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Abstract

A time-fractional Allen-Cahn equation with volume constraint is first proposed by intro-
ducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy
stable schemes are developed for the proposed model by combining invariant energy quadra-
tization and scalar auxiliary variable approaches with the recent L1+ formula. The new
developed methods are proved to be volume-preserving and unconditionally energy stable on
arbitrary nonuniform time meshes. The accelerated algorithm and adaptive time strategy are
employed in numerical implement. Numerical results show that the proposed algorithms are
computationally efficient in multi-scale simulations, and appropriate for accurately resolving
the intrinsically initial singularity of solution and for efficiently capturing the fast dynamics
away initial time.
Keywords: Time-fractional Allen-Cahn equation with volume constraint; invariant energy
quadratization; scalar auxiliary variable; L1+ formula; unconditional energy stable
AMS subject classiffications. 35Q99, 65M06, 65M12, 74A50

1 Introduction

The gradient flow models are frequently used to describe relaxation dynamics that obey the
second law of thermodynamics, ranging from materials science, fluid dynamics and engineering
[1–3]. One of well-known models is the Allen-Cahn equation, which was originally introduced
to model the anti-phase domain coarsening in a binary alloy [1]. Also, in the past decades, the
Allen-Cahn equation and its various variants have been applied for a wide range of phenomena
due to its advantages for microstructure numerical simulations, for instance, grain growth [4]
and crystal growth [5]. However, considering the phase variable represents the volume fraction
of material component, the classical Allen-Cahn equation does not conserve the initial volume.
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To fix this drawback, the first work was given by Rubinstein and Sternaberg, who added a
time-dependent Lagrange multiplier to the original equation arising from an enforcement of
conservation of volume [6]. Brassel and Bretin introduced another remedy to preserve the total
volume-conservative property, i.e., they imposed local and nonlocal effects on the primitive model
[7]. Recently, the time, space and time-space fractional Allen-Cahn equations were suggested
to accurately describe anomalous diffusion problems [8–10]. However, they don’t preserve the
volume conservation. In this paper, we are going to develop a new time-fractional Allen-Cahn
equation by enforcing a nonlocal Lagrange multiplier to cancel out the variation of volume, while
without influencing the primitive energy dissipative property.

An alternative model for the gradient flow system is the Cahn-Hilliard equation, which
naturally possesses the volume-preserving property [2]. The Allen-Cahn model with a volume
constraint has been studied and compared with the Cahn-Hilliard model in [6]. The authors
suggested that the Allen-Cahn model with a volume constraint is more appropriate for simulating
the interfacial dynamics of immiscible multi-component material systems. And the order of
Allen-Cahn equation is substantially lower than that of the Cahn-Hilliard equation, which implies
that it may be relatively easier to simulate numerically. Some interesting insight may be offered
by carrying out comparison investigations of volume conservative phased field models [11,12].

There have been a great amount of works to develop energy stable schemes for the gradient
flow model. The early well-known numerical approaches include the convex-splitting technique
and the stabilizing method. Readers are referred to [13,14] for more details. Recently, Yang et al.
proposed a new numerical idea of recasting the free energy into a quadratic functional to design
linear, second-order, unconditionally energy stable schemes, which called the invariant energy
quadratization (IEQ) method [15]. Subsequently, Shen et al. developed the scalar auxiliary
variable (SAV) approach, which was shown to be more effective than the IEQ approach [16]. In
fact, the common goal of IEQ and SAV strategies is to first transform the original PDE system
into a new equivalent system with a quadratic energy functional and the corresponding modified
energy dissipation law. Specifically, applying the energy stable algorithms derived by the two
energy quadratization strategies, the volume-preserving Allen-Cahn model was compared with
the classical Allen-Cahn model as well as the Cahn-Hilliard model [17]. For more discussions
and the applications of IEQ and SAV strategies, we refer to [15–18] and the references therein.

Along the numerical front with respect to the fractional phase field models, there are a lot
of works devoted to the investigation on the solutions of the nonlocal models. Precisely, Hou et
al. [8] showed that the space-fractional Allen-Cahn equation could be viewed a L2 gradient flow
for the fractional analogue version of Ginzburg-Landau free energy function. Meanwhile, the
authors proved that the proposed numerical scheme preserves the energy decay property and the
maximum principle in the discrete level. Li et al. [9] investigated a space-time fractional Allen-
Cahn phase field model that describes the transport of the fluid mixture of two immiscible fluid
phases. They concluded that the alternative model could provide more accurate description
of anomalous diffusion processes and sharper interfaces than the classical model. The first
theoretical contribution regarding the energy dissipation property of the time-fractional phase
models was done by Tang et al. [19]. They proved that the time-fractional phase field models
indeed admit an energy dissipation law of an integral type. In addition, they applied the uniform
L1 formula to construct a class of finite difference schemes, which can preserve the theoretical
energy dissipation property. Very recently, Du et al. [20] studied the time-fractional Allen-Cahn
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equation, where the well-posedness, solution regularity, and maximum principle were proved
rigorously. In addition, several unconditionally solvable and stable time-stepping schemes were
developed. Also, the related convergence of those numerical approaches were established without
any extra regularity assumption on the exact solution. Zhao et al. [10, 21] studied a series of
the time-fractional phase field models numerically, including the time-fractional Cahn-Hilliard
equation with different types of variable mobilities and time-fractional molecular beam epitaxy
model. The considerable numerical evidences indicate that the effective free energy or roughness
of the time-fractional phase field models during coarsening obeys a similar power scaling law as
the integer ones, where the power is linearly proportional to the fractional index α. In other
words, the main difference between the time-fractional phase field models and integer ones lies
in the time-scales of coarsening.

In this paper, we first apply the IEQ/SAV approaches to reformulate the time-fractional
phase field models into an equivalent system. Then the nonuniform L1+ formula proposed
in [22] is applied for the equivalent time-fractional model to develop linear, second-order en-
ergy stable numerical schemes, which are proved to preserve the volume conservation law and
unconditionally energy stability on arbitrary nonuniform time meshes. Since the solution lacks
the smoothness near the initial time although it would be smooth away from t = 0 [23, 24],
the predicted second-order time accuracy of L1+ formula is always restrictive. Actually, in any
numerical methods for solving time-fractional diffusion equations, a basic consideration is the
initial singularity of solution, see the recent works [25–27]. Based upon the realistic assumptions
on the exact solution, we utilize the L1+ formula on nonuniform time steps to compensate the
intrinsically weak singularity of time-fractional models near initial time. We will show that
the graded mesh can recover the optimal time accuracy when the solution is non-smooth near
t = 0 numerically. In addition, in order to overcome the global dependence of historical solu-
tions of time-fractional Caputo derivative, a fast variant of L1+ formula is used to significantly
reduce the computational complexity and the storage requirements. Since the evolution of time-
fractional phase field models involves multiple time scales, adaptive time step strategy based on
the evolution of total energy are reported to efficiently resolve widely varying time scales.

The outline of the article is arranged as follows. The time-fractional Allen-Cahn equation
and its volume-conserving version as well as the time-fractional Cahn-Hilliard model are reported
in Section 2. We then present the corresponding energy stable numerical schemes in Section
3. In Section 4, several numerical examples are performed to confirm the theoretical findings,
covering the volume conservation and energy dissipation properties, and provide new insights
on the volume-conservative time-fractional Allen-Cahn equation compared with the non-volume-
preserving one and Cahn-Hilliard equation.

2 Time-fractional phase field models

Introduce a phase variable φ, for the effective free energy of the phase model E[φ],

E[φ] =

∫
Ω

(
ε2

2
|∇φ|2 + F (φ)

)
dx, F (φ) =

1

4
(1− φ2)2, (2.1)
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in which ε is a parameter describing the width of the interface, the time-fractional Allen-Cahn
equation then reads

∂αt φ = −λδE
δφ
, (2.2)

where positive constant λ is the mobility parameter, δE
δφ is the functional derivative of E with

respect to phase variable φ. Here, the notation ∂αt := C
0D

α
t in (2.2) denotes the Caputo’s

fractional derivative of order α with respect to t, i.e.,

(∂αt v)(t) := (I1−α
t v′)(t) =

∫ t

0
ω1−α(t− s)v′(s) ds, 0 < α < 1, (2.3)

involving the fractional Riemann-Liouville integral Iβt of order β > 0, that is,

(Iβt v)(t) :=

∫ t

0
ωβ(t− s)v(s) ds, where ωβ(t) := tβ−1/Γ(β). (2.4)

It is remarkable that, in comparison with the energy dissipation law of the local Allen-Cahn
model, Tang et al. [19] proved that the energy stable property of the nonlocal one is given by,

E [φ(T )]− E [φ(0)] = − 1

λ

∫
Ω
I1
t (∂tφ I1−α

t ∂tφ)(T ) dx 6 0. (2.5)

The non-positive of the right part of above relation is determined by [19, Lemma 2.1].
Evidently, acting the Riemann-Liouville fractional derivative RL

0 D1−α
t on both sides of equa-

tion (2.2), and using the identity RL
0 D1−α

t
C
0D

α
t v(s) = v′(s), one has the following relation

d

dt

∫
Ω
φ dx = −λRL0 D1−α

t

∫
Ω

δE

δφ
dx 6= 0, (2.6)

which means the time-fractional Allen-Cahn equation does not preserve the initial volume that
is consistent with the integer order one. In order to impose the conservation of volume∫

Ω
φ(x, t) dx =

∫
Ω
φ(x, 0) dx, (2.7)

and without influencing the original energy stable property (2.5), inspired by the volume con-
servation integer order Allen-Cahn equation performed in [6], the equation (2.2) is modified by
adding a nonlocal time-dependent Lagrange multiplier η(t) as follows

∂αt φ = −λ
(
δE

δφ
− η(t)

)
, (2.8)

where the expression of the new term is given by η(t) = 1
|Ω|
∫

Ω
δE
δφ dx for the necessary condition

to guarantee the invariant volume, i.e.,

d

dt

∫
Ω
φ dx = −λRL0 D1−α

t

∫
Ω

(
δE

δφ
− η(t)

)
dx = 0. (2.9)
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As well-known, based upon the free energy E[φ], another model that maintains the initial
volume is the time-fractional Cahn-Hilliard equation [19],

∂αt φ = λ∆
δE

δφ
. (2.10)

After a small calculation analogous to the derivation of (2.6), we see that

d

dt

∫
Ω
φ dx = λRL0 D1−α

t

∫
Ω

∆
δE

δφ
dx = 0, (2.11)

where the periodic boundary condition is chosen to ensure that the boundary integrals vanish.
Meanwhile, the model (2.10) preserves the energy stable property,

E [φ(T )]− E [φ(0)] = − 1

λ

∫
Ω
I1
t (∇ψ I1−α

t ∇ψ)(T ) dx 6 0, (2.12)

in which ψ = −∆−1∂tφ is the solution of the equation −∆ψ = ∂tφ with periodic boundary
condition, see [19, Lemma 2.3] for more details.

To our knowledge, for the above time-fractional phase field models, there are limited results
in the literature on numerical approaches preserving the discrete volume conservation as well as
energy dissipation law, especially on nonuniform time grids. Therefore the first objective of this
paper is to build nonuniform time-stepping methods for the continuous systems to inherit the
corresponding invariant or dissipative properties enjoyed by the original systems.

We consider the nonuniform time levels 0 = t0 < t1 < · · · < tk−1 < tk < · · · < tN = T
with the time-step sizes τk := tk − tk−1 for 1 6 k 6 N and the maximum time-step size
τ := max16k6N τk. Also, let the local time-step ratio ρk := τk/τk+1 and the maximum step

ratio ρ := maxk≥1 ρk. Given a grid function {vk}, put Oτvk := vk − vk−1, ∂τv
k− 1

2 := Oτvk/τk
and vk−

1
2 := (vk + vk−1)/2 for k ≥ 1. Always, let (Π1,kv)(t) denote the linear interpolant of a

function v(t) at two nodes tk−1 and tk, and define a piecewise linear approximation

Π1v := Π1,kv so that (Π1v)′(t) = ∂τv
k− 1

2 for tk−1 < t 6 tk and k ≥ 1. (2.13)

To reveal the initial singularity of solution of the time-fractional phase filed models, we apply
the L1+ formula that we see shortly to the time-fractional problem (2.8), and more details can
be found in subsection 3.1 and Example 4.2. The drawings in Figure 1 depict the discrete time
derivative ∂τφ

k− 1
2 near t = 0 on the graded mesh tk = (k/N)γ when fractional order α = 0.7.

The numerical results suggest that

log |φt(x, t)| ≈ (α− 1) log(t) + C(x) as t→ 0,

and tell us that the solution is weakly singularity like φt = O(tα−1) near initial time, which
could be alleviated by using the graded mesh. Hence, the second objective of present work is to
resolve the essentially weak singularity in the time-fractional phase field by refining time mesh.
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Figure 1: The log-log plot of the difference quotient ∂τφ
k− 1

2 versus time for problem (2.8) with
fractional order α = 0.7 and γ = 1, 3 (from left to right), respectively.

3 Energy stable numerical approaches

To achieve the above assertions, our starting point is to apply the L1+ formula to approximate
the Caputo derivative, which naturally possesses the energy dissipation property on nonuniform
time levels when it is applied to the time-fractional phased filed models.

3.1 The L1+ formula of Caputo derivative

The L1+ formula for the Caputo derivative (2.3) is defined at time t = tn− 1
2

as follows

(∂ατ v)n−
1
2 :=

1

τn

∫ tn

tn−1

∫ t

0
ω1−α(t− s)(Π1v)′(s) ds dt =

n∑
k=1

a
(n)
n−kOτv

k for n ≥ 1, (3.1)

in which the discrete convolution kernels a
(n)
n−k are given by

a
(n)
n−k :=

1

τnτk

∫ tn

tn−1

∫ min{t,tk}

tk−1

ω1−α(t− s) dsdt for 1 6 k 6 n. (3.2)

Following the discussions given in [22, Lemma 3.1], we have the following remarkable property.
It says that the L1+ formula is positive semi-definite on arbitrary nonuniform meshes.

Lemma 3.1 The discrete convolution kernels a
(n)
n−k in (3.2) are positive and positive semi-

definite. For any real sequence {wk}nk=1 with n entries, it holds that

n∑
k=1

wk

k∑
j=1

a
(k)
k−jwj ≥ 0 for n ≥ 1.

The definition (3.2) of discrete kernels a
(n)
j and the integral mean-value theorem yield the

following result.
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Lemma 3.2 The positive discrete kernels a
(n)
n−k in (3.2) fulfill

a
(n)
0 =

1

Γ(3− α)ταn
, a

(n)
1 > a

(n)
2 > · · · > a

(n)
n−1 > 0 for n ≥ 2.

Simple manipulations of the first two discrete kernels reveal that

a
(n)
0 − a(n)

1 =
1

Γ(3− α)ταn ρn−1

(
1 + ρn−1 + ρ2−α

n−1 − (1 + ρn−1)2−α).
It is easily seen that a

(n)
0 < a

(n)
1 as α → 0 and a

(n)
0 > a

(n)
1 as α → 1, that is, the value of

a
(n)
0 − a(n)

1 may change the sign when the fractional order α varies over (0, 1).
It is to mention that, the nonuniform L1+ formula is quite different from some nonuniform

formulas approximating the Caputo time derivative, including the L1 formula [25, 26], L1-2σ
(Alikhanov) formula [27,28], and Caputo’s BDF2-type formula [29]. We compare them in Table

1, in which the discrete kernels are referred to the sequence
{
A

(n)
n−k
}

in the form
∑n

k=1A
(n)
n−kOτv

n

or
∑n

k=1A
(n)
k Oτvn−k. As seen, the L1+ formula has some advantages: it is second-order accuracy,

the convergence order is independent of the fractional order α, and is positive semi-definite in the
sense of Lemma 3.1. Actually, these properties make it useful in designing linear, second-order
energy stable schemes to the time-fractional phase filed models introduced in Section 2.

Table 1: Numerical Caputo derivatives on nonuniform meshes.

Numerical Formula L1 [25,26] Alikhanov [27,28] CBDF2 [29] L1+ [22]

Formal accuracy 2− α 3− α 3− α 2

Positive kernels Yes Yes A
(n)
1 � 0 Yes

Monotonous kernels Yes Yes A
(n)
1 � A

(n)
2 A

(n)
0 � A

(n)
1

Positive semi-definite Unknown Unknown Unknown Yes

3.2 Numerical approach using IEQ

For the volume-conserving time-fractional Allen-Cahn model (2.8), we introduce an auxiliary
function u(φ) in term of original variable φ given by

u(φ) = φ2 − 1− β, (3.3)

where the artificial parameter β is utilized to regularize the numerical approaches. As a conse-
quence, the free energy of the original problem is transformed into a quadratic form

E [φ, u] =

∫
Ω

(
ε2

2
|∇φ|2 +

β

2
|φ|2 +

1

4
u2

)
dx−

(β
2

+
β2

4

)
|Ω| . (3.4)

Correspondingly, the problem (2.8) could be reformulated to the following equivalent form

∂αt φ = −λ
(
−ε2∆φ+ βφ+ uφ− η

)
, (3.5)
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η =
1

|Ω|

∫
Ω

(
−ε2∆φ+ βφ+ uφ

)
dx, (3.6)

∂tu = 2φ∂tφ. (3.7)

The new system is subjected to the initial conditions

φ (x, 0) = φ0 (x) and u (0) = u (φ0 (x)) , (3.8)

and the same boundary conditions of the primitive model. Define the usual L2 inner product
(f, g) =

∫
Ω fg dx for all f, g ∈ L2(Ω). We see clearly that the equivalent system preserves the

volume-preserving property (2.7) by making the L2 inner product of (3.5) with a constant and
finding that (∂αt φ, 1) = 0. Also, taking the inner product of (3.5) and (3.7) with ∂tφ and u
respectively, summing up the resulting equalities, and integrating the time t from t = 0 to T ,
we obtain the energy decay law

E [φ(T ), u(T )]− E [φ(0), u(0)] = − 1

λ

∫
Ω
I1
t

(
∂tφ I1−α

t ∂tφ
)
(T ) dx 6 0, (3.9)

where we use the fact (η, ∂tφ) = 0 due to the condition (2.9).
By virtue of the equivalent PDE system (3.5)-(3.7), we construct new numerical schemes

that concern only with the time discretization, while the spatial approximations can be diverse,
examples as finite difference, finite element or spectral methods. Integrating the equations
(3.5)-(3.7) from t = tn−1 to tn, respectively, results in the following equations

1

τn

∫ tn

tn−1

∂αt φ dt = − λ

τn

∫ tn

tn−1

(
−ε2∆φ+ βφ+ uφ− η

)
dt, (3.10)

1

τn

∫ tn

tn−1

η dt =
1

|Ω| τn

∫ tn

tn−1

∫
Ω

(
−ε2∆φ+ βφ+ uφ

)
dx dt, (3.11)

1

τn

∫ tn

tn−1

∂tudt =
2

τn

∫ tn

tn−1

φ∂tφ dt. (3.12)

By means of the L1+ formula (3.1), the trapezoidal formula, we have the following Crank-
Nicolson IEQ (CN-IEQ) time-stepping scheme

(∂ατ φ)n−
1
2 = −λ

(
−ε2∆φn−

1
2 + βφn−

1
2 + un−

1
2 φ̂n−

1
2 − ηn−

1
2

)
, (3.13)

ηn−
1
2 =

1

|Ω|

∫
Ω

(
−ε2∆φn−

1
2 + βφn−

1
2 + un−

1
2 φ̂n−

1
2

)
dx, (3.14)

∂τu
n− 1

2 = 2φ̂n−
1
2∂τφ

n− 1
2 , (3.15)

where φ̂n−
1
2 := φn−1 + Oτφn−1/(2ρn−1) is the local extrapolation.

Theorem 3.1 The CN-IEQ scheme (3.13)-(3.15) conserves the volume,∫
Ω
φn dx =

∫
Ω
φn−1 dx, for 1 6 n 6 N. (3.16)
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Proof We prove the discrete volume-conserving by induction. It is easy to check that the
volume conservation holds when n = 1. In what follows, we assume that the relation (3.16) is
valid for the numerical scheme (3.13)-(3.15) with no more than (N − 1) indices, where N ≥ 2.
It is sufficient to verify the desired assertion still holds for n = N . Actually, we have(

a
(n)
0 Oτφ

n, 1
)

=
(

(∂ατ φ)n−
1
2 , 1

)
= −λ

(
−ε2∆φn−

1
2 + βφn−

1
2 + un−

1
2 φ̂n−

1
2 − ηn−

1
2 , 1
)

= 0, (3.17)

where the induction assumption (φn, 1) =
(
φn−1, 1

)
, 1 6 n 6 N − 1 has been used in the

derivation of the above identity. We then have
(
φN , 1

)
=
(
φN−1, 1

)
that shows the desired

result still holds for n = N . Consequently, the relationship (3.16) is valid by the induction.
Note that, the remarkable property of L1+ formula in Lemma 3.1 implies that the above

CN-IEQ scheme (3.13)-(3.15) is naturally suitable for a general class of nonuniform time meshes.
Precisely, the following result shows that it is unconditionally energy stable.

Theorem 3.2 The CN-IEQ scheme (3.13)-(3.15) preserves the energy dissipation law,

E [φn, un]− E
[
φ0, u0

]
6 0, for 1 6 n 6 N, (3.18)

such that it is unconditionally stable, where discrete energy is given by

E [φn, un] =

∫
Ω

(
ε2

2
|∇φn|2 +

β

2
|φn|2 +

1

4
(un)2

)
dx−

(β
2

+
β2

4

)
|Ω| .

Proof Taking the inner product of (3.13) and (3.15) with Oτφn and 2τnu
n− 1

2 , respectively,
and adding the resulting two equalities, we have the following equation

− 1

λ

(
(∂ατ φ)n−

1
2 ,Oτφ

n
)

=
(
−ε2∆φn−

1
2 + βφn−

1
2 ,Oτφ

n
)

+
1

4

(
(un)2 −

(
un−1

)2
, 1
)
, (3.19)

in which the volume conservation (3.16) has been used to show the fact (ηn−
1
2 ,Oτφn) = 0. As

a result, we get the following identity

E
[
φk, uk

]
− E

[
φk−1, uk−1

]
= − 1

λ

(
(∂ατ φ)k−

1
2 ,Oτφ

k
)

for 1 6 k 6 n. (3.20)

By summing the superscript k from 1 to n, we obtain the following inequality

E
[
φn, un

]
− E

[
φ0, u0

]
= − 1

λ

∫
Ω

n∑
k=1

Oτφ
k

k∑
j=1

a
(k)
k−jOτφ

k dx 6 0 for 1 6 n 6 N.

where Lemma 3.1 has been used in the last inequality. It completes the proof.
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3.3 Numerical approach using SAV

For the time-fractional Allen-Cahn model with volume constraint (2.8), we here introduce a
scalar auxiliary function v(t) in term of original variable φ as follows

v(t) =

√∫
Ω

1

4

(
φ2 − 1− β

)2
dx + C0, (3.21)

where the positive constant C0 is chosen to ensure the radicand positive and β is the regularized
parameter. Therefore, the free energy of the primitive problem could be rewritten into

E [φ, v] =

∫
Ω

(
ε2

2
|∇φ|2 +

β

2
|φ|2

)
dx + v2 − C0 −

(β
2

+
β2

4

)
|Ω| . (3.22)

We then could reformulate the problem (2.8) as an equivalent form

∂αt φ = −λ
(
−ε2∆φ+ βφ+ V (φ)v − η

)
, (3.23)

η =
1

|Ω|

∫
Ω

(
−ε2∆φ+ βφ+ V (φ)v

)
dx, (3.24)

vt =
1

2

∫
Ω
V (φ)∂tφ dx, (3.25)

in which the expression of the notation V (φ) is given by

V (φ) =
(φ2 − 1− β)φ√∫

Ω
1
4

(
φ2 − 1− β

)2
dx + C0

, (3.26)

with the following initial conditions

φ (x, 0) = φ0 (x) and v(0) = v (φ0 (x)) . (3.27)

It is easy to check that the new system admits the volume-conserving property (2.7) and the
following energy dissipation law

E [φ(T ), v(T )]− E [φ(0), v(0)] = − 1

λ

∫
Ω
I1
t (∂tφ I1−α

t ∂tφ)(T ) dx 6 0. (3.28)

As done in the above subsection, for the equivalent system (3.23)-(3.25), we have the following
Crank-Nicolson SAV (CN-SAV) scheme

(∂ατ φ)n−
1
2 = −λ

(
−ε2∆φn−

1
2 + βφn−

1
2 + V (φ̂n−

1
2 )vn−

1
2 − ηn−

1
2

)
, (3.29)

ηn−
1
2 =

1

|Ω|

∫
Ω

(
−ε2∆φn−

1
2 + βφn−

1
2 + V (φ̂n−

1
2 )vn−

1
2

)
dx, (3.30)

∂τv
n− 1

2 =
1

2

∫
Ω
V (φ̂n−

1
2 )∂τφ

n− 1
2 dx, (3.31)

Also, we have the following theorems on the volume conservation and energy dissipation by
following the proofs of Theorems 3.1 and 3.2, respectively.
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Theorem 3.3 The CN-SAV scheme (3.29)-(3.31) inherits the volume conservation,∫
Ω
φn dx =

∫
Ω
φn−1 dx, for 1 6 n 6 N. (3.32)

Theorem 3.4 The CN-IEQ scheme (3.29)-(3.31) preserves the energy dissipation law,

E [φn, vn]− E
[
φ0, v0

]
6 0, for 1 6 n 6 N, (3.33)

such that it is unconditionally stable, in which

E [φn, vn] =

∫
Ω

(
ε2

2
|∇φn|2 +

β

2
|φn|2

)
dx + (vn)2 − C0 −

(β
2

+
β2

4

)
|Ω| .

3.4 Numerical approaches for the time-fractional Cahn-Hilliard model

In order to make a comparison study between the two volume-preserving models (2.8) and (2.10),
we include the CN-IEQ scheme for time-fractional Cahn-Hilliard equation (2.10)

(∂ατ φ)n−
1
2 = λ∆

(
− ε2∆φn−

1
2 + βφn−

1
2 + qn−

1
2 φ̂n−

1
2
)
,

∂τq
n− 1

2 = 2φ̂n−
1
2∂τφ

n− 1
2 ,

in which q(φ) = φ2 − 1− β, and the following CN-SAV scheme

(∂ατ φ)n−
1
2 = λ∆

(
− ε2∆φn−

1
2 + βφn−

1
2 +R(φ̂n−

1
2 )rn−

1
2
)
,

∂τr
n− 1

2 =
1

2

∫
Ω
R(φ̂n−

1
2 )∂τφ

n− 1
2 dx,

where

r(t) =

√∫
Ω

1

4
(φ2 − 1− β)2 + C0, R (φ) =

(
φ2 − 1− β

)
φ√∫

Ω
1
4 (φ2 − 1− β)2 dx + C0

.

It is not difficult to show that the two computationally efficient approaches both are volume-
conserving and unconditionally energy stable by following the proofs of Theorems 3.1 or 3.2,
but we here omit the details for brevity.

4 Adaptive time-stepping and examples

The CN-IEQ scheme (3.13)-(3.15) and CN-SAV scheme (3.29)-(3.31) are run for the conservative
time-fractional Allen-Cahn model (2.8) in this section. Always, we adopt the fast algorithm to
speed up the evaluation of the L1+ formula by setting an absolute tolerance error ε = 10−12 for
the underlaying SOE approximation, see [22]. The spatial domain Ω is divided uniformly using
an equispaced mesh in each direction and the Fourier pseudo-spectral method is employed.

Also, to compensate the lack of smoothness of the solution, the time interval [0, T ] is always
divided into two parts [0, T0] and [T0, T ] with total N subintervals. Take the graded parameter
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γ ≥ 1 and apply the graded mesh tk = T0(k/N0)γ in [0, T0] to resolve the initial singularity.
Some different time-stepping approaches are examined in the remainder interval [T0, T ]. In the
following context, the Graded Step strategy uses the graded mesh in the starting cell [0, T0] with
the uniform mesh in the remainder interval (T0, T ]; while the Adaptive Step strategy employs
the graded mesh in [0, T0] and use certain adaptive time-stepping approach described below in
the remainder interval (T0, T ].

4.1 Adaptive time-stepping strategy

To resolve the time evolutions accurately, small time steps are always necessary to capture the
fast dynamics; but the computations would become quite costly for the coarsening process, see
the initial random perturbation problems in Example 4.3. Fortunately, the proposed numerical
schemes are proven in Section 3 to be unconditionally energy stable and allow large time steps to
reduce the computation cost for the coarsening process. Thus some adaptive time-stepping strat-
egy is useful to resolve the widely varying time scales and significantly reduce the computational
cost. In current computations, we adjust the size of time step using the formula [30],

τada = max

{
τmin,

τmax√
1 + κ |E′(t)|2

}
. (4.1)

Here the parameters τmax, τmin refer to the predetermined maximum and minimum time steps,
as well as κ is chosen by the user to adjust the level of adaptivity.

4.2 Accuracy verification

The numerical accuracy in time of our CN-IEQ and CN-SAV schemes is examined by taking
T0 = min{1/γ, T} and using the random mesh in the remainder time interval (T0, T ], that is,
τN0+k := (T − T0)εk/S1 for 1 6 k 6 N1 := N − N0, where S1 =

∑N1
k=1 εk and εk ∈ (0, 1) are

the random numbers. The maximum norm error e(N) := max16n6N ‖Un− un‖∞ is recorded in
each run and the experimental order of convergence is computed by

Order ≈ log (e(N)/e(2N))

log (τ(N)/τ(2N))

in which τ(N) denotes the maximum time-step size for total N subintervals.

Table 2: Numerical accuracy of CN-IEQ scheme (3.13)-(3.15) with α = 0.8, σ = 0.4

N τ
γ = 2

τ
γ = 5

τ
γ = 6

e(N) Order e(N) Order e(N) Order

10 1.72e-01 2.41e-02 − 2.69e-01 2.44e-02 − 2.69e-01 3.08e-02 −
20 1.00e-01 1.38e-02 1.02 1.24e-01 4.59e-03 2.17 1.31e-01 6.42e-03 2.18
40 5.39e-02 8.50e-03 0.79 1.07e-02 3.46e-05 2.00 6.75e-02 1.45e-03 2.24
80 3.07e-02 5.22e-03 0.87 3.49e-02 3.16e-04 1.90 3.33e-02 3.13e-04 2.18
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Table 3: Numerical accuracy of CN-SAV scheme (3.29)-(3.31) with α = 0.8, σ = 0.4

N τ
γ = 2

τ
γ = 5

τ
γ = 6

e(N) Order e(N) Order e(N) Order

10 1.86e-01 2.40e-02 − 3.23e-01 1.86e-02 − 2.88e-01 2.33e-02 −
20 1.02e-01 1.38e-02 0.92 1.34e-01 2.99e-03 2.08 1.27e-01 6.78e-03 1.51
40 5.31e-02 8.51e-03 0.74 6.95e-02 1.06e-03 1.57 6.08e-02 9.51e-04 2.66
80 2.76e-02 5.22e-03 0.75 3.83e-02 3.16e-04 2.03 3.36e-02 2.55e-04 2.21

Example 4.1 Consider the model ∂αt φ = − δE
δφ + η(t) + g(x, t) with ε2 = 0.5 for x ∈ (0, 2π)2

and 0 < t < 1 such that it has an exact solution φ = ω1+σ(t) sin(x) sin(y).

The spatial domain is discretized by using 128× 128 meshes. We chose the fractional order
α = 0.8, the regular parameter σ = 0.4 and the artificial parameters β = 1 and C0 = 1. Tables
2 and 3 list the numerical results of CN-IEQ and CN-SAV approaches with different graded
parameters γ. It is seen that the time accuracy is of order O(τγσ) when γ < 2/σ, and the
second-order accuracy is achieved when γ ≥ γopt = 2/σ. They suggest that the time accuracy
is about of O(τmin{γσ,2}) in time although no theoretical proof is available up to now.

4.3 Numerical comparisons
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Figure 2: Evolutions of energy (left) and time steps (right) of the conservative time-fractional
Allen-Cahn equation using different time strategies until final time T = 30.

Example 4.2 Consider three different phase field models, covering time-fractional Allen-Cahn,
the conservative version and time-fractional Cahn-Hilliard equations, with the coefficients λ = 1
and ε = 0.02. The CN-IEQ and CN-SAV methods with the parameters β = 4 and C0 = 1 are
applied to simulate the merging of four drops with an initial condition

φ0 (x) =− tanh
((

(x− 0.3)2 + y2 − 0.22
)
/ε
)

tanh
((

(x+ 0.3)2 + y2 − 0.22
)
/ε
)

× tanh
((
x2 + (y − 0.3)2 − 0.22

)
/ε
)

tanh
((
x2 + (y + 0.3)2 − 0.22

)
/ε
)
. (4.2)

The computational domain Ω = (−1, 1)2 is divided uniformly into 128 parts in each direction.
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Figure 3: Solution snapshots at t = 1, 30, 100, 200 (from left to right) for three fractional orders
α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.
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Figure 4: Evolutions of energy and volume curves (from left to right) for the conservative
time-fractional Allen-Cahn equation with fractional order α = 0.4, 0.7 and 0.9, respectively.

We examine different time-stepping approaches for simulating the model (2.8) until the final
time T = 30 with a fractional order α = 0.9. Always, put T0 = 0.01, N0 = 30 and γ = 3
in the starting cell [0, T0]. We consider the Grade Step approach using the uniform mesh with
N1 = 2970, and the Adaptive Step approach with parameters κ = 106, τmin = τN0 = 10−3 and
τmax = 10−1. From Figure 2, the discrete energy curves generated by using the adaptive time
steps practically coincide with those by Grade Step approach, for both the CN-IEQ and CN-
SAV methods. As expected, the Adaptive Step approach uses small time steps when the energy
dissipates fast, and generates large time steps otherwise. In the remainder interval (T0, T ], we
put 2970 points on the uniform mesh, while the total number of adaptive time steps are 667. So
the adaptive time-stepping strategy is computationally efficient.
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Figure 5: Solution snapshots of Allen-Cahn equation (2.2) at t = 1, 30, 100, 200 (from left to
right) for three fractional order α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.
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Figure 6: Evolutions of energy and volume curves (from left to right) for the time-fractional
Allen-Cahn equation (2.2) with fractional order α = 0.4, 0.7 and 0.9, respectively.

Now we simulate the merging of four drops by the CN-SAV approach with the adaptive time-
stepping strategy using the mesh parameters N0 = 30, T0 = 0.01, κ = 106, τmin = τN0 = 10−3

and τmax = 10−1. The solution snapshots are depicted in Figure 3 and the time evolution of the
discrete energy and volume are plotted in Figure 4, respectively. It is apparent that the initial
separated four bubbles gradually coalesce into a single big bubble and round up at the end of
simulation corresponding to the minimization of the interface area between two phases. The
coalescence speed of four bubbles are evidently affected by the fractional index α, that is, the
larger the fractional order α is, the faster the coalescence. Also, from Figure 4, we see that the
energy decreases in accord with the behavior of numerical solution, and the volume is conserved
just as predicted in Theorem 3.3. The solution of time-fractional Allen-Cahn equation (2.2)
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Figure 7: Solution snapshots of the Cahn-Hilliard equation (2.10) at t = 0.01, 30, 100, 200
(from left to right) for fractional order α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.
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Figure 8: Evolutions of energy and volume curves (from left to right) for time-fractional
Cahn-Hilliard equation (2.10) with fractional order α = 0.4, 0.7 and 0.9, respectively.

has a different behavior, see Figures 5-6, the bubble shrinks and finally disappears because the
equation (2.2) does not conserve the volume. It is seen that the volume-preserving time-fractional
Allen-Cahn equation (2.8) may be a better choice for accurately simulating the coalescence of
bubbles than the non-volume-preserving version.

We also use the CN-SAV approach with the Adaptive Step approach using T0 = 0.01, κ = 103

and τmin = τN0 to simulate the time-fractional Cahn-Hilliard equation (2.10). The numerical
results are given in Figures 7-8. For three different fractional order α = 0.4, 0.7, 0.9, we take
N0 = 300, 100, 30, γ = 5, 4, 3 and τmax = 10−2, 10−1, 10−1, respectively. Figure 7 shows that the
initial bubbles coalesce into one bubble quite rapidly and the steady state is reached immediately.
Furthermore, the energy falls off steeply and decays faster for smaller fractional orderα, see
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Figure 8, so that some extremely small time steps are required to capture this remarkable
behavior. Also, it is clear that the volume is conserved during the simulation. Simple comparison
from Figures 4 and 8 shows that the energy of time-fractional Cahn-Hilliard equation (2.10)
dissipates much faster than that of time-fractional Allen-Cahn equation (2.8) with the nonlocal
volume constraint. Correspondingly, the coalescence speed of initial bubbles of the former much
faster than that of the latter, see Figures 5 and 7.

4.4 Coarsening dynamics

Example 4.3 We investigate the coarsening dynamics of the conservative time-fractional phase
field models with the model parameters λ = 0.1 and ε = 0.05. If not explicitly specified, we use
128 × 128 equal distanced meshes in space to discretize the domain Ω = (0, 2π)2. Consider
a randomly initial condition by assigning a random number varying from −0.001 to 0.001 at
each grid points. Taking the simulating parameters β = 4 and C0 = 1, we always apply the
present CN-SAV methods with the Adaptive Step approach using the following mesh parameters
T0 = 0.01, N0 = 30, κ = 103, τmin = τN0 = 10−3 and τmax = 10−1.

Figure 9: Solution snapshots of coarsening dynamics of (2.10) at t = 1, 100, 300, 500 (from left
to right) with fractional orders α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.

The snapshots of the coarsening dynamics of time-fractional Cahn-Hilliard equation (2.10)
with a variety of fractional order α at different time slots are depicted in Figure 9. From the
first column of Figure 9, we find that the coarsening dynamics appear to be faster at the early
time for smaller fractional order α, while it would be much slower as the time escapes. In
other words, the time-fractional Cahn-Hilliard model with larger fractional order α has faster
evolution dynamics, which is in good agreement with what we have observed in Example 4.2.
In Figure 10, the energy dissipation law scaling β(α) is estimated by doing the least square fit
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Figure 10: Evolutions of energy, the least square fitted energy dissipation law scaling β(α) and
volume conservation (from left to right) of the time-fractional Cahn-Hilliard equation for three

fractional orders α = 0.4, 0.7 and 0.9, respectively.

via the formula log10(E(α, t)) = β0(α)− β(α) log10(t). It is observed that the energy dissipates

approximately as O(t
α
3 ), which is consistent with O(t

1
3 ) as α→ 1, as well-known. As expected,

the volume is also conserved during the coarsening process.

Figure 11: Solution snapshots of coarsening dynamics of the conservative time-fractional
Allen-Cahn equation at t = 1, 100, 300, 500 (from left to right) for three fractional orders

α = 0.4, 0.7 and 0.9 (from top to bottom), respectively.

The coarsening snapshots of time-fractional Allen-Cahn equation with volume constraint are
depicted in Figure 11. Compared with the numerical results in Figure 9, these phase diagrams
generated by the conservative time-fractional Allen-Cahn model have no obvious difference with
those produced by the time-fractional Cahn-Hilliard model. Also, from Figure 12, we see that
the new model (2.8) preserves the energy dissipation law and the volume well. In summary, the
coarsening process of the time-fractional Allen-Cahn (2.8) with volume constraint is slower than
that of the time-fractional Cahn-Hilliard model (2.10) because the energy dissipation rate of the
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Figure 12: Evolutions of energy and volume (from left to right) of the conservative
time-fractional Allen-Cahn equation for fractional orders α = 0.4, 0.7 and 0.9, respectively.

former is smaller; the mechanisms of coarsening dynamics of the two models are quite different
although both of them are volume-conserving.
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