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Abstract

The long-term dynamics of perturbed Keplerian motion is usually analyzed in simplified models as part of the prelim-
inary design of artificial satellites missions. It is commonly approached by averaging procedures that deal with literal
expressions in expanded form. However, there are cases in which the correct description of the dynamics may require
full, contrary to simplified, potential models, as is, for instance, the case of low-altitude, high-inclination lunar orbits.
In these cases, dealing with literal expressions is yet possible with the help of modern symbolic algebra systems, for
which memory handling is no longer an issue. Still, the efficient evaluation of the averaged expressions related to a
high fidelity potential is often jeopardized for the expanded character of the output of the automatic algebraic process,
which unavoidably provides huge expressions that commonly comprise tens of thousands of literal terms. Rearrange-
ment of the output to generate an efficient numerical code may solve the problem, but automatization of this kind of
post-processing is a non trivial task due to the ad-hoc heuristic simplification procedures involved in the optimization
process. However, in those cases in which the coupling of different perturbations is not of relevance for the analysis,
the averaging procedure may preserve the main features of the structure of the potential model, thus avoiding the
need of the typical blind computer-based brut force perturbation approach. Indeed, we show how standard recursions
in the literature may be used to efficiently replace the brut force approach, in this way avoiding the need of further
simplification to improve performance evaluation. In particular, Kaula’s seminal recursion formulas for the gravity
potential reveal clearly superior to the use of both expanded expressions and other recursions more recently proposed
in the literature.

Keywords: Gravitational potential, symbolic algebra, recursion formulas, perturbation theory, mission design,
averaging, reduced dynamics

1. Introduction

The complexity of the orbital problems that aerospace engineers commonly confront makes that analytical solu-
tions to them remain generally unknown. Because of that, simplified models that may capture the bulk of the dynamics
of concern for a particular mission are customarily used in the preliminary steps of mission design [1, 2, 3, 4, 5], but
also in the search for efficient maneuvers for the end-of-life disposal of the spacecraft [6, 7]. Some of these simplified
models have only two degrees of freedom (DOF) and, therefore, the phase space description can be approached with
the usual tools of nonlinear dynamics, as the computation of Poincaré surfaces of section [8, 9], the numerical con-
tinuation of periodic orbits and other invariant manifolds [10, 11, 12, 13, 14], or the computation of different stability
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indicators which may disclose the existence of stable regions in real models, as well as the dynamical channels con-
necting distant ones [15, 16, 17]. Alternatively, an analytical process in which the dimension of the system is reduced
to a 1-DOF integrable approximation of the original problem is customarily done by filtering the higher frequencies
of the motion using perturbation theory. The integrable approximation is valid in some region of the phase space
and reflects the main characteristics of the long-term dynamics, which can be explored without need of numerical
integration by the (almost) instant representation of eccentricity-vector diagrams and inclination-eccentricity curves
of frozen orbits [18, 19].

There are, however, some cases in which approximate descriptions of dynamics, even qualitative ones, cannot
be characterized by a simple model and, on the contrary, require to deal with full models. The paradigm of these
problems is the design of low lunar orbits, a procedure in which, due to the irregular distribution of the mass of the
moon, it is commonly accepted that, at least, a 50 × 0 truncation of the Selenepotential is required in the correct
description of the long-term dynamics [20, 21, 22, 23]. This is not the unique case in which full models are required,
and the use of higher order truncations of the gravity potential has also been encouraged in the preliminary design of
low-eccentricity, frozen earth orbits [24, 25, 26].

The reduction to a 1-DOF system is still possible when dealing with full models, but the literal expressions to
handle in the perturbation approach are enormous in this case, and, therefore, the assistance of a computer algebra
system becomes essential [27]. The current computational power makes that memory allocation is no longer a main
concern, and literal expressions are customarily handled in expanded form up to higher degrees. However, rendering
eccentricity-inclination diagrams and inclination-eccentricity curves of frozen orbits can no longer be considered
an instant operation because the evaluation process is jeopardized by the unwieldy expressions obtained as the rough
output of the symbolic processor. Indeed, series of tens of thousands, or even hundreds of thousands of literal terms are
reported in the literature in relation to full perturbation models [28]. A partial solution to this problem comes out from
a post-processing of the crude symbolic output to turn it into a smartly rearranged sequence. However, in spite of broad
simplification rules are part of the gunnery with which general symbolic algebra systems are equipped, designing
efficient heuristic simplification procedures, which are required when dealing with implicit integration to avoid the
limitations of series expansions in the eccentricity, is a quite challenging task because these kinds of simplifications
strongly depend on the algebraic structure of particular problems. Because of that, mathematical simplification is
still regarded as an art [29], and the implementation of useful simplification rules definitely requires high skills in
symbolic algebra manipulation jointly with an uncommon gift for identifying useful intermediate expressions. Hence,
the development of efficient simplification and evaluation rules for coping with perturbed Keplerian motion remains
only within the reach of a handful of selected experts [30, 31, 32].

Handling huge literal expressions cannot be avoided when higher orders of the perturbation approach are essential
in the description of the dynamics [33, 34, 35, 36, 37]. On the contrary, in those cases in which the coupling of
different perturbations is not of relevance in the analysis, the averaging procedure may preserve the main structural
features of the potential model, thus avoiding the need of the typical blind computer-based, brut force approach. This
is in particular the case of the design of low lunar orbits, whose dynamics is mainly driven by the Selenopotential, and
provides the principal motivation for the current research. Indeed, analytical models based on low degree truncations
of the Selenopotential not only fail in describing the quantitative behavior of high inclination, low lunar orbits, but
they may provide completely wrong qualitative descriptions of the phase space. This fact is clearly illustrated in
Fig. (3) of [22], where it is shown that the actual argument of the periapsis of almost polar frozen orbits lies exactly
in the opposite direction of the one predicted by a 7th degree truncation of the potential. Hence the convenience
of preliminary exploration of the sensitivity of the dynamics, based on a gradual increase of the complexity of the
gravitational potential in a harmonic coefficient-by-harmonic coefficient basis [38, 39]. Therefore, having available
efficient procedures for evaluating algebraic expressions with a similar structure to the usual gravitational potential
expansion is more than welcome.

While the evaluation of the gravitational potential is efficiently done in Cartesian coordinates [40, 41, 42, 43], the
analytical investigations of the orbital elements evolution are better performed using Lagrange planetary equations,
which require the reformulation of the gravitational potential in orbital elements. The formulation of the gravity
potential in orbital elements shows the contribution of secular, long-, and short-period corrections to the pure Keplerian
motion [44]. Relevant aspects of the dynamics are disclosed when focusing on the effects of secular and long-period
terms, which can be studied after averaging the contribution of short-period effects, namely, those related to the period
in which the mean anomaly advances by 2π. From the mathematical point of view, this averaging is the result of a
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transformation from osculating to “mean” elements, whose explicit computation is of the utmost importance when
dealing with unstable dynamics, as is the common case of mapping orbits about planetary satellites [45, 46].

The direct conversion of the gravitational potential into orbital elements is quite feasible for low degree and
order truncations. On the other hand, the computational burden grows enormously when converting higher orders,
yet the use of computer algebra systems makes the task possible. Alternatively, efficient recursion formulas for the
conversion of the gravitational potential into orbital elements up to arbitrary degree and order have been provided
by Kaula [47, 48], who organizes the potential as a multivariate Fourier series. In these series, the arguments of
the trigonometric functions involve linear combinations of the mean anomaly, the argument of the periapsis, and the
right ascension of the ascending node, as well as the Greenwich angle, whereas the coefficients of the trigonometric
terms are obtained from Kaula’s inclination and eccentricity functions —the latter being special cases of Hansen
coefficients [49]— as well as the different powers of the inverse of the orbit semi-major axis. Equinoctial elements
[50] are commonly used to avoid the singularities of circular and equatorial orbits that are inherent to the classical
Keplerian elements formulation. Formulas for the conversion of the gravitational potential into equinoctial elements
are provided in [51, 52].

Existing recursions are not limited to the construction of the gravitational potential alone, and are also available for
the secular and long-period terms of the gravitational potential that define the mean elements dynamics. Indeed, when
tesseral resonances are not of concern, the mean elements potential is reduced to the zonal harmonics contribution, a
case in which Kaula’s eccentricity functions are exact, contrary to the expansions in the eccentricity required in other
instances. For this case, equivalent recursions to those of Kaula, but taking the point of view of perturbation theory
using Delaunay canonical variables, have been later made available and complemented with analogous recursions for
the construction of the generating function of the canonical transformation that performs the short-period averaging of
the zonal potential, yet limited to a first order perturbation approach [53]. Analogous, but more involved recursions,
exist also for third-body perturbations in different simplified models [54, 55, 56].

The use of recursion notably speed evaluation of full gravitational fields, and slight modifications of the recursions
in [53] together with additional recursions for the frozen orbits equation ease rendering phase space diagrams in real
time [22] even in the case in which a 100th degree truncation of the zonal potential is taken into account [23]. Even
though, we will show that the performance of the recursions in [53] is clearly exceeded by Kaula’s original recursion
formulas for the averaged potential. Note, however, that these kinds of recursions are constrained to first order effects
in the perturbation approach. That is, they are useful only in those cases in which there is not a clear prevalence of
any of the potential terms, which, therefore, are all taken to be of the same order in the perturbation arrangement.
The moon and Venus are relevant instances of this kind of gravitational potential. On the contrary, it is well known
that the dynamics about earth-like bodies is dominated by the zonal harmonic coefficient of the second degree (C2,0),
whereas the rest of coefficients are O(C2

2,0). In consequence, second order effects of C2,0 are as much important as
first order effects of the other coefficients, and, because of that, they must be taken into account in studies of the long-
term dynamics about earth-like bodies [57, 58, 44, 18]. Hence, to broaden applicability of Kaula’s recursions to this
common case, they are complemented with the terms that model the long-term second order effects due to the zonal
harmonic of the second degree. As far as recursions for a second order averaging are not yet available, we simply add
the expanded expressions of this second order effect to the (first order) recursion formulas.

The paper is organized as follows. We present basic facts on the formulation of the gravitational potential in
orbital elements in Section 2, were we also recall fundamental formulas that are pertinent to approach the zonal
potential Hamiltonian by perturbations taking benefit of Kaula’s recursions. To properly deal with second order
effects of the zonal harmonic of the second degree in those cases in which they are relevant, the elimination of
the parallax [59, 60, 61] is carried out first, in Section 3, where it is shown that this simplification does not affect
the basic structure of Kaula’s recursions. Kaula’s eccentricity functions are recovered at this stage, which can be
expressed in closed form because we only deal with the zonal part of the gravitational potential. Remaining short-
period effects after the elimination of the parallax are removed in Section 4 by performing a Delaunay normalization
[31], leading to the compact formulation of a mean elements Hamiltonian by means Kaula-type recursions, which are
supplemented with the expanded terms corresponding to the second order effects of the zonal harmonic coefficient of
the second degree. Performance comparisons between Kaula and other recursions in the literature and presented in
Section 5, showing the superiority of Kaula’s formulation for higher degree truncations of the mean elements zonal
potential. Finally, the feasibility of displaying eccentricity-vector diagrams and inclination-eccentricity curves in real
time, without limiting to the case of low eccentricities or linearized equations [24, 25, 26], is illustrated in Section

3



7, where a coefficient-by-coefficient approach is used to ascertain the correct truncation of the Selenopotential for
increasing altitudes of a lunar orbiter over the surface of the moon. The different transformation and simplifications
carried out to obtain the long-term dynamics are based on Deprit’s implementation of the Lie transforms method [62].
For completeness, the basics of this perturbation method, which is standard these days [63, 64], are summarized in
Appendix A.

2. The Hamiltonian of the zonal potential

Solution of the Laplace’s equation in spherical coordinates leads to the usual expansion of the gravity potential
[see 65, for instance]

U = −
µ

r

∑
n≥0

Rn
⊕

rn

n∑
m=0

(
Cn,m cos mλ + S n,m sin mλ

)
Pn,m(sinϕ), (1)

where r, ϕ, and λ stand for radius, geocentric latitude and longitude, respectively; Pn,m are associated Legendre
polynomials, and Cn,m and S n,m are harmonic coefficients. In addition to the harmonic coefficients, the values of
the gravitational parameter µ and the equatorial radius of the central body R⊕ are what define a gravitational model
[66, 67, 68]. Due to the rotation of the central body, the gravitational potential depends on time when referred to an
inertial frame. A customary simplification is that it rotates with constant rotation rate n⊕ about the polar axis, and
hence the time dependence is avoided when the problem is formulated in a rotating frame.

Reformulation of Eq. (1) in orbital elements is easily done by recalling the conversion from spherical to rectangular
coordinates in the rotating frame

sin φ =
z
r
, sin λ =

y√
x2 + y2

, cos λ =
x√

x2 + y2
, (2)

where x, y, and z, need to be expressed in the usual Keplerian elements: a, e, I, Ω, ω, M, for orbit semi-major
axis, eccentricity, inclination, right ascension of the ascending node, argument of the periapsis, and mean anomaly,
respectively. This is easily done by carrying out the rotations that relate the orbital frame with the Cartesian frame x

y
z

 = R3(−h) R1(−I) R3(−θ)

 r
0
0

 , (3)

where Ri, i = 1, 2, 3 denote standard rotation matrices, h = Ω − n⊕t, is the argument of the ascending node of the
orbit measured in the rotating frame, θ = f + ω is the argument of the latitude, and f is the true anomaly, which is an
implicit function of M. Besides, the radius must be replaced in Eq. (3) by the conic equation

r =
p

1 + e cos f
, (4)

in which p = aη2 is the parameter of the conic and η =
√

1 − e2 is customarily known as the eccentricity function.
Direct substitution of Eqs. (2)–(4) into Eq. (1) provides the required conversion of the gravitational potential

into orbital elements, and is the usual procedure when dealing with just a few terms of the gravitational potential.
However when the degree and order of the gravitational potential expansion go beyond the first few terms of Eq. (1),
this transformation is notably expedited by using Kaula’s developments [48].

On the other hand, the effects of tesseral perturbations are known to average out except for particular resonances
of the satellite’s mean motion with the rotation rate of the system. Then, we constrain to the zonal harmonics part of
the gravity potential, which is obtained by neglecting in Eq. (1) those harmonic coefficients S n,m, Cn,m with m > 0,
viz.

U = −
µ

r

∑
n≥0

Rn
⊕

rn Cn,0Pn,0(sinϕ). (5)

The zonal potential enjoys axial symmetry, and, therefore, is a 2-DOF problem that does not depend on the geocentric
longitude. This reduction of the dimension releases the problem from the time dependency, and, therefore, the body-
fixed frame is no longer needed and can be replaced by the usual inertial frame.
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Following Kaula’s approach [48], Eq. (5) is rewritten in orbital elements as

U = −
µ

r
−
µ

a

(a
r

)2
η
∑
i≥2

Vi (6)

with

Vi =
Ri
⊕

ai

Ci,0

η2i−1

i∑
j=0

Fi, j(I)
i−1∑
k=0

(
i − 1

k

)
ek cosk f cos[(i − 2 j)( f + ω) − iπ], (7)

in which Fi, j are Kaula’s inclination functions particularized for the case of the zonal problem, namely,

Fi, j =

min( j,i0)∑
l=0

(−1) j−l−i0

22i−2l

(2i − 2l)!
l!(i − l)!(i − 2l)!

(
i − 2l
j − l

)
sini−2l I, i ≥ 2l, (8)

and the parity correction iπ and the symbol i0 adhere to the index notation in [39]. That is, for a generic summation
index i

i? = i mod 2, iπ =
π

2
i?, im =

⌊ i − m
2

⌋
, i?m = im + i?, (9)

where m notes an integer number, and bp/qc denotes the integer division of the integers p and q. Besides, in what
follows we shorten expressions by using the standard abbreviations s ≡ sin I and c ≡ cos I.

Note that Eqs. (6)–(7) differ from analogous equations in [48] (see also [25]) in which we keep a divisor r2

factoring the summation comprising the non-centralities of the gravitational potential. The reason for that will be
apparent later, in reference to the elimination of the parallax simplification.

The flow derived from Eq. (6) is obtained from the integration of Lagrange planetary equations [see sect. 10.2
of 69, for instance], but analytical solutions to these equations are not generally known even for the lower degree
truncations of Eq. (6). However, under certain conditions, useful analytical approximations can be computed by
perturbation methods [70, 71].

In particular, because the zonal problem is derived from a potential function, it admits Hamiltonian formulation
and we can take benefit of Hamiltonian perturbations methods to approach the problem [72]. More specifically,
we resort to the Lie transforms method as devised by Deprit [62], which is summarized in Appendix A for the
convenience of interested readers. In Deprit’s approach, the Hamiltonian of the zonal problem is written

H =
∑
m≥0

εm

m!
Hm,0, (10)

in which ε is a formal small parameter used to indicate the strength of each different perturbation, and we write the
Hamiltonian terms in the form

H0,0 = −
µ

2a
, (11)

H1,0 =

(
−
µ

a

) a2η

r2 V2, (12)

H2,0 = 2
(
−
µ

a

) a2η

r2

∑
i≥3

Vi, (13)

Hm,0 = 0, m ≥ 3, (14)

We note that orbital elements are not canonical variables, which are certainly required in Hamiltonian mechanics.
However, because Keplerian elements provide an immediate insight into orbital problems, we regularly use the orbital
elements notation in following expressions in the understanding that the symbols used are not variables, but known
explicit or implicit functions of some set of canonical variables. In particular, the construction of perturbation solu-
tions to perturbed Kepelrian problems is conveniently approached in Delaunay canonical variables (`, g, h, L,G,H)
corresponding to the mean anomaly ` = M, the argument of the periapsis g = ω, the argument of the node h = Ω, the
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Delaunay action L =
√
µa, the total angular momentum G = Lη, and the polar component of the angular momentum

in the polar axis direction H = G cos I [73].
Note that the right ascension of the ascending node is a cyclic variable in the zonal Hamiltonian defined by the set

of Eqs. (7)–(14). For this reason, its conjugate momentum H is an integral of the zonal problem. Common perturbation
solutions to the zonal problem are based in finding a canonical transformation that completely removes the mean
anomaly ` from the Hamiltonian. After truncation to the order of the transformation, the reduced Hamiltonian is of
1-DOF, and, in consequence, it is integrable in the prime variables.

However, one must note that, because of the peculiarities of the elliptic motion the mean anomaly does not appear
explicitly in the zonal Hamiltonian, but implicitly through the true anomaly f ≡ f (`,G, L). This fact makes the
equation of the center φ = f − ` to appear in the computation of the generating function as soon as in the first order
of a perturbation approach, in this way making notably difficult the computation of higher orders of the solution
in closed form [74, 75]. The traditional alternative relies on expansions of the elliptic motion using trigonometric
functions [71], but this approach requires high order expansions for effectively dealing with moderate eccentricities,
with the consequent long series to evaluate [76, 77], and does not solve efficiently the case of high eccentricities. Even
though alternative expansions of the elliptic motion have been suggested using elliptic function theory [78] leading
to extensions of Kaula’s recursions [79], they are rarely used due to the technicalities involved in the evaluation of
the required special functions [80]. Therefore, the standard way in the reduction of the zonal Hamiltonian starts from
making a preparatory simplification which is traditionally dubbed the elimination of the parallax [59, 60, 61].

3. Simplification: elimination of the parallax

The aim of this simplification is to remove non-essential short-period terms from the zonal Hamiltonian in Eq. (10).
That is, with this simplification, all the short-period terms are removed except those which are related to the funda-
mental Kepler equation; hence the flow derived from the in this way simplified Hamiltonian is termed quasi-Keplerian
motion [59].

The elimination of the parallax simplification applies to full zonal models [81], but we don’t need to do that due to
the low order of the perturbation theory we are interested in. Hence, we limit the application of this simplification just
to case of the zonal harmonic of the second degree. That is, short period terms related with the explicit appearance of
f in Eq. (12), which happen in the V2 coefficient, as shown in Eq. (7), will be removed by the transformation up to the
second order of C2,0, whereas the explicit appearance of r in Eq. (12) , which is also affected of short-period terms,
cf. Eq. (4), will remain untouched by the transformation, as will remain so the remaining terms of the Hamiltonian,
which are given in Eq. (13).

3.1. 1st order

Then, the first step in solving the homological equation of Deprit’s perturbation approach in Appendix A, is to
choose the new Hamiltonian termH0,1 to be comprised of those terms ofH1,0 in Eq. (12) that are free from the explicit
appearance of f . In view of

V2 = −
R2
⊕

a2

C2,0

η3

{1
4

(
2 − 3s2

)
(1 + e cos f ) +

3
8

s2 [
e cos( f + 2ω) + 2 cos(2 f + 2ω) + e cos(3 f + 2ω)

] }
, (15)

we choose

H0,1 = −
µ

a
a2η

r2 〈V2〉 f , (16)

with

〈V2〉 f = −C2,0
R2
⊕

p2

1
4
η
(
2 − 3s2

)
. (17)

Then, W1 is computed from Eq. (A.5) by simple quadrature as

W1 =
1
n

∫
(H1,0 −H0,1) d`,
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that can be solved in closed form using the differential relation between the true and mean anomalies

a2η d` = r2 d f , (18)

which is derived from the preservation of the angular momentum in the Keplerian motion. Thus,

W1 =
1
n

∫
(H1,0 −H0,1)

r2

a2η
d f = −L

∫ (
V2 − 〈V2〉 f

)
d f ,

and hence

W1 = G
R2
⊕

p2

C2,0

8

e (
4 − 6s2

)
sin f + s2

3∑
i=0

Qi(e) sin(i f + 2g)

 , (19)

with
Q0 =

1 + 2η
(1 + η)2 e2, Q1 = 3e, Q2 = 3, Q3 = e. (20)

Note that the summand of W1 related to the term Q0 does not depend on `. It is an integration “constant” that has
been added to the integral to guarantee that W1 is free from hidden long-period terms on the argument of the periapsis
[74, 82].4 Indeed, it is simple to check that

∫ 2π
0 W1 d` = 0 in this way being free from long-period terms. With the

addition of this integration constant to the first order of the generating function we guarantee that the second order
Hamiltonian, still to be computed, will not be deprived of any long-period effect [60, 61].

We hasten to add that dealing with integration constants of the generating function is not necessary from the point
of view of constructing the perturbation solution, which involves the transformation from original to new variables
and vice versa, yet it is highly recommended in those cases in which realistic information is expected to be obtained
directly from the simplified Hamiltonian.

3.2. 2nd order
At the second order, Eq. (A.5) leads to

W2 =
1
n

∫
(H̃0,2 −H0,2) d`, (21)

where, from Deprit’s recursion in Eq. (A.4),

H̃0,2 = {H0,1,W1} + {H1,0,W1} +H2,0. (22)

After evaluating the Poisson brackets and in view of Eq. (13), it is obtained

H̃0,2 =
µ

a
a2η

r2

C2
2,0

R4
⊕

p4 η

6∑
j=0

2∑
l=−2

[
q j,l +

es2

(1 + η)2 q̃ j,l

]
cos( j f + 2lω) − 2

∑
i≥3

Vi

 (23)

in which the non-null coefficients q j,l ≡ q j,l(s, e, η) and q̃ j,l ≡ q̃ j,l(s, e, η) are presented in Tables 1 and 2, respectively.5

Recall that the term q̃0,±1 is a consequence of including the term Q0 of Eq. (20) in the first order generating function,
and can be neglected when having “centered” mean elements is not a requirement of the perturbation theory.

In the same way as in the first order, the new Hamiltonian term H0,2 is chosen to be made of those terms of H̃0,2
that are free from the explicit appearance of f but keep the explicit appearance of r in Eq. (23) untouched. Hence

H0,2 = 2
µ

a
a2η

r2

C2
2,0

R4
⊕

p4 η

[
q0,0

2
+

(
q0,1 +

es2q̃0,1

(1 + η)2

)
cos 2ω

]
−

∑
i≥3

〈Vi〉 f

 , (24)

4These kinds of functions that are free from the mean anomaly are sometimes called “Kozai-like constants” in artificial satellite theory [83].
5For computational purposes, one may note that, following the index convention in Eq. (9), the lower limit of the summation index l for the q j,l

coefficients is l = j1, whereas in the case of q̃ j,l is l = j4.
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j l = 0 l = 1 l = 2

0 q2,0 −
1

16 (21s4 − 42s2 + 20) 3
64 e2s2

(
14 − 15s2

)
1 − 1

32 e
(
27s4 − 108s2 + 64

)
7
16 es2

(
11 − 12s2

)
2 3

64 e2
(
5s4 + 8s2 − 8

)
3
16 e2s2

(
2 − s2

)
+ 1

8

(
20 − 21s2

)
s2 − 15

128 e2s4

3 3
16 es2

(
8s2 − 5

)
− 9

64 es4

4 3
32 e2s2

(
13s2 − 10

)
3

64

(
4 − e2

)
s4

5 15
64 es4

6 9
128 e2s4

Table 1: Coefficients q j,l in Eqs. (23).

l j = 1 j = 2

−2 − 3
256 e2s2χ−

−1 3
128

[
(9 − 42η − 31η2)s2 − 2

3 (5 − 54η − 39η2)
]
χ− 1

8 e(3s2 − 2)χ−

0 3
128 (2 + 23η − 31η2)s2χ+ − 3

16 e2(1 + 2η) 3
32 e[(15s2 − 8)η − 4]

+1 3
128 [(37η2 − 14η − 83)s2 + (58 + 12η − 30η2)]χ+ − 3

8 e(3s2 − 2)χ+

+2 3
256 (21 + 18η + η2)s2χ− 15

32 e(η + 2)s2

l j = 3 j = 4 j = 5

−1 3
16 eq̃2,−1

0 3
256 (61η2 + 66η − 23)s2χ− − 3

16 e2(1 + 2η) − 9
32 es2χ− 5

24 eq̃4,0

+1 3
16 eq̃2,1

+2 9
256 (39 − 6η − 5η2)s2χ+ 27

32 es2χ+ 5
24 eq̃4,2

Table 2: Coefficients q̃ j,l in Eqs. (23); q̃0,±1 = 3
16 e(1 + 2η)(4 − 5s2) and χ± ≡ 1 ± η.

where 〈Vi〉 f comprises the terms of Eq. (7) that are free from short-period effects depending on f . It is computed as
follows.

The dependency of Vi on the true anomaly is made explicit by expanding Eq. (7) as a Fourier series in f . This is
done by expanding first

cosk f cos[m( f + ω) − iπ] = cosk f cos m f cos(mω − iπ) − cosk f sin m f sin(mω − iπ), m = (i − 2 j).

Then, using the standard trigonometric reductions

cos β cosk α =
cos(α + β) + cos(α − β)

2
cosk−1 α, sin β cosk α =

sin(α + β) − sin(α − β)
2

cosk−1 α,

one easily arrives to the recursion

cosk f
{

cos(i − 2 j) f
sin(i − 2 j) f

}
=

1
2k

k∑
l=0

(
k

k − l

) {
cos(i − 2 j − k + 2l) f
sin(i − 2 j − k + 2l) f

}
, (25)

which shows that the only terms in Eq. (7) that are free from f come from those terms of Eq. (25) such that l =
1
2 [k − (i − 2 j)] or k − l = 1

2 (k + i) − j. Hence,

〈Vi〉 f =
Ri
⊕

ai Ci,0

i∑
j=0

Fi, j(s)Gi, j(e, η) cos[(i − 2 j)ω − iπ], (26)

8



where

Gi, j =
1

η2i−1

i−1∑
k=0

(
i − 1

k

)(
k

k+i
2 − j

)
ek

2k . (27)

As expected, the functions Gi, j in Eq. (27) are no more than Kaula’s eccentricity functions for the particular case
of the zonal problem. Indeed, because the summation index l in Eq. (25) is integer, k + i must be even in Eq. (27),
which, therefore, can be rearranged in the efficient form

Gi, j =
1

η2i−1

̃−1∑
l=0

(
i − 1

q

) (
q
l

)
eq

2q , q = 2l + i − 2 ̃,
{

i ≥ 2 j ⇒ ̃ = j
i < 2 j ⇒ ̃ = i − j

, (28)

proposed by Kaula, cf. Eq. 3.66 of [48].
Taking into account the peculiarities of the summations for the cases of odd and even harmonics, Eq. (26) is more

efficiently organized in the form

〈Vi〉 f =
Ri
⊕

ai Ci,0

i2∑
j=0

(2 − δ j+i?,0)Fi,i?0 + j(s)Gi,i?0 + j(e, η) cos
[
(2 j + i?)ω + iπ

]
, (29)

in which δi, j is the usual Kronecker delta function. Note that Eq. (29) also applies to the term 〈V2〉 f , which was
displayed expanded in Eq. (17).

4. Delaunay normalization

The transformed, simplified Hamiltonian after the elimination of the parallax is obtained by replacing the original
Delaunay variables by new, prime ones, viz. (`′, g′, h′, L′,G′,H′). Hence, as follows from Eqs. (16) and (24), up to
the second order, the new Hamiltonian is

H ′ = H ′0,0 + εH ′1,0 +
ε2

2
H ′2,0 + O(C3

2,0)

with

H ′0,0 = −
µ

2a
, (30)

H ′1,0 = −
µ

a
a2η

r2 〈V2〉 f , (31)

H ′2,0 = 2
µ

a
a2η

r2

C2
2,0

R4
⊕

p4 η

[
q0,0

2
+

(
q0,1 +

es2

(1 + η)2 q̃0,1

)
cos 2ω

]
−

∑
i≥3

〈Vi〉 f

 , (32)

where 〈V2〉 f and 〈Vi〉 f are given in Eqs. (17) and (29), respectively, and all symbols are now assumed to be functions
of the prime Delaunay variables.

The elimination of the mean anomaly now becomes trivial. Indeed, at the first order we choose

H ′0,1 =
1

2π

∫ 2π

0
H ′1,0 d`′ =

1
2π

∫ 2π

0
H ′1,0

r2

a2η
d f = −

µ

a
〈V2〉 f . (33)

The first order term of the generating function is computed from Eq. (A.5)

W ′1 =
1
n

∫
(H ′1,0 −H

′
0,1) d`′ =

1
n

[
−H ′0,1`

′ +

∫
H ′1,0

r2

a2η
d f

]
= −L〈V2〉 fφ

where φ = f − `′ is the equation of the center.
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The term H̃ ′0,2 is computed again from Deprit’s recursion in Eq. (A.4), which gives formally the same expression
as Eq. (22), but now it must be formulated in the tilde functions and variables. The new Hamiltonian term H ′0,2 is
selected to be free from short-period terms, viz.

H ′0,2 =
1

2π

∫ 2π

0
H̃ ′0,2 d`′ = H ′0,2,1 +H ′0,2,2 +H ′0,2,3,

where

H ′0,2,1 =
1

2π

∫ 2π

0

(
{H ′0,1,W

′
1} + {H

′
1,0,W

′
1}
)

d`′

H ′0,2,2 =
1

2π

∫ 2π

0
2
µ

a
a2η

r2 C2
2,0

R4
⊕

p4 η

{
q0,0

2
+

[
q0,1 +

es2

(1 + η)2 q̃0,1

]
cos 2ω

}
d`′,

H ′0,2,3 =
1

2π

∫ 2π

0

(
− 2

µ

a
a2η

r2

∑
i≥3

〈Vi〉 f

)
d`′,

After evaluating the Poisson brackets, and using, when required, the differential relation in Eq. (18), the quadratures
are solved in closed form of the eccentricity to get

H ′0,2,1 = −
µ

2a
C2

2,0
R4
⊕

p4

1
8
η(1 + 3η)(2 − 3s2)2,

H ′0,2,2 = 2
µ

a
C2

2,0
R4
⊕

p4 η

{
q0,0

2
+

[
q0,1 +

es2

(1 + η)2 q̃0,1

]
cos 2ω

}
,

H ′0,2,3 = −2
µ

a

∑
i≥3

〈Vi〉 f .

Hence

H ′0,2 = −
µ

a
2
∑
i≥3

〈Vi〉 f −
µ

a
R4
⊕

p4 C2
2,0η

{
1 + 3η

16
(2 − 3s2)2 − q0,0 − 2

[
q0,1 +

es2q̃0,1

(1 + η)2

]
cos 2ω

}
. (34)

Up to O(ε3) = O(C3
2,0), the new Hamiltonian is

H ′′ = H ′′0,0 + εH ′′1,0 +
ε2

2
H ′′2,0, (35)

where terms H ′′m,0 (m = 0, 1, 2), are obtained from corresponding ones H ′0,m given by Eqs. (30), (33), and (34),
respectively, by changing prime by double prime variables (`′′, g′′, h′′, L′′,G′′,H′′).

Hence, if we neglect the term q̃0,1 from Eq. (34) —which is a consequence of the integration constant introduced
in Eq. (19) at the 1st order of the elimination of the parallax simplification— the expanded Hamiltonian in Appendix
A of [18] can be replaced by the compact expression

H =
G2

p2

C2
2,0η

3 R4
⊕

p4

[
−

1 + 3η
32

(2 − 3s2)2 +
1
2

q0,0 + q0,1 cos 2ω
]
− η2

∑
i≥2

〈Vi〉 f

 ,
together with the use of Kaula’s recursion in Eq. (29).

5. Kaula-type recursion’s performance

The Hamiltonian scaling used in Eqs. (11)–(14) is valid only in the case of earth-like bodies [18]. Interesting
as this case may be, there are cases, as it happens with Venus or the moon gravitational potentials, in which the
prevalence of the C2,0 coefficient is not enough to define a clear scaling of the harmonic coefficients, which, therefore,
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are all taken to be of the same order in the perturbation arrangement. In these cases, 2nd order effects of the second
zonal harmonic are not needed and the elimination of the parallax simplification can be avoided. Then, the mean
elements Hamiltonian (35) is obtained after a single canonical transformation that results in

H ′ = −
µ

2a
−
µ

a

∑
i≥2

〈Vi〉 f , (36)

where 〈Vi〉 f is given in Eq. (29). The derivation and arrangement of Eqs. (36) is definitely simpler than corresponding
expressions in [53].

We compare the efficiency of Eq. (36) in the construction of the mean elements Hamiltonian with corresponding
ones proposed in [53], but also with the improved version of these equations developed in [22]. The results of the
comparisons are summarized in Fig. 1, where the ratio of the time needed in the construction of a given term n of the
averaged potential is displayed for the three following cases:

• Eqs. (48)–(50) of Ref. [53, p. 250] compared to Eq. (36), represented by blue dots,

• improved equations in Ref. [22] compared to Eq. (36), represented by magenta dots,

• Eqs. (48)–(50) of Ref. [53] compared to improved equations in Ref. [22], represented by yellow dots.

As shown in the figure, all the approaches spend similar times for the lower degrees of the potential. Besides, the
recursions in [22] reduce the time needed in the computation of the original recursions in [53] to about the 80%.
But even in that case, De Saedeleer’s recursions spend a clearly increasing time, with a rate that is approximately
proportional to 1 tenth of the zonal harmonic degree n, with respect to Kaula’s recursions. Thus, in De Saedeleer’s
(improved) approach, the time spent in constructing the zonal term of 50th degree is ∼ 5 times longer than the time
needed when using Kaula’s recursions, ∼ 10 times longer for the zonal term of 100th degree, or ∼ 20 times longer for
the zonal term of 200th degree.

Ref.@47D � Kaula » 0.70+0.13 n

Ref.@22D � Kaula » 0.64+0.10 n

Ref.@47D � Ref.@22D » 1.23

0 50 100 150 200

0

5

10

15

20

25

zonal harmonic degree n

ti
m

e
ra

ti
o

Figure 1: Performance of Eq. (36) in the construction of the mean elements Hamiltonian compared to Eqs. (49)–(50) of [53] and corresponding
improved recursions in [22].

In spite of the clear advantage of using Kaula’s recursions in the construction of the mean elements Hamiltonian,
all the approaches are quite feasible with the current computational power. Indeed, as shown in Fig. 2, even for the
higher degrees, the analytical expression of the mean elements Hamiltonian term is obtained with Wolfram Mathe-
maticaR© 9 software in just a few seconds when using a 2.8 GHz Intel Core i7 with 16 GB of RAM running under
macOS High Sierra 10.13.5. However, while computing time grows with the degree in a cubic rate when using De
Saedeleer’s approach, it just grows only slightly higher than quadratic when using Kaula’s recursions.
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Figure 2: Time spent in the computation of each term of the mean elements Hamiltonian with the different recursions.

6. The brut force approach

When the Hamiltonian normalization process is approached directly by perturbations with the help of a computer
algebra system, the highest efficiency is obtained when all the analytical expression to be handled in the computation
of the Poisson brackets, as well as other operators that feed the Lie transform procedure, are fully expanded. Because
of that, the number of terms required by particular perturbation theories (Hamiltonian, generating function, periodic
corrections) are repeatedly reported in the literature [see 76, 84, 85, 28, 61, among others]. Once the perturbation
problem has been solved, there is no doubt that the perturbation solution must be exactly the same as the one obtained
with the recursions. However, the latter provides the solution in a more organized way, in which the necessary
expressions take the structure of Poisson series [86, 87] where the coefficients of the trigonometric functions are
arranged in the form of eccentricity and inclination polynomials, contrary to expanded monomials, as can be checked
in Eq. (29).

In spite of the Lie transforms procedure is straightforward in the case of a simple first order approach, which was
precisely the case tested in Section 5, the fact that it starts from reformulating the zonal gravitational potential in orbital
elements, which is given in Eq. (5) in spherical coordinates, hampers the brut force approach since the beginning. The
whole procedure is relieved from unnecessary computations when starting from Eqs. (6)–(7), which notably ease the
computation of the mean elements Hamiltonian in closed form of the eccentricity using the differential relation in
Eq. (18). But even when this shortcut is taken, the computations involved in the customary reduction of the powers of
trigonometric functions that appear in Eq. (7) to trigonometric functions with combined arguments, very soon need to
handle notable amounts of memory, in this way making the computation time to grow in a quintic way from degree to
degree.

The close to exponential growth of the Lie transforms approach is illustrated in Fig. 3, in a logarithmic scale,
where the computations with the Lie transforms where extended only to the 50th degree term of the zonal gravita-
tional potential. The Lie transforms performance relative to both types of recursions is depicted in Fig. 4, where the
performance of Kaula’s recursions over those in [53] is also shown as reference. It can be observed in Fig. 4 that,
since the beginning, the performance is at least 10 times better on the side of recursions, it immediately grows to 100
times better even for the lower degrees, and very soon grows to 1000 times better when the degree is only moderate.

The numbers obtained in our comparisons with the direct implementation of the perturbation method by Lie
transforms are just provided as an illustration of the performance, because the perturbation approach may admit
different implementations. We used our long experience with the Lie transforms method to make the comparisons
unbalanced, yet in no way we claim that the procedure cannot be speeded. However, due to the results obtained, it
is not expected that more efficient implementations of the perturbation approach, if possible, will notably change our
reported results.

Also, it may be argued against our comparisons that we relied on a general purpose algebra system whereas the
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Figure 3: Time spent in the computation of each term of the mean elements Hamiltonian with the brut force approach (Lie transforms), and De
Saedeleer’s and Kaula’s recursions.
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Figure 4: Performance of Eq. (36) in the construction of the mean elements Hamiltonian compared to Eqs. (49)–(50) of [53] and corresponding
improved recursions in [22].

computations can be done much more efficiently if this task is programmed in a specific symbolic manipulator. This
is obviously true, but analogous improvements would be found in the recursions if they are likewise programmed with
a specific tool.

7. Evaluation of the perturbation solution

Once the perturbation solution have been computed by any means, it remains to be evaluated for given initial
conditions. Recursions can obviously be efficiently programmed in platforms with limited memory. On the contrary,
literal expression may require a much larger amount of memory to be stored. In view of memory limitation is not a
major issue these days, one might be tempted to forgo the compact elegance of recursions in favor of the alacrity of
explicit expressions. However, the use of recursions provides also a great versatility in the selection of the perturbation
model, which is a non-negligible advantage in different applications. One important case in which this versatility is
of great help is in the process of assessing the reliability of different simplified models to be used for mission design
purposes.

Thus, it commonly emerges the question on how many zonal harmonics of the gravitational potential must be kept
into the perturbation model to capture the major features of the long-term dynamics while having a model as simple as
possible to ease computations [39]. The answer is normally ascertained after a process that includes the phase space
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representation for increasing complexity of the dynamical model. We will illustrate this procedure by exploring the
mean elements phase space of high-inclination low-altitude lunar orbits for increasing number of zonal harmonics.

The reduced flow stemming from Eq. (36) is of 1-DOF and, for that reason, its orbits can be depicted by simple
contour plots of the mean elements Hamiltonian without need of carrying out any numerical integration. Indeed,
due to the axial symmetry of the zonal potential, Eq. (6), the right ascension of the ascending node Ω = h is a cyclic
variable. Therefore, its conjugate momentum H, the polar component of the angular momentum vector, is a dynamical
constant. Besides, because the mean anomaly has been removed in the averaging procedure leading to Eq. (36), its
conjugate momentum L, the Delaunay action, is a formal dynamical constant of the mean elements Hamiltonian. In
consequence, Eq. (36) only depends on the remaining canonical variables, viz. g and G, and for given initial conditions
remains constant because the averaged Hamiltonian does not depend explicitly on time.

Alternatively, since e =
√

1 −G2/L2 and L is constant, on average, the mean elements Hamiltonian can be viewed
as depending on the eccentricity and the argument of the periapsis ω = g, in which the dynamical constants a = L2/µ
and σ = H/L define a parameters plane. Furthermore, because G = L for a circular orbit, σ represents the cosine
of the inclination of a circular orbit, and, hence, it is common to replace the dynamical parameter represented by
σ = cos Icircular by the corresponding inclination of circular orbits Icircular [88, 89]. The visualization of the long-term
dynamics by means of eccentricity vector diagrams, which are polar plots in which the eccentricity plays the role of
the radius and the argument of the periapsis is the polar angle, is a useful tool for mission designers [24, 2, 90, 91].

The differences in evaluating different truncations of the mean elements Hamiltonian for an orbit with desired
characteristics is illustrated in Figs. 5–7 for a lunar orbiter, in which the physical parameters of the Selenopotential
have been taken form the lunar lp150q model [92]. The dotted circumferences in the different plots of theses figures
mark the eccentricity at which the orbits would impact with the surface of the moon.

Thus, Fig. 5 shows the case of a low lunar orbit in which the semi-major axis is about 1.3 times the lunar radius
and the inclination of the circular orbits is fixed to 63.45 deg. As shown in the figure, the eccentricity vector diagrams
that visualize the long-term dynamics for this point of the parametric plane notably change depending on the number
of harmonics kept in the truncated model. Indeed, when only the Moon’s C2,0 and C3,0 are taken into account, the
perigee of non-impact orbits commonly circulates except in the case of almost circular orbits, where three stable frozen
orbits exist, two of them with the argument of the perigee at ω = −π/2, whereas the perigee of the other points to the
opposite direction. Besides, two unstable almost circular frozen orbits exist with the arguments of the perigee pointing
approximately to 0 and π. The simple addition of the moon’s C4,0 magnifies the eccentricity of four of the five previous
frozen orbits, and only one of the stable orbits remain almost circular. The argument of the perigee of the unstable
solutions clearly departs from the 0–π direction, and the eccentric stable frozen orbit with the argument of the perigee
ω = −π/2 becomes an impact orbit. The inclusion of more zonal harmonics in the mean elements Hamiltonian further
modifies the figure, and when the moon’s C2,0–C6,0 are taken into account, only the almost circular orbit survives as a
non-impact orbit. Quite notably, no frozen non-impact orbits exist in the C2,0–C7,0 model, in which corresponding plot
a dashed curve passing through the origin illustrates the evolution of the eccentricity of the circular orbits. Addition
of more harmonics to the truncated hamiltonian show that the evolution of the circular orbits avoids impact for a
C2,0–C12,0 model, a case in which a frozen non-impact exists with e ≈ 0.09 and ω = −π/2. Finally, the situations
seems to stabilize when C2,0–C30,0 are taken into account, and the addition of more zonal harmonics to the long-term
Hamiltonian does not introduce relevant quantitative modifications of the long-term dynamics.

The case of a low-altitude, high-inclination orbit is shown in Fig. 6. Now, the parameters plane is set to the values
a = 1.07 lunar radius and Icircular = 88 deg, which would fit to the case of typical mapping orbits. Only one non-impact
frozen orbit exists in this case, but the effect of the different zonal harmonics may change the argument of the perigee
from −π/2 to π/2, or even prevent existence of non-impact frozen orbits. In this particular case, due to the lower
altitude, the model needs a higher degree truncation for the long-term behavior to be stabilized, which happens when
C2,0–C33,0 are taken into account, a case in which a non-impact frozen orbit exists whit ω = −π/2 and e ≈ 0.04.

Finally, the example shown in Fig. 7 shows that the long-term dynamics of lower-inclination orbits can be ap-
proached with lower degree truncations of the mean elements Hamiltonian. Thus, for an inclinations of the circular
orbits Icircular = 53 deg the C2,0–C9,0 truncation suffices to capture the main characteristics of the dynamics, yet im-
portant quantitative variations are noted for higher degree truncations until the stabilization happens for the C2,0–C20,0
model.
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Figure 5: Influence of the number of zonal harmonics in the long-term dynamics of a lunar orbit with a = R⊕ + 600 km over the surface of the
moon, Icircular = 63.45 deg.
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Figure 6: Long-term dynamics of a lunar orbit with a = R⊕ + 125 km over the surface of the moon, Icircular = 88 deg.
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Figure 7: Long-term dynamics of a lunar orbit with a = R⊕ + 125 km over the surface of the moon, Icircular = 53 deg.

8. Conclusions

It is well known that Kaula’s seminal recursions provide an efficient way for the direct construction of the grav-
itational potential in orbital elements. Similar recursions derived from them can be used in the construction of the
long-term gravitational potential, a case in which short-period effects are removed by averaging. Simulations in this
paper show that Kaula’s approach clearly remains as the benchmark to which the performance of other recursions in
the literature, as well as the brut force approach, must be compared in the construction of a high degree long-term
potential. On the other hand, second order effects of the second zonal harmonic, which fall out the scope of Kaula’s
approach, are needed in the investigation of the long-term propagation of orbits about the Earth or Earth-like bodies.
However, these effects can be explicitly incorporated to the long-term disturbing function from available expressions
in the literature.

The use of the averaged potential in the construction of eccentricity vector diagrams showed as an efficient way of
ascertaining the complexity of the dynamical model to be used in the description of a particular region of phase space.
It discloses the simplest model to be used in a real description of the long-term dynamics due to the non-centralities of
the gravitational potential, yet additional disturbing effects, as for instance third-body perturbations, may be needed
in the real description of the dynamics.
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Appendix A. Deprit’s perturbation approach

The philosophy of a perturbation method is to find a transformation of variables T : (ξ, ε)→ ξ′, where ξ, ξ′ ∈ Rm

are given by an expansion in power series of the small parameter ε, viz.

ξ = ξ′ +
∑
j≥1

ε j

j!
ξ j(ξ

′),

such that, after truncating the resulting series to some degree εn, the differential equations of the flow in the new
variables are simpler to integrate than in the original ones. A common case is to find a transformation that, after
truncation, decouples the differential system into a reduced one, which due to the reduced dimension should be
simpler to solve than the original one, and a number of quadratures that can be integrated once the solution of the
reduced system is known.

For Hamiltonian problems the dimension m is even, and the variables dissociate into m/2 coordinates x and their
corresponding conjugate momenta X. In that case, the transformation, which is now written T : (x, X, ε) → (x′, X′),
is derived from a single scalar generating function,

W =
∑
m≥0

εm

m!
Wm+1, (A.1)

which is conveniently computed using Deprit’s perturbation method by Lie transforms [62]. Thus, starting from a
Hamiltonian in the form of Eq. (10), in whichHm,0 ≡ Hm,0(x, X), the method provides a new Hamiltonian

K =
∑
m≥0

εm

m!
H0,m(x′, X′), (A.2)

as well as the generating function (A.1) by computing successive solutions of the homological equation

{H0,0; Wm} + H̃0,m = H0,m, (A.3)

in which

• terms H̃0,m are known from previous computations;

• termsH0,m are chosen at will, in accordance with the simplification criterion;

• terms Wm are solved from the partial differential equation resulting from the evaluation of the Poisson bracket
{H0,0; Wm}—sometimes called the Lie operator.

At each step m, the homological equation (A.3) is obtained after rearranging Deprit’s famous recursion

Hn,q+1 = Hn+1,q +
∑

0≤m≤n

(
n
m

)
{Hn−m,q; Wm+1}. (A.4)

where the computation of terms H0,n require the previous computation of all the terms Hi,n−i, 0 < i < n, from the
same recursion. For instance: n = 0, q = 1, leads to the sequence

H0,2 = H1,1 + {H0,1; W1}

H1,1 = H2,0 + {H1,0; W1} + {H0,0; W2},

H0,1 = H1,0 + {H0,0; W1}.

Hence, from Eq. (A.3),
H̃0,2 = {H0,1,W1} + {H1,0,W1} +H2,0.
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Recursion (A.4) is not constrained to the computation of the new Hamiltonian and applies to any function F =∑
m≥0(εm/m!)Fm,0(x, X). Hence, onceW has been solved up to the desired order, Eq. (A.4) can be used to compute

the transformation equations that, up to the truncation order, transformH into K .
For perturbed Keplerian motion, the homological equation (A.3) is conveniently solved in Delaunay canonical

variables. In that case {H0,0; Wm} = −n∂Wm/∂`, and the homological equation

−n
∂Wm

∂`
+ H̃0,m = H0,m, (A.5)

can be solved by quadrature.

References

[1] Y. Kozai, Motion of a lunar orbiter, Publications of the Astronomical Society of Japan 15 (1963) 301–312.
[2] E. Cutting, J. C. Frautnick, G. H. Born, Orbit analysis for Seasat-A, Journal of the Astronautical Sciences 26 (1978) 315–342.
[3] D. J. Scheeres, M. D. Guman, B. F. Villac, Stability Analysis of Planetary Satellite Orbiters: Application to the Europa Orbiter, Journal of

Guidance Control Dynamics 24 (4) (2001) 778–787. doi:10.2514/2.4778.
[4] M. Lara, J. San-Juan, Dynamic Behavior of an Orbiter Around Europa, Journal of Guidance, Control and Dynamics 28 (2) (2005) 291–297.

doi:10.2514/1.5686.
[5] C. Colombo, C. Lücking, C. R. McInnes, Orbital dynamics of high area-to-mass ratio spacecraft with J2 and solar radiation pressure for

novel Earth observation and communication services, Acta Astronautica 81 (1) (2012) 137 – 150. doi:https://doi.org/10.1016/j.
actaastro.2012.07.009.
URL http://www.sciencedirect.com/science/article/pii/S009457651200272X

[6] R. Armellin, J. F. San-Juan, M. Lara, End-of-life disposal of high elliptical orbit missions: The case of INTEGRAL, Advances in Space
Research 56 (3) (2015) 479–493, Advances in Asteroid and Space Debris Science and Technology - Part 1. doi:10.1016/j.asr.2015.
03.020.
URL http://www.sciencedirect.com/science/article/pii/S0273117715002227

[7] C. Colombo, E. M. Alessi, W. van der Weg, S. Soldini, F. Letizia, M. Vetrisano, M. Vasile, A. Rossi, M. Landgraf, End-of-life disposal
concepts for libration point orbit and highly elliptical orbit missions, Acta Astronautica 110 (2015) 298 – 312, dynamics and Control of
Space Systems. doi:http://dx.doi.org/10.1016/j.actaastro.2014.11.002.
URL http://www.sciencedirect.com/science/article/pii/S0094576514004342

[8] R. A. Broucke, Numerical integration of periodic orbits in the main problem of artificial satellite theory, Celestial Mechanics and Dynamical
Astronomy 58 (2) (1994) 99–123. doi:10.1007/BF00695787.

[9] À. Jorba, J. Masdemont, Dynamics in the center manifold of the collinear points of the restricted three body problem, Physica D Nonlinear
Phenomena 132 (1999) 189–213. doi:10.1016/S0167-2789(99)00042-1.

[10] M. Lara, Searching for Repeating Ground Track Orbits: A Systematic Approach, Journal of the Astronautical Sciences 47 (3-4) (1999)
177–188.

[11] G. Gómez, J. Mondelo, The dynamics around the collinear equilibrium points of the RTBP, Physica D: Nonlinear Phenomena 157 (4) (2001)
283 – 321. doi:https://doi.org/10.1016/S0167-2789(01)00312-8.
URL http://www.sciencedirect.com/science/article/pii/S0167278901003128

[12] M. Lara, Repeat Ground Track Orbits of the Earth Tesseral Problem as Bifurcations of the Equatorial Family of Periodic Orbits, Celestial
Mechanics and Dynamical Astronomy 86 (2) (2003) 143–162.

[13] M. Lara, R. Russell, B. F. Villac, Classification of the Distant Stability Regions at Europa, Journal of Guidance Control Dynamics 30 (2007)
409–418. doi:10.2514/1.22372.

[14] R. Russell, M. Lara, Long-lifetime lunar repeat ground track orbits, Journal of Guidance, Control, and Dynamics 30 (4) (2007) 982–993.
[15] M. Lara, R. P. Russell, B. Villac, Stability Maps, Global Dynamics and Transfers (AAS 05-378), in: B. G. Williams, L. A. D’Amario, K. C.

Howell, F. R. Hoots (Eds.), AAS/AIAA Astrodynamics 2005, Vol. 123 of Advances in the Astronautical Sciences, American Astronautical
Society, Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 2006, pp. 1983–2002.
URL https://ntrs.nasa.gov/search.jsp?R=20060042732

[16] M. Lara, R. Russell, B. F. Villac, Fast estimation of stable regions in real models, Meccanica 42 (5) (2007) 511–515. doi:10.1007/
s11012-007-9060-z.
URL https://link.springer.com/article/10.1007/s11012-007-9060-z

[17] B. F. Villac, Using FLI maps for preliminary spacecraft trajectory design in multi-body environments, Celestial Mechanics and Dynamical
Astronomy 102 (2008) 29–48. doi:10.1007/s10569-008-9158-1.

[18] S. L. Coffey, A. Deprit, E. Deprit, Frozen orbits for satellites close to an earth-like planet, Celestial Mechanics and Dynamical Astronomy
59 (1) (1994) 37–72. doi:10.1007/BF00691970.

[19] J. F. San-Juan, M. Lara, S. Ferrer, Phase Space Structure Around Oblate Planetary Satellites, Journal of Guidance Control Dynamics 29
(2006) 113–120. doi:10.2514/1.13385.

[20] A. Konopliv, W. Sjogren, R. Wimberly, R. Cook, A. Vijayaraghavan, A High Resolution Lunar Gravity Field and Predicted Orbit Behavior
(AAS 93-622), in: Advances in the astronautical Sciences, Vol. 85, American Astronautical Society, Univelt, Inc., P.O. Box 28130, San
Diego, California 92198, USA, 1994, pp. 1275–1295.

[21] R. Roncoli, Lunar Constants and Models Document, Tech. Rep. JPL D-32296, Jet Propulsion Laboratory, California Institute of Technology
(Sep. 2005).

19

http://dx.doi.org/10.2514/2.4778
http://dx.doi.org/10.2514/1.5686
http://www.sciencedirect.com/science/article/pii/S009457651200272X
http://www.sciencedirect.com/science/article/pii/S009457651200272X
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2012.07.009
http://dx.doi.org/https://doi.org/10.1016/j.actaastro.2012.07.009
http://www.sciencedirect.com/science/article/pii/S009457651200272X
http://www.sciencedirect.com/science/article/pii/S0273117715002227
http://dx.doi.org/10.1016/j.asr.2015.03.020
http://dx.doi.org/10.1016/j.asr.2015.03.020
http://www.sciencedirect.com/science/article/pii/S0273117715002227
http://www.sciencedirect.com/science/article/pii/S0094576514004342
http://www.sciencedirect.com/science/article/pii/S0094576514004342
http://dx.doi.org/http://dx.doi.org/10.1016/j.actaastro.2014.11.002
http://www.sciencedirect.com/science/article/pii/S0094576514004342
http://dx.doi.org/10.1007/BF00695787
http://dx.doi.org/10.1016/S0167-2789(99)00042-1
http://www.sciencedirect.com/science/article/pii/S0167278901003128
http://dx.doi.org/https://doi.org/10.1016/S0167-2789(01)00312-8
http://www.sciencedirect.com/science/article/pii/S0167278901003128
http://dx.doi.org/10.2514/1.22372
https://ntrs.nasa.gov/search.jsp?R=20060042732
https://ntrs.nasa.gov/search.jsp?R=20060042732
https://link.springer.com/article/10.1007/s11012-007-9060-z
http://dx.doi.org/10.1007/s11012-007-9060-z
http://dx.doi.org/10.1007/s11012-007-9060-z
https://link.springer.com/article/10.1007/s11012-007-9060-z
http://dx.doi.org/10.1007/s10569-008-9158-1
http://dx.doi.org/10.1007/BF00691970
http://dx.doi.org/10.2514/1.13385


[22] M. Lara, B. de Saedeleer, S. Ferrer, Preliminary design of low lunar orbits, in: Proceedings of the 21st International Symposium on Space
Flight Dynamics, Toulouse, France, ISSFD, 2009, pp. 1–15.
URL http://issfd.org/ISSFD_2009/InterMissionDesignII/Lara.pdf

[23] M. Lara, Design of long-lifetime lunar orbits: A hybrid approach, Acta Astronautica 69 (3–4) (2011) 186–199. doi:10.1016/j.
actaastro.2011.03.009.
URL http://www.sciencedirect.com/science/article/pii/S009457651100066X

[24] G. E. Cook, Perturbations of near-circular orbits by the Earth’s gravitational potential, Planetary and Space Science 14 (1966) 433–444.
doi:10.1016/0032-0633(66)90015-8.

[25] G. W. Rosborough, C. Ocampo, Influence of Higher Degree Zonals on the Frozen Orbit Geometry (AAS 91-428), in: B. Kaufman, K. T.
Alfriend, R. L. Roehrich, R. R. Dasenbrock (Eds.), Astrodynamics 1991, Vol. 76 of Advances in the Astronautical Sciences, American
Astronautical Society, Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 1992, pp. 1291–1304.

[26] R. A. Cook, The long-term behavior of near-circular orbits in a zonal gravity field (AAS 91-463), in: B. Kaufman, K. T. Alfriend, R. L.
Roehrich, R. R. Dasenbrock (Eds.), Astrodynamics 1991, Vol. 76 of Advances in the Astronautical Sciences, American Astronautical Society.,
Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 1992, pp. 2205–2221.

[27] M. Lara, A Mathematica c©–based approach to the frozen orbits problem about arbitrary bodies. The case of a Lunar orbiter, in: Astrodynamics
Beyond Borders, Proceedings of the 4th International Conference on Astrodynamics Tools and Techniques, ESA publication WPP-308,
ICATT, 2010, pp. 1–8.

[28] S. L. Coffey, H. L. Neal, A. M. Segerman, J. J. Travisano, An analytic orbit propagation program for satellite catalog maintenance, in: K. T.
Alfriend, I. M. Ross, A. K. Misra, C. F. Peters (Eds.), AAS/AIAA Astrodynamics Conference 1995, Vol. 90 of Advances in the Astronautical
Sciences, American Astronautical Society, Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 1996, pp. 1869–1892.

[29] D. E. Knuth, The Art of Computer Programming, Addison–Wesley–Longman, Reading, Massachusetts, 1997.
[30] S. Coffey, A. Deprit, Fast evaluation of Fourier series, Astronomy and Astrophysics 81 (1980) 310–315.
[31] A. Deprit, Delaunay normalisations, Celestial Mechanics 26 (1982) 9–21. doi:10.1007/BF01233178.
[32] L. M. Healy, J. J. Travisano, Automatic rendering of astrodynamics expressions for efficient evaluation, Journal of the Astronautical Sciences

46 (1) (1998) 65–81.
[33] E. Wnuk, S. Breiter, The motion of natural and artificial satellites in Mars gravity field, Advances in Space Research 11 (6) (1991) 183 – 188.

doi:https://doi.org/10.1016/0273-1177(91)90251-E.
URL http://www.sciencedirect.com/science/article/pii/027311779190251E

[34] G. Metris, P. Exertier, Y. Boudon, F. Barlier, Long period variations of the motion of a satellite due to non-resonant tesseral harmonics of a
gravity, Celestial Mechanics and Dynamical Astronomy 57 (1993) 175–188. doi:10.1007/BF00692472.

[35] E. Wnuk, T. Jopek, Satellite orbit calculations using geopotential coefficients up to high degree and order, Advances in Space Research 14.
[36] M. Lara, J. Palacián, R. Russell, Mission design through averaging of perturbed Keplerian systems: the paradigm of an Enceladus orbiter,

Celestial Mechanics and Dynamical Astronomy 108 (1) (2010) 1–22. doi:10.1007/s10569-010-9286-2.
URL https://link.springer.com/article/10.1007/s10569-010-9286-2

[37] M. Lara, I. Pérez, R. López, Higher Order Approximation to the Hill Problem Dynamics about the Libration Points, Communications in
Nonlinear Science and Numerical Simulation in press. doi:10.1016/j.cnsns.2017.12.007.
URL http://www.sciencedirect.com/science/article/pii/S100757041730429X

[38] M. Lara, S. Ferrer, B. d. Saedeleer, Lunar analytical theory for polar orbits in a 50-degree zonal model plus third-body effect, The Journal of
the Astronautical Sciences 57 (3) (2009) 561–577. doi:10.1007/BF03321517.
URL http://dx.doi.org/10.1007/BF03321517

[39] M. Lara, Exploring Sensitivity of Orbital Dynamics with Respect to Model Truncation: The Frozen Orbits Approach, in: M. Vasile,
E. Minisci, L. Summerer, P. McGinty (Eds.), Stardust Final Conference, Vol. 52 of Astrophysics and Space Science Proceedings, Springer
International Publishing, Cham, 2018, pp. 69–83. doi:10.1007/978-3-319-69956-1_4.

[40] L. E. Cunningham, On the Computation of the Spherical Harmonic Terms Needed during the Numerical Integration of the Orbital Motion of
an Artificial Satellite, Celestial Mechanics 2 (1970) 207–216. doi:10.1007/BF01229495.

[41] S. Pines, Uniform Representation of the Gravitational Potential and its Derivatives, AIAA Journal 11 (1973) 1508–1511. doi:10.2514/3.
50619.

[42] J. B. Lundberg, B. E. Schutz, Recursion formulas of Legendre functions for use with nonsingular geopotential models., Journal of Guidance
Control Dynamics 11 (1988) 31–38. doi:10.2514/3.20266.

[43] E. Fantino, S. Casotto, Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients,
Journal of Geodesy 83 (2009) 595–619. doi:10.1007/s00190-008-0275-0.

[44] Y. Kozai, The Motion of a Close Earth Satellite, The Astronomical Journal 64 (11) (1959) 367–377.
[45] M. Lara, Simplified Equations for Computing Science Orbits Around Planetary Satellites, Journal of Guidance Control Dynamics 31 (1)

(2008) 172–181. doi:10.2514/1.31107.
[46] M. Lara, J. F. Palacián, P. Yanguas, C. Corral, Analytical theory for spacecraft motion about Mercury, Acta Astronautica 66 (7-8) (2010)

1022–1038. doi:10.1016/j.actaastro.2009.10.011.
URL http://www.sciencedirect.com/science/article/pii/S0094576509004974

[47] W. M. Kaula, Analysis of Gravitational and Geometric Aspects of Geodetic Utilization of Satellites, Geophysical Journal 5 (1961) 104–133.
doi:10.1111/j.1365-246X.1961.tb00417.x.

[48] W. M. Kaula, Theory of satellite geodesy. Applications of satellites to geodesy, Blaisdell, Waltham, Massachusetts, 1966.
[49] P. A. Hansen, Expansions of the product of a power of the radius vector with the sinus or cosinus of a multiple of the true anomaly in terms of

series containing the sinuses or cosinuses of the multiples of the true, eccentric or mean anomaly, Abhandlungen der Koniglich Sachsischen
Gesellschaft der Wissenschaften 2 (3) (1855) 183–281, English translation by J.C. Van der Ha, ESA/ESOC, Darmstadt, Germany, 1977.

[50] J. L. Arsenault, K. C. Ford, P. E. Koskela, Orbit determination using analytic partial derivatives of perturbed motion., AIAA Journal 8 (1970)
4–12. doi:10.2514/3.5597.

20

http://issfd.org/ISSFD_2009/InterMissionDesignII/Lara.pdf
http://issfd.org/ISSFD_2009/InterMissionDesignII/Lara.pdf
http://www.sciencedirect.com/science/article/pii/S009457651100066X
http://dx.doi.org/10.1016/j.actaastro.2011.03.009
http://dx.doi.org/10.1016/j.actaastro.2011.03.009
http://www.sciencedirect.com/science/article/pii/S009457651100066X
http://dx.doi.org/10.1016/0032-0633(66)90015-8
http://dx.doi.org/10.1007/BF01233178
http://www.sciencedirect.com/science/article/pii/027311779190251E
http://dx.doi.org/https://doi.org/10.1016/0273-1177(91)90251-E
http://www.sciencedirect.com/science/article/pii/027311779190251E
http://dx.doi.org/10.1007/BF00692472
https://link.springer.com/article/10.1007/s10569-010-9286-2
http://dx.doi.org/10.1007/s10569-010-9286-2
https://link.springer.com/article/10.1007/s10569-010-9286-2
http://www.sciencedirect.com/science/article/pii/S100757041730429X
http://dx.doi.org/10.1016/j.cnsns.2017.12.007
http://www.sciencedirect.com/science/article/pii/S100757041730429X
http://dx.doi.org/10.1007/BF03321517
http://dx.doi.org/10.1007/BF03321517
http://dx.doi.org/10.1007/BF03321517
http://dx.doi.org/10.1007/978-3-319-69956-1_4
http://dx.doi.org/10.1007/BF01229495
http://dx.doi.org/10.2514/3.50619
http://dx.doi.org/10.2514/3.50619
http://dx.doi.org/10.2514/3.20266
http://dx.doi.org/10.1007/s00190-008-0275-0
http://dx.doi.org/10.2514/1.31107
http://www.sciencedirect.com/science/article/pii/S0094576509004974
http://dx.doi.org/10.1016/j.actaastro.2009.10.011
http://www.sciencedirect.com/science/article/pii/S0094576509004974
http://dx.doi.org/10.1111/j.1365-246X.1961.tb00417.x
http://dx.doi.org/10.2514/3.5597


[51] R. A. Broucke, P. J. Cefola, On the Equinoctial Orbit Elements, Celestial Mechanics 5 (3) (1972) 303–310. doi:10.1007/BF01228432.
[52] P. J. Cefola, R. Broucke, On the formulation of the gravitational potential in terms of equinoctial variables, in: 13th Aerospace Sciences

Meeting, Pasadena, California, American Institute of Aeronautics and Astronautics, USA, 1975, pp. 1–25, AIAA Paper No. 75-9.
[53] B. de Saedeleer, Complete Zonal Problem of the Artificial Satellite: Generic Compact Analytic First Order in Closed Form, Celestial Me-

chanics and Dynamical Astronomy 91 (2005) 239–268. doi:10.1007/s10569-004-1813-6.
[54] W. M. Kaula, Development of the lunar and solar disturbing functions for a close satellite, The Astronomical Journal 67 (1962) 300. doi:

10.1086/108729.
[55] Laskar, J., Boué, G., Explicit expansion of the three-body disturbing function for arbitrary eccentricities and inclinations, Astronomy and

Astrophysics 522 (2010) A60. doi:10.1051/0004-6361/201014496.
URL https://doi.org/10.1051/0004-6361/201014496

[56] J. F. Palacián, J. Vanegas, P. Yanguas, Compact normalisations in the elliptic restricted three body problem, Astrophysics and Space Science
362 (2017) 215. doi:10.1007/s10509-017-3195-8.

[57] D. Brouwer, Solution of the problem of artificial satellite theory without drag, The Astronomical Journal 64 (1959) 378–397. doi:10.1086/
107958.

[58] B. Garfinkel, The orbit of a satellite of an oblate planet, The Astronomical Journal 64 (9) (1959) 353–367. doi:10.1086/107956.
[59] A. Deprit, The elimination of the parallax in satellite theory, Celestial Mechanics 24 (2) (1981) 111–153. doi:10.1007/BF01229192.
[60] M. Lara, J. F. San-Juan, L. M. López-Ochoa, Proper Averaging Via Parallax Elimination (AAS 13-722), in: S. B. Broschart, J. D. Turner,

K. C. Howell, F. R. Hoots (Eds.), Astrodynamics 2013, Vol. 150 of Advances in the Astronautical Sciences, American Astronautical Society,
Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 2014, pp. 315–331.

[61] M. Lara, J. F. San-Juan, L. M. López-Ochoa, Delaunay variables approach to the elimination of the perigee in Artificial Satellite Theory,
Celestial Mechanics and Dynamical Astronomy 120 (1) (2014) 39–56. arXiv:1312.7577, doi:10.1007/s10569-014-9559-2.

[62] A. Deprit, Canonical transformations depending on a small parameter, Celestial Mechanics 1 (1) (1969) 12–30. doi:10.1007/BF01230629.
[63] D. Boccaletti, G. Pucacco, Theory of orbits. Volume 2: Perturbative and geometrical methods, 1st Edition, Astronomy and Astrophysics

Library, Springer-Verlag, Berlin Heidelberg New York, 2002.
[64] K. R. Meyer, G. R. Hall, Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, Springer, New York, 1992.
[65] W. D. MacMillan, The Theory of the Potential, Dover Publishers Inc., New York, 1958.
[66] Defense Mapping Agency, Department of Defense World Geodetic System 1984: Its definition and relationship with local geodetic systems,

DMA Technical Report 8350.2, Centre National d’Études Spatiales, Washington, D.C. (May 1987).
[67] A. Konopliv, W. Banerdt, W. Sjogren, Venus gravity: 180th degree and order model, Icarus 139 (1) (1999) 3 – 18. doi:https://doi.org/

10.1006/icar.1999.6086.
URL http://www.sciencedirect.com/science/article/pii/S0019103599960864

[68] A. S. Konopliv, R. S. Park, W. M. Folkner, An improved jpl mars gravity field and orientation from mars orbiter and lander tracking data,
Icarus 274 (2016) 253 – 260. doi:https://doi.org/10.1016/j.icarus.2016.02.052.
URL http://www.sciencedirect.com/science/article/pii/S0019103516001305

[69] R. H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics,
Reston, VA, 1999.

[70] A. H. Nayfeh, Perturbation Methods, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004.
[71] D. Brouwer, G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York and London, 1961.
[72] S. Ferraz-Mello, Canonical Perturbation Theories - Degenerate Systems and Resonance, Vol. 345 of Astrophysics and Space Science Library,

Springer, New York, 2007.
[73] C. E. Delaunay, La Théorie du Mouvement de la Lune, Premier volume, Vol. 28 of Mémoires de l’Academie des Sciences de l’Institut

Impérial de France., Mallet-Bachellier, Paris, 1860.
URL http://gallica.bnf.fr/ark:/12148/cb343783130/date

[74] Y. Kozai, Second-Order Solution of Artificial Satellite Theory without Air Drag, The Astronomical Journal 67 (7) (1962) 446–461.
[75] C. Osácar, J. F. Palacián, Decomposition of functions for elliptical orbits, Celestial Mechanics and Dynamical Astronomy 60 (2) (1994)

207–223. doi:10.1007/BF00693322.
[76] A. Deprit, A. Rom, The Main Problem of Artificial Satellite Theory for Small and Moderate Eccentricities, Celestial Mechanics 2 (2) (1970)

166–206.
[77] E. Wnuk, Highly eccentric satellite orbits, Advances in Space Research 19 (1997) 1735–1740. doi:10.1016/S0273-1177(97)00336-0.
[78] E. Brumberg, T. Fukushima, Expansions of elliptic motion based on elliptic function theory, Celestial Mechanics and Dynamical Astronomy

60 (1994) 69–89. doi:10.1007/BF00693093.
[79] E. Brumberg, V. A. Brumberg, T. Konrad, M. Soffel, Analytical Linear Perturbation Theory for Highly Eccentric Satellite Orbits, Celestial

Mechanics and Dynamical Astronomy 61 (1995) 369–387. doi:10.1007/BF00049516.
[80] T. Fukushima, Elliptic functions and elliptic integrals for celestial mechanics and dynamical astronomy, in: S. Kopeikin (Ed.), Frontiers in

Relativistic Celestial Mechanics Volume 2: Applications and Experiments, Vol. 22 of De Gruyter Studies in Mathematical Physics, Walter de
Gruyter GmbH, Genthiner Strasse 13, D-10785 Berlin / Germany, 2014, pp. 189–228.

[81] K. T. Alfriend, S. L. Coffey, Elimination of the perigee in the satellite problem, Celestial Mechanics 32 (2) (1984) 163–172. doi:10.1007/
BF01231123.

[82] A. Exertier, Orbitographie des satellites artificiels sur de grandes periodes de temps. Possibilites d’applications, PhD. Thesis, Observatoire de
Paris, Paris, 1988.

[83] M. Lara, J. F. San-Juan, L. M. López, P. J. Cefola, On the third-body perturbations of high-altitude orbits, Celestial Mechanics and Dynamical
Astronomy 113 (2012) 435–452. doi:10.1007/s10569-012-9433-z.

[84] S. Coffey, K. T. Alfriend, Short period elimination for the tesseral harmonics, in: A. L. Friedlander, P. J. Cefola, B. Kaufman, W. Williamson,
G. Tseng (Eds.), AAS/AIAA Astrodynamics Conference 1981, Vol. 46 of Advances in the Astronautical Sciences, American Astronautical
Society, Univelt, Inc., P.O. Box 28130, San Diego, California 92198, USA, 1982, pp. 87–101.

21

http://dx.doi.org/10.1007/BF01228432
http://dx.doi.org/10.1007/s10569-004-1813-6
http://dx.doi.org/10.1086/108729
http://dx.doi.org/10.1086/108729
https://doi.org/10.1051/0004-6361/201014496
http://dx.doi.org/10.1051/0004-6361/201014496
https://doi.org/10.1051/0004-6361/201014496
http://dx.doi.org/10.1007/s10509-017-3195-8
http://dx.doi.org/10.1086/107958
http://dx.doi.org/10.1086/107958
http://dx.doi.org/10.1086/107956
http://dx.doi.org/10.1007/BF01229192
http://arxiv.org/abs/1312.7577
http://dx.doi.org/10.1007/s10569-014-9559-2
http://dx.doi.org/10.1007/BF01230629
http://www.sciencedirect.com/science/article/pii/S0019103599960864
http://dx.doi.org/https://doi.org/10.1006/icar.1999.6086
http://dx.doi.org/https://doi.org/10.1006/icar.1999.6086
http://www.sciencedirect.com/science/article/pii/S0019103599960864
http://www.sciencedirect.com/science/article/pii/S0019103516001305
http://dx.doi.org/https://doi.org/10.1016/j.icarus.2016.02.052
http://www.sciencedirect.com/science/article/pii/S0019103516001305
http://gallica.bnf.fr/ark:/12148/cb343783130/date
http://gallica.bnf.fr/ark:/12148/cb343783130/date
http://dx.doi.org/10.1007/BF00693322
http://dx.doi.org/10.1016/S0273-1177(97)00336-0
http://dx.doi.org/10.1007/BF00693093
http://dx.doi.org/10.1007/BF00049516
http://dx.doi.org/10.1007/BF01231123
http://dx.doi.org/10.1007/BF01231123
http://dx.doi.org/10.1007/s10569-012-9433-z


[85] S. Coffey, A. Deprit, Third-Order Solution to the Main Problem in Satellite Theory, Journal of Guidance, Control and Dynamics 5 (4) (1982)
366–371.

[86] J. M. A. Danby, A. Deprit, A. R. M. Rom, The Symbolic Manipulation of Poisson Series, Mathematical Note No. 432 D1-82-0481, Boeing
Scientific Research Laboratories, Seattle, Washington (1965).

[87] A. Deprit, A. Rom, Lindstedt’s Series on a Computer, The Astronomical Journal 73 (1968) 210. doi:10.1086/110619.
[88] M. Lara, Three-body dynamics around the smaller primary. Application to the design of science orbits, Journal of Aerospace Engineering,

Sciences and Applications 2 (1) (2010) 53–65. doi:10.7446/jaesa.0201.06.
URL http://www.aeroespacial.org.br/jaesa/editions/repository/v02/n01/6-Lara.pdf

[89] M. Lara, J. F. San-Juan, L. M. López-Ochoa, Precise analytical computation of frozen-eccentricity, low Earth orbits in a tesseral potential,
Mathematical Problems in Engineering 2013 (Article ID 191384) (2013) 1–13. doi:10.1155/2013/191384.

[90] B. E. Shapiro, Phase Plane Analysis and Observed Frozen Orbit for the Topex/Poseidon Mission, in: P. M. Bainum, G. L. May, Y. Ohkami,
K. Uesugi, Q. Faren, L. Furong (Eds.), 6th AAS/JRS/CSA Symposium, International Space Conference of Pacific-Basin Societies, Strength-
ening Cooperation in the 21st Century, Vol. 91 of Advances in the Astronautical Sciences, American Astronautical Society, Univelt, Inc.,
P.O. Box 28130, San Diego, California 92198, USA, 1996, pp. 853–872.

[91] D. Folta, D. Quinn, Lunar Frozen Orbits, in: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 21 - 24 August 2006, Keystone,
Colorado, American Institute of Aeronautics and Astronautics, 2006, pp. 1–18, AIAA Paper 2006-6749. doi:10.2514/6.2006-6749.

[92] A. S. Konopliv, S. W. Asmar, E. Carranza, W. L. Sjogren, D. N. Yuan, Recent Gravity Models as a Result of the Lunar Prospector Mission,
Icarus 150 (2001) 1–18. doi:10.1006/icar.2000.6573.

22

http://dx.doi.org/10.1086/110619
http://www.aeroespacial.org.br/jaesa/editions/repository/v02/n01/6-Lara.pdf
http://dx.doi.org/10.7446/jaesa.0201.06
http://www.aeroespacial.org.br/jaesa/editions/repository/v02/n01/6-Lara.pdf
http://dx.doi.org/10.1155/2013/ 191384
http://dx.doi.org/10.2514/6.2006-6749
http://dx.doi.org/10.1006/icar.2000.6573

	1 Introduction
	2 The Hamiltonian of the zonal potential
	3 Simplification: elimination of the parallax
	3.1 1st order
	3.2 2nd order

	4 Delaunay normalization
	5 Kaula-type recursion's performance
	6 The brut force approach
	7 Evaluation of the perturbation solution
	8 Conclusions
	Appendix  A Deprit's perturbation approach

