobiology 21 (5) (2011) 816-822.
[28] F. Tedeschi, G. Carbone, Design issues for hexapod walking robots, Robotics 3 (2) (2014) 181-206.
[29] J. C. Spagna, D. I. Goldman, P.-C. Lin, D. E. Koditschek, R. J. Full, Distributed mechanical feedback in arthropods and robots simplifies control of rapid running on challenging terrain, Bioinspiration \& Biomimetics 2 (1) (2007) 9-18.
[30] J. J. Collins, I. Stewart, Hexapodal gaits and coupled nonlinear oscillator models, Biological Cybernetics 68 (4) (1993) 287-298.
[31] F. Herrero-Carrón, F. B. Rodríguez, P. Varona, Bio-inspired design strategies for central pattern generator control in modular robotics, Bioinspiration \& Biomimetics 6 (1) (2011) 016006.
[32] A. Yeldesbay, T. Tóth, S. Daun, The role of phase shifts of sensory inputs in walking revealed by means of phase reduction, Journal of Computational Neuroscience 44 (3) (2018) 313-339.
[33] J. J. Collins, I. N. Stewart, Coupled nonlinear oscillators and the symmetries of animal gaits, Journal of Nonlinear Science 3 (1) (1993) 349-392.
[34] Z. Aminzare, V. Srivastava, P. Holmes, Gait transitions in a phase oscillator model of an insect central pattern generator, SIAM Journal on Applied Dynamical Systems 17 (1) (2018) 626-671.
[35] B. Ermentrout, Type I membranes, phase resetting curves, and synchrony, Neural Comput. 8 (5) (1996) 979-1001.
[36] M. Schwemmer, T. Lewis, The theory of weakly coupled oscillators, in: Phase Response Curves in Neuroscience: Theory, Experiment, and Analysis, Vol. 1151 of Lecture Notes in Math., Springer, New York, 2012, pp. 3-31.
[37] D. M. Wilson, Insect walking, Annual Review of Entomology 11 (1) (1966) 103-122.
[38] Á. Lozano, M. Rodríguez, R. Barrio, Control strategies of 3-cell central pattern generator via global stimuli, Scientific Reports 6 (2016) 23622.
[39] Z. Aminzare, P. Holmes, Heterogeneous inputs to central pattern generators can shape insect gaits, SIAM Journal on Applied Dynamical Systems 18 (2) (2019) 1037-1059.
[40] E. Doedel, AUTO: a program for the automatic bifurcation analysis of autonomous systems, in: Proceedings of the Tenth Manitoba Conference on Numerical Mathematics and Computing, Vol. I (Winnipeg, Man., 1980), Vol. 30, 1981, pp. 265-284.
[41] J. Rinzel, A formal classification of bursting mechanisms in excitable systems, in: E. Teramoto, M. Yumaguti (Eds.), Mathematical Topics in Population Biology, Morphogenesis and Neurosciences: Proceedings of an International Symposium held in Kyoto, November 10-15, 1985, Springer Berlin Heidelberg, Berlin, Heidelberg, 1987, pp. 267-281.
[42] E. M. Izhikevich, Neural excitability, spiking and bursting, International Journal of Bifurcation and Chaos 10 (06) (2000) 1171-1266.
[43] R. Barrio, M. A. Martínez, S. Serrano, A. Shilnikov, Macro- and micro-chaotic structures in the Hindmarsh-Rose model of bursting neurons, Chaos 24 (2) (2014) 023128.
[44] D. Linaro, A. Champneys, M. Desroches, M. Storace, Codimension-two homoclinic bifurcations underlying spike adding in the Hindmarsh-Rose burster, SIAM J. Appl. Dyn. Syst. 11(3) (2012) 939-962.
[45] D. Terman, The transition from bursting to continuous spiking in excitable membrane models, Journal of Nonlinear Science 2 (2) (1992) 135-182.
[46] R. Barrio, F. Blesa, S. Serrano, Qualitative analysis of the Rossler equations: Bifurcations of limit cycles and chaotic attractors, Physica D: Nonlinear Phenomena 238 (2009) 1087-1100.
[47] V. D. Witte, W. Govaerts, Y. Kuznetsov, H. Meijer, Analysis of bifurcations of limit cycles with Lyapunov exponents
and numerical normal forms, Physica D: Nonlinear Phenomena 269 (2014) 126-141
[48] R. Barrio, M. Rodríguez, S. Serrano, A. Shilnikov, Mechanism of quasi-periodic lag jitter in bursting rhythms by a neuronal network, EPL 112 (3) (2015) 38002.
[49] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numerische Mathematik 2 (1) (1960) 84-90.
[50] D. Graham, Pattern and control of walking in insects, Advances in Insect Physiology 18 (1985) 31-140.
[51] J. Wojcik, J. Schwabedal, R. Clewley, A. L. Shilnikov, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PloS One 9 (4) (2014) e92918.

[^0]: Email addresses: rbarrio@unizar.es (R. Barrio), alozano@unizar.es (Á. Lozano), marcos@imark.es (M. Rodríguez), sserrano@unizar.es (S. Serrano)
 Preprint submitted to Communications in Nonlinear Science and Numerical Simulation
 October 1, 2019

