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It was recently demonstrated that 2D Townes solitons (TSs) in two-component systems with cubic
self-focusing, which are normally made unstable by the critical collapse, can be stabilized by linear
spin-orbit coupling (SOC), in Bose-Einstein condensates and optics alike. We demonstrate that 1D
TSs, realized as optical spatial solitons in a planar dual-core waveguide with dominant quintic self-
focusing, may be stabilized by SOC-like terms emulated by obliquity of the coupling between cores
of the waveguide. Thus, SOC offers a universal mechanism for the stabilization of (quasi-) TSs. A
combination of systematic numerical considerations and analytical approximations identifies a vast
stability area for skew-symmetric solitons in the system’s main (semi-infinite) and annex (finite)
bandgaps. Tilted (“moving”) solitons are unstable, spontaneously evolving into robust breathers.
For broad solitons, diffraction, represented by second derivatives in the system, may be neglected,
leading to a simplified model with a finite bandgap. It is populated by skew-antisymmetric gap
solitons, which are nearly stable close to the gap’s bottom.

1. Introduction

A well-known problem in studies of solitons (self-trapped modes in nonlinear dispersive/diffractive media) is that, if
the focusing nonlinearity is too strong and/or underlying spatial dimension is too high, soliton solutions are destabilized
by the presence of the collapse, i.e., catastrophic self-compression of wave fields in the same media [1, 2]. If the
respective D-dimensional equation of the nonlinear-Schrödinger (NLS) type for complex field u contains a focusing
term ∼ |u|2σu with real σ > 0, the critical collapse (the onset of which requires a norm of the field exceeding a
certain threshold value) takes place at σD = 2, and the supercritical collapse (which is possible with an arbitrarily
small norm) occurs at σD > 2 [1, 2]. Thus, the critical nonlinearity strength corresponds to σ = 1 (cubic) and
σ = 2 (quintic) in the 2D and 1D geometries, respectively. A specific feature of the NLS equation with the critical
nonlinearity is the existence of a degenerate family of Townes solitons (TSs), first found as 2D numerical solutions
of the cubic NLS equation [3], and identified as a 1D analytical solution of the quintic equation [4, 5]. The families
are degenerate in the sense that all the TSs share a common value of the integral norm, due to the fact that the NLS
equation with the critical nonlinearity features a conformal invariance, allowing one to transform different TSs into
each other, keeping the norm unaltered. The TSs are unstable solutions, which separate decaying and collapsing ones
[1, 2]). In terms of the evolution of small perturbations, the TS instability is represented by zero eigenvalues, i.e., the
instability is subexponential (but, nevertheless, quite tangible) [2].

Because the cubic focusing is a ubiquitous nonlinearity in optics (the Kerr effect) [6], plasmas (the nonlinearity
of Langmuir waves [7]), atomic Bose-Einstein condensates, BECs (the cubic term in the Gross-Pitaevskii equation
induced by attractive inter-atomic collisions [8]), etc., and all these settings naturally occur in the 2D form, a challeng-
ing problem is to modify the respective models by including additional physically relevant terms which may stabilize
2D solitons. In the course of theoretical and experimental work, various solutions of this problem were elaborated,
as summarized in early reviews [9, 10] and updated ones [11–13]. In particular, these are higher-order defocusing
nonlinearities (usually represented by quintic terms), which compete with the cubic focusing in optical media [14–
16], and spatially-periodic potentials, induced by optical lattices in BEC or by photonic-crystal structures in optical
waveguides. The periodic potentials readily stabilize both fundamental and vorticity-carrying 2D solitons [17, 18].
More recently, it was predicted [19–22], and experimentally demonstrated in various forms [24–28], that self-trapped
3D and quasi-2D states in binary BEC with attraction between its two components can be created in the form of stable
“quantum droplets”. They are filled by a nearly incompressible superfluid, being stabilized against the collapse by
the effective quartic self-repulsion induced by the Lee-Huang-Yang (LHY) effect [23], i.e., a contribution of quantum
Bogoliubov modes excited around the mean-field states. It was predicted too that 3D and 2D “droplets” with embed-
ded vorticity may be stable as well [29, 30]. Furthermore, it was found theoretically and demonstrated experimentally
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that the LHY effect helps to stabilize localized multidimensional states in BEC with long-range interactions between
dipolar atoms [31–33, 33–35].

The current work on BEC has suggested another possibility to stabilize 2D and 3D solitons, namely, the use of
the (pseudo-) spin-orbit-coupling (SOC), which was implemented, as a linear effect, in binary condensates [36–38].
It was demonstrated that, if linear SOC terms, which mix two BEC components via the first spatial derivatives
(which represent the anomalous velocity in the condensate superfluid [39–41]), are added to the usual cubic intra-
and inter-component attraction, they lift the above-mentioned conformal invariance, and thus allow the coupled NLS
equations to create solitons with the norm falling below the fixed TS value. As a result, these solitons become stable
(immune to the onset of the critical collapse). In particular, they restore the system’s ground state, which is absent
when the dynamics is dominated by the critical collapse [42, 43]. Furthermore, 2D solitons can be stabilized by the
quasi-1D SOC, which is applied along a single direction in the 2D plane [44]. In the 3D setting, the supercritical
collapse cannot be suppressed by the SOC terms; nevertheless, they help to make metastable solitons, which stay
robust against small perturbations [45].

While the (pseudo-) SOC terms in BEC emulate genuine SOC, originally discovered in semiconductors, by mapping
the spinor wave functions of electrons, moving in the ionic lattice, into a two-component mean-field bosonic wave
function of the binary BEC, the latter setting may be, in turn, emulated by bimodal light propagation in optical
waveguides. In particular, the above-mentioned mechanism stabilizing 2D matter-wave solitons can be reproduced
for 2D spatiotemporal solitons in a dual-core planar waveguide (coupler) [46]. In the coupler model, two components
of the binary BEC are replaced by optical fields in parallel tunnel-coupled cores with intrinsic Kerr (focusing cubic)
nonlinearity in each core, while the SOC itself is emulated by temporal dispersion of the linear inter-core coupling.
As a result, a family of stable 2D solitons was constructed. A similar but different optical model was proposed in Ref.
[47], which was also based on the spatiotemporal propagation of light in a dual-core planar structure with the Kerr
nonlinearity, but the SOC terms were emulated by spatial (rather than temporal) corrections to the linear inter-core
coupling, produced by obliquity of the barrier separating the parallel cores.

The predicted stabilization of the two-component 2D solitons in the cubic self-focusing media by the optically
emulated linear SOC terms suggests to consider a possibility to stabilize, by means of optically emulated SOC, 1D
solitons of the quasi-TS type in a medium with quintic focusing, which, as mentioned above, is the critical nonlinearity
in 1D (similarly to the cubic focusing in 2D, it also gives rise to the critical collapse). The objective of the present work
is to introduce such a model (in the full form including paraxial diffraction, and its reduced diffractionless version),
construct solitons in it, and investigate their stability. It is relevant to mention that peculiarities of the collapse
of 1D solitons in the SOC model with quintic attraction were recently addressed in Ref. [41], but a possibility of
stabilization was not considered there.

The model is introduced below in Section 2. As the preliminary stage of the analysis, spontaneous symmetry
breaking (SSB) in the coupler with the quintic self-focusing in the absence of SOC is considered in Section 3. The
main part of the work is reported in Section 4, viz., systematic numerical results for families of skew-symmetric solitons
stabilized by the (pseudo-) SOC. Gap solitons in the reduced model, which neglects the second spatial derivatives,
are considered in Section 5. The paper is concluded by Section 6.

2. The model

We start by considering the propagation of optical waves in the planar dual-core guide described by coupled NLS
equations for wave amplitudes (envelope functions) u(z, x) and v(z, x) in the two cores. In the scaled form, the NLS
system is

iuz +
1

2
uxx + |u|4u+ Λv = 0, (1)

ivz +
1

2
vxx + |v|4v + Λu = 0, (2)

where z and x are the propagation distance and transverse coordinate, Λ is the constant of the inter-core tunnel
coupling, and it is assumed that the intrinsic self-focusing is represented by the quintic terms, which may be realized
in colloidal optical waveguides. As shown by direct experiments [15, 16], the dominance of the quintic nonlinearity can
be provided by selecting appropriate values of the size of metallic nanoparticles and their concentration in the colloid.
The analysis clearly demonstrates that the results will not be essentially affected by a residual cubic nonlinearity, if
any.

The remaining scaling invariance of Eqs. (1) and (2) makes it possible to fix Λ ≡ 1 (which implies that the
propagation distance is measured in units of the coupling length), as set below.

The emulation of SOC is provided by corrections to the linear coupling in Eqs. (1) and (2) which are induced, as
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in Ref. [47], by the skewness of the layer separating the guiding cores in the planar coupler:

iuz +
1

2
uxx + |u|4u+ v − δ · vx = 0, (3)

ivz +
1

2
vxx + |v|4v + u+ δ · ux = 0, (4)

where real δ > 0 represents a shear between the cores in the skewed coupler, see Fig. 1 in [47]. It can be defined in
terms of two components, u(x) and v(x), of the full modal eigenfunction of the dual-core waveguide: the respective
overlap integral,

∫
umodal(x)v∗modal(x−∆x)dx (with ∗ standing for the complex conjugate), attains a maximum when

the inter-core shift takes value ∆x = δ. In comparison with the basic SOC models, the first x-derivatives in Eqs. (3)
and (4) may be considered as emulating the anomalous velocity, while the second derivatives (the paraxial diffraction)
correspond to the normal velocity [39, 40].

In the framework of the present model, stationary states with real propagation constant k are looked for by
substituting

{u, v} = eikz {U(x; δ), V (x; δ)} (5)

in equations (3) and (4) for the wave amplitudes. The corresponding equations for real functions U(x; δ) and V (x; δ)
are

−kU +
1

2

d2U

dx2
+ U5 + V − δ · dV

dx
= 0, (6)

−kV +
1

2

d2V

dx2
+ V 5 + U + δ · dU

dx
= 0. (7)

It is relevant to identify the spectrum of the linearized version of the present system. Looking for solutions to the
linearization of Eqs. (6) and (7) in the form of plane waves,

{U, V } ∼ exp (iqx) (8)

with wavenumber q, one derives the following dispersion relation between k and q2:

k = −(1/2)q2 ±
√

1 + δ2q2. (9)

More convenient for the subsequent analysis is an inverted form of the relation:

q2 = 2
(
δ2 − k ±

√
δ4 − 2δ2k + 1

)
. (10)

The spectrum determined by Eqs. (9) and (10) includes gaps, i.e., intervals of propagation constant k in which the
plane waves do not exist, hence they may be populated by solitons, in the framework of the full nonlinear system. In
the case of δ2 > 1 (when the pseudo-SOC is strong enough), we identify the semi-infinite main gap as

k > kmax ≡
δ4 + 1

2δ2
. (11)

In this gap, expressions (10) are complex, hence the corresponding values of q are complex too, and solitons populating
the gap will have oscillatory tails (see Fig. 7 below). In the case of δ2 < 1, there is an additional finite annex gap,
adjacent to the main one,

1 < k <
δ4 + 1

2δ2
. (12)

In the annex gap, both branches of expression (10) are real negative ones, which makes the respective values of q
purely imaginary, hence the respective solitons should have tails monotonously decaying at |x| → ∞, see Fig. 8 below.
A given value of the propagation constant, k > 1, belongs to the annex gap (12) for values of the pseudo-SOC strength

δ2 < k −
√
k2 − 1. (13)

Generic examples of the dispersion curves with δ2 < 1 and δ2 > 1 are displayed in Fig. 1. In the latter case, the
largest value kmax of k, defined by Eq. (11), is attained at q = ±

√
δ2 − 1/δ2.
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(a) (b)

FIG. 1: The dispersion curves produced by Eq. (9) with δ = 0.8 (a) and δ = 1.6 (b).

In the absence of SOC, a coupled system with the opposite (defocusing) sign of the quintic nonlinearity, competing
with cubic focusing, was considered in work [48], which addressed phenomenology of spontaneous symmetry breaking
(SSB) of two-component solitons in the symmetric system. In that system, symmetric solitons in the absence of SSB,
as well as asymmetric ones generated by SSB, may be stable due to the absence of the critical collapse.

The SOC-emulating terms in Eqs. (3) and (4) break the Galilean invariance of the system, therefore generation
of “moving” solutions (in fact, spatial beams tilted in the (x, z) plane) from their “quiescent” counterparts (straight
beams in the same plane) is a nontrivial issue. For this purpose, it is relevant to rewrite Eqs. (3) and (4) in terms of
z and the tilted coordinate,

ξ ≡ x− cz, (14)

where “velocity” c determines the obliquity of the beams in the spatial domain:

iuz − icuξ +
1

2
uξξ + |u|4u+ v − δ · vξ = 0,

ivz − icvξ +
1

2
vξξ + |v|4v + u+ δ · uξ = 0. (15)

Further, the ”tilted” system (15) may be simplified by the following transformation, which is suggested by the Galilean
boost in systems which are Galilean invariant:

{u(ξ, z), v(ξ, z)} ≡ exp

(
i

2
c2z + icξ

)
{ũ(ξ, z), ṽ(ξ, z)} . (16)

This transformation casts the equations in the following form:

iũz +
1

2
ũξξ + |ũ|4ũ+ (Λ− icδ) ṽ − δ · ṽξ = 0,

iṽz +
1

2
ṽξξ + |ṽ|4ṽ + (Λ + icδ) ũ+ δ · ũξ = 0. (17)

Stationary solutions to Eq. (17) may be sought for as {ũ, ṽ} = eikz
{
Ũ(ξ), Ṽ (ξ)

}
, cf. Eq. (5), with complex functions

Ũ(ξ) and Ṽ (ξ) satisfying equations

−kŨ +
1

2

d2Ũ

dξ2
+
∣∣∣Ũ ∣∣∣4 Ũ + (1− icδ) Ṽ − δ dṼ

dξ
= 0, (18)

−kṼ +
1

2

d2Ṽ

dξ2
+
∣∣∣Ṽ ∣∣∣4 Ṽ + (1 + icδ) Ũ + δ

dŨ

dξ
= 0. (19)



5

The underlying system of coupled NLS equations (1) and (2) conserves the total norm, Hamiltonian, and momentum:

N ≡ Nu +Nv =

∫ +∞

−∞

[
|u(x)|2 + |v(x)|2

]
dx, (20)

H =

∫ +∞

−∞

[
1

2

(
|ux|2 + |vx|2

)
− 1

3

(
|u|6 + |v|6

)
− (uv∗ + u∗v) +

δ

2
(u∗vx + uv∗x − u∗xv − uxv∗)

]
dx, (21)

P = i

∫ +∞

−∞
(u∗xu+ v∗xv) dx. (22)

Note that momentum (22) is conserved in spite of the lack of the Galilean invariance of the system.

3. Asymmetric solitons in the absence of the spin-orbit coupling (SOC), δ = 0

3.1. The spontaneous-symmetry-breaking (SSB) point of two-component solitons

Before presenting results for solitons under the action of the pseudo-SOC, it is relevant to briefly address ones in
the system of Eqs. (1) and (2) in the absence of SOC. As mentioned above, in that case the issue of basic interest is
the SSB of two-component solitons in the symmetric system [49]-[54].

For symmetric solitons, with U(x) = V (x) ≡ U0(x), Eqs. (6) and (7) with δ = 0 reduce to a single equation:

− (k − 1)U0 +
1

2

d2U0

dx2
+ U5

0 = 0. (23)

The exact solution to Eq. (23), which represents the 1D (quasi) version of the TS (Townes’ soliton), exists for k > 1:

U0(x) =
[3 (k − 1)]

1/4√
cosh

(
2
√

2 (k − 1)x
) . (24)

In agreement with the above-mentioned fundamental property of TSs, the norm of solution (20) takes a single value
which does not depend on k:

NTS =
√

3/2π. (25)

Only the symmetric solitons exist at k < kcr, while asymmetric ones appear at k > kcr. The critical value kcr can
be found exactly, by looking for a solution with a vanishingly small asymmetric part, as

(U(x), V (x)) = U0(x)± εδU(x), (26)

where ε is an infinitely small amplitude, which accounts for the onset of the SSB. Straightforward analysis, which
follows that developed earlier for the coupler with the cubic nonlinearity [49, 52], demonstrates that δU(x) satisfies
the following linear equation: 1

2

d2

dx2
+

15 (k − 1)

cosh2
(

2
√

2 (k − 1)x
)
 δU = (k + 1) δU. (27)

Making use of the known exact solutions for the linear Schrödinger equation with the Pöschl-Teller potential [55], we
find the SSB point from a solution of Eq. (27):

kcr = 5/4. (28)

In addition to the symmetric and asymmetric soliton solutions, Eqs. (6) and (7) admit antisymmetric ones, with
U(x; δ) = −V (x; δ). However, they are subject to strong instability, which is driven by the fact that the coupling term
in Hamiltonian (21) is positive for the antisymmetric solutions, on the contrary to the negative one for the symmetric
solitons [54]. Further, the analysis similar to that leading to Eq. (27) demonstrates that the antisymmetric solitons
do not undergo a bifurcation of antisymmetry breaking (the same happens in the coupler with the cubic nonlinearity
[54]).
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3.2. The variational approximation (VA) for the asymmetric solitons

At k > kcr, asymmetric solitons cannot be found in an exact form, but it is possible to approximate them by means
of the variational method, cf. works [50]-[53] for the coupler with the cubic nonlinearity (see also a review in [54]).
To this end, we note that Eqs. (6) and (7) with δ = 0 can be derived from the following Lagrangian:

L =

∫ +∞

−∞

{
k

2

(
U2 + V 2

)
+

1

4

[(
dU

dx

)2

+

(
dV

dx

)2
]

−1

6

(
U6 + V 6

)
− UV

}
dx, (29)

cf. Hamiltonian (21) with δ = 0. The VA can be applied, using an ansatz whose form is suggested by solution (24):

(U, V ) =
A (cos θ, sin θ)√

cosh (ax)
, (30)

where A and a determine the amplitude and inverse width of the soliton, while its asymmetry is determined by a
parameter which measures the relative difference of the norms of the two components, see Eq. (20):

Θ ≡ Nu −Nv
Nu +Nv

= cos (2θ) (31)

The total norm of this ansatz, N = πA2/a, does not depend on θ. Below, the amplitude is eliminated in favor of N ,
using this relation.

The substitution of ansatz (30) in the Lagrangian and subsequent integration produces the following result:

L (N, a, θ) =
k

2
N +

Na2

32
− N3a2

96π2
[5 + 3 cos (4θ)]− N

2
sin (2θ) , (32)

The variational (Euler-Lagrange) equations, ∂L/∂ (2θ) = ∂L/∂a = ∂L/∂N = 0 yield, after some algebra, the following
results for asymmetric solitons, with cos (2θ) 6= 0:

Θ(N) =

√
(1/3)

[
(NTS/N)

2 − 1
]
, (33)

a2(N) =
2π2
√

3

N2

√
1− (NTS/2N)

2
, (34)

k(N) =
2√

3
[
1− (NTS/2N)

2
] . (35)

where NTS is the 1D-TS norm (25). Thus, it is expected that the asymmetric solitons exist with norms taking values
which secure the positiveness of the expression under the square root in Eqs. (34) and (35), and fulfillment of condition
0 ≤ cos2 (2θ) ≤ 1, in interval

NTS/2 < N < NTS. (36)

It is easy to see that this existence interval is an exact one (without the reference to the VA), with Θ (N = NTS/2) =
1, k (N = NTS/2) =∞, and Θ (N = NTS) = 0, k (N = NTS) = 5/4 (see Eq. (28)).

Note that the TS norm for the single 1D NLS equation with the quintic self-focusing term (i.e., Eq. (1) with Λ = 0)
is half of the value given by Eq. (25), hence development of instability of asymmetric solitons with the norm belonging
to interval (36) may result in either decay of the soliton or the onset of the collapse in one core, see Figs. 5 and 6
below. In this connection, it is relevant to mention that the VA predicts that the norm in one core (normalized to
NTS/2), which is

Nu
NTS/2

≡ N

NTS/2
cos2 θ =

N

NTS
+

√
1

3

(
1− N2

N2
TS

)
, (37)
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pursuant to the definition of ansatz (30) and Eq. (33), attains a maximum, (2N/NTS)max = 2/
√

3, at N =(√
3/2
)
NTS, the respective value of the propagation constant being

k
(
N/NTS = 1/

√
3
)

=
√

2. (38)

Thus, the VA predicts that the asymmetric solitons emerge subcritically, at N = NTS/2, with the largest degree of
the asymmetry, Θ (N = NTS/2) = 1, attained at the diverging propagation constant, k → ∞, as per Eq. (35). As
shown in Fig. 2(a), with the increase of N from NTS/2 to NTS, the asymmetry decreases, following Eq. (33), and
vanishes when the norm attains the TS value, Θ (N = NTS) = 0, the respective propagation constant, as predicted
by the variational equation (35), being kcr = k (N = NTS) = 4/3 (to be compared to the exact value 5/4, see Eq.
(28), i.e., the relative inaccuracy of the VA is ≈ 6%). This picture, which may be identified as a fully subcritical SSB
bifurcation (similar to the “fully backward” one found as an exact solution of the 1D NLS equation with the cubic
self-focusing term multiplied by a symmetric pair of delta-functions, δ (x− a) + δ (x+ a) [56]), is drastically different
from the weakly subcritical SSB bifurcation of solitons in the coupler with the cubic self-focusing, that gives rise to
a pair of background-going branches of asymmetric unstable states, which quickly turn forward as stable branches
[53, 54]. The branches of asymmetric solitons merge with the one of symmetric states at N = NTS, and, naturally, no
solitons exist at N > NTS, as the presence of the collapse does not allow the existence of solitons with a supercritical
norm. An essential difference from the bifurcation diagram reported in Ref. [56] is that, in the present system, all
symmetric solitons (TSs), having the single value of the norm, N = NTS, are represented by the single point in Fig.
2(a).

The monotonously decreasing dependence k(N), predicted by the VA in the form of Eq. (35) (Fig. 2(b)), contradicts
the well-known Vakhitov-Kolokolov criterion, dk/dN > 0, which is a necessary stability condition for solitons [1, 2, 57],
hence the entire family of the asymmetric solitons is unstable (similar to what was found for the case of the fully
backward bifurcation in [56]).

3.3. Numerical results for the asymmetric solitons

The predictions of the VA for the family of asymmetric solitons, viz., dependences of the asymmetry parameter
and propagation constant on the total norm, are compared to their counterparts, found from the numerical solution
of Eq. (23), in Fig. 2. The comparison corroborates the accuracy of the approximation.

Typical examples of strongly and moderately asymmetric solitons, as produced by the VA and numerical solution, are
displayed in Figs. 3 and 4, and their dynamical instability is shown in Figs. 5 and 6, respectively. The instability was
identified in direct simulations, as well as via numerical calculation of eigenvalues λ of modes of small perturbations,
produced by the linearization of Eqs. (1) and (2) (i.e., Bogoliubov - de Gennes equations, in terms if the SOC
emulation). The perturbation modes were taken, as usual, as a combination of terms ∼ exp (−iλz) and exp (iλ∗z)
[58]. The “normal” exponentially growing instability is determined by |Im(λ)| in the case when complex eigenvalues
are found. On the other hand, as mentioned above, the subexponential (but, nevertheless, tangible) instability of TSs
is accounted for by zero eigenvalues [2].

In Fig. 5 it is observed that the instability of the strongly asymmetric soliton with a relatively small norm leads
to decay, while the less asymmetric one with a higher norm suffers the collapse in Fig. 6. This difference is explained
by the fact that, in the former case (with k = 3), Eq. (37) yields the norm in the dominant core which only slightly
exceeds the single-core critical value: Nu/ (NTS/2) ≈ 1.027. On the other, in the latter case (with k = 1.8, which is
closer to the “most unstable” value (38)), the same ratio is ≈ 1.090, making it possible to initiate the collapse, as
observed in Fig. 6.

In the next section, we demonstrate that the inclusion of the SOC terms in Eqs. (1) and (2) may stabilize the
symmetric TSs which are subject to the above-mentioned subexponential instability, and thus create the missing
ground state in the system. On the other hand, it is not expected that the SOC is able to suppress the strong
instability of the asymmetric solitons, which is accounted for by nonzero imaginary parts of eigenvalues λ, see Figs.
5(c) and 6(c). Therefore, in the subsequent analysis we focus on the stabilization of solitons which are symmetric TSs
in the absence of SOC.

4. Stabilization of skew-symmetric solitons by the emulated SOC

4.1. The definition of the skew symmetry

It is easy to see that stationary equations (6) and (7) including the SOC-emulating terms with δ > 0 are compatible
with the skew-symmetry constraint,

U(x; δ) = V (−x; δ), (39)
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(a) (b)

FIG. 2: Asymmetric solitons in the absence of SOC (δ = 0). (a) Asymmetry parameter Θ, defined as per Eq. (31): the
analytical prediction of the VA (variational approximation), given by Eq. (33), and its counterpart, produced by numerical
solution of Eqs. (6) and (7), vs. the scaled norm. In this diagram, all symmetric (quasi-Townes’) solitons are represented
by the single point, (N/NTS = 1,Θ = 0). (b) The propagation constant of the asymmetric soliton vs. its total norm: the
analytical VA prediction, given by Eq. (35), and its numerical counterpart, vs. the scaled norm. Exact symmetric solitons (24)
are actually represented in panel (b) by the right edge of the frame, corresponding to N/NTS = 1, at k > 1, which intersects
the branch of the asymmetric solutions at k = 5/4, according to Eq. (28).

(a) (b)

FIG. 3: An example of a strongly asymmetric soliton in the system without SOC (δ = 0), as predicted by the VA based on
Eqs. (30) and (33)-(35), and found in the numerical form. Note the difference in vertical scales between (a) and (b). The
propagation constant is k = 3, the respective VA-predicted scaled norm being (N/NTS)VA ≈ 0.541, while its numerically found
counterpart is (N/NTS)num ≈ 0.545.
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(a) (b)

FIG. 4: The same as in Fig. 3, but for a less asymmetric soliton, corresponding to k = 1.8. In this case, (N/NTS)VA ≈ 0.651,
and its numerically found counterpart is (N/NTS)num ≈ 0.648.

which replaces the symmetry condition occurring in the absence of SOC. This constraint is somewhat similar to skew
and cross symmetries considered in models based on lattice potentials [59, 60]. In other words, constraint (39) means
that U (x, δ) + V (x, δ) and U (x, δ)− V (x, δ) are, respectively, even and odd functions of x.

Unlike the symmetric solitons available in the analytical form (24), no exact solutions can be found in the presence
of δ > 0, However, treating the SOC strength δ as a small parameter, it is possible to look for solutions of Eqs. (6)
and (7) perturbatively,

{U(x), V (x)} = {U0(x), V0}+ δ {U1(x), V1(x)} , (40)

where {U0(x), V0(x)} is the solution (not necessarily the symmetric one) for δ = 0. The substitution of ansatz (40) in
Eqs. (6) and (7) and linearization with respect to small perturbations leads to the inhomogeneous equations:(

1

2

d2

dx2
− k + 5U0(x)

)
U1 + V1 =

dV0

dx
,(

1

2

d2

dx2
− k + 5V0(x)

)
V1 + U1 = −dU0

dx
. (41)

Applying d/dx to Eqs. (6) and (7), and comparing the results to Eqs. (41), it is easy to find an exact solution of the
latter equations, which contains an arbitrary parameter representing an infinitesimal shift of the soliton’s center of
mass. Keeping the shift equal to zero, one obtains the following exact solution to Eqs. (41):

U1(x) = − Nvδ

Nu +Nv

dU0

dx
,

V1(x) =
Nuδ

Nu +Nv

dV0

dx
, (42)

where Nu,v are norms of the two components at δ = 0, see Eq. (20). Actually, as said above, the relevant case (when
the solitons may be stabilized by SOC) is the one with the symmetric soliton at δ = 0, In this case, solution (42)
simplifies to

U1(x) = −V1(x) = −δ
2

dU0

dx
, (43)

with U0(x) taken as per Eq. (24). This analytical approximation is compared to the numerical results (for δ = 0.35,
which is not a very small value) below in Fig. 8(c,d).
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(a) (b)

(c)

FIG. 5: The instability of the asymmetric soliton from Fig. 3. Panels (a) and (b) display, by means of contour plots, the
decay of components |u (x, z)|2 and |v (x, z)|2, respectively. (c) The spectrum of eigenvalues of small perturbations added to
the stationary soliton, as produced by the numerical solution of the linearized equations for small perturbations.

4.2. Skew-symmetric solitons and their stability

Localized solutions of coupled equations (6) and (7) obeying condition (39) were obtained in a numerical form.
Generic examples of stable solitons belonging to the main and annex bandgaps, defined as per Eqs. (11) and (12),
are presented in Figs. 7 and 8, respectively. The former solution features zero crossings, in accordance with the fact
that, as mentioned above, wavenumber q of its tail, given by Eqs. (8) and (10), is complex, q = qr + iqi, hence the
solution decays non-monotonously at |x| → ∞: {U, V } ∼ exp (− |qi| |x|) cos (qrx). The first zero-crossing is predicted
by this estimate at

|x0| = π/ (2 |qr|) . (44)

In the case shown in Fig. 7, with k = 1.2, Eq. (10) yields qr ≈ 0.81 and qi ≈ 0.93. The first zero-crossing is observed
in Fig. 7 at |x0| ≈ 2.34, while Eq. (44) gives |x0| ≈ 2.3, in agreement with the numerical findings. On the other
hand, Eq. (10) yields purely imaginary q in the annex bandgap (12), hence the respective soliton’s shape features
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(a) (b)

(c)

FIG. 6: The collapse instability of the soliton from Fig. 4. The meaning of the panels is the same as in Fig. 5, with the
difference that the evolution of the two components is displayed, in panels (a) and (b), by means of the three-dimensional plots
(note the difference in vertical scales in (a) and (b)).

monotonous decay of the tails at |x| → ∞ and, accordingly, no zero crossings are observed in Fig. 8.
Results for the existence and stability of the skew-symmetric solitons are summarized in Fig. 9. The stability was

identified by means of numerical calculation of eigenvalues for modes of small perturbations, and verified by direct
simulations. In particular, the bottom existence boundary in panel 9(a) is determined by Eqs. (12) and (11). Further,
the coordinate k ≈ 1.265 of corner point C on the boundary between the stability and instability areas in the same
panel may be explained by the above analytical result, according to which the symmetry-breaking instability of the
solitons in the absence of SOC sets it at point (28), i.e., k = 1.25.

The key point, which explains the stabilization of the quasi-TS by SOC as a result of pushing the soliton’s norm
below its critical value for the TSs in the absence of SOC (see Eq. (25)), is illustrated by Figs. 9(c,d), which show
that, for a fixed propagation constant, the norm of the skew-symmetric solitons indeed decreases with the increase of
the SOC strength, δ, leading to the stabilization of the solitons. In this connection, it is relevant to mention that, as
long as k belongs to the annex gap (12), in the limit of k → 1 the stationary equations may be asymptotically reduced
to Eqs. (6), (7) with δ = 0 and the effective diffractive coefficient, taken from the expansion of the top branch of the
dispersion relation (9) at k → 1:

D ≡ −d
2k

dq2
|q=0 = 1− δ2.

Then, the total norm of the soliton can be obtained from the TS value (25) by dint of straightforward renormalization:

Nasympt (k → 1; δ) =
√

1− δ2NTS =
√

1− δ2
√

3/2π. (45)

In particular, for δ = 0.8, Eq. (45) yields N (k → 1; δ = 0.8) ≈ 2.31, which is very close to the corresponding numerical
value in Fig. 9(d), Nnumer (k → 1; δ = 0.8) ≈ 2.32.
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(a) (b)

FIG. 7: The profile of a stable skew-symmetric soliton, corresponding to points A (δ = 1) in Figs. 9(a,b). The soliton belongs
to the main spectral gap. Its propagation constant and total norm are k = 1.2 and N = 2.29. The juxtaposition of profiles
U(±x) and V (∓x) in panels (a) and (b) corroborates that the soliton obeys the skew-symmetry constraint (39).

Equations (6) and (7) are also compatible with the constraint of the skew antisymmetry,

U(x; δ) = −V (−x; δ), (46)

cf. Eq. (39) (in other words, the corresponding combinations U(x)+V (x) and U(x)−V (x) are, respectively, odd and
even functions of x). Because solutions obeying Eq. (46) extend the above-mentioned strongly unstable antisymmetric
solitons existing at δ = 0, it is expected that the skew-antisymmetric solitons inherit the strong instability, therefore
they are not considered in this section. Nevertheless, they are addressed in the next section dealing with the simplified
diffractionless system, where skew-symmetric solutions do not exist.

4.3. Tilted skew-symmetric solitons

“Moving” (tilted) solitons have been found as numerical solutions of Eqs. (18) and (19), see Figs. 10(a,b). Unlike the
“quiescent” (straight) solitons, the calculation of eigenvalues in the framework of the respective linearized equations
demonstrates that all tilted solitons are unstable, see Fig. 10(c). Nevertheless, for sufficiently small values of the
“velocity” (tilt) c, the instability is weak, the respective eigenvalues being complex in Fig. 10(c), rather than purely
imaginary, cf. Figs. 5(c) and 6(c). As shown in Figs. 10(d,e), in direct simulations the weak instability does not
destroy the solitons, but rather transforms them into breathers which feature robust intrinsic vibrations, with period

Z
(numer)
breather ≈ 40 in this example. Note that the real part of the complex eigenvalues in Fig. 10(e), λr ' ±0.136,

correctly predicts the period of the intrinsic vibrations in panels 10(a,b), as Z
(analyt)
breather = 2π/ |λr| ≈ 46. It is also

relevant to compare the vibration period with a characteristic diffraction length, Zdiffr ' 8, determined by the input
soliton profile, the result being Zbreather ' 5Zdiffr (i.e., the vibrations may be considered as a long-period dynamical
feature). Figures 10(a,b) additionally demonstrate secondary small-amplitude short-period oscillations on top of the
primary vibrations. This effect may be construed as the fifth harmonic of the fundamental frequency λr, generated
by the quintic nonlinearity of the system.

At larger values of tilt c, solitons are subject to stronger instability, which quickly destroys them in direct simulations
(not shown here in detail).

5. Gap solitons in the diffractionless limit

5.1. The simplified system

In the case when the effective diffraction induced by the SOC terms in Eqs. (3) and (4) is much stronger than the
direct paraxial diffraction (in terms of the SOC emulation, this condition means that the anomalous velocity dominates
over the normal one), the underlying system may be reduced to a simpler form, in which the second derivatives are
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(a) (b)

(c) (d)

FIG. 8: The profile of a stable skew-symmetric soliton corresponding to points B (δ = 0.35) in Figs. 9(a,b). The soliton belongs
to the annex gap. Its propagation constant and total norm are k = 1.2 and N = 3.61. (a,b) The juxtaposition of profiles U(±x)
and V (∓x) in panels (a) and (b) corroborates that the soliton obeys the skew-symmetry constraint (39). (c,d) Comparison
between the analytical apporixmation given by Eqs. (40), (43) and the numerical solution of Eqs. (7) and (6). To estimate
the relative size of the analytical correction given by Eq. (43), we note that, at the point where the local intensity of solution
(24), U2

0 (x), is half of its maximum value, Eq. (43) with δ = 0.35 and k = 1.2 yields |U1/U0| ≈ 0.1.

dropped, cf. Refs. [61] and [62]:

iuz − vx + |u|4u+ v = 0, (47)

ivz + ux + |v|4v + u = 0. (48)
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(a) (b)

(c) (d)

FIG. 9: (a,b): Existence and stability areas for skew-symmetric solitons in the plane of the pseudo-SOC strength (δ) and
propagation constant (k) or total norm (N). The parabola-shaped black continuous curve in (a), k =

(
δ4 + 1

)
/
(
2δ2

)
, see Eqs.

(11) and (12), is the boundary between the main and annex spectral gaps at δ < 1, and a border of the main bandgap at δ > 1,
where the annex gap does not exist. The boundary between the annex and main gaps is shown in (b) too. Points A and B in
(a) and (b) correspond to stable solitons displayed in Figs. 7 and 8, respectively. Symbol C denotes the corner point of the
stabulity boundary, with coordinate k ≈ kcr = 5/4, see details in the text. The skew-symmetric solitons are unstable, stable,
and nonexistent (or not found) in the red, gray, and white areas, respectively. (c) Dependence N(δ) for the skew-symmetric
solitons at a fixed value of the propagation constant, k = 1.1. Pursuant to Eq. (13), segment δ < 0.801 belongs to the annex
bandgap. (d) Dependence k(N) at fixed values of the pseudo-SOC strength: δ = 0.8; 0.9; 1.1.

In these equations, δ is eliminated by obvious rescaling, once the second derivatives are absent. Accordingly, stationary
real equations (6) and (7) are replaced by

dV

dx
= −kU + U5 + V, (49)

dU

dx
= kV − V 5 − U. (50)

This approximation applies to localized solutions of the underlying system with size L ∼ δ � 1 (if the coupling
constant Λ is not set to be Λ = 1 by rescaling, see Eqs. (1) and (2), the conditions for the applicability of the

approximation are L ∼ δ/Λ, with δ �
√

Λ).
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(a) (b) (c)

(d) (e)

FIG. 10: (a,b): Complex profiles of two components of a soliton with tilt (“velocity”) c, as found in the numerical form
from Eqs. (18) and (19). Its propagation constant, pseudo-SOC strength and “velocity” are k = 1.2, δ = 0.8 and c = 0.05,
respectively (c) The spectrum of stability eigenvalues for pertubation modes around the soliton. The vertical stripe with a gap
represents the continuous spectrum of real eigenvalues. The quartet of compex eigenvalues accounts for the weak instability
which transforms the stationary soliton into a breather. (d,e) The weakly unstable evolution of the soliton shown in (a,b).

The dispersion relation of system (47), (48) is also simplified in comparison with its counterpart (9):

k2 = 1 + q2. (51)

It gives rise to a finite bandgap k2 < 1, in which gap solitons may be sought for [63, 64]. In the framework of the
full system of Eqs. (3) and (4), this gap may overlap with “remote” branches of the full dispersion relation, but this
circumstance will only give rise to to decay of the gap solitons at an exponentially small rate.

For tilted solitons, the replacement of x by coordinate (14) transforms Eqs. (47), (48) into

iuz − icuξ − vξ + |u|4u+ v = 0,

ivz − icvξ + uξ + |v|4v + u = 0. (52)

The bandgap generated by Eqs. (52) is k2 < 1 − c2. Obviously, gap solitons cannot exists for c2 > 1. Detailed
consideration of solutions to system (52) is left beyond the scope of the present work.

5.2. Analytical relations

As well as solutions to the system of full equations (6) and (7), Eqs. (49) and (50) are compatible with skew-
symmetry and antisymmetry constraints, defined by Eq. (39) and (46). Further, dividing Eq. (49) by Eq. (50) leads
to an equations relating fields U and V :

dU

dV
= −U − kV + V 5

V − kU + U5
. (53)

Obvious integration of Eq. (53) yields the following result:

h ≡ UV − k

2

(
U2 + V 2

)
+

1

6

(
U6 + V 6

)
= 0 (54)
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(in the general case, Eq. (54) has an arbitrary constant on the right-hand side; the constant is zero for solitons, which
have U(x) and V (x) vanishing at |x| → ∞). In fact, expression (54) is the formal Hamiltonian of Eqs. (49) and (50),
the respective canonical representation of these equations being dV/dx = ∂h/∂U, dU/dx = −∂h/∂V .

It immediately follows from Eq. (54) that solitons subject to the skew-symmetry constraint (39) cannot exist,
because, at x = 0, where Eq. (39) yields U(x = 0) = V (x = 0), Eq. (54) amounts to

(1− k)U2(x = 0) +
1

3
U6(x = 0) = 0, (55)

which, obviously, admits solely U(x = 0) = V (x = 0) = 0 inside the bandgap, at k2 < 1, and only the trivial solution,
U = V ≡ 0, may have both components vanishing at x = 0. On the other hand, the skew-antisymmetric constraint
(46) (which implies V (x = 0) = −U(x = 0)) admits the existence of solitons, yielding the following exact value of the
fields at x = 0:

U(x = 0) = −V (x = 0) = [3 (1 + k)]
1/4

. (56)

Note that the values given by Eq. (56) do not correspond to maxima of U or |V | (i.e., the maxima are not located at
x = 0). The maximum of U (but not of |V |) corresponds to dU/dx = 0, hence Eq. (50) yields, in this case,

− kV + V 5 + U = 0. (57)

The corresponding values, Umax and V (which does not represent a maximum if |V |) should be found from the system
of Eqs. (54) and (57). In the general case, it is not possible to solve this system analytically. However, a solution is
available in the case of k = 0, i.e., at the midpoint of the finite gap:

Umax(k = 0) = 55/24 ≈ 1.398, V (k = 0) = −51/24 ≈ −1.069. (58)

Accordingly, at the point of the maximum of |V (x)| the values are Vmax(k = 0) = −55/24 ≈ −1.398, U(k = 0) =
51/24 ≈ 1.069. For comparison, at the same value of the propagation constant, k = 0, Eq. (56) yields a value which
is smaller than Umax(k = 0):

U(x = 0, k = 0) = −V (x = 0, k = 0) = 31/4 ≈ 1.316. (59)

Note that Eq. (54) demonstrates that the solution cannot have zeros in one component (V = 0 or U = 0) at k < 0.
However, zeros may exist at k > 0. Indeed, setting V = 0 in Eq. (54), one finds that, at this point, the value of U is

U(V = 0) = (3k)
1/4

(60)

(accordingly, V (U = 0) = − (3k)
1/4

), which is relevant at k > 0.
Further, the linearized version of Eqs. (49) and (50) yields the following expressions for asymptotic tails of gap

solitons:

U(x) = U0 exp
(
−
√

1− k2|x|
){ 1, at x→ +∞,
−k−1

(
1−
√

1− k2
)
, at x→ −∞, , (61)

V (x) = U0 exp
(
−
√

1− k2|x|
){

k−1
(
1−
√

1− k2
)
, at x→ +∞,

−1, at x→ −∞, , (62)

with the exponential-decay rate,
√

1− k2, determined by Eq. (51), while constant U0 is indefinite, in terms of the
asymptotic approximation. These expressions comply with the skew-antisymmetry condition (46), and they have a
singularity at k → 0. In the latter limit, Eqs. (62) amount to

V0 ≈ (k/2)U0, at x > 0, (63)

U0 ≈ (k/2)V0, at x < 0, (64)

i.e., at k = 0 the asymptotic tail (62) of either field vanishes at positive or negative x. In this case, the correct
asymptotic form of the solution, replacing Eqs. (62), is

U(x) =

{
U0e

−x, at x→ +∞,(
U5

0 /6
)
e5x, at x→ −∞, (65)

V (x) =

{
−
(
U5

0 /6
)
e−5x, at x→ +∞,

−U0e
x, at x→ −∞, (66)

where U0 remains an indefinite constant.
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5.3. Soliton solutions

There is a possibility to construct approximate analytical solutions for the skew-antisymmetric gap solitons near
the bottom edge of the bandgap, i.e., for

0 < 1 + k ≡ ε� 1. (67)

In this case, it is convenient to split each component in spatially even and odd parts:

{U(x), V (x)} = {Ueven(x), Veven(x)}+ {Uodd(x), Vodd(x)} . (68)

Then, the consideration of Eqs. (49) and (50) suggests that, in the case of small ε, the solitons have large width W
and small amplitudes of the even and odd parts, Aeven,odd, estimated as

W ∼ ε−1/2, Aeven ∼ ε1/4, Aodd ∼ ε3/4. (69)

Taking estimates (69) into account, the consideration of Eqs. (49) and (50) leads, first, to an approximate relation
between Ueven and Uodd:

Uodd = −1

2

dUeven

dx
. (70)

After elimination of Uodd by means of Eq. (70), the remaining equation for Ueven(x) is

εUeven =
d2Ueven

dx2
+ 2U5

even. (71)

An obvious soliton solutions to Eq. (71) is

U (sol)
even (x) =

(3ε/2)
1/4√

cosh (2
√
εx)

, (72)

cf. Eq. (24). Then, the odd component of the soliton is produced by the substitution of this in Eq. (70):

U
(sol)
odd (x) =

1

2

(
3

2
ε3

)1/4
sinh (2

√
εx)

[cosh (2
√
εx)]

3/2
. (73)

Expressions (72) and (73) agree with estimates (69), and the limit value of the total norm of the gap soliton coincides
with the TS value (25):

N (ε→ 0) ≡ 2

∫ +∞

−∞

[
U2

even(x) + U2
odd(x)

]
ε→0

dx =
√

3/2π ≈ 3.85. (74)

The numerical solution for gap solitons near the bottom edge of the bandgap produces a profile shown in Fig. 11,
which is close to the analytical approximation given by Eqs. (72) and (73). Note that, even in the case of ε = 0.01
displayed in the figure, the soliton’s amplitude is not really small.

The numerical solution of the equations produced by the linearization of Eqs. (47) and (48) for small perturbations
around the gap solitons yields unstable eigenvalues. This conclusion complies with the above-mentioned conjecture
that skew-antisymmetric solitons are subject to instability, all the gap solitons belonging to this type. In the case shown
in Fig. 11, the unstable eigenvalues are small and, accordingly, direct simulations demonstrate that the perturbed
gap soliton survives long propagation, over the distance exceeding 10 diffraction lengths, hence these solitons are
physically relevant states.

Deeper into the bandgap, the shape of the gap solitons becomes sharper, and their instability gets stronger. In
particular, at the midpoint of the bandgap, k = 0, the numerically found soliton’s shape, displayed in Fig. 12, features
strong spatial asymmetry mentioned above (see Eqs. (63) and (64)). Its instability develops over the propagation
distance exceeding ∼ 5 diffraction length. This numerical solution corroborates the exact analytical results given by
Eqs. (58) and (59).

The numerical solution produces gap solitons as well at k > 0, as shown in Fig. 13. Their shape features zero
crossings, in exact agreement with Eq. (60). In this case, the instability is strong, leading to destruction of the soliton
after passing ' 1 diffraction length.
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(a) (b)

(c) (d)

FIG. 11: (a) Numerically found profiles of components U and V of the gap soliton, and their approximate analytical coun-
terparts, given by Eqs. (68), (70), (72) and (46), at k = −0.99 (i.e., ε = 0.01 in Eq. (67)). The total norm of the numerical
solution is N ≈ 3.78, to be compared to the TS value (74). (b) The spectrum of stability eigenvalues for small perturbation
modes around this soliton. (c,d) Weakly unstable evolution of the soliton shown in (a).

Finally, the gap-soliton family as a whole is characterized by the k(N) dependence, which is shown in Fig. 14,
as obtained from the numerical solution. It is worthy to note the difference of this double-value dependence from
its monotonous single-value counterpart obtained in the full system, which includes the diffraction terms (second
derivatives), cf. Fig. 9(d). The limit value of N corresponding to the bottom of the bandgap, k = −1, is given by
Eq. (74).

Because the value of the solution with k = 1 at x = 0, as given by Eq. (56), is finite, U(x = 0, k = 1) =

−V (x = 0, k = 1) = 3 · 21/4, and the width of the soliton diverges ∼
(
1− k2

)−1/2
in the limit of k → 1, as per Eqs.

(62), the integral norm diverges too in this limit.

6. Conclusion

The objective of this work is to expand the recently proposed mechanism for stabilizing TSs (Townes solitons) by
means of the linear SOC (spin-orbit-coupling) terms in binary BEC, or ones emulating SOC in other physical settings.
In Refs. [42] and [29], this mechanism was elaborated for 2D matter-wave solitons realizing SOC in BEC, and for 2D
spatiotemporal optical solitons in dual-core planar waveguides. In both cases, TSs existing in the absence of SOC
or quasi-SOC are the usual 2D solitons created in the unstable form by the cubic focusing nonlinearity. Here, we
elaborate the mechanism for the stabilization of the 1D variety of TSs, in a two-component system with the quintic
self-focusing. This setting may be realized for spatial solitons in a dual-core planar optical waveguides dominated
by the quintic nonlinearity, with the SOC-emulating terms represented by skewness in the tunnel coupling between
parallel cores of the coupler. The results identify a vast stability region for skew-symmetric two-component solitons, in
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(a) (b)

(c) (d)

FIG. 12: The same as in Fig. 11, but for the gap soliton with k = 0, taken at the midpoint of the bandgap. Values of the fields
at x = 0 are exactly predicted by Eq. (56). The total norm of this soliton is N ≈ 2.78, which is essentially smaller than the
TS value (74),

the main (semi-infinite) and annex (finite) bandgaps alike. Thus, the SOC-driven stabilization method is a universal
one, being applicable to TS in both 2D and 1D settings, with the cubic and quintic nonlinearities, respectively. As a
part of the analysis, we have also considered asymmetric solitons in the quintic coupler in the absence of SOC.

An extension of the analysis, also elaborated in this work, is its application to broad solitons, for which the usual
diffraction terms are negligible, and the system is simplified to one with a finite bandgap. In this case, some results
for the solitons populating the gap can be obtained in an exact analytical form, and a subfamily of the gap solitons
near the bottom of the gap is constructed in an approximate analytical form. On the contrary to the full system, the
reduced diffractionless one maintains only skew-antisymmetric solitons, which are unstable, although the instability
is weak for the solitons constructed near the bandgap’s bottom.

The present analysis can be further developed in several directions. In particular, a challenging possibility is to
develop a systematic analysis of tilted solitons, in the full and reduced systems alike. Other relevant issues are
interactions of solitons in these systems, as well as effects of dissipation.
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(47), (48).



21

[4] Abdullaev FK, Salerno M. Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in
optical lattices. Phys. Rev. A 2005;72:033617.

[5] Senthilnathan K, Li Q, Nakkeeran K, Wai PKA. Robust pedestal-free pulse compression in cubic-quintic nonlinear media.
Phys. Rev. A 2008;78:033835.

[6] Kivshar YS, Agrawal GP. Optical Solitons: From Fibers to Photonic Crystals. San Diego: Academic Press; 2003.
[7] Robinson PA. Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 1997;69:507-573.
[8] Pitaevskii P, Stringari S, Bose-Einstein Condensation, Oxford University Press: Oxford, 2003.
[9] Malomed BA, Mihalache D, Wise F, Torner L. Spatiotemporal optical solitons. J. Optics B 2005;7:R53–R72.

[10] Mihalache D. Three-dimensional dissipative optical solitons. Cent. Eur. J. Phys. 2008;6:582-587.
[11] Malomed BA, Mihalache D, Wise F, Torner L. Viewpoint: On multidimensional solitons and their legacy in contemporary

atomic, molecular and optical physics. J. Phys. B: At. Mol. Opt. Phys. 2016;49:170502.
[12] Malomed BA. Multidimensional solitons: Well established results and novel findings. Eur. Phys. J. Special Top.

2016;225:2507-2532.
[13] Kartashov Y, Astrakharchik G, Malomed B, Torner L. Frontiers in multidimensional self-trapping of nonlinear fields and

matter. Nature Reviews Physics 2019;1:185-197; https://doi.org/10.1038/s42254-019-0025-7.
[14] Quiroga-Teixeiro M, Michinel H. Stable azimuthal stationary state in quintic nonlinear optical media. J. Opt. Soc. Amer.

B 1997;14:2004-2009.
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