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Abstract

We study coupled unstaggered-staggered soliton pairs emergent from a system of two cou-
pled discrete nonlinear Schrödinger (DNLS) equations with the self-attractive on-site self-phase-
modulation nonlinearity, coupled by the repulsive cross-phase-modulation interaction, on 1D
and 2D lattice domains. These mixed modes are of a “symbiotic” type, as each component in
isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems
addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety
of other excited states, which may also be stable. The simplest among them are antisymmetric
states in the form of discrete twisted solitons, which have no counterparts in the continuum
limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are
vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then
correct it numerically to construct exact stationary solutions, which are then used as initial
conditions for simulations to check if the stationary states persist under time evolution. Two-
component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton
pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs.
We also highlight a variety of other transient dynamical regimes, such as breathers and ampli-
tude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep
lattice potential, with identical or different atomic masses of the two components, and arrays of
bimodal optical waveguides.

keywords: discrete nonlinear Schrödinger equations; unstaggered-staggered lattice; variational

1

ar
X

iv
:2

00
3.

00
59

1v
1 

 [
nl

in
.P

S]
  1

 M
ar

 2
02

0



approximation; solitons

1 Introduction

Discrete nonlinear Schrödinger (DNLS) equations provide models for a great variety of physical
systems [1]. A well-known implementation of the basic DNLS equation is provided by arrays of
transversely coupled optical waveguides, as predicted in [2] and realized experimentally, in various
optical settings [3, 4, 5, 6]. A comprehensive review of nonlinear optics in discrete settings was
given by Ref. [7]. Another realization of the DNLS equation in provided by Bose-Einstein conden-
sates (BECs) loaded into deep optical-lattice potentials, which split the condensate into a chain
of droplets trapped in local potential wells, which are tunnel-coupled across the potential barriers
between them [8, 9]. In the tight-binding approximation, this setting is also described by the DNLS
version of the Gross-Pitaevskii (GP) equation [10, 11, 12, 13, 14].

One-dimensional (1D) DNLS equations with self-attractive and self-repulsive on-site nonlinear-
ity generate localized modes of unstaggered and staggered types, respectively. In the latter case,
the on-site amplitudes alternate between adjacent sites of the lattice [1]. In the continuum limit,
the unstaggered discrete solitons carry over into regular ones, while the staggered solitons corre-
spond to gap solitons, which are supported by the combination of self-defocusing nonlinearity and
spatially periodic potentials [15, 16, 17].

Many physical settings are modeled by systems of coupled DNLS equations. In optics, they
apply to the bimodal propagation of light represented by orthogonal polarizations or different
carrier wavelengths. In BEC, coupled GP equations describe binary condensates [18]. Usually,
bimodal discrete solitons in two-component systems are considered with a single type of their
structure in both components, either unstaggered or staggered, because the self-phase- and cross-
phase-modulation (SPM and XPM) terms, acting in each component and coupled nonlinearly, are
assumed to have identical signs [1]. Nevertheless, the opposite signs are also possible in BEC,
where either of them may be switched by means of the Feshbach resonance [18, 19, 20, 21, 22].
Discrete solitons of the mixed type, built as complexes of unstaggered and staggered components,
were introduced in Ref. [23], assuming opposite SPM and XPM signs. Earlier, single-component
states of a mixed unstaggered-staggered type were investigated in the form of surface modes at an
interface between different lattices [24, 25]. In continuum systems, counterparts of mixed modes are
represented by semi-gap solitons, which are bound states of an ordinary soliton in one component
and a gap soliton in the other [26].

The mixed modes reported in Ref. [23] are “symbiotic” ones, as each component in isolation
may support solely ordinary unstaggered solitons. The results were obtained in an analytical form,
using the variational approximations (VA), and verified by means of numerical methods. It was
found that almost all the symbiotic solitons were predicted by the VA accurately, and were stable.
Unstable solitons were found only close to boundary of their existence region, where the solitary
modes have very broad envelopes, being poorly approximated by the VA.

Most works on DNLS systems concern symmetric on-site-centered fundamental solitons, which
represent the ground state of the corresponding model [1], including the unstaggered-staggered
solitons [23]. Furthermore, only fundamental solitons represent stationary states in the continuum
NLS equation. However, DNLS models give rise to stationary excited states, which may be stable
too. The simplest among them are antisymmetric states in the form of discrete twisted solitons [27],
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which have no counterparts in the continuum limit. Once unstaggered-staggered discrete solitons
are possible in two-component DNLS systems, it is natural to introduce the twist in the latter
setting too, with three different species of such discrete solitons possible, which are single-twisted,
in either component—staggered or unstaggered one—or double-twisted, in both components.

Discrete solitons on two-dimensional (2D) lattices have been studied in a variety of contexts,
[28, 1]. Experimental literature highlights the existence of real solitons on 2D optically induced
nonlinear photonic lattices [29, 30]. A natural extension of the earlier analysis, performed in the
1D setting [23], is to build two-component unstaggered-staggered complexes in 2D two-component
DNLS systems, which may be realized physically in the same physical settings (optics and BEC) as
mentioned above, provided that the corresponding waveguiding arrays are built, in the transverse
plane, as 2D lattices, or the BEC is loaded into a deep 2D optical-lattice potential. In addition to
2D fundamental discrete solitons which may be naturally expected in the unstaggered-staggered
system, one may also look for compound modes in which one or both components are represented
by discrete vortex solitons [31], which is the 2D analogue of the 1D twisted solitons. Vortex solitons
have previously been found in various optical setups [32, 33, 34], see also recent reviews [35, 36].
Experimental creation of discrete vortex solitons in self-focusing optically induced lattices was
reported in Refs. [30, 37].

The remainder of this paper is organized according to the dimension of the lattice domain, with
single- and double-twisted two-component unstaggered-staggered solitons on 1D lattices considered
in Section 2. The analysis of unstaggered-staggered 2D discrete soliton complexes, consisting of
fundamental soliton pairs, along with the more sophisticated fundamental-vortical and vortical-
vortical ones, is reported in Section 3. For both dimensions of the lattice, we present the governing
DNLS equations and the corresponding Lagrangian. Assuming a decay rate for the solitons’ tails as
predicted by the linearization of the DNLS equations, we elaborate the variational approximation
(VA) for each type of soliton. We then use the VA-produced predictions as an initial guess to
obtain the corresponding states in a numerically exact form. This approach is useful, as without
an appropriate input the numerical scheme may readily converge to zero or some non-physical
state. Furthermore, for stationary states which are stable and symmetric between the components
(fundamental-fundamental, twist-twist, or vortical-vortical), the agreement of VA with numerical
findings is quite good, whereas in the case of asymmetric pairs of the components (one twisted or
vortical, the other being fundamental) the agreement is less accurate. Starting with numerically
exact stationary states, we then simulate their evolution in time to determine what states are stable
or unstable. Concluding remarks are made in Section 4.

2 One-dimensional coupled unstaggered-staggered modes

In this section, we initiate the analysis by formulating VA, which has proved to be quite efficient in
the studies of fundamental discrete solitons in diverse settings, as shown at heuristic [38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65] and more
rigorous [66, 67] levels. We introduced the DNLS equations and their Lagrangian in subsection 2.1,
elaborate the VA in subsection 2.2, and report results for numerically exact stationary solutions and
their subsequent temporal evolution in subsection 2.3. We further select stable stationary states
in subsection 2.4, and then outline transient regimes related to the evolution of unstable modes in
subsection 2.5.
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2.1 The DNLS equations

In Ref. [23], a system of coupled DNLS equations for discrete fields φn and ψn was introduced in
1D:

i
d

dt
φn = −1

2
(φn+1 + φn−1 − 2φn)−

(
|φn|2 + β |ψn|2

)
φn, (1a)

i
d

dt
ψn = − 1

2M
(ψn+1 + ψn−1 − 2ψn)−

(
|ψn|2 + β |φn|2

)
ψn, (1b)

where M > 0 is the relative atomic mass of the two species in the case of BEC, or the inverse ratio
of the intersite coupling constants in the waveguide array, and β < 0 is the relative coefficient of
the onsite XPM coupling between the fields, assuming that coefficients of the self-attractive SPM
nonlinearity for both fields are scaled to be 1.

Solutions with unstaggered φn and staggered ψn onsite-centered components and two chemical
potentials, λ and µ, are sought for as

φn(t) = e−iλtun, ψn(t) = e−iµt (−1)n vn, (2)

where real discrete fields un and vn satisfy the following stationary equations,

(λ− 1)un +
1

2
(un+1 + un−1) +

(
u2
n + βv2

n

)
un = 0, (3a)(

µ− 1

M

)
vn −

1

2M
(vn+1 + vn−1) +

(
v2
n + βu2

n

)
vn = 0, (3b)

which can be derived from the Lagrangian,

L =
1

2

+∞∑
n=−∞

[
−1

2
(un+1 − un)2 + λu2

n +
1

2M
(vn+1 − vn)2 +

(
µ− 2

M

)
v2
n +

1

2
u4
n +

1

2
v4
n + βu2

nv
2
n

]
.

(4)
In the standard way, the respective equations (3) can be obtained by taking the first variation of
(4) in un and vn, respectively.

Note that, in the limit ofM � 1, which is tantamount to the Thomas-Fermi (TF) approximation
for discrete equation (3b), this equation allows one to eliminate vn in favor of un,

v2
n = −µ− βu2

n , (5)

hence in this case the coupled stationary system (3) reduces to a single equation. In the opposite
limit of M � 1, large constant M−1 makes Eq. (3b) close to its continuum counterpart, where n
may be considered as a continuous coordinate, and, accordingly, the broad v(n) component interacts
with a narrow strongly discrete one, un. Thus, the effective continuous equation for v(n) amounts
to

µv − 1

2M

d2v

dn2
+ v3 + βWuδ (n) v = 0, (6)

where δ(n) is the delta-function, and Wu is the norm of the u-component, Wu =
∑∞

n=−∞ u
2
n. In

the same approximation, v2
n in Eq. (3a) reduces to a constant, vn ≈ v (n = 0). For β < 0, which
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is considered in this work, Eq. (6) readily gives rise to an exact solution in the form of a pinned
soliton,

v(n) =

√
2µ

sinh
(√

2µM (|n|+ n0)
) , (7)

with n0 determined by condition

coth
(√

2µMn0

)
= −βWu

√
M/(2µ). (8)

As follows from Eq. (8), this continuum-limit solution exists in the following interval of chemical
potential of the staggered component: 0 < µ < (M/2) (βWu)2.

2.2 The variational approximation

In the general case, asymptotic tails of stationary discrete solitons decay at |n| → ∞ as

un = Ae−p|n|, vn = Be−q|n|, (9)

with p and q determined by the linearized limit of Eqs. (3) at n→ ±∞. Substituting expressions
(9) in the linearized equations, we find λ − 1 + cosh(p) = 0 and µ − 1

M −
1
M cosh(q) = 0. Solving

these equations for p and q in terms of λ, µ, and M , we obtain

p = arccosh (1− λ) ≡ ln
(

1− λ+
√
−λ (2− λ)

)
, (10a)

q = arccosh (Mµ− 1) ≡ ln
(
Mµ− 1 +

√
Mµ (Mµ− 2)

)
. (10b)

For p and q, given by Eqs. (10) to be real and positive, the allowed ranges of chemical potentials
µ and λ are

λ < 0 , µ >
2

M
. (11)

Fundamental-soliton solutions of Eqs. (1) were constructed in Ref. [23], while in the present sec-
tion we extend those results to more sophisticated solutions. A new possibility is to look for twisted
solitons (i.e., spatially-antisymmetric ones). In the single-component DNLS equation, twisted soli-
tons were introduced in Ref. [27]. An initial ansatz for such solitons, with the twisted structure in
one or both components, can be taken as

un = Ae−p|n|, vn = Bne−q|n|, (12)

un = Ane−p|n|, vn = Be−q|n|, (13)

un = Ane−p|n|, vn = Bne−q|n|, (14)

where p and q are produced by the solution of the linearized equations for the tails in the same form
of Eq. (10) as above. Note that, if the u-component is twisted, while the v mode is not, then the TF
approximation based on Eq. (5) is definitely irrelevant, as it would predict v2

0 = −µ < 0 at n = 0.
We stress that the two composite straight-twisted configurations, corresponding to ansätze (12)
and (13), are not equivalent, as in these cases the twisted constituent is created in the unstaggered
or staggered component, respectively.

Studies of stability of plane waves in 1D DNLS lattices suggest that these states are often
modulationally unstable to small-wavenumber perturbations [68, 69, 70]. Perturbations of unstable

5



plane waves of this type often result in the emergence of highly localized structures, such as solitons
or other solitary waves [68, 71]. In this case, solitons of the form given by Eqs. (12) and (14) are
expected to have narrow envelopes, meaning large values of p and q. More broad envelopes are likely
to be modulationally unstable against planewave perturbations in the large wavenumber regime.
This intuition is in agreement with the results of Ref. [23] for fundamental solitons, and we will
later show that the stability of solutions that we find here agrees with those earlier findings, i.e.,
stable solutions exhibit rapidly decaying tails, while broader soliton envelopes tend to be unstable.

Assuming the presence of twisted unstaggered and straight staggered components, Eq. (13)
gives u0 = 0, u−n = −un, v−n = vn, and v0 > v1 > v2 > . . . . For n = 0, the u-component of Eq.
(3) is identically satisfied, whereas the equation for v yields v1

v0
= Mµ−1+Mv2

0. As the ratio v1/v0

must satisfy restriction 0 < v1/v0 < 1 in localized solutions, this implies 1
M − µ < v2

0 <
2
M − µ.

However, condition µ > 2/M from Eq. (11) then results in v2
0 < 0, therefore there may be no real

amplitude v0 generating twisted unstaggered and straight staggered components. This does not
mean that other solutions of such a type (perhaps non-stationary ones) do not exist, but solely
that solitons do not exist in this form. Thus, we exclude solitons of the form given by Eq. (13)
from the consideration, and we will only seek solitons of the form defined by Eqs. (12) and (14).
For each of these, we will obtain analytical approximations through the VA, which will be verified
by means of numerical methods.

Now, we outline the construction of solitons of the form (12) and (14) by way of the VA. The
existence of VA solutions is tied to the existence of a positive solution for squared amplitudes(
A2, B2

)
of the respective ansätze, as produced by the Euler-Lagrange equations, derived in the

framework of VA. In turn, we find that the existence of such positive solutions strongly depends on
values the XPM coefficient, β < 0, and relative mass of the two components, M > 0. For a fixed
set of these values, it is possible to determine a subset of the plane (λ, µ) of the chemical potentials
of the two components, where positive solutions for

(
A2, B2

)
can be found.

2.2.1 Fundamental unstaggered - twisted staggered pairs

We start the VA analysis for ansätze (12). Substituting it in Lagrangian (4) and performing the
summation yields the following effective Lagrangian:

2Leff = −A2 tanh(p/2) + λA2 coth p+
A4

2
coth(2p) +

B2

2M

(sinh q)−1

cosh(q) + 1

+
B2

2

(
µ− 2

M

)(
coth3 q − coth q

)
+
B4

2

[
3

2
coth5(2q)− 5

2
coth3(2q) + coth(2q)

]
+
βA2B2

2

[
coth3(p+ q)− coth(p+ q)

]
, (15)

which gives rise to the Euler-Lagrange equations,

∂Leff

∂ (A2)
=

∂Leff

∂ (B2)
= 0. (16)

They amount to a system of linear equations for A2 and B2:

A2 [coth(2p)] +
β

2
B2
[
coth3(p+ q)− coth(p+ q)

]
= tanh(p/2)− λ coth p , (17)
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β

2
A2
[
coth3(p+ q)− coth(p+ q)

]
+B2

[
3

2
coth5(2q)− 5

2
coth3(2q) + coth(2q)

]
= − 1

2M

(sinh q)−1

cosh q + 1
− 1

2

(
µ− 2

M

)(
coth3 q − coth q

)
. (18)

Note that p and q are already determined from (10). The system (17)-(18) is solved for the unknown
A and B, which are the initial amplitudes of the variational approximation at n = 0. As the system
is linear in A2 and B2, it is sufficient to obtain a solution for the quantities A2 and B2, and these
quantities must be positive. We then take the positive root

√
A2 = A,

√
B2 = B for the initial

amplitudes.
Physically relevant solutions to Eqs. (17) and (18), with A2 > 0 and B2 > 0, do not exist for

β > 0, but they may exist if β < 0, i.e., in the case of the repulsive interaction between the two
components, which is the subject of the present work. The linear system of Eqs. (17)-(18) becomes
degenerate (with zero determinant) in the case of

coth(2p)

[
3

2
coth5(2q)− 5

2
coth3(2q) + coth(2q)

]
=
β2

4

[
coth3(p+ q)− coth(p+ q)

]2
. (19)

2.2.2 Twisted unstaggered - twisted staggered pairs

Substituting ansatz (14) into Lagrangian (4) and carrying out the summation as above, we obtain
the effective Lagrangian in the following form:

2Leff = −A
2

2

(sinh p)−1

cosh p+ 1
+ λ

A2

2

(
coth3 p− coth p

)
+
B2

2m

(sinh q)−1

cosh(q) + 1
+
B2

2

(
µ− 2

M

)(
coth3 q − coth q

)
+
A4

2

[
3

2
coth5(2p)− 5

2
coth3(2p) + coth(2p)

]
+
B4

2

[
3

2
coth5(2q)− 5

2
coth3(2q) + coth(2q)

]
+βA2B2

[
3

2
coth5(p+ q)− 5

2
coth3(p+ q) + coth(p+ q)

]
. (20)

It is convenient to define

χ(α) ≡ 3

2
coth5 α− 5

2
coth3 a+ cothα, (21)

which is positive for all α > 0. Euler-Lagrange equations (16) following from Lagrangian (20) can
be written as

A2χ(2p) + βB2χ(p+ q) =
1

2

(sinh p)−1

cosh(p) + 1
− λ

2

(
coth3(p)− coth(p)

)
, (22)

βA2χ(p+ q)A2 +B2χ(2q) = − 1

2M

(sinh q)−1

cosh(q) + 1
− 1

2

(
µ− 2

M

)(
coth3(q)− coth(q)

)
. (23)

The system (22)-(23) is again a system for unknown initial amplitudes A and B in the variational
approximation. Once again, this system may give rise to physical solutions only in the case of the
repulsive XPM interaction, β < 0. The system of Eqs. (22) and (23) becomes degenerate if

χ(2p)χ(2q) = β2χ2(p+ q) , (24)
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where χ is defined as per Eq. (21). Note that χ(α)→∞ as α→ +0 and χ(α)→ 0 as α→∞, and
that χ is a decreasing function in its domain. Therefore, the ratio χ(2p)χ(2q)/χ(p + q) is always
positive, and there always exists a value

β = β ≡ −

√
χ(2p)χ(2q)

χ(p+ q)
< 0 , (25)

at which system (22)-(23) is degenerate.

2.3 The numerical approach

Localized steady-state solutions were numerically computed by solving a truncated form of Eq.
(3) on a finite lattice. This was implemented with periodic boundary conditions, although we also
compared results for fixed homogeneous conditions to ensure the boundaries played no role in the
localized solution structure. The nonlinear system was then solved via the Matlab function ‘fsolve,’
which implements a Newton-like solution procedure (specifically a trust-region dogleg method).
Unless otherwise mentioned, these solutions were carried out using 103 + 1 lattice points, though
they are nearly identical to solutions on much smaller lattices, hence it is safe to assume that the
truncation has not changed the structure of localized solutions. We fixed function and optimality
tolerances of 10−12, and always checked that both the vector (L2) and component (L∞) norms
of the objective function, evaluated on the numerical solution, were small enough (< 10−4, and
typically much smaller). The VA solitons were used as the initial guess. In some cases the resultant
numerical solution was close to the original VA prediction, while in other cases, the initial VA
solution converged to a soliton where one component is zero. In the latter case, to find nontrivial
solutions in both components, we deflated the objective function away from zero (see [72] for a
similar technique applied to the 2D GP equation). Specifically, if F is the objective function (the
left-hand side of Eq. (3)), we replace it by(

1 +
1

max(|un|)

)(
1 +

1

max(|vn|)

)
F. (26)

Once an exact stationary state is found, we tested its stability by simulations of their evolution
in the framework of Eq. (1). It was thus found that some stationary solutions are unstable, as they
do not persist in the course of the evolution, instead breaking apart or evolving into solutions of
other kinds. Many solutions which do stably persist, emit a small amount of radiation at the initial
stage of the evolution, whilst the solution adjusts to the true steady state. Unstable states tend to
gradually break up into radiation, which disperses throughout the domain. We define a solution as
stable if both φn and ψn components persist, keeping constant absolute values

To run simulations of the evolution, we set φn(0) = un and ψn(0) = vn, and evolved Eqs. (1)
using the Matlab function ‘ode45 ’, which implements a fourth-order Runge-Kutta scheme, as a
variation of an algorithm from Ref. [73]. We fixed absolute and relative tolerances of 10−13. The
solutions were consistent with simulations computed with the help of the first-order stiff solver,
‘ode15s,’ for the simulation time scales, therefore we do not anticipate accumulations of errors due
to round-off or loss of mass for the duration of the simulations. The simulations terminated when
reflection from the boundary occurred, to avoid artifacts caused by the reflected waves. Thus,
increasing the lattice size, we may increase the simulation time, and from this we conclude that the
solutions we claim to be stable will be stable on an infinite lattice.
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Figure 1: Plots of steady states and time evolution for a stable soliton built of bound fundamental
and twisted components. Parameters are β = −10, µ = 2.8, λ = −0.7, M = 1. In (a) both
the VA-predicted and numerically exact stationary states are plotted. The evolution of the two
components is displayed in (b) and (c) for |φn(t)| and |ψn(t)|, respectively. Component ψn shown
in (c) initially releases a small amount of radiation, as it adjusts from the initial configuration to
the stable stationary state.

2.4 Stable 1D two-component soliton

For β = −0.5 > −1, changes in the relative-mass parameter M primarily shift regions in the (µ, λ)
plane which admit such solutions, but roughly preserve their geometry. In contrast, increasingM for
β = −5 < −1 leads to an increase of the region of admissible localized solutions. For β = −0.5, the
existence regions are similar to those found for fundamental soliton pairs on unstaggered-staggered
lattices in Ref. [23] (not shown here in detail).

In fact, most parameter values and initial guesses led to unstable time evolution, but large
stability regions for two-component solitons of the twisted-twisted soliton were found at large
values of −λ and µ (for β = −0.5 > −1). We have also found stable solitons close to but somewhat
different from inputs in the form of Eqs. (12) or (14), such as states with broad multiple-site peaks.
In contrast, two-component solitons of the fundamental-twisted type are, generally, less stable, due
to fragility of such solutions to time dynamics. Thus, we expect that it may be more difficult
to create fundamental-twisted soliton pairs in the experiment, whereas the robust twisted-twisted
pairs should be available for a variety of parameter regimes and experimental configurations.

In other cases, we have found that, in the direct time simulations, unstable VA solitons with one
or two twisted components spontaneously transform into states with two or one twisted components,
respectively. This result highlights the fact that the VA approach is most useful for detecting
highly localized waves, yet accurate identification of the structure of such states should be done
numerically.

We plot representative stable fundamental-twisted and twisted-twisted soliton pairs in Figs. 1
and 2, respectively. The fundamental-twisted pair shows quantitative disagreement between the VA
and exact numerical solution. Again, as the fundamental-twisted pair is not robust in the parameter
space, the VA based in the simplest ansatz is not a particularly good fit. In particular, the amplitude
of the twisted vn component, shows quantitative disagreement with the VA prediction, whereas the
fundamental components agree with VA quite well. Still, the peaks for both the VA-predicted
twisted component and its numerically found counterpart are located at the same sites, and it is
the amplitude which is poorly approximated. Simulations of the numerically exact fundamental-
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0

5
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Figure 2: The same as in Fig. 1, but for a stable solitons with components of the twisted-twisted
type. The parameters are β = −0.5, µ = 18.9, λ = −35, M = 1. In panel (c), component ψn
initially releases a small amount of radiation, as it adjusts from the initial state to the proper stable
stationary one.

twisted pair demonstrate its stability, after shedding transient radiation at the initial stage of the
evolution.

The twisted-twisted soliton pair shown in Figure 2 features good agreement between the VA
and numerical solutions, which are indistinguishable at some sites. This fact, along with results for
the fundamental-fundamental soliton pairs displayed in Ref. [23] suggests that the VA produces
accurate predictions when both components have the same symmetry.

2.5 Transient dynamics

We have found a variety of evolution routes for unstable stationary states, as shown in Fig. 3. First,
in Fig. 3(a) we observe unstable solutions which decay into radiation at large times, with the core
region gradually spreading out over the entire spatial domain (though some fluctuations persist
for large times). In contrast to the instability resulting in the decay of the original stationary
state, there are other unstable solutions which persist with a finite amplitude in a finite core
region, exhibiting spatiotemporal chaos within it (see Fig. 3(b)). Spatiotemporal chaos has been
observed in other lattice NLS systems, often under the action of temporal forcing [74] or nonlocality
[75]. Chaos has also been observed in DNLS systems which involve nonlinear coupling between
adjacent sites [76]. Our model does not include any of these ingredients, with the only change from
the standard DNLS equation being the unstaggered-staggered structure, which gives rise to the
increased complexity in comparison with the standard DNLS lattices.

Further, we have also found solutions featuring unstable dynamics in one component and ap-
parently stable evolution in the other, as shown in Figs. 3(c,d). In particular, this demonstrates
amplitude death (vanishing) of one component and persistence of the other. The amplitude death
in lattice dynamical systems modelling many coupled oscillators [77, 78, 79], whereas the amplitude
death in coupled continuum complex Ginzburg-Landau systems has been demonstrated in Ref. [80]
for saturable kinetics and in Ref. [81] for more general yet monotone kinetics. On the other hand,
it was shown in Ref. [81] that coupled continuum NLS systems do not admit amplitude death.
To the best of our knowledge, the amplitude death regimes has not been found in standard DNLS
systems, again highlighting the rich variety of dynamics possible in unstaggered-staggered lattices.

In Figs. 3(e,f) we plot solution pairs which maintain their overall envelope yet exhibit periodic
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(a) (b)

(c) (d)

(e) (f)

Figure 3: The simulated evolution of unstable numerical found stationary states, showing different
routes of the instability development and eventual wave breakup. We plot |φn(t)| in (a,c,e), and
|ψn(t)| in (b,d,f), for parameters (a,b) β = −5, µ = 5, λ = −0.5, M = 1 in (a,b), β = −0.5, µ = 2.3,
λ = −2, M = 1 in (cd), and β = −0.5, µ = 2.3, λ = −5, M = 1 in (e,f). Panels (a,b) exhibit
apparent spatiotemporal chaos, confined to a narrow band. In (c,d) we show a case where one of
the components becomes unstable, decaying into radiation, whereas the other component persists.
After transient emission of radiation, the solution in (e,f) displays spatiotemporal dynamics akin
to a breather.
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amplification and attenuation, thus appearing to be stable breathers. These oscillations are larger
in one component, although are present in both. Breathers in other DNLS systems were reported
in several works [82, 83, 84, 85].

3 Two-dimensional unstaggered-staggered lattices

In the higher-dimensional case, both theoretical [31] and experimental [29, 30] work demonstrate
that a variety of dynamics are possible for the DNLS. Here, we extend the consideration of
unstaggered-staggered modes to 2D lattices. As in the 1D case, we first present the dynamical
system and its Lagrangian in subsection 3.1. We then derive the VA in subsection 3.2, and present
representative stable stationary two-component solitons in subsection 3.3.

3.1 The 2D model and framework

The natural 2D generalization of the system of coupled DNLS equations (1) is

i
d

dt
φm,n = −1

2
(φm+1,n + φm−1,n + φm,n+1 + φm,n−1 − 4φm,n)−

(
|φm,n|2 + β |ψm,n|2

)
φm,n, (27a)

i
d

dt
ψm,n = − 1

2M
(ψm+1,n + ψm−1,n + ψm,n+1 + ψm,n−1 − 4ψm,n)−

(
|ψm,n|2 + β |φm,n|2

)
ψm,n.

(27b)
Solutions with unstaggered φm,n and staggered ψm,n components and two chemical potentials, λ
and µ, are sought for as

φm,n(t) = e−iλtum,n, ψm,n(t) = e−iµt (−1)m+n vm,n, (28)

where real discrete fields um,n and vm,n satisfy stationary equations,

(λ− 2)um,n +
1

2
(um+1,n + um−1,n + um,n+1 + um,n−1) +

(
|um,n|2 + β |vm,n|2

)
um,n = 0, (29a)(

µ− 2

M

)
vm,n −

1

2M
(vm+1,n + vm−1,n + vm,n+1 + vm,n−1) +

(
|vm,n|2 + β |um,n|2

)
vm,n = 0,

(29b)
which can be derived from the corresponding 2D Lagrangian:

L =
1

2

+∞∑
m,n=−∞

[
−1

2

(
|um+1,n − um,n|2 + |um,n+1 − um,n|2

)
+

1

2M

(
|vm+1,n − vm,n|2 + |vm,n+1 − vm,n|2

)
+λ |um,n|2 +

(
µ− 4

M

)
|vm,n|2 +

1

2
|um,n|4 +

1

2
|vm,n|4 + β |um,n|2 |vm,n|2

]
.

(30)
In particular, note that (29a) is the first variation of the Lagrangian (30) with respect to um,n,
while (29b) is the first variation of the Lagrangian (30) with respect to vm,n.
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3.2 The variational approximation

In the 2D lattice framework, our first objective is to construct two-component solitons with the
fundamental onsite-centered structure in both components. To apply the VA in this context, a
practically tractable ansatz may be taken as the 2D generalization of the exponential one which
was efficient in the application to the 1D DNLS equations [38, 39, 53, 23]:

um,n = Ae−P (|m|+|n|), vm,n = Be−Q(|m|+|n|), (31)

Considering ansatz (31) in the framework of linearized equations at n,m→ ±∞, one finds λ− 2 +
2 cosh(P ) = 0 and µ− 2

M −
2
M cosh(Q) = 0. Solving for P and Q in terms of λ, µ, and M , we thus

obtain

P = arccosh

(
1− λ

2

)
= ln

(
1− λ

2
+

√
−λ

2

(
2− λ

2

))
, (32a)

Q = arccosh

(
Mµ

2
− 1

)
= ln

(
Mµ

2
− 1 +

√
Mµ

2

(
Mµ

2
− 2

))
. (32b)

For P and Q to be real and positive, the allowed ranges of chemical potentials µ and λ are

λ < 0 , µ >
4

M
, (33)

cf. its 1D counterpart (11).
Real amplitudes A and B of ansatz (31) are again treated as variational parameters. In the 2D

setting, a similar ansatz was applied to the DNLS equation with the cubic-quintic onsite nonlinearity
in Ref. [86]. VA was also used in a different context, for the rigorous proof of the existence of
discrete solitons as ground states in 1D [87] and 2D [88] settings. However, compound solitons
built of unstaggered and staggered components were not studied previously in any form.

It is also possible to construct 2D topological discrete solitons in which at least one component
is vortical (hence, at least one of um,n or vm,n is complex-valued), and this shall be the focus of
the present paper. For the single-component 2D DNLS equation, vortex-soliton solutions were first
constructed in Ref. [31]. The initial ansatz for the vorticity in one or both components of the
onsite-centered soliton may be taken as

um,n = Ae−P (|m|+|n|), vm,n = B (m+ in) e−Q(|m|+|n|), (34)

um,n = A (m+ in) e−P (|m|+|n|), vm,n = Be−Q(|m|+|n|), (35)

um,n = A (m+ in) e−P (|m|+|n|), vm,n = B (m+ iσn) e−Q(|m|+|n|), (36)

where P and Q are as given by Eq. (32). Ansätze (34) and (35) represent compound solitons with
the vorticity embedded in one component, while in Eq. (36) both components are assumed vortical,
σ = ±1 being the relative vorticity in the two components. The amplitude shape of the stationary
solutions is the same for both σ = +1 and −1. In 2D continuum models, two-component vortex
solitons with opposite vorticities in the two components are called counter-rotating two-component
vortices [89], alias states with hidden vorticity [90], if the total angular momentum is zero. In that
case, a nontrivial issue is stability of such compounds, which may be very different from that of
their co-rotating counterparts.

13



Existing studies of modulational instability in 2D DNLS lattices also suggest that plane and
solitary waves are often modulationally unstable to small-wavenumber perturbations [91, 92]. The
development of instability may lead to formation of highly localized structures, such as solitons or
other localized states. Akin to the 1D case, the 2D solitons of the form given by Eqs. (31), (34)-
(36) are expected to have narrow envelopes, with larger values of P and Q, while broad envelopes
corresponding to smaller values of P and Q are likely to be unstable.

While in 1D we showed that only fundamental-fundamental, fundamental-twisted, and fundamental-
fundamental soliton pairs exist in unstaggered-staggered lattices, in the 2D case we have found no
asymmetric vortical-fundamental pairs, so we only present the VA for fundamental-fundamental
and vortical-vortical pairs.

3.2.1 Fundamental unstaggered - fundamental staggered pairs

Here we construct 2D fundamental solitons of the unstaggered-staggered type, based on ansatz
(31). Substituting it in Lagrangian (30) and carrying out the summation, we arrive at the effective
Lagrangian:

2Leff = −2A2 (cothP ) tanh(P/2) +
2

M
B2(cothQ) tanh(Q/2) + λA2 coth2 P +

(
µ− 4

M

)
B2 coth2Q

+
A4

2
coth2(2Pp) +

B4

2
coth2(2Q) + βA2B2 coth2(P +Q) , (37)

which gives rise to the Euler-Lagrange equations,

A2 coth2(2P )A2 + βB2 coth2(P +Q) = 2(cothP ) tanh(P/2)− λ coth2 P , (38)

βA2 coth2(P +Q) +B2 coth2(2Q) = − 2

M
(cothQ) tanh(Q/2)−

(
µ− 4

M

)
coth2Q . (39)

As P and Q are determined already from (32), the system (38)-(39) determines the unknown
amplitude parameters A and B. It is clear that a physically relevant solution pair, with A2 > 0,
B2 > 0 does not exist for β > 0, which is a natural consequence of the fact that we are looking
for the unstaggered-staggered complex. However, physical solutions may exist for β < 0, i.e., with
opposite signs of the SPM and XPM onsite terms in Eqs. (1). Further, the system of Eqs. (38)
and (39), considered as a system of linear equations for A2 and B2, becomes degenerate if

coth2(2P ) coth2(2Q) = β2 coth4(P +Q) . (40)

3.2.2 Vortical unstaggered - vortical staggered pairs

The most sophisticated compound mode is built of vortical modes in both the unstaggered (u)
and staggered (v) components, as per ansatz (36). Substituting the ansatz in Lagrangian (30), we
obtain the respective effective Lagrangian,

2Leff = −A2η(P ) +
B2

M
η(Q) + λA2 coth2(P )(sinh(P ))−2 +

(
µ− 4

M

)
B2 coth2(Q)(sinh(Q))−2

+
A4

2
ζ(2P ) +

B4

2
ζ(2Q) + βA2B2ζ(P +Q) , (41)
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where we have defined

η(α) ≡ (sinh(α))−1 coth(α)

cosh(α) + 1
+

1

2
tanh(α/2) coth(α)(sinh(α))−2 , (42)

ζ(α) ≡ 1

2
coth2(α)(sinh(α))−4 (cosh(2α) + 6) . (43)

From here we derive the corresponding Euler-Lagrange equations,

A2ζ(2P ) + βB2ζ(P +Q)B2 = η(P )− λ coth2(Q)(sinh(P ))−2 , (44)

βA2ζ(P +Q) +B2ζ(2Q)B2 = − 1

M
η(Q)−

(
µ− 4

M

)
coth2(Q)(sinh(Q))−2 . (45)

Again, as P and Q are determined already from (32), the system (44)-(45) determines the unknown
amplitude parameters A and B. Since ζ(α) > 0 for α > 0, in the present case we conclude, as
in the 1D case, that a solution pair with A2 > 0, B2 > 0 does not exist for β > 0, but relevant
solutions may exist at β < 0. The system of Eqs. (44) and (45) becomes degenerate if

ζ(2P )ζ(2Q) = β2ζ(P +Q)2 . (46)

3.3 Stable 2D solution pairs

As in the case of the 1D lattice, in the 2D case we use the VA ansätze as initial guesses for solving
Eqs. (29), and then simulate the ensuing evolution in the framework of Eq. (27). The functions and
tolerances used are the same as in the 1D setting, although we here restrict the lattice to smaller
sizes, for computational reasons. As the lattice is smaller, we simulated the evolution of the solutions
for shorter times than in 1D, to avoid artifacts caused by radiation reflecting from the domain’s
boundaries. Nevertheless, concluding if the localized solution remain stable in the respective time
interval (and for longer times on increasingly large lattices), it is possible to conjecture that such
solutions will remain stable indefinitely.

In Figure 4 we display an example of a fundamental-fundamental soliton pair. In the course
of the evolution, staggered component ψ emits some radiation, and then remains localized with a
steady absolute-value profiles. In contrast, the unstaggered component φ emits no radiation at all.
We conclude that the VA for these solutions is qualitatively accurate, although the numerically
observed soliton is more localized in the um,n component than the VA predicts. For these solutions,
we used a lattice of size 61 by 61 and could observe a stable soliton up to T = 100. Thus,
complementing what was shown in Ref. [23] for the 1D case, we find that there exist stable
fundamental-fundamental soliton pairs in the 2D unstaggered-staggered lattice.

We were unable to find any parameter values which admitted solitons of the mixed staggered
forms corresponding to Eqs. (34) or (35). Parameters permitting the existence of such solutions
should be quite sparse, if they exist at all. This is consistent with the above-mentioned difficulty
in finding 1D stable fundamental-twisted solitons, and the non-existence of twisted-fundamental
pairs. In contrast, we have found pairs of vortical solitons, many of which are stable. We produce
an example of such soliton pairs in Fig. 5, which are stable for both co- and counter-rotating
vortical pairs (i.e., with σ = ±1). Again, some radiation is emitted, in the course of the short-time
relaxation, only by the staggered component, and the resulting localized solution persists after the
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(a) (b)

(c) (d)

Figure 4: 2D two-component solitons of the fundamental-fundamental type for parameters β = −10,
µ = 40, λ = −1, M = 1. Discrete fields |um,n| and |vm,n| are plotted in (a,c) and in (b,d),
respectively, with (a,b) and (c,d) representing, respectively, VA ansatz (31) and the numerical
steady- state solutions of Eq. (29).
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(a) (b)

(c) (d)

Figure 5: 2D vortical-vortical solution pairs with parameters β = −0.5, µ = 15, λ = −35, M =
1, with σ = 1 used in the VA ansatz. We plot |um,n| in (a,c) and |vm,n| in (b,d), with (a,b)
corresponding to the VA ansatz (36) and (c,d) the numerical steady state solutions of (29).
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completion of the relaxation. In this case too we conclude that the VA is a reasonable fit to the
form of the numerically computed solutions. Here we restricted the lattice to a size of 41 by 41, and
ensured the stability until T = 50. Nonetheless, we expect the solitons shown in Fig. 5 to persist
indefinitely. The finding of the stable vortical-vortical soliton pairs on the unstaggered-staggered
lattice adds to previously known results for discrete vortex solitons on the usual 2D DNLS lattice
[31].

4 Conclusions

Extending the analysis of the recently introduced system of nonlinearly coupled DNLS equations
with unstaggered and staggered components (which requires opposite signs of the SPM and XPM
nonlinearities—a situation possible in binary BEC), we have elaborated families of 1D discrete
solitons with a single twisted or both twisted components, complementing the earlier work on fun-
damental soliton pairs on unstaggered-staggered lattices [23]. Analytical solutions for the discrete
solitons are constructed by means of the VA (variational approximation). Similar to the recently
studied family of fundamental solitons in this system [23], we have found that the twisted soli-
tons produced by the VA are often stable when they are narrow, and unstable (or nonexistent in
simulations) if at least one component is wide. We find that the VA is in the best agreement with nu-
merical simulations when the solution pairs are symmetric, such as the fundamental-fundamental
and twisted-twisted ones. As for asymmetric twisted-unstaggered–fundamental-staggered pairs,
while stable solutions can be found numerically, they do not well agree with the VA, highlighting
a limitation of the VA in that case. On the other hand, asymmetric fundamental-unstaggered–
twisted-staggered pairs are not predicted by the VA, and were not found in simulations either,
therefore we conjecture that they do not exist. Through numerical simulations, we have deter-
mined the long-time evolution of initial steady states, with stable solutions maintaining their shape
(sometimes after giving off a small amount of radiation, as they adjust to a true stable soliton),
and unstable solutions decaying or exhibiting transient dynamics. In addition to the decay of both
wave functions due to the instability, other unstable soliton initial conditions were observed to
evolve into breathers or lead to the amplitude death (vanishing) of one wave function (with the
other component persisting as a soliton).

Additionally, we have considered the extension of the unstaggered-staggered formulation to
2D lattices, which was not considered previously, and constructed both fundamental solitons and
vortical ones, producing representative stable solutions for each case. Stable 2D two-component
solitons of the asymmetric vortical-fundamental or fundamental-vortical have not been found, in
agreement with the fact that, in the 1D case, twisted unstaggered-fundamental staggered pairs exist
in a limited area of the parameter space, while the pairs of the symmetric types (fundamental-
fundamental and twisted-twisted ones) are more common. Thus, the twisted-twisted (1D) and
vortical-vortical (2D) pairs are found to be more robust than their asymmetric counterparts.

The solutions that we have found to be stable often correspond to narrow envelopes, consistent
with results known form previous works. In particular, this finding is in agreement with the
modulational-instability analysis for plane waves in related coupled NLS and complex Ginzburg-
Landau systems in both continuum and discrete settings [93, 69, 94, 95, 96, 97], including two
and three spatial dimensions [92, 80]. Indeed, perturbations with small wavenumbers often lead
to modulational instability of plane waves [98, 99], which frequently results in the creation of
highly localized structures, including solitons and other localized states [68]. Furthermore, the
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direct modulational-instability analysis, applied to solitons in other related lattice systems, likewise
suggests that modes with narrow envelopes tend to be stable [92], while wider ones fail to persist
in the course of time evolution.

The 1D and 2D solutions that we have obtained here are novel in the context of unstaggered-
staggered lattices, and they may help to motivate future theoretical and experimental work in
BEC and optics. Regarding theoretical extensions, there are a number of ways these results may
be extended. We remark that intersite-centered 2D solitons and vortices may be considered too,
although they are expected to be much less stable [1]. The ansatz for intersite-centered modes
can be obtained from Eqs. (31) and (34)-(36) by replacing {m,n} → {m− 1/2, n− 1/2}. It may
also be interesting to consider solutions on periodic domains, such as a ring or torus. Work in this
direction was reported in Refs. [100, 101, 102, 103]. As the soliton tails decay fairly rapidly, there
may be little difference in the form of the solutions if the ring or torus is large enough, while, as they
are made smaller, one may expect curvature effects to come into play. Finally, a more systematic
treatment of some unsteady structures found here, such as breathers and the dynamics leading to
“amplitude death”, may be explored in more depth.
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[14] M. A. Porter, R. Carretero-González, P. Kevrekidis, B. A. Malomed, Nonlinear lattice dynam-
ics of bose–einstein condensates, Chaos: An Interdisciplinary Journal of Nonlinear Science
15 (1) (2005) 015115.

[15] V. Brazhnyi, V. Konotop, Theory of nonlinear matter waves in optical lattices, Modern
Physics Letters B 18 (2004) 627–651.

[16] O. Morsch, M. Obethaler, Dynamics of Bose-Einstein condensates in optical lattices, Vol. 78,
APS, 2006.

[17] D. E. Pelinovsky, Localization in periodic potentials: from Schrödinger operators to the
Gross–Pitaevskii equation, Vol. 390, Cambridge University Press, 2011.

[18] L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Vol. 164, Oxford
University Press, 2016.

[19] M. Zaccanti, C. DErrico, F. Ferlaino, G. Roati, M. Inguscio, G. Modugno, Control of the
interaction in a fermi-bose mixture, Physical Review A 74 (4) (2006) 041605.

[20] S. Papp, J. Pino, C. Wieman, Tunable miscibility in a dual-species bose-einstein condensate,
Physical review letters 101 (4) (2008) 040402.

[21] S. E. Pollack, D. Dries, M. Junker, Y. Chen, T. Corcovilos, R. Hulet, Extreme tunability of
interactions in a li 7 bose-einstein condensate, Physical Review Letters 102 (9) (2009) 090402.

[22] P. Zhang, P. Naidon, M. Ueda, Independent control of scattering lengths in multicomponent
quantum gases, Physical Review letters 103 (13) (2009) 133202.

[23] B. A. Malomed, D. Kaup, R. A. Van Gorder, Unstaggered-staggered solitons in two-
component discrete nonlinear schrödinger lattices, Physical Review E 85 (2) (2012) 026604.

[24] Y. S. Kivshar, M. I. Molina, Nonlinear surface modes and tamm states in periodic photonic
structures, Wave motion 45 (1-2) (2007) 59–67.

[25] D. Mihalache, D. Mazilu, F. Lederer, Y. S. Kivshar, Interface discrete light bullets in waveg-
uide arrays, Optics letters 32 (15) (2007) 2091–2093.

[26] S. K. Adhikari, B. A. Malomed, Two-component gap solitons with linear interconversion,
Physical Review A 79 (1) (2009) 015602.

20



[27] S. Darmanyan, A. Kobyakov, F. Lederer, Stability of strongly localized excitations in discrete
media with cubic nonlinearity, Journal of Experimental and Theoretical Physics 86 (4) (1998)
682–686.

[28] F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, Y. Silberberg,
Discrete solitons in optics, Physics Reports 463 (1-3) (2008) 1–126.

[29] J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of
two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature
422 (6928) (2003) 147.

[30] J. W. Fleischer, G. Bartal, O. Cohen, O. Manela, M. Segev, J. Hudock, D. N. Christodoulides,
Observation of vortex-ring discrete solitons in 2d photonic lattices, Physical review letters
92 (12) (2004) 123904.

[31] B. Malomed, P. Kevrekidis, Discrete vortex solitons, Physical Review E 64 (2) (2001) 026601.

[32] J. Yang, Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical
lattice, Optics letters 28 (21) (2003) 2094–2096.

[33] Z. H. Musslimani, J. Yang, Self-trapping of light in a two-dimensional photonic lattice, JOSA
B 21 (5) (2004) 973–981.
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