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Abstract

Mode-division multiplexing (MDM) is seen as a possible solution to satisfy the rising capacity demands of optical
communication networks. To make MDM a success, fibers supporting the propagation of a huge number of modes
are of interest. Many of the system aspects occurring during the propagation can be evaluated by using appropriate
models. However, fibers are a nonlinear medium and, therefore, numerical simulations are required. For a large
number of modes, the simulation of the nonlinear signal propagation leads to new challenges, for example regarding
the required memory, which we address with an implementation incorporating multiple GPU-accelerators. Within
this paper, we evaluate two different approaches to realize the communication between the GPUs and analyze the
performance for simulations involving up to 8 Tesla GPUs. We show results for a MDM transmission system utilizing
the extremely large but practically very relevant number of 120 spatial modes as an application example and analyze
the impact of the nonlinear effects on the transmitted signals.
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1. Introduction

One of the main challenges in the design of future
optical networks is to satisfy the growing capacity de-
mand. A very promising approach to solve this chal-
lenge is to use the yet untapped spatial dimension.
Space-division multiplexing (SDM) has attracted a lot
of attention in the last years, both in industry and aca-
demic research. One option to realize an SDM system is
the use of multimode fibers (MMF), where each mode
capable of propagation is used as a channel for individ-
ual signals, referred to as mode-division multiplexing
(MDM). [1]]

Recently, the utilization of 45 spatial modes in a mul-
timode fiber as individual transmission channels was
demonstrated for the first time [2]. With the avail-
ability of mode multiplexers for 45 Hermite-Gaussian
modes [3, 4], and to potentially excite even more
modes [5]], the investigation of MDM systems support-
ing a large mode count is getting more and more rele-
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vant. During the design process of fiber optic transmis-
sion systems, numerical simulations are the common
choice to study different system aspects. However, es-
pecially for a large mode count, new challenges arise
within the simulation.

As fused silica is a nonlinear medium [6]], the sim-
ulation of light propagating in an optical fiber is quite
challenging. The nonlinear signal propagation can be
described by coupled partial differential equations for
which a closed-form solution only exists in very few
special cases. Therefore, numerical methods are re-
quired to approximate solutions. Exploring the im-
pact of nonlinear effects in the case of data transmis-
sion, is already challenging for only a single propa-
gating mode, since long signal sequences need to be
simulated. Therefore, GPU-accelerators can be used
to speed up simulations [7, [8, 9]. The numerical ef-
fort rises sharply when optical fibers which enable the
propagation of multiple modes, especially fibers with a
core diameter > 50 pm, are the target of interest. In
those fibers, several tens/dozens or even more than 100
spatial modes can be used as spatial channels. More-
over, the restricted amount of GPU-memory limits the
approach to accelerate the simulation of the nonlinear



signal propagation [[10]. As a result, publications con-
sidering the nonlinear signal propagation in MMFs nu-
merically are mostly limited to only a few modes if only
a single GPU is used, e.g. 15 spatial modes in [[L1]. In
this paper, we explore the possibility to distribute the
simulation of a transmission scenario in a single fiber to
multiple GPU-accelerators. Here, we realize the com-
munication between the GPUs with the Message Pass-
ing Interface (MPI) or the NVIDIA Collective Commu-
nications Library (NCCL). Only with multi-GPU imple-
mentations simulations with up to 36 spatial modes and
60 wavelength channels per mode [[12] are possible, for
which a preliminary version of our MPI-implementation
was used.

The paper is organized as follows: We first briefly
present the mathematical description of the nonlinear
signal propagation in multimode fibers. Next, we re-
view the numerical methods, followed by our MPI and
NCCL implementations, as well as GPU-specific modi-
fications to the code required for the simulation of many
modes. The description of the implementation is fol-
lowed by benchmarking the implementation incorporat-
ing up to 8 GPUs. Finally, we use the application to
demonstrate the simulation of an MDM transmission
system in which a fiber with 62.5 um core diameter pro-
vides 120 spatial modes as MDM channels.

2. Modeling of the Nonlinear Signal Propagation in
Multimode Fibers

The nonlinear signal propagation in multimode fibers
can be described by the nonlinear Schrodinger [13] or
the Manakov equation [[14} [15]] for multimode fibers:
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Here, A represents the slowly varying envelopes of the
spatial modes. Within the linear part L, the coeffi-
cient « specifies the attenuation, and the coefficients
of the Taylor series expansion of the propagation con-
stants are given by 8,. Within the nonlinear part N,
the parameter y is associated with the nonlinear refrac-
tive index change which is due to the Kerr-effect. The
intramodal nonlinear coupling coeflicient is specified
as k.., Whereas the intermodal interaction is considered

by k. While only intramodal nonlinear effects occur
during the signal propagation in a single-mode fiber,
this is not the case for multimode fibers. Here, the in-
termodal effects must be considered additionally. In-
corporating the weighted squared absolute values of A,
increases the numerical complexity significantly, as dis-
cussed later.

For a more detailed description of modeling the non-
linear propagation in multimode fibers, see e.g. [16].

3. Numerical Approximation

Since analytical solutions can only be calculated for
a few special cases, numerical methods are required for
the evaluation of Eq. (I). To approximate the solution
of Eq. (I), pseudo-spectral methods like the split-step
Fourier method (SSFM) [6] or the fourth-order Runge-
Kutta in the Interaction Picture (RK4IP) method [17]
can be used.

3.1. The Symmetric Split-Step Fourier Method
The formal solution to Eq. (I) is given by

AG+hT)=exp|h(L+N)|AG.T). 2)

With the Baker-Hausdorff formula [18]], this can be ap-
proximated as

A(z+h,T) =~ exp (hf,) exp (hN) Az, T), 3)

allowing to solve the linear part £ and the nonlinear part
N independently of each other. The linear part L is
solved in the frequency domain and the nonlinear part
N is solved in the time domain. The resulting splitting
error can be further reduced by applying a symmetric
split-step approach:

Z+h
A(z+h,T) ~ exp (%I:) exp (f N(z’)dz')
exp(4L)AG.T) (4

The nonlinear part can be either solved by an iterative
approach as described in [6] or with explicit schemes
like the Runge-Kutta method. This results in a third
order accuracy to the step size i and a global error
of O(h?). The two variants are denoted here as SSFM-
Agrawal and SSFM-RK4, the latter using a fourth-order
Runge-Kutta method to solve the nonlinear step.



3.2. The Fourth-Order Runge-Kutta in the Interaction
Picture Method

To avoid the splitting error, Eq. (I) can be trans-
formed with

A; = exp (—(z - Z')ﬁ)A (5)

into the ‘Interaction Picture’, where 7’ is the separation
distance. This allows to use explicit schemes like the
fourth-order Runge-Kutta method, to solve the differ-
entiated form of Eq. @ In contrast to the SSFM, no
splitting is required, and the numerical accuracy is pri-
marily limited by the applied explicit scheme. With the
separation distance 7’ defined as z + /2, the algorithm
to advance A(z, T) to A(z + h,T) is
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ki = (exp (LL) [nN (A TH])A . T) (6b)

. k k
ko =hiN (A, + ?1) A+ ?1 (6¢)
. k k
ks =hiN (A, + 32) A+ 72 (6d)
ko =hN [exp (4L) - [A; + k31|
cexp (4L) - [Ar + ks] (6€)
R ik ke k| Kk
A(z+h,T) =exp(§ ) A+ gl + ?2 + §]+ 34
(61)

as given in [17]]. This method exhibits a local error of
fifth-order and is globally fourth-order accurate. A more
detailed comparison between the SSFM and the RK4IP
method, focusing on the nonlinear signal propagation in
multimode fibers, is given in [19].

4. Implementation of the Numerical Methods

The signals can be represented by a matrix of sam-
pled data with the dimension 2M x N. Here, M is
the number of spatial modes, and the factor 2 results
from taking both orthogonal polarization planes into ac-
count. The number of discrete time samples is given
by N. Thus, each row represents a spatial or polariza-
tion mode. To investigate Kerr-based nonlinear effects,
namely self-phase modulation (SPM) and especially
cross-phase modulation (XPM), long symbol sequences
need to be considered. Furthermore, if wavelength-
division multiplexing (WDM) is of interest, and thus
the impact of four-wave mixing (FWM) should be eval-
uated, each symbol needs to be represented by an ap-
propriate number of samples to simulate a sufficiently

large frequency spectrum. E.g. 256 samples per sym-
bol, denoted as Ny,,, were used in [11] to simulate a
spectral range of 8.192THz. In the referenced simu-
lation, M = 15 spatial modes and Ny, = 2'* symbols
per spatial and per polarization mode were considered.
With N = N, - Ny, this results in a complex valued
dense matrix of size 30 x 2?2, which requires 1920 MiB
of storage. When further increasing the number of spa-
tial modes M, the matrix containing the sampled signal
might still fit into the GPU-memory, but not all interme-
diate results do any longer. We therefore propose to split
the 2M polarization and spatial modes to K processes.
Since N > 2M, this approach has several advantages
over splitting N contiguous samples of a unique spatial
or polarization mode to different processes, as discussed
in the next section.

4.1. Splitting the Numerical Problem

In [20]], [21] the split-step Fourier method is paral-
lelized by using distributed fast Fourier transform im-
plementations. However, this requires a lot of commu-
nication between the involved compute nodes. Instead
of letting multiple processes take part in the calculation
of a spatial or polarization mode, only entire modes are
distributed to the different processes. Here, each pro-
cess is associated with one GPU, but the process itself
can still involve multiple threads. Thus, the N samples
of a single signal are only required and processed by one
unique process. As proposed, the channels are equally
distributed to K processes. With this, each process com-
putes 2M/K channels as illustrated in Fig. [I]
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Figure 1: Signal matrix split to multiple processes.

The matrix representing the sampled signal is stored
row-major and the rows are aligned linear in the mem-
ory. Therefore, the memory alignment is optimized for
the fast Fourier transforms (FFT), as discussed in [19]].
The computation of the linear step L can be executed
fully parallel by each process independently. Only for
the calculation of the nonlinear step N information from
the other processes is required, namely the squared ab-



solute values of the envelopes A of all modes not locally
available.

The SSFM-Agrawal requires the computation of |A|>
once at the position z for the first iteration and at the
position z + h for every following iteration. Using the
SSFM-RK4, the values |A]* are required to calculate
ki, ko, k3, and k4, which is the same for the RK4IP
method. The squared absolute values |A]? can be stored
real-valued. Therefore, in every iteration or rather the
calculation of k,, 2M —2M/K) - N real valued num-
bers have to be provided by the other processes and
each process has to share its (2M/K) - N computed val-
ues. The squared absolute values |A]* are exchanged via
MPI or NCCL. Due to the large signal matrices, one
has to expect quite large messages even if communica-
tion is kept minimal with our splitting approach. For the
previous example with matrix size 30 x 2%2, sharing all
squared absolute values would result in a message size
of 960 MiB.

In the following, we apply our modifications to the
RK4IP method. The RK4IP allows more than doubled
step-sizes A in the simulation of MDM transmission sys-
tems, as shown in [19]. Hence, less data exchange is
required for the RK4IP method. Nevertheless, the pre-
sented approach can be applied in an identical fashion
to the SSFM-Agrawal and the SSFM-RK4.

4.2. MPI-Implementation

One option to realize the communication between the
involved GPUs is to use the the Message Passing Inter-
face [22]]. Using MPI has the advantage, that the GPUs
do not necessarily have to be placed in the same com-
pute node. Here, one MPI process per GPU is used.
With the availability of CUDA-aware MPI [23]] imple-
mentations, the programmer does not have to stage the
data in the host memory, as the GPU buffers can be di-
rectly passed to MPIL.

A naive approach to realize the communication via
MPI is the use of collective operations like MPI_Bcast
or MPI_Allgather. However, these rely on blocking
communication and CUDA-aware implementations that
supporting non-blocking collectives are still under de-
velopment. Using non-blocking communication instead
has the advantage to overlap communication and pro-
cessing of the data. Overlapping communication and
computations is essential to hide communication costs
and to obtain good scalability. We therefore decided to
explicitly exchange data via asynchronous, and there-
fore non-blocking send and receive operations, namely
MPI Isend and MPI Irecv. The program sequence is
described in Listing

Listing 1: Basic programm flow to compute N incorporating MPL

void send_sqrabs(const int rank,
const int size, const REAL ssqrabs ,..,
const int num_elem, MPI_Request xsend_req) {

for(int rk=0;rk<rank;rk++)
MPI_Isend(&sqrabs [..] ,num_elem ,
MPI_LDOUBLE, .. ,MPLCOMM_WORLD,
&send_req[rk]);

for(int rk=rank+1;rk<size;rk++)
MPI_Isend(&sqrabs [..] ,num_elem ,
MPI_DOUBLE, .. , MPLCOMM_WORLD,
&send_req[rk —1]);
}

void recv_sqrabs(const int rank,
const int size , REAL =sqrabs ,..,
const int num-elem, MPI_Request xrecv_req) {

for(int rk=0;rk<rank;rk++)
MPI_Irecv(&sqrabs [..] ,num_elem ,
MPI.DOUBLE, .. ,MPLCOMM_WORLD,
&recv_req[rk]);

for(int rk=rank+1;rk<size;rk++)
MPI_Irecv(&sqrabs [..] ,num_elem ,
MPI_DOUBLE, .. ,MPLCOMM_WORLD,
&recv_req[rk —1]);
}

calc_squareabs (..);
recv_sqrabs (..);
send_sqrabs (..);
calc_nonlinear_own (..);

all _done = O0;

while (all-done < size —1) {
MPI_Waitany (size —1, recv_req , &rk_idx ,..);
calc_nonlinear_others (.., rk_idx ,..);
all _done ++;

}

apply_nonlinear_all (..);

After the computation of |A?> for the (2M)/K modes
persisting on the GPU, we initialize the data ex-
change operations. The values are send via MPI_Isend
in the send_sqrabs() function, and matching receive
MPI Irecv commands are posted in the recv_sqrabs()
function. As mentioned before, these operations are
non-blocking and therefore both commands return im-
mediately, even if the transfers are not finished. Next,
the CUDA kernel is launched to calculate the contribu-
tion to the nonlinear phase rotation of the modes that are
persisting on the GPU. This is non-blocking again. Af-
terwards, a blocking operation MPI_Waitany is called,
to wait until any of the MPI_Irecv commands has fin-
ished and if, the contribution of the received |A|* values
to the nonlinear phase rotation is calculated. If all |A[?
values of the K — 1 other processes are received, and



all contributions are taken into account, the nonlinear
phase rotation is finally applied to the modes persisting
on the GPU.

This approach scales perfectly if the time needed to
receive the next data is shorter than the time for the si-
multaneously performed computations. In this case, the
GPU does not have to wait for the next data, since these
are received while the GPU is performing computations.
The first work package is always available on the GPU,
since this is the calculation of calc_nonlinear_own() for
which no data needs to be received. However, the execu-
tion of calc_nonlinear_others() relies on data sent from
the other processes. In practice, the possible overlap
strongly depends on the simulation set-up, i.e. the num-
ber of spatial modes M and samples N, and is limited
by the number of involved GPUs K as well as the inter-
connects between the GPUs.

4.3. NCCL-Implementation

A higher-level approach is to exchange data via the
NVIDIA Collective Communications Library (NCCL).
NCCL supports multiple GPUs installed in a sin-
gle node or across multiple nodes. The library pro-
vides topology-aware collective communication prim-
itives and features multiple ring formations for high bus
utilization. Within NCCL, the collectives are imple-
mented in a single kernel and are therefore associated
to a so-called CUDA stream [24]. The NCCL calls re-
turn when the operation is enqueued to the specified
stream and the collective operation is executed asyn-
chronously. In our implementation, ncclAllGather is
used to aggregate the data. As depicted in Listing
we use different streams for the kernel launch within
calc_nonlinear_own() and the remaining kernel calls to
enable concurrent execution.

Listing 2: Basic programm flow to compute N incorporating NCCL.

calc_squareabs (..);

ncclAllGather ((const void*)&sqrabs [..],
(void*)sqrabs , num_elem,
ncclDouble ,comm, stream_a );

calc_nonlinear_own (.., stream_b);
cudaStreamSynchronize (stream-b );

for(int rk_idx=0; rk_idx < size —1; rk_idx++)
calc_nonlinear_others (.., rk_idx ,.., stream_a);

apply_nonlinear_all (.., stream_a);

To enable the implementation to utilize multiple
nodes, we use NCCL together with MPI. Hence, each
GPU is associated with an MPI process as before. A
common NCCL communicator spanning all processes,

is initialized as described in [25] Example 2: One De-
vice per Process or Thread].

4.4. GPU-Acceleration

The GPU-acceleration of the RK4IP implementation
is described in [19] and [26]. However, further mod-
ifications to the GPU code of our implementation are
required in addition to the previously described adap-
tions.

In the preceding single-node implementation, only a
single CUDA kernel capturing the nonlinear effects was
launched. As shown before, this is now split up into
an own kernel, responsible for calculating the nonlinear
phase rotation of the locally stored modes, and an others
kernel, responsible for the calculation for the nonlinear
phase rotation induced by the modes not locally avail-
able. Thus, K — 1 instances of the latter kernel have
to be launched. The overall nonlinear phase rotation is
stored in an additional array of size (2M/K) - N. Both
kernels incorporate so-called shared memory, to allevi-
ate the penalty occurring due to column access to the
memory [19,26]]. In contrast to the single-node imple-
mentation, applying the nonlinear phase rotation to the
locally available modes now only requires row access
instead of column access to the memory. Applying the
nonlinear phase rotation is performed by an additional
kernel, as already indicated in Listings[T]and

In addition, the interaction matrix no longer fits into
the constant memory for a large number of modes with-
out using a splitting approach. Storing all x values, re-
quires a matrix of 2M X 2M elements. Assuming a sym-
metric matrix, which is the case for linearly polarized
(LP) modes [13l], it is sufficient to only store the up-
per triangular matrix, reducing the number of elements
to QM - 2M)/2 + M. This is exemplified for the case
of M = 2 and K = 2 in Fig. 2| For a huge number
of modes, e.g. M = 120, still 28920 double precision
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Figure 2: Exemplary interaction matrix for M = 2 and K = 2. The up-
per triangular matrix is highlighted in blue; All elements required for
the calculations on GPU 2 are shaded red and green. By considering
the symmetry, the light and dark shaded green elements are identical
and only one of the sub-matrices needs to be stored. Furthermore, the
light red shaded element can be neglected.



values of 8 B would need to be stored in the constant
memory, of which only 64 KiB are available. There-
fore, this approach does not lead to a sufficient saving.
However, only 2M/K - 2M - 2 — (2M/K)?* need to be
accessed for the calculations. For GPU 2, these are the
red and green shaded elements in Fig.[2] The other el-
ements of the matrix are only required on the other in-
volved GPU. Taking the symmetry into account again,
it is sufficient to save only rows or columns which ap-
ply to the modes considered on the certain GPU. With
this in mind, the number of elements can be reduced
to 2M/K - 2M. Furthermore, for the k coefficients de-
scribing the nonlinear coupling for the modes persisting
in the GPU, it would be sufficient again to only store the
upper triangular matrix, as visualized in Fig. 2] How-
ever, distributing the matrix via MPI and the necessary
index arithmetic is more complicated for this case, and
only 2M/K -2M/K)/2 — M/K additional elements can
be saved.

5. Benchmark

To achieve the maximum performance, peer-to-peer
access between the GPUs is essential. The benchmark
is therefore performed on an AWS EC2-instance of type
p2.8xlarge. This instance incorporates 4 Tesla K80 ac-
celerators. Each K80 provides a pair of GK210 GPUs,
resulting in 8§ available GPUs. On this instance type the
GPUs are connected via a common PCle fabric.

The configuration used for the benchmark is given in
Table |1} Considering a sequence with a symbol rate of

Table 1: Configuration used for the benchmark.
M [ N, [ Nys | K[ MK
15
30
60 214 128
90
120

N B~ N =
o

32 GBaud, a spectral range of 4.096 THz is simulated.
Incorporating 8 GPUs allows to evaluate the nonlinear
interaction between 120 spatial modes. This is of inter-
est as it is the number of the potentially usable spatial
modes in a fiber with 62.5 um core diameter [27]].

The number of involved processes, or rather GPUs,
is scaled up from 1 to 8, to investigate the scaling of
the proposed implementations. The number of spatial
modes M persisting per GPU is kept constant. In conse-
quence, the total signal matrix occupies up to 7680 MiB,
of which 960 MiB are stored per GPU. For every calcu-
lation of N , each GPU needs to share 480 MiB. For

the benchmark, 150 steps have been simulated and all
calculations are executed with double precision. Re-
call, that N is calculated 4 times per step. This is the
same for an SSFM-RK4 implementation, whereas the
number to calculate N depends on the number of itera-
tions in an SSFM-Agrawal implementation. The initial
distribution and the final collection of the sampled sig-
nal matrix, as well as the transfer of further necessary
parameters and data, is excluded from the benchmark.
Results are shown in Fig. E} Here, the execution times

o MPI % MPI - only comm. ©1NCCL + NCCL - only comm.

1,Single GPU Impl.

Tk/Tk

Number of GPUs K

Figure 3: Scaling of the implementation.

T are normalized to the execution time of our previous
single-node, single-GPU implementation [[19} 26].
With only a single GPU used, K = 1, the rela-
tive runtime is > 1. Due to splitting the calcula-
tion of N into several kernels, the runtime increases
by approximately 8.5%. For K < 4, the MPI-
and NCCL-implementation scale nearly equal. With
even more GPUs involved, the execution time of the
MPI-implementation rises sharply. Incorporating all
8 GPUs, the MPI-implementation requires 6.76 times
the execution time of the single-GPU implementation,
whereas the NCCL-implementation scales with a fac-
tor of 4.26. To evaluate the reason, the benchmarks
are rerun without the additional calculations performed
in the calc_nonlinear_others(). Therefore, only the
amount of communication grows with an increasing
K. Here, the MPI-implementation shows nearly iden-
tical results, whereas the relative runtime of NCCL-
implementation drops. For the MPI-implementation,
this clarifies that the increase of execution time is caused
by communication, and not by the additional calcula-
tions. In conclusion, communication and calculations
can be perfectly overlapped using MPI, additionally
confirmed by profiling the application. However, the
implementation shows an improvable communication



Table 2: Mode groups (MG), A in umz, and number of spatial modes.

MG Modes in Group Ac \ Total Num. of Spatial Modes up to this MG
1 LPy, 172 1
2 LP;, 231 3
3 LPo, LP;y; 347 311 6
4 LP,, LP3; 373 372 10
5 LPp3 LP,,  LPy4, 504 469 428 15
6 LP;3 LPs» LPs; 499 545 475 21
7 LPps LP,3 LPs» LPg, 653 605 615 521 28
8 LPi4 LPs3 LPs, LPy,; 618 690 674 561 36
9 LPps LP,s LPs3 LPs2  LPg; 795 732 768 733 601 45
10 LP;s LP3s LPsz LP;, LPy, 731 824 835 783 635 55
11 LPps LPps LPss LPss LPs»  LPjg, 932 853 907 900 834 671 66
12 LPis LP3s LPsy LP;3 LPy, LPyy; 841 951 979 957 879 702 78
13 LPp; LPrs LPsys LPss LPg3 LPj2 LPy 1066 969 1038 1050 1015 926 735 91
14 LP;; LP3¢ LPss LP;y LPg3 LPj2  LPi3) 946 1072 1124 1112 1066 966 764 105
15 LPpg LP,; LPys LPss LPgy LPjy3 LPpp  LPuy 1195 1081 1162 1188 1174 1119 1009 795 120

pattern for K > 4. With the NCCL-implementation on
the contrary, communication and calculations are not
fully overlapping. Anyway, the topology-aware com-
munication patterns show clear benefits for the simula-
tion with more than 4 GPUs involved. For K = 2, high-
lighted in Fig. 3] the MPI-implementation is slightly
outperforming the NCCL-implementation (factor 1.38
vs. 1.51). With only two GPUs taking part in the simu-
lation, the NCCL’s topology-awareness cannot improve
communication. In this case overlapping of communi-
cation and calculations is much more important.

From a view point of weak scaling, an improved per-
formance is desirable, especially for a large number of
involved GPUs. However, regarding the required all-to-
all communication the performance metrics are not sur-
prising. Nevertheless, the application enables the sim-
ulation of the nonlinear signal propagating of a huge
number of spatial modes and a large frequency range,
which was not possible so far. Improved performance
of the MPI implementation can be expected when de-
coupling the CPU-GPU control flow. With the future
availability of MPI-GDS [28]], the asynchronous send
operations can be triggered directly after the squared ab-
solute values are computed, leading to better hiding of
the communication. In addition, also the optimization
of collective operations is under investigation [29, [30]].
Therefore, future library implementations offer the po-
tential to further improve the performance of the pro-
posed implementation. In the next section we show,
what is already possible with the implementation based
on the current available libraries.

6. Simulation of a 62.5 pm Fiber

Within the application example we demonstrate the
feasibility of an MDM transmission over a multimode
fiber with graded-index profile featuring a core diame-
ter of 62.5 um and a numerical aperture of 0.275. The

highest order modes feature small effective refractive in-
dices and are therefore affected most by the cladding.
In such a fiber, 120 of the spatial modes capable of
propagation can be used for a mode-multiplexed trans-
mission [27]. We assume a profile exponent of 1.94
and a trench, a section with a reduced refractive in-
dex within the cladding of the fiber, in a distance of
1.25um to the core and with a width of 3.5um. The
refractive index difference between the cladding and the
trench is 6.5 - 1073, Further, an attenuation coefficient
of 0.23 dB is assumed for all modes.

The modes form strongly coupled groups of modes,
meaning the linear coupling between the modes belong-
ing to the same mode group is strong, whereas the lin-
ear coupling between modes of different mode groups is
weak. This is taken into account by choosing the appro-
priate nonlinear coupling coefficients « for the Manakov
equation [15)]. The mode groups (MG) are considered
as given in Table 2] which further provides the effec-
tive areas A of the spatial modes. The mode profiles
and the later used propagation constants are calculated
numerically with JCMsuite [31]. With the definition
of y = (mwo)/(coAeniLp,,) and a nonlinear refractive
index ny = 2.6 - 1072 m? W~!, the fiber features a non-
linear parameter y = 0.61 W='km~!. In the definition
of v, the center frequency of the optical signal is given
by wyp and ¢y is the speed of light in vacuum. The differ-
ential mode group delays AB1=81, — BiLp,, are calcu-
lated with Eq. (29) from [32]. With AB, fulfilling the so-
called phase-matching condition, the cross-phase mod-
ulation between the strongly coupled groups is maxi-
mized. This is potentially the worst case for the non-
linear effects. The phase matching condition for multi-
mode fibers incorporates the group-velocity dispersion
parameter 3, the second derivatives of the propagation
constant 8, which are calculated numerically. The val-
ues assumed for the simulation for AB; and 3, are given
in Table 3l



Table 3: DMGDs AB; in ps/km and group-velocity dispersion parameters S, in ps?/km for the different mode groups (MG).

MG 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

ABy 0.0 <732 7138 748  -754  -7.60  -7.70
avg. 5> -23.1  -233  -235 -238 -240 -242  -245

<7719 185 795 -804 -818 -823 839 -8.6l
-248 250 -253  -256 -259  -262 -267 -274

In the simulation, each spatial mode carries 60 WDM
channels within a 50 GHz grid. The center frequency
of the wavelength channel with the lowest carrier fre-
quency is placed at 191.95 THz, the one with the high-
est carrier frequency is placed at 194.9THz. Thus,
a spectral bandwidth of 3 THz is used for transmis-
sion. Within the simulation, each WDM channel car-
ries a dual polarization (DP) Quadrature Phase-Shift
Keying (QPSK) modulated signal, with a symbol rate
of 32 GBaud. The average launch power per DP-QPSK
signal is set to —1 dBm. Here, we simulate the transmis-
sion over two 80 km spans, resulting in a transmission
distance of 160km. After each span, the fiber losses
are compensated by a noiseless amplifier with flat-gain
profile. White noise is added to the signals before the re-
ceiver, setting the optical signal-to-noise ratio (OSNR)
to 20dB. In this regime, the nonlinear effects are the
dominating source of the signal degradation. Within
the digital signal processing stage, the dispersion is per-
fectly compensated. Finally, a clock recovery [33] as
well as a phase recovery are applied [34]. To quantify
the nonlinear impairments, the squared Q-factors are es-
timated for each mode and each WDM channel.

The minimal, mean, and maximal Qz-factors for each
mode after the transmission over 160 km are depicted in
Fig.[] Since the fundamental mode features the small-
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Figure 4: Squared Q-factors for each spatial mode after transmission
over 160 km, evaluated for an OSNR of 20 dB.

est effective areas A.r and the highest coupling coeffi-
cients, it suffers most from the nonlinear impairments
and features the smallest Q?-factor. For the higher or-

der modes, the mean QZ?-factors improve. To assess
the nonlinear signal distribution, we evaluate the mean
Q2-factors relative to Q-factors obtained for a back-to-
back (b2b) transmission, shown in Fig. @ With about
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Figure 5: Mean squared Q-factors for each spatial mode after trans-
mission over 80 and 160 km, relative to the squared Q-factors obtained
for a back-to-back (b2b) transmission.

—0.06dB after the first and —0.13 dB after the second
80km span, the fundamental mode again shows the
highest signal degradation. Independent of the transmis-
sion distance, the higher order modes are less affected
by the nonlinear effects. However, one can clearly iden-
tify the lower order mode groups, especially based on
the results for a transmission over 160 km. Also the in-
duced nonlinear penalty increases with increasing trans-
mission distance, the overall penalty is rather small.
For lower OSNRs, an even smaller penalty can be ex-
pected [12]. Hence, the utilization of 120 spatial modes
in an MDM transmission system seems possible, and
the Kerr-based nonlinear impairments do not prohibit
the use of such a fiber.

7. Conclusion

In this paper, we presented a multi-GPU implemen-
tation to simulate the nonlinear signal propagation in
multimode fibers. This allows the simulation of a huge
number of spatial modes while considering a large spec-
tral bandwidth at the same time. We revealed necessary
modification in order to simulate many spatial modes
and discussed various approaches how to realize the



communication between the GPUs. The performance
of the implementation was analyzed, whereas the com-
munication between the GPUs was realized with either
MPI or NCCL. While MPI shows performance benefits
for a few used GPUs, the implementation clearly profits
from NCCL’s topology-awareness if more than 4 GPUs
are involved in the simulation. For the first time, it was
possible to simulate a mode-division multiplexing sys-
tem utilizing 120 spatial modes in a 62.5 um fiber along
with 60 wavelength channels per spatial mode by using
8 GPUs. In the application example, we have evaluated
the nonlinear impairments for each spatial mode and
each wavelength channel. The results allow to conclude
that the nonlinear impairments do not prohibit the us-
age of such a large number of spatial modes in a mode-
division multiplexing system. Regarding the nonlinear
effects, it can be expected that one can scale up mode-
division multiplexing systems far beyond the most re-
cent transmission experiment in which 45 spatial modes
were transmitted over 26.5 km [2]]. The implementation
presented here allows to study those future systems.
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