
ar
X

iv
:1

90
9.

03
05

2v
2 

 [
m

at
h.

D
S]

  1
9 

Ju
n 

20
20

A multiresolution algorithm to approximate the Hutchinson

measure for IFS and GIFS

Rudnei D. da Cunha ∗1, Elismar R. Oliveira †1, and Filip Strobin‡2

1Universidade Federal do Rio Grande do Sul
2Lodz University of Technology

June 23, 2020

Abstract

We introduce a discrete version of the Hutchinson–Barnsley theory providing algorithms to approx-
imate the Hutchinson measure for iterated function systems (IFS) and generalized iterated function
systems (GIFS), complementing the discrete version of the deterministic algorithm considered in our
previous work.
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1 Introduction

This work is a sequel of [dOS20] where we approximate attractors for IFS and GIFS and their fuzzy
versions by a discrete version of the deterministic algorithm.

Here we adapt the introduced theory to find a discrete version of the Markov operator acting on
probability measures. Once we prove that this operator satisfies the assumptions of the discrete version
of the Banach fixed point theorem (Theorem 3.2), we justify the existence of a discrete measure approx-
imating the Hutchinson Measure associated to the underlying IFS or GIFS with probabilities. This fits
to problems addressed by several authors such as [Öbe05], [Öbe06], [Bla01], [Fro99], [GN14], [GMN16]
and [CJ19]. See the introduction of [GMN16] for a detailed review on the advances of most of these
references.

In recent years some authors have made significant advances in the task of giving an approximation
of the invariant measure of a dynamical system with precisely estimated error. For example, the strategy
in [GMN16] is to replace the original Markov (transfer) operator, let us say M , by a finite rank one,
let us say M̃ . Then the authors use some powerful techniques and a functional analytic approach to
approximate the actual invariant measure µ (i.e. M(µ) = µ) by the fixed point µ̃ of M̃ . Our approach is
different: modifying the original IFS S by replacing its maps with their certain discretizations defined on
appropriately dense grids, we obtain a new IFS Ŝ, whose Markov operator M̂ need not be contractive (see
Example 5.3), but its iterations give approximations of the invariant measure of S. Not only we present
an algorithm that approximates the invariant measure for an IFS with probabilities but, similarly as in
[GMN16], we provide an explicit control on the convergence and the error estimation. The main novelty
is the fact that we can apply this procedure even for generalized iterated function systems which have
no dynamical counterpart, presenting, as far as we know, the first rigorous computation of the invariant
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E-mail: rudnei.cunha@ufrgs.br
†E-mail: elismar.oliveira@ufrgs.br
‡Instititute of Mathematics, Lodz University of Technology, Wólczańska 215, 90-924  Lódź, Poland.
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measures in the literature, including place depending probabilities. The advantages of our approach
(discretization of the space and of the associated operators) is that we obtain a very simple algorithm
to be coded exhibiting an outstanding performance for computation without the need of a sophisticated
computational machinery. Moreover, the lack of requirements allow us to extrapolate the application of
the algorithm to investigate (heuristically) other situations where our hypothesis fail, for instance as in
Example 6.5 where the convergence can not happen since we have more than one invariant measures.

In Example 5.7 we make a comparative analysis between our algorithm and the method employed
in [GMN16] for a contracting case. Also, in Section 6, subsection 6.1, we make a comparison between
our computations and with the computational results given in a recent preprint [CJ19]. It is worth to
mention that [CJ19] follows a very different approach to the problem: the maps are also assumed to be
Lipschitz contractions but the authors use an operator theoretic approach similar to that given in [JP07]
where the family of maps must be complex contracting leading to a good numerical results.

The paper is organized as follows:
In Section 2 we recall some basic facts on the Hutchinson–Barnsley theory and its certain generalization
due to Miculescu and Mihail. Not only we formulate the Hutchinson-Barnsley theorem on the existence
of attractors, but also, we recall definition of (generalized) Markov operator and provide theorems on the
existence the Hutchinson measure.

After, in Section 3, we present the theory developed in [dOS20]. We formulate a discrete version of
the Banach fixed point theory and present its application - discretizations of the Hutchinson-Barnsley
theorem, as well as its generalization due to Miculescu and Mihail.

In Section 4 we obtain the main result of our paper, which shows that we can approximate the
Hutchinson measure of given IFS (or GIFS) by appropriate discrete measure, obtained by iterating
process of discrete Markov operator.

In Section 5 we introduce an algorithm that can be used to generate discrete Hutchinson measures (for
IFSs and GIFSs) and also we present some examples to illustrate it. Note that our algorithm draw the
pictures of approximations of the attractors both of IFSs and GIFSs. Other such algorithms for GIFSs
can be found in [JMS16] and [MMU20].

Finally in Section 6 we address the problem of estimating the integral of functions with respect to the
Hutchinson measures from [CJ19], the problem of the Projected Hutchinson measures from [Oli17] and
the problem of IFS/GIFS with place dependent probabilities from [Mic14].

Note that some results we recall in the initial sections (for example, Lemmas 2.3 and 2.11, and Sections
3.2 and 3.3) are given just for the sake of completeness and for the reader’s convenience.

2 Basics of the Hutchinson–Barnsley theory and its certain gen-

eralization

2.1 Iterated function systems and the Hutchinson–Barnsley theorem

Let (X, d) be a metric space. We say that f : X → X is a Banach contraction, if the Lipschitz constant
Lip(f) < 1.

Definition 2.1. An iterated function system (IFS in short) S = (X, (φj)
L
j=1) consists of a finite family

φ1, ..., φL of continuous selfmaps of X . Each IFS S generates the map FS : K(X) → K(X) (where K(X)
denotes the family of all nonempty and compact subsets of X), called the Hutchinson operator, defined
by

∀K∈K(X) FS(K) :=

L
⋃

j=1

φj(K).

By an attractor of an IFS S we mean a (necessarily unique) set AS ∈ K(X) which satisfies

AS = FS(AS) =

L
⋃

j=1

φj(AS)

and such that for every K ∈ K(X), the sequence of iterates (F k
S (K))∞k=0 converges to AS with respect to

the Hausdorff-Pompeiu metric h on K(X)(see [BP13] for details on the Hausdorff-Pompeiu metric).

The classical Hutchinson–Barnsley theorem [Bar88], [Hut81] states that:
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Theorem 2.2. Each IFS S consisting of Banach contractions on a complete metric space X admits
attractor.

This result can be proved with a help of the Banach fixed point theorem as it turns out that FS is a
Banach contraction provided each φj is a Banach contraction (see, for example, [Hut81, Section 3.2]):

Lemma 2.3. Let (X, d) be a metric space and S = (X, (φj)
L
j=1) be an IFS consisting of Banach contrac-

tions. Then FS is a Banach contraction and Lip(FS) ≤ max{Lip(φj) : j = 1, ..., L}.

Given an IFS S = (X, (φj)
L
j=1) consisting of Banach contractions, we will denote

αS := max{Lip(φ1), ...,Lip(φL)}.

2.2 IFSs with probabilities and the Hutchinson measure

For a metric space (X, d), by P(X) we denote the family of all nonnegative Borel probability measures µ
with compact support, that is, for which there exists a compact set K so that µ(X \K) = 0. For every
µ, ν ∈ P(X), define

dMK(µ, ν) = sup

{∣

∣

∣

∣

∫

X

fdµ−
∫

X

fdν

∣

∣

∣

∣

: f ∈ Lip1(X,R)

}

, (1)

where Lip1(X,R) is the set of maps f : X → R with Lip(f) ≤ 1. It is known (see [Bog07],[KLMV12],[Hut81],
[Bar88]) that dMK is a metric, and it is complete provided (X, d) is complete. The metric dMK is called
the Monge-Kantorovich metric or the Hutchinson metric.
For a Borel measurable map w : X → Y (where Y is a metric space) and µ ∈ P(X), by w♯µ we denote
the measure on Y defined by

w♯µ(B) := µ(w−1(B)). (2)

It is known that w♯µ ∈ P(Y ) and that for any continuous map f : Y → R and every µ ∈ P(X),

∫

X

f dw♯µ =

∫

X

f ◦ w dµ. (3)

Definition 2.4. By an IFS with probabilities (IFSp in short) we mean a triple S = (X, (φj)
L
j=1, (pj)

L
j=1)

so that (X, (φj)
L
j=1) is an IFS and p1, ..., pL > 0 with

∑L
j=1 pj = 1.

Each IFSp generates the map MS : P(X) → P(X), called the Markov operator, which adjust to every
µ ∈ P(X), the measure MS(µ) defined by:

MS(µ)(B) =

L
∑

j=1

pjµ
(

φ−1
j (B)

)

=

L
∑

j=1

pjφ
♯
jµ,

for any Borel set B ⊂ X .
By a Hutchinson measure of an IFSp S we mean a (necessarily unique) measure µS ∈ P(X) which
satisfies

µS = MS(µS) (4)

and such that for every µ ∈ P(X), the sequence of iterates Mk
S(µ) converges to µS with respect to dMK .

Observe that by (3), for every IFSp S and every continuous map f : X → R,

∫

X

f dMS(µ) =
L
∑

j=1

pj

∫

X

f ◦ φj dµ. (5)

In fact, the above formula characterizes the Markov operator MS . The following result is known (see
mentioned papers, for example [Hut81, Section 4.4]).

Theorem 2.5. Each IFSp on a complete metric space consisting of Banach contractions admits the
Hutchinson measure.

This result can be proved with a help of the Banach fixed point theorem as the following lemma holds:
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Lemma 2.6. If an IFSp S consists of Banach contractions, then MS is a Banach contraction and
Lip(MS) ≤ αS .

For a measure µ ∈ P(X), by its support we mean the set

supp(µ) = {x ∈ X : µ(U) > 0 for all open sets U ∋ x}.

Alternatively, supp(µ) is the largest compact set C such that µ(U) > 0 for every open set U with
U ∩ C 6= ∅. The following result shows that there is a strong relationship between the Markov and
Hutchinson operators. It implies that the support of the Hutchinson measure is exactly the attractor for
a given IFS (see [Hut81, Section 4.4, Thm. 4]).

Lemma 2.7. In the above frame, for every µ ∈ P(X), supp(MS(µ)) = FS(supp(µ)).

2.3 Generalized IFSs in the sense of Miculescu and Mihail

Here we recall some basics of a generalization of the classical IFS theory introduced by R. Miculescu and
A. Mihail in 2008. For references, see [Mih08], [MM10], [MM08], [SS13] and references therein.
If (X, d) is a metric space and m ∈ N, then by Xm we denote the Cartesian product of m copies of X .
We consider it as a metric space with the maximum metric

dm((x0, ..., xm−1), (y0, ..., ym−1)) := max{d(x0, y0), ..., d(xm−1, ym−1)}.

A map f : Xm → X is called a generalized Banach contraction, if Lip(f) < 1.
It turns out that a counterpart of the Banach fixed point theorem holds. Namely, if f : Xm → X is a

generalized Banach contraction, then there is a unique point x∗ ∈ X (called a generalized fixed point of
f), such that f(x∗, ..., x∗) = x∗. Moreover, for every x0, ..., xm−1 ∈ X , the sequence (xk) defined by

xk+m = f(xk, ..., xk+m−1), k ≥ 0,

converges to x∗.

Remark 2.8. It is worth to observe that if f : Xm → X is a generalized Banach contraction, then the
map f̃ : X → X defined by f̃(x) := f(x, ..., x), is a Banach contraction and Lip(f̃) ≤ Lip(f).

Definition 2.9. A generalized iterated function system of order m (GIFS in short) S = (X, (φj)
L
j=1)

consists of a finite family φ1, ..., φL of continuous maps from Xm to X . Each GIFS S generates the map
FS : K(X)m → K(X), called the generalized Hutchinson operator , defined by

∀K0,...,Km−1∈K(X) FS(K0, ...,Km−1) :=

L
⋃

j=1

φj(K0 × ...×Km−1).

By an attractor of a GIFS S we mean a (necessarily unique) set AS ∈ K(X) which satisfies

AS = FS(AS , ..., AS) =

L
⋃

j=1

φj(AS × ...×AS)

and such that for every K0, ...,Km ∈ K(X), the sequence (Kk) defined by

Kk+m := FS(Kk, ...,Kk+m−1), k ≥ 0,

converges to AS .

Theorem 2.10. Each GIFS S on a complete metric space consisting of generalized Banach contractions
generates the (unique) attractor AS .

This result can be proved with a help of a certain generalization of the Banach fixed point theorem as
it turns out that FS is a Banach contraction provided each φj is a Banach contraction (see, for example,
[MM10, Lemma 3.6]):

Lemma 2.11. Let (X, d) be a metric space and S = (X, (φj)
L
j=1) be a GIFS consisting of generalized

Banach contractions. Then FS is a generalized Banach contraction with Lip(FS) ≤ αS := max{Lip(φj) :
j = 1, ..., L}.
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In [Mih09] and [MM09], Miculescu and Mihail studied the counterpart of the Hutchinson measure for
GIFSs.

Definition 2.12. By a GIFS with probabilities (GIFSp in short) we mean a triple S = (X, (φj)
L
j=1, (pj)

L
j=1)

so that (X, (φj)
L
j=1) is a GIFS and p1, ..., pL > 0 with

∑L
j=1 pj = 1.

Each GIFSp generates the map MS : P(X)m → P(X), called the generalized Markov operator which
adjust to any µ0, ..., µm−1 ∈ P(X), the measure MS(µ0, ..., µm−1) defined by

MS(µ0, ..., µm−1)(B) :=

L
∑

j=1

pj(µ× ...× µm−1)(φ−1
j (B)) =

L
∑

j=1

pjφ
♯
j(µ0 × ...× µm−1)(B),

for any Borel set B ⊂ X , and where µ0 × ...× µm−1 is the product measure.
By the generalized Hutchinson measure of a GIFSp S we mean the unique measure µS ∈ P(X) which
satisfies

µS = MS(µS , ..., µS) (6)

and such that for every µ0, ..., µm−1 ∈ P(X), the sequence (µk) defined by µm+k := MS(µk, ..., µk+m−1),
converges to µS with respect to dMK .

Once again we observe that by (3), for every IFSp S and every continuous map f : X → R,

∫

X

f dMS(µ0, ..., µm−1) =

L
∑

j=1

pj

∫

Xm

f ◦ φj d(µ0 × ...× µm−1). (7)

For m ∈ N and a0, ..., am−1 ≥ 0, we say that f : Xm → X is a (a0, ..., am−1)-contraction, if

∀(x0,...,xm−1),(y0,...,ym−1)∈Xm d(f(x0, ..., xm−1), f(y0, ..., ym−1)) ≤
m−1
∑

j=0

ajd(xj , yj) (8)

It is easy to see that the Lipschitz constant of (a0, ..., am−1)-contraction f is bounded by Lip(f) ≤
∑m−1

j=0 aj . In particular, if
∑m−1

j=0 aj < 1, then each (a0, ..., am−1)-contraction is a generalized Banach
contraction.
Miculescu and Mihail in [Mih09] and [MM09] proved the following theorem (in fact, they assumed m = 2,
but, as we will see, the proof works for general case):

Theorem 2.13. Assume that S is a GIFSp on a complete metric space consisting of (a0, ..., am−1)-

contractions, where
∑m−1

j=0 aj < 1. Then S admits the Hutchinson measure.

The proof bases on the following lemma, which generalizes Lemma 2.6. As [MM09, Theorem 3.4 ] is
stated for m = 2, for completeness, we give here a short proof for the general case:

Lemma 2.14. If a GIFSp S consists of (a0, ..., am−1)-contractions, then MS is also (a0, ..., am−1)-
contraction.

Proof. At first, by induction we show that for everym ≥ 1, every (a0, ..., am−1)-contraction φ : Xm → X ,
nonexpansive map f : X → R and measures µ0, ..., µm−1, ν0, ..., νm−1 ∈ P(X), we have

∣

∣

∣

∣

∫

Xm

f ◦ φ d(µ0 × ...× µm−1) −
∫

Xm

f ◦ φ d(ν0 × ...× νm−1)

∣

∣

∣

∣

≤ a0dMK(µ0, ν0)+...+am−1dMK(µm−1, νm−1)

(9)
The case m = 2 is proven in the proof of [MM09, Theorem 3.4], and the case m = 1 is a folklore (the
proof can be found in [KLMV12]; it also can be deduced from the case m = 1). Assume that (9) holds
for some m. We will prove it for m + 1. For every (a0, ..., am)-contraction φ : Xm → X , nonexpansive
map f : X → R and measures µ,..., µm, ν0, ..., νm ∈ P(X), we have

∣

∣

∣

∣

∫

Xm+1

f ◦ φ d(µ0 × ...× µm) −
∫

Xm+1

f ◦ φ d(ν0 × ...× νm)

∣

∣

∣

∣

≤
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∣

∣

∣

∣

∫

Xm+1

f ◦ φ d(µ0 × ...× µm) −
∫

Xm+1

f ◦ φ d(µ0 × ...× µm−1 × νm)

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∫

Xm+1

f ◦ φ d(µ0 × ...× µm−1 × νm) −
∫

Xm+1

f ◦ φ d(ν0 × ...× νm)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Xm

(
∫

X

f ◦ φ dµm

)

d(µ0 × ...× µm−1) −
∫

Xm

(
∫

X

f ◦ φ dνm
)

d(µ0 × ...× µm−1)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

X

(
∫

Xm

f ◦ φ d(µ0 × ...× µm−1)

)

dνm +

∫

X

(
∫

Xm

f ◦ φ d(ν0 × ...× νm−1)

)

dνm

∣

∣

∣

∣

≤

≤
∫

Xm

∣

∣

∣

∣

∫

X

f ◦ φ dµm −
∫

X

f ◦ φ dνm
∣

∣

∣

∣

d(µ0 × ...× µm−1)+

+

∫

X

∣

∣

∣

∣

∫

Xm

f ◦ φ d(µ0 × ...× µm−1) −
∫

Xm

f ◦ φ d(ν0 × ...× νm−1)

∣

∣

∣

∣

dνm ≤
⊕

we use the case m = 1 for maps of the form y → φ(x0, ..., xm−1, y), and the inductive assumption for
maps of the form (y0, ..., ym−1) → φ(y0, ..., ym−1, xm)

⊕

≤
∫

Xm

amdMK(µm, νm) d(µ0× ...×µm−1)+

∫

X

(a0dMK(µ0, ν0)+ ...+am−1dMK(µm−1, νm−1) dνm =

= a0dMK(µ0, ν0) + ...+ amdMK(µm, νm).

Thus the inductive step is finished.
Finally, by (7), we have for every m ∈ N, GIFS S, nonexpansive map f : X → R, and measures
µ0, ..., µm−1, ν0, ..., νm−1 ∈ P(X),

∣

∣

∣

∣

∫

X

f dMS(µ0, ..., µm−1) −
∫

X

f dMS(ν0, ..., νm−1)

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

∣

L
∑

j=1

pj

∫

Xm

f ◦ φj d(µ0 × ...× µm−1) −
L
∑

j=1

pj

∫

Xm

f ◦ φj d(ν0 × ...× νm−1)

∣

∣

∣

∣

∣

∣

≤

≤
L
∑

j=1

pj

∣

∣

∣

∣

∫

Xm

f ◦ φj d(µ0 × ...× µm−1) − pj

∫

Xm

f ◦ φj d(ν0 × ...× νm−1)

∣

∣

∣

∣

≤

≤
L
∑

j=1

pj(a0dMK(µ0, ν0) + ...+ am−1dMK(µm−1, νm−1)) = a0dMK(µ0, ν0) + ...+ am−1dMK(µm−1, νm−1)

Hence, as f was arbitrary, we get

dMK(MS(µ0, ..., µm−1),MS(ν0, ..., νm−1)) ≤ a0dMK(µ0, ν0) + ...+ am−1dMK(µm−1, νm−1)

and the result follows. �

From the perspective of our future results, it is worth to note the following:

Corollary 2.15. If a GIFSp S consists of (a0, ..., am−1)-contractions so that
∑m−1

i=0 ai < 1, then the map
MS : P(X) → P(X) defined by

∀µ∈P(X) MS(µ) := MS(µ, ..., µ)

is a Banach contraction with the Lipschitz constant Lip(MS) ≤ ∑m−1
i=0 ai.

Proof. For every µ, ν ∈ P(X), we have

dMK(MS(µ),MS(ν)) = dMK(MS(µ, ..., µ),MS(ν, ..., ν)) ≤

≤ a0dMK(µ, ν) + ...+ am−1dMK(µ, ν) = (
m−1
∑

i=0

ai)dMK(µ, ν)

�

Now we give an extension of Lemma 2.7 for GIFSs:
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Lemma 2.16. In the above frame, for every µ ∈ P(X), supp(MS(µ)) = FS(supp(µ)) , where

∀K∈K(X) FS(K) := FS(K, ...,K).

Proof. Assume first that x /∈ supp(MS(µ)). Then there exists an open set U ∋ x with MS(µ)(U) = 0,
which means that for every j = 1, ..., L, (µ × ... × µ)(φ−1

j (U)) = 0. Suppose on the contrary that

x ∈ FS(supp(µ)). Then there is (x0, ..., xm−1) ∈ supp(µ) × ... × supp(µ) and j0 = 1, ..., L such that
φj0(x0, ..., xm−1) = x. In particular, (x0, ..., xm−1) ∈ φ−1

j0
(U), so there are open sets W0, ...,Wm−1 so that

(x0, ..., xm−1) ∈ W0 × ...×Wm−1 ⊂ φ−1
j0

(U). Hence

0 = (µ× ...× µ)(φ−1
j0

(U)) ≥ (µ× ...× µ)(W0 × ...×Wm−1) = µ(W0) · ... · µ(Wm−1) > 0,

where the last inequality follows from the fact that xi ∈ supp(µ) for every i = 0, ...,m − 1. All in all,
x /∈ FS(supp(µ)).
Now assume that x /∈ FS(supp(µ)). Since the latter set is closed, we can find an open set U ∋ x disjoint
with FS(supp(µ)). Then for any j = 1, ..., L, we have that φ−1

j (U)∩(supp(µ)× ...×supp(µ)) = ∅. Hence,
as supp(µ× ...× µ) = supp(µ) × ...× supp(µ), we have that

MS(µ)(U) =

L
∑

j=1

pj(µ× ...× µ)(φ−1(U)) = 0.

�

Finally, let us remark that if m = 1, then presented theory reduces to recalled earlier classical IFS
theory. However, as was proved in [MS19] and [Str15], there are sets (even subsets of the real line) which
are GIFSs attractors but which are not IFS attractors. Hence the theory of GIFSs is essentially wider
than the IFSs’ one.

3 Discretization of the Banach fixed point theorem and its ap-

plication to IFS theory

3.1 Discretization of the Banach fixed point theorem

In this section we recall an important result from our earlier paper [dOS20].

Definition 3.1. A subset X̂ of a metric space (X, d) is called an ε-net of X , if for every x ∈ X , there
is y ∈ X̂ such that d(x, y) ≤ ε.
A map r : X → X̂ such that r(x) = x for x ∈ X̂ and d(x, r(x)) ≤ ε for all x ∈ X will be called an
ε-projection of X to X̂ .
For f : X → X , by its r-discretization we will call the map f̂ := (r ◦ f)|X̂ .

Similarly, if f : Xm → X , by its r-discretization we will call the map f̂ := (r ◦ f)|X̂m .

The following result can be considered as a discrete version of the Banach fixed point theorem.

Theorem 3.2. ([dOS20, Theorem 4.2]) Assume that (X, d) is a complete metric space and f : X → X
is a Banach contraction with the unique fixed point x∗ and the Lipschitz constant α. Let ε > 0, X̂ be an
ε-net, r : X → X̂ be an ε-projection and f̂ be an r-discretization of f .
For every x ∈ X̂ and n ∈ N,

d(f̂n(x), x∗) ≤ ε

1 − α
+ αnd(x, x∗). (10)

In particular, there exists a point y ∈ X so that d(x∗, y) ≤ 2ε
1−Lip(f) and which can be reached as an

appropriate iteration of f̂ of an arbitrary point of X̂.
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3.2 Discretization of hyperspace K(X)

Definition 3.3. We say that an ε-net X̂ of a metric space X is proper, if for every bounded D ⊂ X ,
the set D ∩ X̂ is finite.

Note that proper ε-nets are discrete (as topological subspaces), but the converse need not be true. The
existence of proper ε-nets for every ε > 0 is guaranteed by the assumption that X has so-called Heine–
Borel property, that is, the assumption that each closed and bounded set is compact. In particular,
Euclidean spaces and compact spaces admit such nets.

Lemma 3.4. ([dOS20, Lemma 5.2]) Assume that (X, d) is a metric space, X̂ is a proper ε-net and
r : X → X̂ is an ε-projection . Then:

(i) K(X̂) consists of all finite subsets of X̂;

(ii) K(X̂) is an ε-net of K(X);

(ii) the map r : K(X) → K(X̂) defined by r(K) := {r(x) : x ∈ K}, is an ε-projection of K(X) → K(X̂)
(using the same letter r will not lead to any confusion).

3.3 Discretization of the Hutchinson-Barnsley theorem and its version for

GIFSs

Assume that S = (X, (φj)
L
j=1) is a GIFS. Recall that FS : K(X) → K(X) is given by

∀K∈K(X) FS(K) := FS(K, ...,K) =

L
⋃

j=1

φj(K × ...×K). (11)

Remark 3.5.

(1) If m = 1, then S is an IFS and FS = FS , the Hutchinson operator.
(2) If S consists of generalized Banach contractions and (X, d) is complete, then by Remark 2.8 and
Lemma 2.11, we see FS is a Banach contraction, Lip(F S) ≤ αS and the unique fixed point of FS equals
the generalized attractor AS .

For δ > 0, a set Aδ ∈ K(X) will be called an attractor of S with resolution δ, if h(Aδ, AS) ≤ δ.

Theorem 3.6. ([dOS20, Theorem 6.2]) Let (X, d) be a complete metric space and S be a GIFS on X
consisting of generalized Banach contractions. Let ε > 0, X̂ be a proper ε-net, r : X → X̂ be an ε-
projection on X̂ and Ŝ := (X̂, (φ̂j)

L
j=1), where φ̂j = (r ◦ φj)|X̂ is the discretization of φj .

For any K ∈ K(X̂) and n ∈ N,

h(F
n

Ŝ(K), AS) ≤ ε

1 − αS
+ αn

Sh(K,AS), (12)

where AS is the attractor of S.
In particular, there is n0 ∈ N such that for every n ≥ n0, F

n

Ŝ(K) is an attractor of S with resolution
2ε

1−αS
.

4 Discretization of the Markov Operator for IFSs and GIFSs

Throughout this section we assume that S = (X, (φj)
L
j=1, (pj)

L
j=1) is a GIFSp on a complete metric space

(X, d) consisting of (a0, ..., am−1)-contractions, for some a0, ..., am−1 which satisfy
∑L

j=1 aj < 1. Let us
remark that if m = 1, i.e., when S is an IFSp, then S consists of Banach contractions.
Consider ε > 0, X̂ a proper ε-net, r : X → X̂ a Borel measurable ε-projection on X̂ and Ŝ :=
(X̂, (φ̂j)

L
j=1, (pj)

L
j=1), where φ̂j = (r ◦ φj)|X̂m is the discretization of φj .

Lemma 4.1. For any bounded set D ⊂ X, the set {y ∈ X̂ | r−1(y) ∩D 6= ∅} is finite.



9

Proof. Choose y, y′ ∈ X̂ so that for some x, x′ ∈ D, r(x) = y, r(x′) = y′. Then

d(y, y′) = d(r(x), r(x′)) ≤ d(r(x), x) + d(x, x′) + d(x′, r(x′)) ≤ 2ε+ diam(D).

Hence the considered set is bounded. Since X̂ is proper, we arrive to thesis. �

Consider the family Ω ⊆ 2X defined by

Ω := {r−1(y) | y ∈ X̂}. (13)

This family is obviously a measurable partition of X . Moreover, for any y ∈ X̂ we have r−1(y) ⊆ Bε(y)
where Bε(y) := {z ∈ X | d(z, y) ≤ ε}. Indeed, z ∈ r−1(y) implies that r(z) = y and by definition
d(z, y) ≤ ε.
Now let e : X̂ → X be identity map. Then the e♯ : P(X̂) → P̃(X̂) is the operator of natural extension
of measures from P(X̂). Indeed, for any µ ∈ P(X̂) and a Borel set B ⊂ X , we have

e♯µ(B) = µ(e−1(B)) = µ(B ∩ X̂). (14)

Finally, set P̃(X̂) := e♯(P(X̂)). The next lemma can be considered as a counterpart of Lemma 3.4 for
the setting of measures:

Lemma 4.2. In the above frame:

a) P̃(X̂) =
{

∑n
i=1 aiδyi

| n ∈ N, yi ∈ X̂,
∑m

i=1 ai = 1, m <∞
}

, where δx is the Dirac measure on X

supported on x;

b) P̃(X̂) is a proper ε-net of P(X);

c) r♯ is an ε-projection of P(X) to P̃(X̂), when considering r as a map r : X → X;

d) M̂S = e♯ ◦M Ŝ , where M̂S = (r♯ ◦MS)|P̃(X̂) is the r♯-discretization of MS.

Proof. (a) Since X̂ is proper, its compact sets are finite, and hence probability measures from P(X̂) has
finite support. This, together with the definition of P̃(X̂), give (a).
(b) Choose µ ∈ P(X) and let K ∈ K(X) be such that µ(X \K) = 0. Then the set

Ωµ := {r−1(y) ∩K | y ∈ X̂},

is a measurable partition of K.
Consider the set K̂ := {y ∈ X̂ | r−1(y) ∩ K 6= ∅} . We know that this set is finite, nominally

K̂ = {y1, ..., yn}. Then we introduce the measure ν ∈ P̃(X̂) by

ν :=

n
∑

i=1

µ(r−1(yi) ∩K) δyi
. (15)

We claim that dMK(µ, ν) ≤ ε. To see that consider f ∈ Lip1(X,R) . Then

∣

∣

∣

∣

∫

X

f(x)dµ(x) −
∫

X

f(x)dν(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

m
∑

i=1

∫

r−1(yi)∩K

f(x)dµ(x) −
m
∑

i=1

µ(r−1(yi) ∩K) f(yi)

∣

∣

∣

∣

∣

=

=

∣

∣

∣

∣

∣

m
∑

i=1

∫

r−1(yi)∩K

f(x) − f(yi)dµ(x)

∣

∣

∣

∣

∣

≤
m
∑

i=1

∫

r−1(yi)∩K

|f(x) − f(yi)| dµ(x) ≤ ε

because f ∈ Lip1(X,R) and r−1(y) ⊆ Bε(y).
(c) We first show that the measure ν considered in previous point equals r♯µ. For a Borel set B ⊂ X ,

we have

r♯µ(B) = µ(r−1(B)) = µ(r−1(B) ∩K) = µ(r−1(B ∩ {y1, ..., yn}) ∩K) =
∑

i:yi∈B

µ(r−1(yi) ∩K) = ν(B)
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and we are done. Thus it remains to prove that r♯(µ) = µ for µ ∈ P̃(X). If µ =
∑n

i=1 aiδyi
∈ P̃(X̂),

then for every Borel set B ⊂ X ,

r♯µ(B) = µ(r−1(B)) =
∑

i:yi∈r−1(B)

ai =
∑

i:yi∈(B)

ai = µ(B)

so r♯µ = µ.
(d) Choose µ ∈ P̃(X) and any Borel set B ⊂ X . Then we have:

r♯ ◦MS(µ)(B) = MS(µ)(r−1(B)) = M(µ, ..., µ)(r−1(B)) =

L
∑

j=1

pj(µ× ...× µ)(φ−1
j (r−1(B))) =

=
L
∑

j=1

pj(µ× ...× µ)((r ◦ φj)−1(B)) =
L
∑

j=1

pj(µ× ...× µ)(((r ◦ φj)|X̂m)−1(B)) =

=

L
∑

j=1

pj(µ× ...× µ)(((r ◦ φj)|X̂m)−1(B ∩ X̂)) = M Ŝ(µ|X̂)(B ∩ X̂) = e♯ ◦M Ŝ(µ).

�

Now we give corollaries of the above lemma and of Theorem 3.2. Since the theory of IFSs is more
widespread than that of GIFSs, we will give two versions separately - for IFSs and GIFSs.

A measure ν ∈ P̃(X̂) will be called a discrete Hutchinson measure for S with resolution δ if dMK(ν, µS) ≤
δ.

Theorem 4.3. Let (X, d) be a complete metric space and S = (X, (φj)
L
j=1, (pj)

L
j=1) be a IFSp consisting

of Banach contractions. Let ε > 0, X̂ be a proper ε-net, r : X → X̂ be a proper measurable ε-projection
on X̂ and Ŝ := (X̂, (φ̂j)

L
j=1, (pj)

L
j=1), where φ̂j = (r ◦ φj)|X̂ is the discretization of φj .

For any ν ∈ P(X̂) and n ∈ N,

dMK(e♯(Mn
Ŝ

(ν)), µS) ≤ ε

1 − αS
+ αn

S dMK(e♯(ν), µS), (16)

where µS is the Hutchinson measure of S.
In particular, there is n0 ∈ N such that for every n ≥ n0, e

♯(Mn
Ŝ

(ν)) is a discrete Hutchinson measure of

S with resolution 2ε
1−αS

.

Theorem 4.4. In the frame of the above theorem, assume that S = (X, (φj)
L
j=1, (pj)

L
j=1) is a GIFSp

consisting of (a0, ..., am−1)-contractions, where
∑m−1

i=0 ai < 1.

For any ν ∈ P(X̂) and n ∈ N,

dMK(e♯(M
n

Ŝ(ν)), µS ) ≤ ε

1 − α
+ αn dMK(e♯(ν), µS), (17)

where µS is the Hutchinson measure of S and α :=
∑m−1

i=0 ai.

In particular, there is n0 ∈ N such that for every n ≥ n0, e
♯(M

n

Ŝ(ν)) is a discrete Hutchinson measure of
S with resolution 2ε

1−αS
.

Let us explain the thesis. Starting with an IFSp (or with a GIFSp) S = (X, (φj)
L
j=1) consisting of

generalized Banach contractions (or (a0, .., am−1)-contractions), we switch to Ŝ := (X̂, (φ̂j)
L
j=1), which

is the IFSp (or GIFSp) consisting of discretizations of maps from S to ε-net X̂ . Then, picking any
v ∈ P(X̂), it turns out that the sequence of iterates (Mn

Ŝ
(v)) (or the sequence of iterates (M

n

Ŝ(v)) in the

GIFS case) gives an approximation to the Hutchinson measure µS of S with resolution δ > ε
1−αS

(more

precisely, their natural extensions from P̃(X̂)).

Remark 4.5. In the formulation of the above results we had to distinguish measures from P(X̂) with
their natural extensions from P̃(X̂). However, it is rather clear that we can identify µ ∈ P(X̂) with
e♯(µ) ∈ P̃(X̂), and in the remaining part of the paper we will make this identification. This will not lead
to any confusions and will simplify notations.
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5 Discrete Deterministic Algorithms for Hutchinson Measures

Within this section we assume that S = (X, (φj)
L
j=1, (pj)

L
j=1) is a GIFSp on a complete metric space

X = (X, d) comprising of (a0, ..., am−1)-contractions, and αS :=
∑m−1

i=0 ai. Also, X̂ is a proper ε-net of

X , r : X → X̂ is a Borel measurable ε-projection and Ŝ := (X̂, (φ̂j)
L
j=1, (pj)

L
j=1), where φ̂j := (r◦φj)|Xm .

All other symbols have the same meaning as in earlier sections.
Once again we point out that we formulate all results for GIFSs case, but if m = 1, then we get the
classical IFS case and then S consists of Banach contractions, FS = FS , the Hutchinson operator and
MS = MS , the Markov operator.

5.1 A description of discrete Markov operator

Lemma 5.1. In the above frame, if µ =
∑n

i=1 viδyi
∈ P(X̂), then

supp(M Ŝ(µ)) = {φj(yi0 , ..., yim−1
) : j = 1, ..., L, i0, ..., im−1 = 1, ..., n} (18)

and enumerating this set by {z1, ..., zm′}, we have:

M Ŝ(v) =

m′

∑

q=1

v′qδzq , (19)

where
v′q =

∑

φ̂j(yi0
,...,yim−1

)=zq

pjvi0 · ... · vim−1
. (20)

Proof. For every Borel set B ⊂ X ,

M Ŝ(v)(B) =

L
∑

j=1

pj(µ× ...× µ)(φ−1
j (B)) =

L
∑

j=1

pj
∑

(yi0
,...,yim−1

)∈φ−1(B)

vi0 ...vim−1
=

=

L
∑

j=1

pj
∑

φj(yi0
,...,yim−1

)∈B

vi0 ...vim−1
=

∑

zq∈B

v′q.

�

Remark 5.2. Looking at the above lemma we see that, in the frames of Theorems 4.4 and 4.3, when
iterating the operator M Ŝ(µ), we automatically get successive iterations of F Ŝ(supp(µ)). In turn, the
support of obtained discrete Hutchinson measure µδ for S with resolution δ is the attractor Aδ of S with
resolution δ. This is a discrete version of the classical result where the actual Hutchinson measure of a
IFS has support on its attractor.

The next example shows that the discrete Markov operator may not be contractive even if the under-
lying IFS (of GIFS) consists of (generalized) Banach contractions.

Example 5.3. Let X = [0, 2], and consider it with the euclidean metric. Set X̂ =
{

1
2 , 1

}

and define

r(x) =

{

1 if x 6= 1
2

1
2 if x = 1

2

.

Clearly, r is 1-projection of X to X̂. Now let S = (X, (φ), (1)) be the IFSp where φ(x) := x
2 . As can be

easily calculated,

φ̂(x) := (r ◦ φ)|X̂(x) =

{

1 if x = 1
2

1
2 if x = 1

.

Then,
MŜ(aδ 1

2
+ (1 − a)δ1) = (1 − a)δ 1

2
+ aδ1

and hence M
(2)

Ŝ
(µ) = µ, for every µ ∈ P(X̂). In particular, MŜ cannot be Banach contraction.
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For practical purposes, in presented algorithms we compute the set FŜ(supp(ν)) according to (18).
Then, we enumerate FŜ(supp(ν)) := {zq, 1 ≤ q ≤ m′} and, for each q we define coefficients a′q according
to formula (20).

Thus, the output of our algorithm is a bitmap image with the equal shape of Aδ but each pixel
represents the measure νδ of the atom {y}, that is, a gray scale histogram. More than that, the value
νδ({y}) represents an approximation of the value

νδ({y}) ≃ µS(r−1({y})). (21)

5.2 Uniform ε-nets

In order to build an algorithm we are going to fix some notation and consider a special type of ε-nets on
rectangles in Euclidean spaces. In particular, we assume that

X = [a1, b1] × ...× [ad, bd] ⊂ R
d.

Given ε > 0 we consider the sequence x[i] ∈ R, i ∈ Z such that x[i] < x[i + 1] and x[i + 1] − x[i] = ε,
for all i ∈ Z. Then the set X̂ ⊆ R

d given by

X̂ := {(x[i1], ..., x[id]) ∈ X̂ | i1, ..., id ∈ Z} (22)

is a proper ε-net for X with respect to the Euclidean distance.
We need also to define an ε-projection on X̂ . Consider the auxiliary function q : R → {x[i] ∈ R, i ∈ Z}

given by

q1(t) :=















x[i1], if t ≤ x[i1]

x[i], if x[i] ≤ t < x[i]+x[i+1]
2 , i ≥ m

x[i + 1], if x[i]+x[i+1]
2 ≤ t ≤ x[i + 1], i+ 1 ≤ in1

x[in1
], if t ≥ x[in1

]

(23)

where x[i1] is the smallest point such that a1 ≤ x[i] and x[in1
] is the biggest point such that b1 ≥ x[i].

The functions q2, ..., qd refer to other coordinates and are defined by the same formula replacing [a1, b1]
by [ai, bi], i = 2, ..., q.

Then, the actual ε-projection on X̂ is given by

r(x1, ..., xd) := (q1(x1), ..., qd(xd)). (24)

We notice that r is clearly proper and Borel measurable because r−1(v1, ..., vd) is an Fσ set for any
(v1, ..., vd) ∈ X̂. Finally, for a measure ν ∈ P(X̂), let us adopt the notation

ν =

n
∑

k=1

νi1
k
,...,id

k
δ(x1[i1k],...,xd[idk])

, (25)

where (x1[i1k], ..., xd[idk]) ∈ X̂ and
∑n

k=1 νi1k,...,idk = 1.

5.3 The IFS and GIFS algorithms

Here we present an algorithm to generate discrete Hutchinson measure for S with a desired resolution δ,
as well an attractor of S with resolution δ.

GIFSMeasureDraw(S)
input:

δ > 0, the resolution.

K ⊆ X̂, any finite and not empty subset (a list of points in X̂).

ν, any probability measure such that supp(ν) = K.

The diameter D of a ball in (X, d) containing AS and K.

output:

A bitmap representing a discrete attractor with resolution at most δ.
A bitmap image representing a discrete Hutchinson measure with resolution at most δ.

Compute:
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αS :=

m−1
∑

i=0

ai

ε > 0 and N ∈ N such that ε
1−αS

+ αN
S D < δ

Initialize µ := 0 and W := ∅

for n from 1 to N do

for ℓ from 1 to Card(K) do

for j from 1 to L do

yi0 := K[ℓ][1],..., yim−1
:= K[ℓ][m]

(x1[i1], ..., xd[id]) := φ̂j(yi0 , ..., yim−1
)

If (x1[i1], ..., xd[id]) 6∈W then W := W ∪ (x1[i1], ..., xd[id])
ν(x1[i1],...,xd[id]) := ν(x1[i1],...,xd[id]) + pjνy0

· ... · νym−1

end do

end do

K := W and W := ∅

ν := µ and µ := 0
end do

return: Print K and ν

Remark 5.4. By construction, the measure µN := M
N

Ŝ (ν) has support on the finite set KN := F
N

Ŝ (K)
where K = supp(ν). Recalling Remark 5.2, this shows that the discrete Hutchinson measure νδ, with
resolution δ, is actually a measure of probability with finite support on a discrete fractal Aδ with resolution
δ.

5.4 IFS examples

We have run our experiments using Fortran 95 implementations of our algorithms. The computer used
has an Intel i5-6400T 2.20GHz CPU with 8 GB of RAM.

Example 5.5. Using our algorithms we can recover the results of [Bar88, Chapter IX], for IFS with
probabilities. In page 331, Table IX.1, that author considers the IFSp given by

S :















φ1(x, y) = (0.5x, 0.5y)
φ2(x, y) = (0.5x+ 0.5, 0.5y)
φ3(x, y) = (0.5x, 0.5y + 0.5)
φ4(x, y) = (0.5x+ 0.5, 0.5y + 0.5)

with the probabilities (p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4). The comparison is made in Figure 1.

Figure 1: From the left to the right the output of the algorithm GIFSMeasureDraw(S) after 8 iterations,
with 512× 512 pixels and the picture IX.247 obtained in [Bar88] through a random process with 100.000
iterations.

Example 5.6. This example is a classic geometric fractal, the Maple Leaf. The approximation of the
attractor by the algorithm IFSDraw(S) from [dOS20] is presented in Figure 2 and the approximation of the
discrete Hutchinson measure, through GIFSMeasureDraw(S), is presented in the same figure. Consider
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X = [−2, 2]2 and the IFS φ1, ..., φ4 : X → X with probabilities (pj)
L=4
j=1 where

S :















φ1(x, y) = (0.8x+ 0.1, 0.8y + 0.04)
φ2(x, y) = (0.5x+ 0.25, 0.5y + 0.4)
φ3(x, y) = (0.355x− 0.355y + 0.266, 0.355x+ 0.355y + 0.078)
φ4(x, y) = (0.355x+ 0.355y + 0.378,−0.355x+ 0.355y + 0.434)

As we can see, when the initial probabilities are small on the index of a map responsible for a part of
the fractal attractor, the Hutchinson measure is very little concentrated on that part. For example, if we
choose equal probability we will have a much more equal distribution as in Figure 3.

Figure 2: From left to right, the output of the algorithm GIFSMeasureDraw(S) after 5 iterations, 512×512
pixels, with the set of probabilities (p1 = 0.3, p2 = 0.2, p3 = 0.05, p4 = 0.45) and (p1 = 0.05, p2 =
0.2, p3 = 0.3, p4 = 0.45) respectively, for the rightmost, algorithm IFSDraw(S) after 12 iterations.

Figure 3: The output of the algorithm GIFSMeasureDraw(S) after 12 iterations, ε = 0.004 (512 points in
a uniform net) with the set of probabilities (p1 = 0.25, p2 = 0.25, p3 = 0.25, p4 = 0.25). In this case the
measure ν is a Hutchinson measure with resolution inferior to δ = 0.2441701363.

Example 5.7. This example is presented in the final section of [GMN16]. Each map consists of a
translation followed by rotation and a dilation by a factor smaller than one, thus ensuring that it is a
Banach contraction and hence our algorithm is applicable. The approximation of the discrete Hutchinson
measure, through GIFSMeasureDraw(S), is presented in the Figure 4. An approximation of the attractor,
as a secondary output of the algorithm, is presented in Figure 5. Consider X = [0, 1]2 and the IFS
φ1, ..., φ4 : X → X with probabilities (pj)

L=4
j=1 where

S :































φ1(x, y) = (cos(π6 )(0.4x− 0.24) − sin(π6 )(0.4y − 0.08) + 0.6,
cos(π6 )(0.4y − 0.08) + sin(π6 )(0.4x− 0.24) + 0.2)

φ2(x, y) = (cos( π
30 )(0.6x− 0.03) + sin( π

30 )(0.6y − 0.12) + 0.05,
cos( π

30 )(0.6y − 0.12) − sin( π
30 )(0.6x− 0.03) + 0.2)

φ3(x, y) = (0.5x− 0.475 + 0.95, 0.5y − 0.475 + 0.95)
φ4(x, y) = (0.45x− 0.045 + 0.1, 0.45y − 0.405 + 0.9)

and (p1 = 0.18, p2 = 0.22, p3 = 0.3, p4 = 3).
As the maps are affine, a simple evaluation shows that αS = 0.6, where S = (X, (φj)

4
j=1, (pj)

4
j=1) (αS is

the maximum contraction between the four maps φj , all being uniform contractions). After 15 iterations of
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our algorithm, which took only 5.56 seconds for 1024×1024 pixels, we obtain (Figure 4, top-right) the as-
sociated Hutchinson (invariant) measure with resolution at most δ, where δ ∼ ε

1−αS
+αN

S D = 0.00310635,

for N = 15, ε = 1
1024 and D =

√
2. Following the technique of [GMN16] a similar approximation (Fig-

ure 4, bottom) is given with resolution of at most 0.0047583, to compare. Most specifically, we have the
following benchmark data given in the below table:

Pixels M ×M Iter. Number N Time(in seconds) Resol. at most δ ∼ ε
1−αS

+ αN
S D

256 × 256 15 0.56 0.010430566982011563
512 × 512 15 1.76 0.005547754482011564

1024 × 1024 15 5.56 0.003106348232011563

Figure 4: From left to right, the output of the algorithm GIFSMeasureDraw(S) after 15 iterations, for
256 × 256, 512 × 512 and 1024 × 1024 pixels, with the prescribed set of probabilities; below, the picture
given in [GMN16].

Figure 5: The attractor AS , as the secondary output of the algorithm GIFSMeasureDraw(S), for the
same configurations as in Figure 4.

5.5 GIFS examples

Example 5.8. The approximation of the attractor by the algorithm GIFSDraw(S) from [dOS20] is pre-
sented in Figure 6 and the approximation of the discrete Hutchinson measure, through GIFSMeasureDraw(S),
is presented in the same figure. Consider X = [0, 1]2 and the GIFS φ1, ..., φ3 : X2 → X with probabilities
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(pj)
L=3
j=1 where

S :







φ1(x1, y1, x2, y2) = (0.25x1 + 0.2y2, 0.25y1 + 0.2y2)
φ2(x1, y1, x2, y2) = (0.25x1 + 0.2x2, 0.25y1 + 0.1y2 + 0.5)
φ3(x1, y1, x2, y2) = (0.25x1 + 0.1x2 + 0.5, 0.25y1 + 0.2y2))

Once again, we can see that when the initial probabilities are small on the index of a map responsible for
a part of the fractal attractor, the Hutchinson measure is very little concentrated on that part.

Figure 6: On the top, from the left to the right the output of the algorithm GIFSMeasureDraw(S) after
12 iterations, with the set of probabilities (p1 = 0.10, p2 = 0.45, p3 = 0.45), (p1 = 0.45, p2 = 0.10, p3 =
0.45) and (p1 = 0.45, p2 = 0.45, p3 = 0.10) respectively. On the bottom, algorithm GIFSDraw(S) after
12 iterations. In all the cases we have , 512 × 512 pixels.

6 Further applications

6.1 Approximating integrals with respect to stationary Probability measures

In a recent preprint [CJ19] the authors describe a method to approximate integral of functions with respect
to stationary probability measures (measures that are fixed points for the Markov operator associated
to an IFS with probabilities, MS (µS) = µS) which are the Hutchinson measures for those IFSs. The
setting is the interval [0, 1] and the IFS is required to fulfill some additional regularity properties such as
holomorphic extension, control of derivatives of the maps in the IFS and on the set of functions that one
may integrate.

Since our algorithm GIFSMeasureDraw(S) for dimension 1 provides a discrete δ-approximation of such
measures µS in the form

ν :=

n
∑

k=1

νikδx[ik]

where the points x[ik] are in the correspondent δ-approximation of the actual attractor, we can approxi-
mate the integral of a Lipschitz function g : [0, 1] → R by

∫

[0,1]

gdµS ≃
n
∑

k=1

νikg(x[ik])

with precision δ.
As a demonstration of this we next describe the measures and the integrals for three examples found

in [CJ19] using our algorithms.
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n Approx.
∑m

k=1 νik(x[ik])n Actual value
∫

[0,1] x
ndµS , from [CJ19].

0 1.0000000 1
1 0.6666608 2/3=0.66666666666...
2 0.5555478 5/9=0.55555555555...
3 0.4957168 58/117=0.49572649572...
4 0.4552590 799/1755=0.45527065527...

5 0.4246685
...

6 0.4002248

7 0.3800868
...

8 0.3631560 1213077397297/3340208879865=0.36317411303...
9 0.3486940 764170684622650/2191399705783431=0.34871351064...
10 0.3361713 16313445679660723325/48524163685162512633=0.33619220694...

Table 1: Moments using the δ-approximation of µS by GIFSMeasureDraw(S)

Example 6.1. In this first example we consider the Hausdorff moment of the Hutchinson measure µS

which is given by

γn = γn(µS) :=

∫ ∞

−∞

xndµS(x), n = 0, 1, . . .

S :

{

φ1(x) = 1
3x

φ2(x) = 1
3x+ 2

3

with probabilities p1 := 1/3 and p2 := 2/3.
For purpose of comparison we use the algorithm GIFSMeasureDraw(S) to approximate µS (see Fig-

ure 7) and then compute γn, n = 0, 1, . . . , 10: The first 10 moments are displayed in Table 1.

Figure 7: Histogram of µS produced by algorithm GIFSMeasureDraw(S) with resolution δ = 0.0001 after
10 iterations, having a high definition 50, 000 pixels taking 1.9 seconds.

Example 6.2. In this second example we consider the Wasserstein distance between two Hutchinson
measures µS1

and µS2
(see Figure 8) associated to different probabilities for the same IFS

S :

{

φ1(x) = sin(πx/4)
6 + 1

4

φ2(x) = sin(πx/4)
3 + 2

3

with probabilities p1 := 1/7, p2 := 6/7 and q1 := 1/2, q2 := 1/2 respectively.
It is easy to see that the IFS is π

12 -Lipschitz. Then our algorithm GIFSMeasureDraw(S) can be used
to approximate the integrals and, in particular, under the hypothesis of [CJ19] the Wasserstein distance
is given by

W1 (µS1
, µS2

) =

∣

∣

∣

∣

∫

xdµS2
−
∫

xdµS1

∣

∣

∣

∣

≃ 0.22104594557263850324...

Example 6.3. For the last, we consider the problem of compute the Lyapunov exponent of the Hutchinson
measure µS (see Figure 9) of a IFSp given by

χµS
:= −

∫ 2
∑

i=1

pi log |φ′i(x)| dµS(x) ≃ 1.7367208099326368...
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Figure 8: From left to right: the histograms of µS1
and µS2

produced by algorithm GIFSMeasureDraw(S)
with resolution δ = 0.00003 after 10 iterations, having a high definition 200, 000 pixels taking 5.8 seconds.

for

S :

{

φ1(x) = sin(πx/4)
6 + 1

4

φ2(x) = sin(πx/4)
3 + 2

3

with probabilities p1 := 1/3, p2 := 2/3.

Figure 9: The histogram of µS produced by algorithm GIFSMeasureDraw(S) with resolution δ = 2.11 ×
10−6 after 20 iterations, having a high definition 3, 200, 000 pixels taking 0.5690 seconds.

6.2 Projected Hutchinson measures

One can easily adapt algorithm GIFSMeasureDraw(S) to also compute the integral of a function with
respect to the Hutchinson measure and compare this result against the typical averages, as predicted by
Elton’s ergodic theorem, see [Elt87].

For example, given the GIFS S from [Oli17, Example 11],

S :

{

φ1(x, y) = 1
3x+ 1

4y
φ2(x, y) = 1

3x− 1
4y + 1

2

we consider its extension

R :

{

ψ1(x, y) = (y, 13x+ 1
4y)

ψ2(x, y) = (y, 13x− 1
4y + 1

2 )

which is an eventually contractive IFS on [0, 1]2 (the second power of R is 0.5435541904-Lipschtz), so our
theory works. In both cases we consider probabilities p1 := 0.65 and p2 := 0.35. As pointed out in [Oli17],
if ν ∈ P([0, 1]) is the Hutchinson measure for the GIFSp S = (X, (φj)

2
j=1, (pj)

2
j=1) and µR ∈ P([0, 1]2) is

the Hutchinson measure for the IFSp R = (X, (ψj)
2
j=1, (pj)

2
j=1) (see Figure 10) then ν 6= ν′, where ν′ is

the projected Hutchinson measure Π♯
1(µR).

Using our algorithms we are capable to display a histogram representation of such distributions on
[0, 1]. In each case the height of each vertical bar represents the approximate measure of a cell in the
ε-net with 350 points in X = [0, 1], and resolution 2 × 10−2 (see Figure 11).

The ergodic theorem for projected Hutchinson measures from [Oli17] claims that

lim
N→+∞

1

N

N−1
∑

n=0

f (xn(a)) =

∫

X

f(t)dν′(t)

where xn(a) is the projection on the first coordinate and a is a sequence of symbols chosen with probability
one in the sequences of {1, 2}N according to the probabilities p1 := 0.65 and p2 := 0.35.
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Figure 10: The output of algorithm GIFSMeasureDraw(R) after 25 iterations, having a fairly high defini-
tion, 512 × 512 pixels. On the left the attractor AR on the right the histogram of µR.

Figure 11: The output of algorithm GIFSMeasureDraw(S) after 25 iterations, having a fairly high defini-

tion 350× 350 pixels. On the left the attractor ν on the right the histogram of ν′ = Π♯
1(µR) which is the

projection of the Figure 10.

Consider f(x) = x2: using the measure obtained by GIFSMeasureDraw(R) for estimate
∫ 1

0
x2dν′(x),

the projected measure, we obtain

∫ 1

0

x2dν′(x) ≃ 0.12177521930...

On the other hand, using the ergodic theorem where each ai in the sequence a = (a0, a1, a2, ...) is
picked from a random i.i.d.ṽariable I ∈ {1, 2} with distribution p1 := 0.65 and p2 := 0.35, x0 = 0.5 and
N = 10.000 we get

1

10000

10000−1
∑

n=0

(xn(a))2 ≃ 0.1228183842857 . . .

with an absolute error of 5 × 10−2. For a fractal computed on a resolution of 500 × 500 pixels the error
is 3 × 10−4.

6.3 IFS and GIFS with place dependent probabilities

We consider variable probabilities, that is, each pj is as function of x, such as in [Hut81], [BDEG88,

Theorem 2.1], assuming average-contractiveness, [Ste02], [Öbe05] and more recently [GMM19] for IFS
and in [Mic14, Section 3] for GIFS.

We notice that Lemma 4.2 is still valid under the variable probability hypothesis. Thus we just need
to ensure that the respective Markov operator is Banach contractive to use Theorem 3.2. We are not
going to remake several straightforward computations to update the algorithms. We only update the
necessary computation of the probabilities in each case (both in the bidimensional version):

• In the algorithm GIFSMeasureDraw(S) we replace

ν(x1[i1],...,xd[id]) := ν(x1[i1],...,xd[id]) + pjνy0
· ... · νym−1

by
ν(x1[i1],...,xd[id]) := ν(x1[i1],...,xd[id]) + pj(y0, .., ym−1)νy0

· ... · νym−1

Example 6.4. In [Mih08, p. 146], the author considers the one dimensional case X = [0, 1] and a GIFS
S = (X, (φj)

2
j=1) where

{

φ1(x, y) = x
4 + y

4
φ2(x, y) = x

4 + y
4 + 1

2 .
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Given a function

α(t) =







1, if t ∈
[

0, 14
]

2 − 4t, if t ∈
[

1
4 ,

1
2

]

0, if t ∈
[

1
2 , 1

]

he considers the probabilities p1(x, y) = 1
33α(x)α(y),

p2(x, y) = 1 − p1(x, y) = 1 − 1

33
α(x)α(y),

and the GIFSpdp S = (X, (φj)
2
j=1, (pj)

2
j=1).

Under this hypothesis, he verifies that MS is a contraction and µS is its only fixed point. More than
that, he verifies that the attractor is AS = [0, 1] and suppµS ⊆

[

0, 14
]

∪
[

1
2 , 1

]

.
From the previous discussion it is easy to see that our algorithm GIFSMeasureDraw(S) can be used to

get approximations of µS as we can see in figure 12

Figure 12: The output of the algorithm GIFSMeasureDraw(S) after 1, 5 and 15 iterations, having a fairly
high definition of 300 pixels.

The output suggests that µS = δ1! We can verify that by direct examination as follows.
Consider a continuous function f : [0, 1] → R then,

∫

f(z)dMS(δ1 × δ1) =

∫

x

∫

y

p1(x, y)f(φ1(x, y)) + p2(x, y)f(φ1(x, y))dδ1(x)dδ1(y) =

= p1(1, 1)f(φ1(1, 1)) + p2(1, 1)f(φ1(1, 1)) = p1(1, 1)f

(

1

4
+

1

4

)

+ p2(1, 1)f

(

1

4
+

1

4
+

1

2

)

=

= f(1) =

∫

f(z)dδ1(z)),

because p1(1, 1) = 0. Therefore, MS(δ1 × δ1) = δ1 meaning that µS = δ1.

Example 6.5. In this case we consider a negative case from [CR90]. In this case the authors consider
the doubling map T (x) = 2x mod 1 on the interval and studies the solutions of the equation

Puf(x) = u
(x

2

)

f
(x

2

)

+ u

(

x

2
+

1

2

)

f

(

x

2
+

1

2

)

for a given potential u : [0, 1] → R and the Pu-harmonic functions, i. e. Pu(f) = f . Then they
characterizes the dual solutions P ∗

u (µ) = µ, which he calls invariant measures.
It follows that this problem is the same as the problem of finding the Hutchinson measure for the

IFSpdp S = (X, (φj)
2
j=1, (pj)

2
j=1) where

{

φ1(x) = x
2

φ2(x) = x
2 + 1

2 .

Given a function, say u(t) = cos2(3πt), there are considered probabilities p1(x) = u(φ1(x)) = u(x/2) and
p2(x) = u(φ2(x)) = u(x/2 + 1/2).

In [CR90, example 3 b], the authors show that the invariant measures (Hutchinson measures for the
IFSpdp) are the probabilities supported on the T -periodic cycles {0}, {1} and { 1

3 ,
2
3}. In that case our

Markov operator cannot be a contraction because there is more than one Hutchinson measure; however,
we can still use GIFSMeasureDraw(S) to see if it converges to any measure. We show in Figure 13 a
selection phenomenon: the iteration seems to converge to some combination µ := aδ0 + bδ 1

3
+ cδ 2

3
+ dδ1

depending on the initial measure we choose.
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Figure 13: The output of algorithm GIFSMeasureDraw(S) after 1 and 100 iterations, having a fairly high
definition of 500 pixels. In the first row, after 100 iterations the discrete measure is µ := 0.1030321845 δ0+
0.8199775187 δ 1

3
+0.06209698542 δ 2

3
+0.01471437940 δ1; in the second row, after 100 iterations the discrete

measure is µ := 0.05792616463 δ0 + 0.4568641232 δ 1
3

+ 0.4317603436 δ 2
3

+ 0.05323785154 δ1.
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