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Abstract

Electroencephalography (EEG) monitors —by either intrusive or noninvasive
electrodes— time and frequency variations and spectral content of voltage
fluctuations or waves, known as brain rhythms, which in some way uncover
activity during both rest periods and specific events in which the subject is
under stimulus. This is a useful tool to explore brain behavior, as it comple-
ments imaging techniques that have a poorer temporal resolution. We here
approach the understanding of EEG data from first principles by numeri-
cal simulating and studying a networked model of excitatory and inhibitory
neurons which generates a variety of comparable waves. In fact, we thus nu-
merically reproduce oscillatory behavior similar to α, β, γ and other rhythms
as observed by EEG recordings, and identify the details of the respectively
involved complex phenomena, including a precise relationship between an in-
put and the collective response to it. It ensues the potentiality of our model
to better understand actual brain oscillatory activity in normal and patholog-
ical situations, and we also describe kind of stochastic resonance phenomena
which could be useful to locate main qualitative changes of brain activity in
(e.g.) humans.
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Introduction

There has been a growing interest in investigating the occurrence of phe-
nomena associated with thermodynamic-like phase transitions and criticality
during the functioning of neural media by means of novel experimental tech-
niques, analysis of available connectome data, and numerical simulations of
biological-inspired theoretical approaches; see, e.g., [1, 2, 3, 4, 5, 6], and ref-
erences therein. In particular, a sort of brain critical behavior —mimicking
essential features of phase transition phenomena such as condensation and
ferromagnetism— is now believed to be at the origin of the observed good
processing throughout the brain of signals coming from different areas and
the senses [7, 8, 6, 9]. That is, there has recently emerged definite evidence
that weak signals are optimally transferred and even enhanced in a noisy
environment when the system is in a well-defined region with great suscep-
tibility which happens to separate neuron dynamic “phases”, i.e., areas in
parameter space in which the brain shows qualitatively different kinds of be-
havior [3, 5]. Ref. [3] also presents a feasible procedure to experimentally
detect phase transitions and their details during the performance of actual
brains. Following this promising path, in the present paper we investigate the
possibility of visualizing phase transitions during brain operation by using
easily-extracted brain-activity data obtained from EEG (by the same token,
magnetoencephalograph) recordings. It ensues what we hope is a convenient
tool to monitor in vivo changes between different dynamic behaviors of the
cerebral activity. It may also follow how to design specific stimuli to control
these dynamic phases and eventually modify some of their properties, e.g.,
in cases of dysfunction.

More specifically, we here present, numerically simulate and discuss an
EEG neural-activity model, which generalizes and formalizes a previous one
[10]. We link this to a familiar mathematical framework, improve the tem-
poral precision of the original setting (using a time step of 40 millionths of
a second), include an appropriate tuning of the noise, and consider the pos-
sibility of an input signal that makes the model useful to reveal and analyze
new intriguing phenomena. This increase in the model temporal integration
precision ensures avoiding artifacts, such as non-real synchronicity, in par-
ticular for high intensity noisy inputs. In addition, our model also includes
two basic realistic assumptions concerning the cortical activity in the human
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brain as Excitation/Inhibition balance [11] and the relation of the intrin-
sic noise with a noisy input to each neuron in the network that mimics the
excitatory activity from other brain areas that project into our system.

The new setting allows us to deep on how oscillation patterns, e.g., as
observed by electroencephalography, emerge reflecting different dynamic ac-
tivity, and we thus infer the precise role of the intrinsic noise in causing some
familiar rhythms in the human brain. It ensues that not only α rhythms but
also β, γ and ultrafast oscillations are all just a form (at different levels) of
the same “noise” as it is filtered (in a way that our model clarifies) by the
neural network itself. More precisely, we demonstrate here that in a realistic
modeled brain module that receives a Poissonian noise input in which there
is not a defined frequency, only its intensity, the collective behavior of the
brain module is an oscillation with a well-defined frequency (which charac-
terized the corresponding brain rhythm) and that this frequency depends on
the intensity of the input noise. That is, one may conclude that the cause
for brain waves is universal within this context, which allows us to consider
a unique mechanism for any of the mentioned voltage fluctuations with only
a relevant parameter. This, we show, is the intensity of the sum of all the
inputs, either noisy or constant, reaching the network from the outside, and
we succeed in parameterizing it. Consequently, we are able to rigorously re-
late the occurrence of phase transitions —actually, having a non-equilibrium
nature [12, 5]— in the brain with different possible dynamic behaviors which
are revealed by the easily-observed EEG rhythms mentioned. It is with this
aim that we here use and numerically simulate a network, which involves
both excitatory and inhibitory units, where a random input is sufficient to
generate different brainwaves, some of them respectively corresponding to α,
β, γ and ultrafast oscillations. We also precisely relate the intensity of the
input and the frequency of the resulting dynamic response and —following
a method first reported in [3]—we show how to use an external signal in a
simple experiment to identify the undergoing phase changes and other de-
tails during brain operation using the well known mechanism of stochastic
resonance (SR) [13]. The close relation between the oscillatory emergent be-
havior in our system and actual brain waves as those observed, for instance,
in EEG recordings, suggests that the same SR experiments to detect phases
transitions can be visualized in actual brains designing, for instance, appro-
priate pychophysical experiments that show a high susceptibility of the brain
activity to given stimuli in the presence also of noisy inputs.
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Figure 1: Model features. Left panel: a portion of the actual network topology (we here
in practice considered N = 180 nodes), where filled circles stand for inhibitory (I ) neurons
and open circles represent excitatory (E ) neurons. In order to mimic biological conditions
(and following [10]), the largest of the two concentric circles drawn includes 32 E s which
influence the I at its center, and the smallest concentric circle includes 12 E s under the
influence of that I. Right panel: an excitatory postsynaptic potential (EPSP; topmost,
purple curve) and an inhibitory one (IPSP; lowermost, green curve) as modeled using the
time-dependent voltage functions V E(t) and V I(t) (see main text) for parameter values in
[10], namely, tmax = 4ms, ε = 0.3425V/s, η = −0.82V/s, τ1 = 16ms and τ2 = 26.3ms.
For illustrative purposes, we also show here (with thinner lines) the two functions in Eq.
(2).

Model and method

Consider, for simplicity and ease of representation, a regular two-dimensional
network on a torus —in which periodic boundary conditions avoid surface
effects and simulate a larger system— with N nodes each holding either an
excitatory (E ) or an inhibitory (I ) neuron as depicted in Fig. 1. They in-
teract with each other such that any E excites one or more I s as long as
the membrane voltage of the former exceeds a given threshold potential, and
when any I exceeds its own threshold it will inhibit a group of E s (negative
feedback). No delays are considered, which might exclude very extensive
networks, and we also neglect both positive feedback of E s (any E stimu-
lating another E ) and negative feedback of I s (any I inhibiting other I ).
Furthermore, according to histological data —showing that, in portions of
the cortex, there are about four times more excitatory than inhibitory neu-
rons [14, 15, 16, 17]— the E/I ratio is assumed here to be 4, so that any I
neuron receives effective excitatory inputs from 32 surrounding E s and any
I neuron projects upon 12 surrounding E s, as illustrated in Fig. 1A.
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For simplicity, we also assume that the EEG signal is an extracellular
reflection of the sum of the membrane potentials of the neurons in our net-
work, since synaptic events may propagate over large distances in extracellu-
lar space and be recordable as far as on the surface of the scalp, where they
participate to the genesis of the EEG.

Dynamics

Each neuron is fully characterized by a potential or “voltage membrane”
V which evolves in time —below a given threshold for firing, Vth— according
to a type of integrate-and-fire dynamics [18] under various contributions,
namely,

τ
dV (t)

dt
= −V (t) + Vin(t) + Vext (t) + Vnoise(t) + V0, (1)

where V0 = RI0 is a constant voltage term induced by a constant current I0
(so that R characterizes the neuron membrane resistance), and Vext stands
for an external well-defined signal that we in practice implement as a sinus (in
order to trace it easily). These compete with a noise Vnoise, which corresponds
to uncorrelated depolarizing signals from other areas of the brain, and we
assume here that such excitatory inputs occur at times that are Poisson
distributed with mean µ. This, which also characterizes the noise distribution
broadness, will be used as a principal parameter in our study. Furthermore,
a main contribution in (1) is the total signal Vin arriving to the given neuron
from its presynaptic (neighbor) neurons. In order to take phenomenological
account of the observed dynamic behavior of synaptic connections [3], we
assume this may be written, for a single presynaptic excitatory or inhibitory
input, as (cf. thin lines in Fig. 1B)

Vin(t) =

{
ετ [Θ (t− tin)−Θ (t− tin − tmax)] depolarizing inputs
ητΘ (t− tin) exp [− (t− tin) /τ ] hyperpolarizing inputs.

(2)

Here, tin is the time at which the presynaptic input occurs, the first line is
for the excitatory input of amplitude ετ and duration tmax arriving to the
neuron, and the second line stands for the exponentially-decaying inhibitory
input (decreasing η per unit time). Θ(X) is the Heaviside step function.

For V0 = Vext = Vnoise = 0, one may prove by exact integration of (1)
with (2) that the induced depolarizing and hyperpolarizing waves generated
by a single input from an excitatory neuron and an inhibitory presynaptic

5



one are, respectively,

V E(t) =


0 t ≤ tin
ετ1 {1− exp [−(t− tin)/τ1]} tin < t ≤ tin + tmax

λ exp [−(t− tin − tmax)/τ1] t > tin + tmax

(3)

and

V I(t) =

{
0 t ≤ tin
η(t− tin) exp [−(t− tin)/τ2] , t > tin,

(4)

where λ ≡ V E (tin + tmax) = ετ1 [1− exp (−tmax/τ1)] and τ1 (τ2) is τ in (2)
for excitatory (inhibitory) inputs. That is, the absolute values of V E(t) and
V I(t) decay exponentially towards a membrane rest value after a time t = te
— being te = tin + tmax for V E(t) and te ≈ tin +0.06 for V I(t) — with respec-
tive characteristic times τ1 and τ2. These functions are illustrated in panel B
of Fig. 1. The values for the parameters η, ε and τ appearing in (2) has been
taken (see the caption of Fig. 2B) such that the corresponding depolarizing
and hyperpolarizing waves in (3) are biologically realistic. Small variations of
these values, however, have not a strong influence in the emergent behavior
of the system (data not shown).

In order to reproduce the antecedent in [10] from this formalization, one
needs to discretize the above continuous dynamics by defining instants ti =
i∆t, i = 1, . . . , n, with ∆t a time interval, which we assume to be ∆t = 40µs
in practice. We then obtain from (1), for V0 = Vext = Vnoise = 0 and denoting
Vi = V (ti), that this discretely evolves under the action of a the depolarizing
and hyperpolarizing inputs, respectively, as

Vi+1 =


aEVi + ε∆t [Θ (i− iin)−Θ (i− iin − imax)]

aIVi + η∆tΘ (i− iin) exp [− (i− iin) (1− aI)]
(5)

where aE = 1 − ∆t/τ1, aI = 1 − ∆t/τ2 and iin is the time step at which
the presynaptic hyperpolarizing pulse occurs, that is, tin = iin∆t and imax =
tmax/∆t = 100. One may generalize this expression to the cases of a train
of m depolarizing or hyperpolarizing pulses at temporal points i1, . . . , im by
writing, respectively:

Vi+1 = aEVi + ε∆t
m∑

k=1

[Θ (i− ik)−Θ (i− ik − imax)] , (6)
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Vi+1 = aIVi + η∆t
m∑
k=1

Θ (i− ik) exp [− (i− ik) (1− aI)] . (7)

It should be noted here that several, either depolarizing or hyperpolarizing,
waves can occur at the same time step. Also noticeable is that the first
terms in these two equations correspond to the final exponential decreases
in absolute value toward the resting value of V after the last depolarizing or
hyperpolarizing pulses with characteristic time constants aE and aI , respec-
tively. Following [10] to prevent that during numerical simulations the sum of
depolarizing pulses in the second term of (6) makes the voltage Vi to overpass
its maximum value Vsat, we introduced a factor (Vsat − Vi) /Vsat multiplying
this term. Likewise, to prevent that the sum of hyperpolarizing pulses in the
second term of (7) makes Vi to go below its minimum Vmin, we introduced a
factor (Vmin − Vi) /Vmin. The resulting final dynamics for a given neuron will
depend on whether such neuron is E or I. Thus, for E neurons, which re-
ceive both, depolarizing and hyperpolarizing pulses respectively from E and
I presynaptic neurons, the final dynamics becomes

Vi+1 = aVi +
Vsat − Vi
Vsat

m∑
k=1

ε∆t [Θ (i− ik)−Θ (i− ik − imax)]

+
Vmin − Vi
Vmin

l∑
k=1

η∆tΘ (i− ik) exp [− (i− ik) (1− aI)] (8)

where a = aE or aI depending on whether the potential Vi after the last
received pulse is either above or below Vrest. On the other hand, for I neurons
which receive only depolarizing pulses from their presynaptic E neurons, the
final dynamics becomes

Vi+1 = aEVi +
Vsat − Vi
Vsat

m∑
k=1

ε∆t [Θ (i− ik)−Θ (i− ik − imax)] . (9)

Note that (1) involves the usual re-scaling V (t) → V (t) + 60mV of the
membrane potential in actual neurons [22] in order to get the neurons mem-
brane potential in the resting state Vrest = 0 mV, instead of Vrest = −60mV.
Then, the time evolution in (8) and (9) is also conditioned by the fact that the
neurons membrane potential is not allowed either to decrease in the course
of hyperpolarization below Vmin = −20mV nor exceed the saturation level

7



Vsat = +90mV, both limits within the known physiological range. Concern-
ing the model dynamics (8) for E neurons, note also that the first sum of
its right-hand side is such that the times tk = ik∆t (k = 1, ...,m′) at which
the depolarizing (excitatory) inputs arrive to these neurons from outside the
network are Poisson distributed; such term corresponds to Vnoise (see below).
Likewise, the second sum in (8) corresponds in this case to inputs from I neu-
rons that fire at times tk = ik∆t (k = 1, . . . , l) since E neurons only receive
inputs from inhibitory neurons in our network. On the other hand, in the
case of I neurons, the sum in the right-hand side of (9) corresponds to con-
tributions from E s in the network that fire at times tk = ik∆t (k = 1, . . . ,m)
since I neurons only receive inputs from E s in the network and are isolated
from the outside.

Inputs

The inputs Vext, Vnoise and V0 arrive only to the E cells since the I s play
the role in the model of communication bridges among E s. In particular,
we consider only non-relay interneurons, i.e., local ones (with short dendrites
and axons) that receive inputs from proximal neurons but never from distant
parts of the brain [19]. Therefore, the I s are isolated from external influences.

Also, trying to reflect better reality, during numerical simulations of the
model it is assumed that Vnoise is a randomly distributed series of independent
and uncorrelated in space and time EPSPs corresponding to depolarization
waves as given by (3), and that the E cells are the only ones that receive
such noisy input. Our choice for this noise is based on reports showing that
often these series of action potentials are Poisson distributed [20, 21]. The
noise level parameter µ represents the mean value of action potentials in
one hundred time steps and per cell, i.e., each excitatory cell receives on
average λ = µ/100 depolarization waves from outside per unit time. Then,
to numerically simulate a Poisson distribution of inputs with mean λ, we
assume that each E receives random inputs from n external neurons with
probability λ/n of firing per time step with n large enough so that such
binomial distribution becomes a Poissonian one.

On the other hand, the stimulus Vext does not in general refer to a sen-
sory stimulus, given that our system can be interpreted as a small brain
module with just a few hundred neurons, and Vext may have electrochemical
contributions from neurons outside that module.
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Firing threshold

The main physiological properties of E and I neurons are here assumed
to be the same. In particular, following known facts [22], the firing thresh-
old of both are set at Vth (= 6mV in practice) above the resting membrane
potential and, after firing, the threshold is changed to Vsat in order to numer-
ically simulate the absolute refractory period during one hundred time units
(ta = 4ms). Also, to simulate the relative refractory period once the abso-
lute refractory period lasts, we consider that the threshold value decreases
exponentially. That is, after firing an action potential at tf we have

Vth(t) =

{
Vsat tf < t < tf + ta
6 + (Vsat − 6) exp [−κ (t− tf − ta)] tf + ta < t.

Here, a good fit to the typical threshold stimulus strength required to elicit
an action potential during the relative refractory period is achieved, for ex-
ample, with κ = 2ms−1. This assumption in our model differs from the
standard integrate-and-fire models [18] which assume a constant Vth, reset
the membrane voltage at Vrest during the absolute refractory period, and
assume lack of a relative refractory period.

Results

We monitored several dynamic variables during numerical simulations of
the network evolution with time, including: (a) the average of membrane
potentials (reversing their re-scaling, i.e., V (t) → V (t) − 60 mV for a more
realistic physiological illustration) of E neurons; (b) the same for I neurons;
and (c) the action potentials density leaving the network via axons or the
fraction of firing E neurons at time t, i.e., ρ(t) = (1/NE)

∑NE

i=1 s
E
i (t) where

sEi (t) = 1, 0 if the E neuron is firing or not at time t. Since the number of E s is
dominant, we identify (a) with the EEG signal which, therefore, is assumed to
be the extracellular replica of the membrane time variation. This is a sensible
assumption since EEG experiments are expected to record at a site on the
scalp the summed electrical field potentials from all cortical neurons in a
certain volume of tissue under the electrode. The fact is that a control of these
quantities shows that the model steady state is quickly attained —typically in
around 100∆t steps during our studies— from any initial condition. Although
it will be more realistic to include also in the average (a) the membrane
potentials of the I neurons (in fact an EEG electrode can detect E and I
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Figure 2: (A) Example of the noisy time series that each E neuron receives on the average
from n = 100 external E neurons from outside the network. This has a Poisson distribution
of mean µ = 0.8. In practice, we compute the number of external action potentials each
E neuron receives each time step ti = i∆t from such distribution, and add this number
to the number of depolarization waves in the sum appearing in (8). (B) Emergent output
of a network with N = 180 neurons as measured by the average membrane potential of
all the E neurons. Its statistical features are shown in panels (C), depicting the sharp
power spectral density and its dependence with the number of the neurons in the network,
and (D), the corresponding probability distribution computed also for N = 180. Note in
C, that although the power of the peak decreases as N increases, the noise power is also
decreased, so the signal-to-noise ratio (SNR) remains the same independently of N. The
same dependence with N occurs for all other values of the noise parameter, see e.g., Fig.
1 of Supplementary Information for µ = 0.6.

membrane potentials), their main effect will be the appearance of a delayed
phase and perhaps very small amplitude variations in the resulting oscillatory
wave.

Consider first the case in which Vext = V0 = 0 (and therefore I0 = 0) so
that the only input in Eq. (1) besides Vin is Vnoise. When this is implemented
as a Poisson distribution, our system responds, as illustrated in Fig. 2, with
a well-defined rhythm wave, in spite of the wide range of frequencies in the
input, in agreement with experiments. That is, for a sufficiently large input
mean (µ = 0.8 in the example of Fig. 2) the two populations (E and I ) of
neurons show coupled oscillations producing collective coherent resonance,
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and the familiar α-rhythm emerges. This is revealed, for instance, by the
power spectral density of the time series for the average membrane potential
over all E neurons, depicted in Fig. 2B, which shows a well-defined peak
around 10.5 Hz in Fig. 2C. It is remarkable that increasing the network size
does not alter significantly the emergence of the α-rhythm and its features
as it is illustrated in Fig. 2C. In Fig. 2D is also illustrated that the steady
state of the average membrane potential of all E neurons has a distribution
centered around Vrest = −60 mV that shows, for µ = 0.8, slightly more
frequent deviations to lower values produced by the IPSPs than deviations
to higher values produced by the EPSPs of the noisy input.

There are indications that the same simple model may generate other
types of rhythms as one varies the parameter µ. Would this be the case,
it would generalize the last observation, already reported in [10], along an
important path as it would indicate that all the familiar brain-rhythms may
be considered as noise filtered by the networked system. As a matter of fact,
decreasing µ we observe that the coupling between the two populations of
neurons which induces the coherent rhythm tends to get worse. For instance,
the time series of the mean membrane potential for µ = 0.6 do not have the
well defined periodicity nor, therefore, the acute peak in the power spectral
density in Fig. 2C (see also Fig. 1 in Supplementary Information). We shall
demonstrate below that such lack of periodicity for µ ∼ 0.6 corresponds to a
phase transition between an incoherent oscillatory condition and a coherent
one. This fact does not show up in [10] where a (one hundred times) larger
time discretization artificially increases coherence —the same also obscures
other important facts concerning larger values of µ, as we shall illustrate
below.

The new circumstance uncovered here suggested us using µ as a control
parameter, and thus explore further the emergence of brain rhythms, which
then happen to surface as characteristics of dynamic phases. Fig. 3 partially
illustrates the varied collective behavior that shows up as µ is increased
adiabatically in time. This reveals that, following a rather disordered phase
(I) for µ . 0.6, oscillations become well defined (phase II) after µ ≈ 0.6.
(see also Fig 2 of Supplementary Information for µ = 0.9 where the power
spectrum depicts a very sharp and clear peak at a given frequency). As µ is
increased further, coherence is observed to decrease, as well as the synchrony
within E and I populations —in particular, we observe that E neurons are
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Figure 3: Some characteristics of the different dynamical phases that emerge as µ is varied.
Panel A shows the (linear) adiabatic temporal variation of µ during the experiment, from
µ = 0.1 increasing by a factor 1.00002 every time unit ∆t. The resulting dynamic behavior
is illustrated in panel B showing V (t) , and this is detailed in panel C (right) for constant
µ (=0.2, 0.9, 10 and 17, respectively) within the four regions of different behavior. Note
how oscillations are too weak for µ . 0.6 (phase I) to speak about actual coherence
resonance, while they are clear for µ & 0.6, and coupling is observed best around µ = 1.5.
Thereafter, coherence begins to decrease and the synchronization within the E and I
populations decreases. Between µ ≈ 6 and µ ≈ 16 there is an incoherent phase (III) in
which frequency cannot be defined. However, coherence and synchrony within E and I
populations are restored and the frequency is well-defined again for µ & 16 (phase IV).

first triggered simultaneously, which induces firing of I s at the same frequency
but after a certain time lag. Incoherence then sets in from µ ≈ 6 to µ ≈
16 (phase III), which induces an incoherent phase with no collective well-
defined frequency (see also Fig. 2 of Supplementary Information that shows a
plateau of frequencies for µ = 10 without a clear peak in its power spectrum).
However, coherence and synchrony within neuron populations with a clear
collective frequency are restored for µ & 16 (phase IV) (see also Fig. 2 of
Supplementary Information for µ = 17 where a clear sharp peak at high
frequency emerges in its power spectrum) until µ > 25, when the noise is so
high that it looses any biological meaning.

To confirm these —non-equilibrium but thermodynamic-like [12]— phases,
instead of slowly varying µ we also maintained the noise constant during each
simulation. Repeating this operation for different noise values of µ, we ob-
tained the graphs in Fig. 3 which happen to illustrate different types of
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behavior. In summary, we may define:

Phase I, µ . 0.6 : Incoherence phase with low spiking activity. The two
subpopulations of neurons act almost uncoupled with no well-defined
oscillation frequency.

Phase II, 0.6 . µ . 6 : Synchronous activity in both E and I neuron pop-
ulations with broad collective oscillations of the two subpopulations,
which then coherently oscillate coupled at a well-defined frequency.

Phase III, 6 . µ . 16 : High spiking activity with lost of the overall
coherence. Ups and downs in the average membrane potentials of the
two subpopulations are such that the excitation does not “wait” for
the end of the inhibition in every period and vice-versa, so that the
periodicity and rhythm that characterize phase II is now lost.

Phase IV, µ & 16 : Highly synchronous activity within E and I neuron
populations, namely, all the E s are triggered almost simultaneously,
and the same with the I s. This is because the threshold is exceeded
again in a short time (after each firing event and its subsequent refrac-
tory period) which facilitates synchronicity (and reduces the possibility
of other type of behavior). This highly synchronous behavior goes with
coherent oscillations of the average membrane potential with an ampli-
tude lower than in phase II but is more regular than these and shows a
well defined oscillation frequency, as revealed by the power spectrum.

It ensues that the familiar brain rhythms, namely, α, β, γ and ultrafast os-
cillations in EEG recordings from actual awake brains, have a well-defined
correspondence with these rhythmic oscillations of the average membrane
potential in the model. To clearly uncover this, we performed extra runs
lasting 218 time steps (equivalent to 10.5 s) for each of the 66 µ values in a
geometric progression starting at µ = 0.5. From such time series, we collected
both the average membrane potential and the fraction ρ(t) of firing E neu-
rons in the population, then computed the power spectra for both signals,
and searched for a maximum peak on each of them. Our main results are
summarized in Fig. 4 where panel A depicts the frequency at which this
maximum peak occurs as a function of µ. There is no evidence of any well
defined frequency with a maximum peak for µ . 0.6 (phase I, not shown),
nor for 6 . µ . 16 (phase III) which shows abrupt jumps. However, such
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Figure 4: Panel A: Frequency at the power spectra peak of time series for the mean
membrane potential as a function of µ for I0 = 0. There is asynchrony within E and I
neuron populations resulting in an incoherent oscillatory behavior for 6 . µ . 16 (phase
III) and regions of coherence resonance before µ ≈ 6 (phase II) and after µ ≈ 16 (phase
IV). Panel B: The height of the peak in A, which is highest for phases (II and IV) due
to coherence resonance. Panel C: Signal-to-noise ratio (SNR) computed with the time
series for the mean membrane potential of E neurons. The highest values occur again
for phases II and IV, and the minimum ones during the incoherent phases (I and III).
Panels D, E and F: Same as in panels A, B and C, respectively, but for the time series of
the fraction ρ(t) of firing E neurons, which confirm the results on the left.

maximum peak at a well defined frequency emerges during the intermediate
region (phase II), where such frequency increases from 6Hz to 25Hz —thus
describing the spectrum of α, β and γ waves— and, finally (phase IV), this
goes from 80Hz to 130Hz —corresponding to high γ and ultrafast oscilla-
tions. The same is confirmed by time series for the fraction ρ(t) of firing E
neurons in Fig. 4D. This picture becomes even more coherent and interesting
when one realizes, as it turns out to be the case, and we develop it below,
that the passage from one behavior to a contiguous qualitatively-different
one is throughout a non-equilibrium phase transition. The system in this
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way exhibits varied behavior with quite efficient features and great economy
[5].

On the other hand, the maximum peaks in Fig. 4B are higher in the
presence of coherence resonance, i.e., phases II and IV, than during the inco-
herent phases I (not shown since not a clear peak develops in fact here) and
III (characterized by intermittent behavior between low frequency and high
frequency oscillations which also does not show a clear peak in the power
spectra). The behavior is similar for ρ(t) in Fig. 4E. It also interests the µ
variation of the signal-to-noise ratio (SNR) at the power spectra maximum
peak, i.e., its height divided by the average in a small range around.

Even more clear than the spectra peaks, the SNR shows maxima if co-
herence occurs (II and IV) and goes to minima in the incoherent phases (I
and III), as it is shown in Fig. 4C (where the SNR is computed in the power
spectrum of the time series of the average membrane potential) and in Fig.
4F (where the SNR is computed in the power spectrum of the fraction ρ(t)
of firing E neurons). Specifically, the maximum coherence value is achieved
in both cases around µ ' 1.3 (within phase II) and for µ & 20 (within phase
IV), and it is also noticeable that the SNR maximum, for both the global
membrane potential and ρ(t), is higher for phase IV than for phase II. De-
spite this, since the SNR decreases during phase II as µ increases and due to
the features of the phase III, where also SNR is low, it is hard to precisely
determine the transition point between phase II and III using the SNR.

The above suggests a great interest in characterizing the transition regions
separating qualitatively different behaviors as one varies µ and I0. Particu-
larly, there is interest in the transition between phases III and IV. Fig. 4A,
for instance, reveals that this is sharp, suggesting a thermodynamic-like dis-
continuous phase transition. To address this, during simulations we run our
system during 10s for each µ value, as we varied adiabatically this parameter
in geometric progression while keeping I0 = 0. We retained the final state
of all the neurons in each run to serve as the initial state for the run at the
next noise value, which only differs in a small percentage from the previous
one. Once the maximum µ is reached, the process is reverted, keeping again
each final state as the initial one during this noise reduction process. The
resulting hysteresis cycle around transitions III↔IV is shown in Fig. 5A,
which confirms the discontinuous first-order-like nature of the phase transi-
tion. Such (even small) hysteresis seems to reflect that the frequency of the
global oscillations is not well-defined in phase III; in fact, this shows no clear
peak in the power spectra, and the maximum we use to compute hysteresis
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Figure 5: Study of hysteresis as a function of µ (left) and I0 (right). Panel A: Frequency
at which the maximum peak of the power spectra for the mean membrane potential of
E neurons occurs (as µ is increased and decreased adiabatically with I0 = 0). The two
curves superimpose where the frequency is well defined. Panel B: The same but for
I0 = 50, confirming the phases in A, but shifted to the left. Panel C: The frequency, as
computed in A, but as a function of the constant input I0 for µ = 0.5, which confirms the
same phases and shows that 210 6 I0 6 750 is a region of incoherent collective behavior in
which frequency is not well-defined. Panel D: Same as in panel C but for µ = 1 showing
the same but with changes now shifted to the left relative to panel C because µ is now
higher.

can depend on the run conditions and in the network size (small network
size can make a metastable oscillatory state to jump quickly into the stable
one). However, when the frequency is well-defined, the round-trip curves
superimpose. We obtain similar results for I0 = 50 in Fig. 5B, but with the
phase changes somewhat shifted to the left.

The fact that our model shows the same qualitative behavior or phases
within a wide ample range of I0 values suggests that its behavior is robust
to the type of input, and we confirmed this by moving I0 adiabatically for
µ = 0.5 (Fig. 5C) and µ = 1 (Fig. 5D). Note that phase I is not shown, since
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for µ = 1 the system is at phase II even for I0 = 10, that phase III occurs
for 180 ≤ I0 ≤ 700 and that, as expected, the phase changes are shifted
to the left relative to Fig. 5C because µ is now higher. The conclusion is
that the system is sensible to the total current arriving to the network but
not to the type of input. In other words, increasing the noise and I0 tends
to increases the excitability of both neuron populations but the emergent
behavior is rather due to the complex interplay between the activity of E
and I populations.

Stochastic resonance as a detector of phase transitions in EEG activity

We also checked the case of a weak input Vext = d sin(2πft) with small
d to the neural network, instead of Vext = 0 as above. In general, even
relatively small values of d induce a new maximum at frequency f in the
power spectra, as shown in Fig. 6 (right column).

The emergent peak here —which happens to stand out more or less de-
pending on the values for d and µ— reveals the existence of the so-called
stochastic resonance (SR) phenomenon [13]. That is, the propagation of a
weak signal is enhanced at certain intermediate level of noise while it is gen-
erally obscured at lower and higher levels of noise. The SNR in the power
spectra consequently increases at those moderate values of the noise. As it
was already shown [3], this is just a consequence of the great susceptibility
the cooperative system exhibits in a region in which a phase transition oc-
curs, so that it provides a simple method to detect changes of qualitative
behavior in these types of systems.

A general evidence of SR phenomena in the system is illustrated in Fig.
7 for I0 = 0, showing the signal to noise ratio (SNR) as a function of
the noise level µ for both low-frequency (∼ 4Hz) and high-frequency (∼
40Hz) inputs signals. In agreement with the interpretation of stochastic
resonance in [3], here we observe how SR peaks develop around the phase
transitions described above. For low-frequency signals (left graph) there are
clear maximum at µ ≈ 0.6, 6 and 16 corresponding to the phase transitions
I↔II, II↔III and III↔IV, respectively. The SNR also shows a peak for
µ ≈ 10 which corresponds to the level of noise at which finite-size jumps
between III↔IV occur in simulations. The emergence of this peak can be
explained assuming that noise makes that these finite-size jumps of activity
between both phases can be driven by the weak stimulus, so an amplification
of the weak signal occurs at such noise level. Then, we expect that such peak
will disappear as the network size is increased which will be an indication that
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Figure 6: Case of µ = 10 showing the effect of adding (right column) a small signal
Vext = d sin 2πf t to each E neuron. The left column is for d = 0 while the right one is
for d = 25 and f = 40Hz. Top panels show the mean membrane potential of E (green
line) and I (violet line) neurons with (panel E) and without (panel A) the external signal.
Panels B and F depict the corresponding (membrane potential) power spectra for the I
neurons in both situations, and panels C and G show the same for E neurons. At the
bottom, panels D and H illustrate the corresponding power spectra of the fraction ρ(t) of
firing E neurons. The signal only slightly modifies dynamics but a clear peak emerges at
frequency f .

the transition III↔IV is of first-order type as simulations seams to indicate
(see top graphs in Fig. 7). For high-frequency signals (∼ 40Hz), only the
transitions II↔III and III↔IV are clearly marked by stochastic resonance
peaks around µ ≈ 6 and 16, the first hardly distinguishable and the last
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Figure 7: Emergence of stochastic resonance in the system in figure 1, for I0 = 0, when
a weak sinusoidal input Vext of low frequency (f ∼ 4Hz) (left graph) and high frequency
(f ∼ 40Hz) (right graph) affects each E neuron. SR peaks appear around the phase
transition points (vertical dashed lines at µ = 0.6, 6 and 16) depicted in the top panels.
Note in the left graph that the jump corresponding to the change of behavior in simulations
between phases IV and III (see top panel) appears around µ ≈ 10 (see red vertical dashed
line) that coincides with the larger resonance peak for large level of noise. Secondary
resonance peaks occur around this maximum for µ ≈ 6 and 16. In the right panel, however,
such maximum does not show. Also, the low noise resonance peaks around µ ≈ 0.6 is
neither appearing and the only ones are those around µ ≈ 6 (poorly seeing) and 16 (very
clearly depicted). Different SNR curves here were obtained after averaging over 100 trials
and computing the power spectra over a time series of 218ms for each trial.

one very clear. The peak around µ ≈ 0.6 is not appearing due to the fact
that system oscillations at such level of noise at a natural frequency of alpha
range around 10Hz or less, which is very small compared with the weak signal
stimulation frequency (40Hz). This is incompatible with the emergence of
the SR where the stimulation frequency must be very low compared with
the intrinsic oscillation frequency of the system. Note that this impediment
does not occur for the the resonance peak around µ = 16 since for this case
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the intrinsic oscillation frequency of the system is around 75Hz or larger
which is bigger that the stimulation frequency of 40Hz, so conditions for the
emergence of SR still hold. The transition II↔III occurs around µ ≈ 0.6
with system oscillations of frequency around the stimulation frequency, so
this is the reason why the SR peak around µ ≈ 0.6 is not so clearly depicted.
Also remarkable in this high-frequency stimulation case is the presence of an
additional resonance peak around µ ≈ 2.5 (marked with “*” in the figure)
which corresponds with a range of frequencies∼ 25 − 30Hz, and it could
indicate the exact limit between β (with intrinsic frequency between 12 to
30Hz) and γ brain waves (with intrinsic frequency larger than 30Hz) as
experimental psychologists and neuroscientists have widely described (see
for instance [23, 24, 25]). This overall behavior should also be discernible in
actual EEG experiments.

Discussion

We here present an extension, and formalization according to recent fa-
miliar standards, of a model for the generation of brain α rhythms [10] which
provides a simple and well-defined scenario also for other types of brain waves.
In addition to signals from other neurons (Vin) , and from outside the net-
work —which are globally portrayed here as a Poisson noise (Vnoise) which is
characterized by the parameter µ— our model Eq. (1) includes a constant
current I0 and a small external input signal Vext. Our main findings may be
summarized as follows:

• Previous results [10] are confirmed using a more precise dynamics in-
cluding a smaller time step during the model time integration. Con-
trary to [10] this fact results in a slightly lower but more precise degree
of coherence, since we observed that large time step artificially increases
the coherence (data not shown).

• In this way, we identify four different “phases” or qualitative types of
dynamic behavior in the model. As µ is increased, this exhibits oscilla-
tions that are too weak in amplitude so that any coherence is precluded
(phase I), a phase of coherence resonance (phase II), asynchrony within
neuron’s populations and incoherent behavior showing abrupt jumps in
the corresponding frequency curves (phase III), and neuron population
coherent behavior with a well-defined frequency again (phase IV).
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• In phase II, our system precisely includes the frequency spectrum of α,
β and low γ waves of actual EEG recordings, and phase IV covers the
frequencies corresponding to high γ and ultrafast oscillations.

• The highest coherence resonance, as revealed by the power spectra peak
and the corresponding SNR, is for phases II and IV, while the lowest
one occurs in the incoherent phases I and III.

• The average amount of electrical impulses arriving to the network per
unit of time —that we parametrize as µ— is essential to characterize
the different phases, more than the nature, either constant or noisy, of
the input.

• Stochastic resonance [3, 5] is revealed, e.g., by SNR, locating changes of
qualitative behavior when the system receives a signal. We confirm that
this fact may provide a powerful tool to investigate phase transitions
in mammals and other brains using simple techniques such as EEG
recordings or simple experiments as devised in [3].

The above picture indicates, on one hand, that a single unified mechanism
can generate rhythms which are similar to the familiar brain rhythms, in
the sense that we do not need a mechanism for alpha waves, another mech-
anism for beta waves, etc; the same mechanism explains different types of
brain waves, and moreover we do not need additional assumptions concern-
ing conduction times to explain different types of brain waves. On the other
hand, it indicates that such waves are related to the general phenomena of
non-equilibrium phase transitions, where a system is known to be highly
susceptible, efficient and adaptable [12, 5]. This is compatible with specific
mechanisms that might act during the generation of brain oscillations while
cognitive functions occur. However, a one-to-one correspondence between
different type of brain oscillations and cognitive functions cannot be estab-
lished in fact, there are many more different cognitive processes than types
of brain waves [26]. It seems sensible to assume that similar brain waves
in the same frequency band can contribute to different cognitive functions
depending on the particular brain area in which they originated and on their
particular temporal features [26]. For example [27], while local synchroniza-
tion during visual processing evolves in the γ range, synchronization between
neighboring temporal and parietal cortex during multi-modal semantic pro-
cessing may evolve in a lower β (12-18 Hz) range, and long range fronto-
parietal interactions during working memory retention and mental imagery
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in the θ (4-8 Hz) and α (8-12 Hz) ranges. That is, a relationship may exist
between functional integration and synchronization frequency which could
be due to conduction delays in long corticortical axons —up to several tens
of ms for conduction distances of ∼10 mm— and convert γ to β oscillations
(with cycle times ranging from 30 to 70 ms). The same process for more
widely-dispersed interactions could produce activity in the active cortex in
the α range (cycle time 77–125 ms) or even in the θ range. To our knowledge,
however, these details have yet been poorly demonstrated and the argument
requires that all axonal connections of a given network were approximately
the same length, which is a too strong assumption for regions of arbitrary
extension. In addition, electrical stimulation of V1 induces enhanced γ-band
activity in V4, whereas V4 stimulation induces enhanced α-β-band activity
in V1 [28], when it is suppossed that the conduction delays are approxi-
mately the same from V1 to V4 than from V4 to V1. Recognizing that the
presence of conduction delays may importantly complicate the network dy-
namics [29], and that brain oscillations could be related to many biological
oscillations [30] – as heart rate, heart rate variability, breathing frequencies,
fluctuations in the BOLD signal, and others – our proposal does not require
any hypothesis concerning conduction times or too speculative assumptions
concerning the coupling of the brain activity with any type of body oscil-
lations. From a different point of view, given the modular structure of the
brain [31], we may imagine small networks with a great internal connectiv-
ity, each as ours here and perhaps in some of the dynamic phases we have
described subject to an input. Furthermore, it is sensible to assume that, in
a large region of interconnected neurons, an input from other modules will
not affect all the neurons, since otherwise it might induce an anomalous high
physiological level of activity. On the average, one should expect our param-
eter µ to be low and only high inputs eventually reaching small local regions.
Within this scenario, our model suggests that large synchronized regions re-
ceive small inputs, and therefore will oscillate in the α regime, while small
local synchronized regions receiving a large input will oscillate synchronously
in the γ range. Our scenario is thus compatible with the one in [32].

Also, we mention that some authors associate consciousness with coher-
ent γ oscillations in different parts of the brain, and thus explain episodes of
attention [33]. In the light of our results, we can hypothesize that the tran-
sition III→IV could be related to the emergence of awareness of memories
associated with the modules that reach the corresponding input, a hypoth-
esis that could be tested experimentally. In fact, we could include all the
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40-70 Hz frequencies in phase IV choosing adequately model parameter val-
ues. In particular, our network model may easily involve a small random
delay of small variance in all the connections, a topology different that the
one in Fig. 1A, and/or vary the parameters of the EPSP and IPSP waves in
Fig. 1B to achieve this. Other theories of consciousness, as the Integrated
Information Theory [34] and its continuous dynamical system version [35]
are also consistent with our scenario in which one may have two phases with
very different levels of activity, both with a synchronicity that facilitates the
communication with other mechanisms, and our phases II and IV would be
equivalent to the “off” and “on” states in this theory.

In the present model the values of ratio η/ε, the refractory times and all
other parameters like τ1 and τ2 have been chosen to properly reproduce a
small module in a realistic way. We have checked, however, that the pre-
sented results and conclusions are robust against small variations of these
parameters’ values. In particular, the main conclusion of the present work,
i.e. the existence of a unifying mechanism for the generations of oscillatory
waves in the module as a function of the noisy input is not dependent on
these parameters’ variations.

The present model can be easily extended to other complex networks
topologies including, e. g., scale-free and small-world features. Note, how-
ever, that such topologies in general involves several order of magnitude and
therefore very large networks sizes, that as we have demonstrated is not a
requirement for the emergence of the oscillatory behavior similar to brain
waves reported in the present work. Both the scale-free and the small-world
networks may be appropriate for the efficient transmission or diffusion of the
waves to other brain areas but are not necessary here for the generation of
the waves.
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