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Abstract

In this paper, we study a mixed variational problem subject to perturbations, where the noise

term is modelled by means of a bilinear form that has to be understood to be “small” in some

sense. Indeed, we consider a family of such problems and provide a result that guarantees existence

and uniqueness of the solution. Moreover, a stability condition for the solutions yields a Gener-

alized Collage Theorem, which extends previous results by the same authors. We introduce the

corresponding Galerkin method and study its convergence. We also analyze the associated inverse

problem and we show how to solve it by means of the mentioned Generalized Collage Theorem

and the use of adequate Schauder bases. Numerical examples show how the method works in a

practical context.
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1 Introduction: Direct vs Inverse Problem

In applied mathematics there are always two problems associated with a mathematical model of

natural phenomena, the so called direct and inverse problem. The direct problem usually refers to the

determination and the analysis of the solution to a completely prescribed equation or set of equations.

In many contexts, a direct problem assumes the form of differential equations subject to known initial

conditions and/or boundary conditions. The inverse problem, instead, describes the model from the

parameter estimation point-of-view. Once the model has been created and some empirical solution

has been observed, it is of paramount importance to be able to determine a combination of the

unknown parameters such that the induced problem admits empirical observation as an approximate

solution. One can see the inverse problem as the natural opposite of a direct problem. The study
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of inverse problems has attracted a lot of attention in the literature. Very often, in fact, the inverse

problem is ill-posed, while the direct problem is well-posed. When a problem is well-posed, it has the

properties of existence, uniqueness, and stability of the solution [25]. On the other hand, an ill-posed

problem loses one or more of these desirable properties. This makes the analysis of inverse problems

very challenging from a numerical perspective: even when the direct problem is easily solvable, the

corresponding inverse problem can be very complex and difficult to solve.

The literature is quite rich in papers proposing ad-hoc methods to address ill-posed inverse

problems: These methods usually involve a minimization problem which includes a regularization

term that stabilizes the numerical algorithm. One can see [26, 27, 31, 32, 33, 34, 35] and the references

therein to get better details about these approaches.

Quite recently other approaches have been introduced to deal with inverse problems when the

corresponding direct problem can be viewed as the solution to a fixed point equation and analyzed

through the well-known Banach’s fixed point theorem. These approaches rely on the so-called Collage

Theorem, that it is a simple consequence of the above mentioned Banach’s theorem (see [3, 4]). In

fractal imaging, these results have been used extensively to approximate a target image by the fixed

point (image) of a contractive fractal transform [4, 5, 22, 24, 28, 30, 36]. Over the last few years,

the same philosophy has been used to deal with inverse problems for ordinary and partial differential

equations. The fact that an ordinary (and even a partial) differential equation can be formulated as

a fixed point equation in a specific complete metric space provides the gateway to pursuing analysis

based on some of the above results. Indeed, solution frameworks and related results have been

established for inverse problems associated with different families of ordinary and partial differential

equations (see [6, 10, 15, 16, 17, 18, 19, 20, 21, 23, 29]).

In this paper, we explore systems of mixed variational equations, both from the direct problem

and inverse problem point of view. The mixed variational formulation of a linear elliptical boundary

problem is obtained from the introduction of a new variable, usually related to any of the derivatives

of the original variable, and whose presence is justified in many cases by its applied interest. The

theoretical results, known as the Babuška–Brezzi theory, and corresponding numerical methods,

mixed finite elements, have been successfully developed in the last decades: see, for instance, [2,

7, 9, 13]. What we discuss in this paper, instead, is a modified mixed variational problem that

includes a kind of perturbation.

The paper is organized as follows. Section 2 presents a Generalized Collage Theorem for a

family of perturbed systems of mixed variational equations. Section 3 analyzes and discusses a

Galerkin numerical method for the direct problem. Section 4 presents the formulation of the inverse

problem and provides a numerical example. Section 5 concludes the paper.
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2 Families of Mixed Variational Equations

Unlike the classical system of mixed variational equations corresponding to the mixed variational

formulation of a differential problem, we discuss a more general version of it, which includes a certain

perturbation. The perturbation term is modelled by means of a new bilinear form, that has to

be interpreted to be small in some sense. More specifically, let E and F be real Hilbert spaces,

a : E×E −→ R, b : E×F −→ R and c : F ×F −→ R be continuous bilinear forms, and x∗ : E −→ R
and y∗ : F −→ R be linear forms. The problem under consideration is given in these terms:

find (x0, y0) ∈ E × F such that

{
a(x0, ·) + b(·, y0) = x∗

b(x0, ·) + c(y0, ·) = y∗
. (2.1)

In fact, we state a more general result for a family of problems that include a stability property, (2.3),

which will be essential for our purposes since it will allow us to deal with a Galerkin scheme for a

specific direct problem as well as with a suitable inverse problem in the next sections. Furthermore,

such a stability condition, (2.3), it is a Generalized Collage Theorem that extends that in [20] and

in [6] in the Hilbertian framework, and that in Section 4 will be useful in order to solve a parameter

estimation problem.

In what follows, “∧” denotes “and”.

Theorem 2.1 Let J be a nonempty set and, for each j ∈ J , let Ej and Fj be real Hilbert spaces,

aj : Ej × Ej −→ R, bj : Ej × Fj −→ R and cj : Fj × Fj −→ R be continuous and bilinear forms, and

let

Kj := {x ∈ Ej : bj(x, ·) = 0}.

Suppose that

(i) x ∈ Kj ∧ aj(x, ·)|Kj
= 0⇒ x = 0,

and for some αj , βj > 0 the following conditions hold

(ii) x ∈ Kj ⇒ αj‖x‖ ≤ ‖aj(·, x)|Kj
‖,

(iii) y ∈ F ⇒ βj‖y‖ ≤ ‖bj(·, y)‖.

Assume in addition that
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(iv)

ρ := sup
j∈J

max

{
1

αj
,

1

βj

(
1 +
‖aj‖
αj

)
,

1

β2
j

‖aj‖
(

1 +
‖aj‖
αj

)}
> 0

and that for all j ∈ J ,

(v) ‖cj‖ <
1

ρ
.

Then, given j ∈ J and (x∗j , y
∗
j ) ∈ E∗j × F ∗j there exists a unique (xj , yj) ∈ Ej × Fj such that{

aj(xj , ·) + bj(·, yj) = x∗j

bj(xj , ·) + cj(yj , ·) = y∗j
. (2.2)

Moreover, if for each j ∈ F , (x̂j , ŷj) ∈ Ej × Fj , then

inf
j∈J

max{‖xj−x̂j‖, ‖yj−ŷj‖} ≤ inf
j∈J

ρ

1− ρ‖cj‖
(
‖x∗j − aj(x̂j , ·)− bj(·, ŷj)‖+ ‖y∗j − bj(x̂j , ·)− cj(ŷj , ·)‖

)
.

(2.3)

Proof. Let j ∈ J . The existence and uniqueness of solution for problem (2.2) is a well-known fact

(see, for instance [7, Proposition 4.3.2]), but we give a sketch of the proof in order to derive the

control of the norms in (2.3) in a precise way. So, let us endow the product space Ej × Fj with the

norm

‖(x, y)‖ := max{‖x‖, ‖y‖}, (x ∈ Ej , y ∈ Fj)

and its dual space E∗j × F ∗j with the corresponding dual norm, that is,

‖(x∗, y∗)‖ := ‖x∗‖+ ‖y∗‖, (x∗ ∈ E∗j , y∗ ∈ F ∗j ).

According to conditions (i), (ii) and (iii) and from [13, Theorem 2.1], the bounded and linear operator

Sj : Ej × Fj −→ E∗j × F ∗j defined at each (x, y) ∈ Ej × Fj as

Sj(x, y) := (aj(x, ·) + bj(·, y), bj(x, ·))

is an isomorphism. But, in view of [1, Theorem 2.3.5], in order to state the existence of a unique

solution for the perturbed mixed system (2.2) it is enough to show that

‖S−1
j ‖ <

1

‖cj‖
. (2.4)

The inequality in (2.4) is valid, since in view of [14, Theorem 4.72] or [12, Theorem 3.6], (iv) and (v)
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we have that

‖S−1
j ‖ = sup

‖x∗‖+‖y∗‖≤1
‖S−1

j (x∗, y∗)‖

≤ sup
‖x∗‖+‖y∗‖≤1

max

{
‖x∗‖
αj

+
1

βj

(
1 +
‖aj‖
αj

)
‖y∗‖, 1

βj

(
1 +
‖aj‖
αj

)(
‖x∗‖+

‖aj‖
βj
‖y∗‖

)}
≤ sup
‖x∗‖+‖y∗‖≤1

max

{
1

αj
,

1

βj

(
1 +
‖aj‖
αj

)
,

1

βj

(
1 +
‖aj‖
αj

)
,
‖aj‖
β2
j

(
1 +
‖aj‖
αj

)}
(‖x∗‖+ ‖y∗‖)

≤ ρ

<
1

‖cj‖
.

Furthermore, by making use of (2.4) and of [14, Theorem 4.72] or [12, Theorem 3.6] once again, we

arrive at

max{‖xj‖, ‖yj‖} ≤
ρ

1− ρ‖cj‖
(‖x∗‖+ ‖y∗‖) , (2.5)

where (xj , yj) ∈ Ej × Fj is the unique solution of (2.2). To conclude, given (x̂j , ŷj) ∈ Ej × Fj , since

(xj − x̂j , yj − ŷj) is the unique solution of the perturbed mixed problem{
aj(xj − x̂j , ·) + bj(·, yj − ŷj) = x∗j − aj(x, ·)− bj(·, ŷj)
bj(xj − x̂j , ·) + cj(yj − ŷj , ·) = y∗j − bj(x̂j , ·)− cj(ŷj , ·)

,

then, according to inequality (2.5),

max{‖xj − x̂j‖, ‖yj − ŷj‖} ≤
ρ

1− ρ‖cj‖
(
‖x∗j − aj(x̂j , ·)− bj(·, ŷj)‖+ ‖y∗j − bj(x̂j , ·)− cj(ŷj , ·)‖

)
.

Finally, the arbitrariness of j ∈ F yields (2.3). 2

Example 2.2 Given Ω = (0, 1)2, Γ = ∂Ω, δ ∈ R and f ∈ H1
0 (Ω), let us consider the boundary value

problem: 
∆2ψ + δψ = f in Ω

ψ|Γ = 0

∆ψ|Γ = 0

. (2.6)

If one takes w := −∆ψ, then this problem is equivalent to
w + ∆ψ = 0 in Ω

−∆w + δψ = f in Ω

ψ|Γ = 0

w|Γ = 0

. (2.7)

Then, multiplying its first equation by a test function v ∈ H1
0 (Ω), and integrating by parts, we arrive

at ∫
Ω
wv −

∫
Ω
∇w∇v = 0.
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On the other hand, when multiplying the second equation of (2.7) by a test function φ ∈ H1
0 (Ω), and,

proceeding as above, we write it as

−
∫

Ω
∇w∇φ− δ

∫
Ω
ψφ = −

∫
Ω
fφ.

Therefore, if we take the real Hilbert spaces E = F := H1
0 (Ω), the continuous bilinear forms a :

E × E −→ R, b : E × F −→ R and c : F × F −→ R defined for each w, v ∈ E, and φ, ψ ∈ F , as

a(w, v) :=

∫
Ω
wv,

b(v, ψ) := −
∫

Ω
∇v∇ψ,

and

c(ψ, φ) := −δ
∫

Ω
ψφ,

and the continuous linear forms x∗ ∈ E∗ and y∗ ∈ F ∗ given by

x∗(v) := 0 (v ∈ E)

and

y∗(φ) := −
∫

Ω
fφ, (φ ∈ F ),

then we have derived this variational formulation of the problem (2.6): find (w,ψ) ∈ E×F such that{
v ∈ E ⇒ a(w, v) + b(v, ψ) = x∗(v)

w ∈W ⇒ b(w, φ) + c(ψ, φ) = y∗(φ)
,

which adopts the form of (2.2) with card(J) = 1. Then, taking into account that the operator

∆ : H1
0 (Ω) −→ H−1(Ω) is an isomorphism, it is very easy to check that, when δ < 1, Theorem 2.1

applies and this problems admits a unique solution (w,ψ) such that, for any (ŵ, ψ̂) ∈ E × F ,

max{‖w − ŵ‖, ‖ψ − ψ̂‖} ≤ 1

1− δ
(‖a(x, ·) + b(·, y)‖+ ‖y∗ − b(x, ·)− c(y, ·)‖)

and, in particular,

max{‖w‖, ‖ψ‖} ≤ ‖f‖
1− δ

.

2
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3 The Galerkin Algorithm

Now we focus our effort on developing the Galerkin method for the perturbed mixed problem (2.2)

when card(F ) = 1.

Theorem 3.1 Let E and F be real Hilbert spaces and that a : E × E −→ R, b : E × F −→ R and

c : F × F −→ R are continuous bilinear forms. Given n ∈ N, let En and Fn be finite dimensional

vector subspaces of E and F , respectively, and let

Kn := {x ∈ En : b(x, ·)|Fn
= 0}.

Let us also suppose that

(i) x ∈ Kn ∧ a(x, ·)|Kn
= 0⇒ x = 0

and there exist αn, βn > 0 such that

(ii) x ∈ Kn ⇒ αn‖x‖ ≤ ‖a(·, x)|Kn
‖,

(iii) y ∈ Fn ⇒ βn‖y‖ ≤ ‖b(·, y)|En
‖

and for

(iv)

ρn := max

{
1

αn
,

1

βn

(
1 +
‖a‖
αn

)
,

1

β2
n

‖a‖
(

1 +
‖a‖
αn

)}
> 0,

there holds

(v) ‖c|Fn×Fn
‖ < 1

ρn
.

Then, given (x∗, y∗) ∈ E∗ × F ∗, there exists a unique (xn, yn) ∈ En × Fn such that{
a(xn, ·)|En

+ b(·, yn)|En
= x∗|En

b(xn, ·)|Fn
+ c(yn, ·)|Fn

= y∗|Fn

. (3.1)

Furthermore, for all (x, y) ∈ E × F we have that

max{‖xn−x‖, ‖yn−y‖} ≤
ρn

1− ρn‖c‖

(
‖x∗|En

− a(x, ·)|En
− b(·, y)|En

‖+ ‖y∗|Fn
− b(x, ·)|En

− c(y, ·)|Fn
‖
)
.
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Proof. It follows from Theorem 2.1, by means of standard arguments. 2

We conclude the section by illustrating these results with the discretization of Example 2.2.

Example 3.2 Let us consider the boundary value problem in Example 2.3
∆2ψ + δψ = f in Ω

ψ|Γ = 0

∆ψ|Γ = 0

, (3.2)

with δ ∈ R and f ∈ H1
0 (Ω). We take δ = 1/15, and the function f ∈ H1

0 (Ω) defined for (x, y) ∈ (0, 1)2

in order to have the solution ψ0(x, y) := 103(x(x− 1)y(y − 1))4.

Now let us consider the Haar system {hk}k≥1 in L2(0, 1), which is a Schauder basis for such

real Hilbert space. We construct a basis for H1
0 (0, 1) using hkk≥≥1 by definting g1 := 1 and for all

k > 1,

gk(t) =

∫ t

0
hk−1(s) ds.

It is easy to prove (see [11]) that the collection of functions {gk}k≥1 is a Schauder basis for the real

Hilbert space H1(0, 1) and, as a consequence, {g0k}k≥1, where g0k = gk+2, is a basis for H1
0 (0, 1). We

now use the following bijective mapping from N onto N×N to define a bivariate basis for H1
0 ((0, 1)2):

let [ ] stand for “floor function” and let σ : N −→ N× N be the mapping given by

σ(n) :=


(
√
n,
√
n) if [

√
n] =

√
n

(n− [
√
n]2, [

√
n] + 1) if 0 < n− [

√
n]2 ≤ [

√
n]

([
√
n] + 1, n− [

√
n]2 − [

√
n]) if [

√
n] < n− [

√
n]2

. (3.3)

Then, the sequence {G0k}k≥1 defined as

G0n(s, t) = gp0(s)gq0(t), (s, t ∈ (0, 1))

where σ(n) = (p, q), is a Schauder basis for the real Hilbert space H1
0 ((0, 1)2).

We can now use this basis to construct finite dimensional subspaces of the real Hilbert spaces

above: For each m ≥ 1, let us consider the finite-dimensional subspaces of E and F

Em := Fm := span{G01, G02, . . . , G0m}.

Then, the corresponding discrete problem satisfies the assumptions in Theorem 3.1. More precisely:

since Em = Fm, then Km = {0}, so (i) is trivially true, as well as (ii), for which any constant αm can

be chosen, then we fix αm = α, for a certain α > 0. Moreover, (iii) is a straightforward consequence

of Poincaré’s inequality ([8, Proposition 8.13]), with a uniform constant βm = β > 0. In particular,
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ρm also is constant. Finally, since ‖c‖ ≤ δ, it suffices to choose α in order that δ < 1/ρm to guarantee

the validity of (v). Therefore, conditions in Theorem 3.1 are uniformly satisfied.

Now, the linearity of the problem implies that the discrete problem can be equivalently refor-

mulated as: Find (wm, ψm) ∈ Em × Fm, the unique solution of the discrete perturbed system{
a(wm, G0i) + b(G0i, ψm) = x∗(G0i) i = 1, . . . ,m,

b(wm, G0i−m) + c(ψm, G0i−m) = y∗(G0i−m) i = m+ 1, . . . , 2m.

We show, in the following tables, the numerical results obtained for various values of m. The value

(w0, ψ0) denotes the exact solution of the continuous problem with δ given above.

m = 9 m = 25 m = 81

‖ψm − ψ0‖L2(Ω) 1.33× 10−3 9.53× 10−4 4.33× 10−4

‖ψm − ψ0‖H1
0 (Ω) 1.46× 10−2 1.16× 10−2 7.11× 10−3

‖wm − w0‖L2(Ω) 9.41× 10−2 7.09× 10−2 2.56× 10−2

‖wm − w0‖H1
0 (Ω) 1.48 1.22 7.8× 10−1

4 The Inverse Problem

In this section we discuss the general formulation of the inverse problem for the system of mixed

variational equations (2.1). Suppose that (x̂j , ŷj) ∈ Ej × Fj is a pair of observed/interpolated func-

tions. Suppose, in addition, that aj : Ej × Ej −→ R, bj : Ej × Fj −→ R and cj : Fj × Fj −→ R are

families of bilinear forms, and x∗j : Ej −→ R and y∗j : Fj −→ R are families of linear forms, all them

fulfilling hypotheses (i) and (ii) in Theorem 2.1. The inverse problem can be formulated as follows:

Find ĵ ∈ J , where J is a compact subset of Rp, such that (x̂j , ŷj) is an approximate solution to the

perturbed mixed variational system (2.2). Assuming that

α := inf
j∈J

αj > 0, β := inf
j∈J

βj > 0, δ := sup
j∈J
‖aj‖, γ := inf

j∈J
‖cj‖ > 0,

then conditions (iii) and (iv) in Theorem 2.1 are valid as soon as ργ < 1, and so, such a result applies.

Then, in view of the collage estimation (2.3), the inverse problem can be solved by minimizing

the following objective function

ξ(j) := ‖x∗j − aj(ŵ, ·)− bj(·, ψ̂)‖+ ‖y∗j − bj(ŵ, ·)− cj(ψ̂, ·)‖ (4.1)

over j ∈ J . This objective function measures the distance between the left and the right hand-side of

Eq. (2.2). If the optimal value is closer to zero the better the approximation will be as the distance
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noise C1 C2 C3 Collage Distance

0% 1.000107013477 0.9999842592864 0.46822577278 0.00054485531439904

0.5% 1.000059971746 1.0000823273167 0.30727953435 0.00056207875045237

1.0% 1.000009640383 1.0001771911339 0.15302707869 0.00059892386287046

1.5% 0.999956019932 1.0002688495507 0.00547416104 0.00065538437959271

2% 0.999899110999 1.0003573014412 -0.13537360557 0.00073145365856316

Table 1: Results of the Numerical Simulation. True values are (C1, C2, C3) = (1, 1, 1
4).

between the target solution (x̂j , ŷj) and the theoretical one (xj , yj) gets very small. The optimization

problem can be discretized by means of Schauder bases in the real Hilbert spaces involved, along

the lines of [6, Section 3] and [20, Section 4]. The minimization algorithm has been implemented

using the MAPLE 2018 optimization toolbox. The optimal solution provides the estimation of the

unknown parameters of the model.

Now we illustrate a numerical implementation of the algorithm. We start with the system in

the Example 2.2, setting δ = 1
4 and choosing f(x, y) such that the solution u(x, y) to the problem is

103[x(1 − x)y(1 − y)]4. We solve the system in COMSOL. Isotherms and surface contour plots are

shown in Figure 1. Then we sample the numerical solution on a uniform grid of 9× 9 interior points

of [0, 1]2. We interpolate each set of 81 points, with low-amplitude relative noise added, to build

two target functions û and ŵ. We feed these representations into our Generalized Collage Theorem

machinery. We finite dimensionalize Eq. (4.1) by working with a uniform, piecewise-linear, finite-

element basis on [0,1] with 81 interior nodes, representing each of the two target functions in this

basis. Finally, knowing f(x, y), we recover C1, C2, C3 so that û and ŵ are approximate solutions to

the system {
C1∆u+ C2w = 0,

−C1∆w + C3u = f(x, y),

The true values are C1 = 1, C2 = 1,C3 = 1
4 . The results are presented in Table 1. The number in the

final column of the table is the value of the generalized collage distance. We say that for low relative

noise values, the method does reasonably well.

One can easily notice that the estimation of the coefficient C3 is not so good: this is depending

on the numerical approximation of the ∆u rather than the method itself. When solving an inverse

problem, in fact, empirical data and observations for u are used to estimate the unknown parameters.

In this model, however, the empirical data is used to get a numerical approximation of ∆u which turns

out to add more noise to the inverse problem implementation. In addition, the use of a piecewise-linear
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Figure 1: Isotherms and surface contour plot for the target solution in the example.

basis means that derivatives of the basis representations are piecewise constant and imprecise, also

generating numerical error; given this observation, we view the results in Table 1 for low-amplitude

relative noise quite positively.

5 Conclusion

In this paper we have studied the direct problem and the inverse problem for perturbed mixed

variational equations. We have shown conditions that guarantee the existence and uniqueness of

the solution to the direct problem and formulated the inverse problem as an optimization problem

using an extension of the Collage Theorem. We have also provided a numerical Galerkin scheme

to approximate the solution to this model. A potential application to a fourth-order PDE example

is also illustrated: by substitution one can reduce this example to a perturbed mixed variational

problem and then use the theory and the numerical treatment presented in this work to solve it.
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