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Abstract

This article investigates the three-dimensional globally modified Navier-Stokes equations with
unbounded variable delays. Firstly, we prove the global well-posedness of the solutions, and give the
existence of the pullback attractor for the associated process. Then, we construct a family of invariant
Borel probability measures, which is supported by the pullback attractor.
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1 Introduction

In this article, we study the following three-dimensional (3D) system of globally modified Navier-
Stokes (GMNS for short) equations with unbounded variable delays
8
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@u

@t
� ⌫�u+ FN (kukV )[(u ·r)u]+rp= f(x, t)+ g(t, u(t� ⇢(t))) in (⌧,+1)⇥ ⌦,

r · u = 0 in (⌧,+1)⇥ ⌦,
u = 0 on (⌧,+1)⇥ @⌦,
u(⌧ + s, x) = �(s, x) in (�1, 0]⇥ ⌦,

(1.1)

where the unknown functions u = u(x, t) and p = p(x, t) denote, respectively, the velocity field of the
fluid and the pressure, the positive constant ⌫ is the viscosity coefficient, f(x, t) is the density of the
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volume forces, g is the external force affected by memory during the time range (�1, ⌧ ], ⇢ : R ! R
+

is a delay function satisfying ⇢ 2 L
1
loc(R) and � is the initial datum on the interval (�1, 0]. Here

kukV = kruk(L2(⌦))3 and the function FN (·) : (0,+1) 7! (0, 1] is defined as

FN (r) := min{1, N/r}, r 2 (0,+1),

where N is a positive integer. In addition, ⌦ ⇢ R
3 is an open bounded set with smooth boundary @⌦.

The GMNS equations with g ⌘ 0 (that is without delays) was firstly formulated in [5]. It is one
kind of global modifications of the Navier-Stokes (NS for short) equations with the modifying factor
FN (kukV ) depending on the (L2(⌦))3-norm of ru. This modification brings some good properties to
the solutions: global existence, uniqueness and regularity. The GMNS equations are useful in obtaining
some new results for the 3D NS equations. For instance, it was used in [5] to establish the existence
of bounded entire weak solutions for the 3D NS equations, and in [19], the authors applied it to show
weak compactness and weak connectedness of the attainability set of the weak solutions of the 3D NS
equations satisfying an energy inequality. At the same time, It was proved in [5, 29] that the solutions
of the GMNS equations converge to those of the 3D NS equations in some proper sense. Therefore, the
GMNS equations (1.1) with g ⌘ 0 can be regarded as an approximation to the 3D NS equations.

The GMNS equations (1.1) with g ⌘ 0 have been extensively studied. For example, one can see
[5, 6, 12, 17, 33] for the existence and uniqueness of the weak and strong solutions, [8, 18, 24, 37] for
invariant measure and statistical solutions, [39] for the existence of trajectory attractor and trajectory
statistical solutions. However, the real world is inundated with many situations in which the model
is better described with some terms containing delays appearing in the equations. These delays may
appear, for instance, when the current behavior is influenced by its previous states, or one wants to
control the system by imposing an external force which depends upon both the present state and the
history of the solutions. The delayed partial differential equations are usually used to describe these
delayed phenomena.

Nowadays, delayed partial differential equations have drawn much attention and have been exten-
sively studied. For example, the existence and asymptotic behaviors of solutions for the NS equations
with finite delays were investigated in [2–4,14,25]; the existence of pullback attractors for the NS equa-
tions with finite or infinite delays was studied in [7, 16, 21, 28]. Some known references concerning the
delayed 3D GMNS equations are summarized as:
1� Finite delays: the existence, uniqueness and global asymptotic exponentially stability of the sta-
tionary solution, as well as the convergence of solutions to those of the NS equations were established
in [29, 30].
2� Infinite delays: the well-posedness and global exponential decay of the solutions to the stationary
solution, as well as the existence of pullback attractor were investigated in [26, 27].
3� Bounded variable delays: the existence and uniqueness of solutions, as well as the existence of
pullback attractors were proved in [9, 31].
However, up to our knowledge, there is no reference concerning the 3D GMNS equations with unbound-
ed variable delays.

The motivation of this article is to investigate the existence of invariant Borel probability measures
for the 3D GMNS equations with unbounded variable delays. The invariant measures and statistical
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solutions have played a significant role and developed into a crucial tool in the research of turbulence
(see Foias et al. [13]) in recent decades. This is mainly due to the fact that some time-average quantities
essentially measure several important aspects of turbulent flows. The invariant measures and statisti-
cal properties of dissipative systems were studied by a number of researchers after that. For instance,
Wang considered the upper semi-continuity of stationary statistical properties for dissipative systems
in [36]. Łukaszewicz, Real and Robinson in [23] constructed the invariant measures for general continu-
ous dynamical systems on metric spaces by using the generalized Banach limit. For a much wider class
of dissipative semigroups, Chekroun and Glatt-Holtz [11] also applied the generalized Banach limit to
constructing the invariant measures, but they generalized and simplified the proofs of [23] and [36].

Recently, a series of works developed some techniques to provide a construction of invariant mea-
sures for non-autonomous systems with minimal assumptions on the underlying dynamical process (see
Foias et al. [13], Wang [36] and Łukaszewicz et al. [22–24]). Nowadays, these theories have been em-
ployed to establish invariant measures for some evolution equations, see e.g. [20, 32, 37, 44] and the
references therein. However, as far as we know, there is no reference investigating the invariant measures
for delayed evolution equations.

The main result of the current article is the existence of invariant Borel probability measures for the
3D GMNS equations with unbounded variable delays. We will use the abstract theory for dissipative
non-autonomous system in [24, Theorem 3.1]. To this end, we shall prove that the solution operators
associated to the problem (1.1) generate a continuous process {U(t, ⌧)}t>⌧ in the phase space C�(H)

(see notation in Section 2) and
(1) the process {U(t, ⌧)}t>⌧ is pullback strongly bounded in C�(H);
(2) the process {U(t, ⌧)}t>⌧ is pullback asymptotically compact in C�(H);
(3) for each given t⇤ 2 R and �⇤ 2 C�(H), the C�(H)-valued function ⌧ 7! U(t⇤, ⌧)�⇤ is continuous

and bounded on (�1, t] (this is called ⌧ -continuity of the process {U(t, ⌧)}t>⌧ ).
We first use a Galerkin approximation argument, and some a priori estimates, to prove the global

well-posedness of the solutions to the problem (1.1). Also we do some estimates of the solutions to
obtain the existence of strongly bounded pullback absorbing sets. Secondly we apply the Ascoli-Arzelà
type theorem ( [1]) to establish the pullback asymptotic compactness of the process {U(t, ⌧)}t>⌧ . This
is prompted by the delay appearing in the equations. Since the problem discussed contains unbounded
variable delays, it seems suitable for us to choose C�(H) as the phase space. It has been shown that the
Ascoli-Arzelà theorem is a powerful tool to investigate the compactness of subsets of C�(H). Thirdly,
for each given t⇤ 2 R and �⇤ 2 C�(H), the continuity of the C�(H)-valued function ⌧ 7! U(t⇤, ⌧)�⇤
on (�1, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essential
differences between the autonomous dynamical system and non-autonomous one, say the continuous
dependence of the dynamical system on their parameters. Even if we have known that the C�(H)-
valued function t 7! U(t, ⌧)�⇤ is continuous on R for every given ⌧ and �⇤ 2 C�(H), the convergence
kU(t⇤, ⌧)�⇤ � �⇤k� ! 0 as ⌧ ! t

�
⇤ may still depend on ⌧ itself. In fact, when ⌧ ! t

�
⇤ , U(t⇤, ⌧)�⇤

also changes with different initial times ⌧ . This is caused naturally by the non-autonomous and delayed
phenomena. We will take advantage of the structure of the GMNS equations to prove the ⌧ -continuity of
the process {U(t, ⌧)}t>⌧ .

This article is organized as follows. In the next section, we first introduce some notations and oper-
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ators, and then prove the global well-posedness of solutions to the problem (1.1). Section 3 is devoted
to the proof of the existence of pullback attractors. In Section 4, we first prove the ⌧ -continuity of the
process and then construct a family of invariant Borel probability measures which is supported by the
pullback attractors. We end the article with conclusions and remarks in Section 5.

2 Global well-posedness of solutions

In this section, we first introduce some notations and operators. Then we prove the global well-
posedness of the problem (1.1).

In this article, we use the following notations:
L
2(⌦) = (L2(⌦))3–the 3D Lebesgue space with norm k · kL2(⌦) = k · k;

H
1(⌦) = the 3D Sobolev space {� 2 L

2(⌦)|r� 2 L
2(⌦)} with norm kr · kL2(⌦);

H
1
0(⌦) = closure of (C1

0 (⌦))3 in H
1(⌦) with norm k · kH1(⌦);

V = {� 2 (C1
0 (⌦))3|r · � = 0};

H = closure of V in L
2(⌦) with norm k · k and inner product (·, ·);

V = closure of V in H
1(⌦) with norm k · kV = kr · kL2(⌦);

V
0 = dual space of V with norm k · kV 0 ; h·, ·i – the dual pairing between V and V

0;
In addition, we will use the notation a . b to mean that a 6 cb for a universal constant c > 0 that only
depends on the parameters coming from the problem and will not result in confusion.

For short, we will write the problem (1.1) in a functional form. To this end, we introduce some
classical operators which are usually used to handle the 3D incompressible NS and GMNS equations. At
the same time, we will select some known estimates and properties (see e.g. [35]) of these operators.

We first consider the operator A : V ! V
0 defined as

hAu, vi = (ru,rv), 8u, v 2 V,

where D(A) = H
2(⌦) \ V and H

2(⌦) = {� 2 H
1(⌦)|�� 2 L

2(⌦)}. In fact, for each u 2 D(A),
Au = �P�u, and hence A is the Stokes operator, where P is the Leray-Helmholtz projection from
L
2(⌦) onto H .

Secondly, we define a trilinear form b(·, ·, ·) as follows,

b(u, v, w) =
3X

i,j=1

Z

⌦
ui
@vj

@xi
wjdx, 8u, v, w 2 H

1
0(⌦).

Notice that V is a closed subspace of H1
0(⌦). One can check that b(u, v, w) is continuous on V ⇥V ⇥V ,

and b(u, v, w) = �b(u,w, v), b(u, v, v) = 0, 8u, v, w 2 V . For each u, v 2 V ,

hB(u, v), wi = b(u, v, w), 8w 2 V,

defines a continuous function B(u, v) on V ⇥ V . At the same time, we have (cf. [35])

kb(u, v, w)k .kuk1/2
V

kAuk1/2kvkV kwk, 8u 2 D(A), v 2 V, w 2 H (2.1)

kb(u, v, w)k .kukV kvkV kwk1/2V
kwk1/2, 8u, v, w 2 V. (2.2)
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We further set

bN (u, v, w) =FN (kvkV )b(u, v, w), 8u, v, w 2 V,

hBN (u, v), wi =bN (u, v, w), 8u, v, w 2 V.

Then bN (u, v, w) is linear in u and w, but not linear in v. However, we still have (see [33])

bN (u, v, v) =0, 8u, v 2 V, (2.3)

|bN (u, v, w)| .NkukV kwkV , 8u, v, w 2 V, (2.4)

|bN (u, v, w)| .NkAukkwk, 8u 2 D(A), v 2 V, w 2 H. (2.5)

Furthermore, for every u, v 2 V and each N > 0,

0 6kukV FN (kukV ) 6 N, (2.6)

|FN (kukV )� FN (kvkV )| 6
1

N
FN (kukV )F (kvkV )ku� vkV . (2.7)

To formulate the problem (1.1) in a proper manner, we require that the functions ⇢(t), f(x, t) and
g(t, u(t� ⇢(t))) in (1.1) satisfy some natural hypotheses.

(H1) Suppose that the function ⇢ : R 7! R+ belongs to L
1
loc(R) and f(t, x) 2 L

2
loc(R;L

2(⌦)). Also

assume that g : R⇥H ! H satisfies

(g1) for every u 2 H , the mapping R 3 t 7! g(t, u) is measurable;

(g2) g(t, 0) = 0 for all t 2 R;

(g3) there exists a positive constant � and a nonnegative function Lg : R ! R+ such that

Lg(·)e�⇢(·) 2 L
2
loc(R) and kg(t, u)� g(t, v)k 6 Lg(t)ku� vk, 8t 2 R, 8u, v 2 H. (2.8)

Remark 2.1. In Remark 3.1 we will give a concrete example to show the existence of the functions ⇢(t),

f(t, x), g(t, u), Lg(t) and the constant � that satisfy our assumption (H1). In the sequel, the constant �

is from (g3).

In order to deal with the unbounded variable delays, we consider the space

C�(H) :=
n
� 2 C((�1, 0];H) : sup

s60
e
�sk�(s)k < +1, 9 lim

s!�1
e
�s
�(s) 2 H

o
,

with the norm k�k� := sup
s60

e
�sk�(s)k. Then (C�(H), k · k�) is a Banach space. In addition, for each

⌧ 2 R we denote conventionally u⌧ (s) = u(⌧ + s) with s 2 (�1, 0].
We now specify the definition of weak solution to the problem (1.1).

Definition 2.1. Let ⌧ 2 R and � 2 C�(H) be given. If for all T > ⌧ , a function u 2 C((�1, T ], H) \
L
2(⌧, T ;V ) with u⌧ = � satisfies

du(t)

dt
+ ⌫Au(t) +BN (u(t), u(t)) = f(t) + g(t, u(t� ⇢(t)), (2.9)

in the sense of distribution D0(⌧,+1;V 0), then we call u a weak solution of the problem (1.1) corre-

sponding to the initial datum �.
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For the existence and uniqueness of solutions to the problem (1.1), we have the following result.

Theorem 2.1. Let the assumption (H1) hold true. Then for each ⌧ 2 R and � 2 C�(H), there corre-

sponds a unique weak solution u(·) = u(·; ⌧,�) to the problem (1.1), and u is in fact a strong solution in

the sense that

u 2 C((⌧, T ], V ) \ L
2(⌧ + ", T ;D(A)), 8" > 0, 8T > ⌧ + ". (2.10)

Moreover, if �(0) 2 V , then

u 2 C([⌧, T ];V ) \ L
2(⌧, T ;D(A)), 8T > ⌧. (2.11)

Proof. The proof is similar to that of [26, Theorem 2] and [27, Theorem 1] with the unbounded vari-
able delays in place of the infinite delays. Following the proof of [26, Theorem 2] with some different
estimates, we present the parts that will be used in the sequel of this article.

For the Galerkin approximation solution u
(m), we have

d

dt
ku(m)(t)k2 + 2⌫ku(m)(t)k2V = 2(f(t), u(m)(t)) + 2(g(t, u(m)(t� ⇢(t))), u(m)(t))

. ⌫ku(m)(t)k2V + kf(t)k2 + 2Lg(t)ku(m)(t� ⇢(t))kku(m)(t)k

. ⌫ku(m)(t)k2V + kf(t)k2 + 2Lg(t)e
�⇢(t)kumt k2� ,

using the facts that ku(m)(t)k = ku(m)
t

(0)k 6 ku(m)
t

k� and

ku(m)(t� ⇢(t))k = e
�⇢(t)

e
��⇢(t)ku(m)(t� ⇢(t))k 6 e

�⇢(t)ku(m)
t

k� . (2.12)

Hence, for all t > ⌧ there holds

ku(m)(t)k2 + ⌫

Z
t

⌧

ku(m)(s)k2V ds . ku(m)(⌧)k2 +
Z

t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds. (2.13)

By (2.13) and the definition of the norm ku(m)
t

k2� , we have

ku(m)
t

k2� . max
n

sup
✓6⌧�t

e
2�✓k�(✓ + t� ⌧)k2,

sup
✓2[⌧�t,0]

�
e
2�✓ku(⌧)k2 + e

2�✓
Z

t+✓

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds
�o

. max
n
sup
✓60

e
2�(✓+⌧�t)k�(✓)k2, ku(⌧)k2 +

Z
t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds
o

. k�k2� +
Z

t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds. (2.14)

Applying Gronwall’s lemma to (2.14) gives

ku(m)
t

k2� .
⇣
k�k2� +

Z
t

⌧

kf(s)k2ds
�
exp

�
2

Z
t

⌧

Lg(s)e
�⇢(s)ds

⌘
. (2.15)
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We then conclude from (2.13) and (2.15) that, with the assumption (H1) in hand,

ku(m)
t

k2� + ku(m)k2
L2(⌧,T ;V ) . 1, 8 t 2 [⌧, T ], 8 k�k� 6 R, 8m > 1,

Z
T

⌧

kg(s, u(m)(s� ⇢(s)))k2ds 6
Z

T

⌧

(Lg(s)e
�⇢(s))2ku(m)

s k2�ds . kLge
�⇢k2

L2(⌧,T ). (2.16)

Estimate (2.16) implies that

g(·, u(m)(·� ⇢(·))) 2 L
2(⌧, T ;L2(⌦)). (2.17)

The rest tasks are to prove that the Galerkin approximate solutions {u(m)} possess a convergent subse-
quence and its limiting function is the solution satisfying Theorem 2.1. The procedures are similar to
those of [26, Theorem 2] and we omit the details here.

The result below shows that the solutions to (1.1) depend continuously on the initial data.

Theorem 2.2. Let the assumption (H1) hold. Let u = u(·; ⌧,�) and ũ = ũ(·; ⌧, �̃) be two solutions of

the problem (1.1) with the initial data � and �̃ at the initial time ⌧ , respectively. Then we have

max
✓2[⌧,t]

ku(✓)� ũ(✓)k2

.k�(0)� �̃(0)k2 exp
⇣Z t

⌧

2Lg(s)e
�⇢(s)ds+ (t� ⌧)

⌘
(2.18)

+ k�� �̃k2�
Z

t

⌧

Lg(s)e
�⇢(s) exp

⇣Z s

⌧

2Lg(✓)e
�⇢(✓)d✓ + (s� ⌧)

⌘
ds.

The proof of Theorem 2.2 is analogous to that of [27, Proposition 1] and we omit the details.

3 Existence of the pullback attractors

From Theorems 2.1 and 2.2 we can conclude that the solution operators U(t, ⌧) : C�(H) ! C�(H)

defined by

U(t, ⌧)�(s) = ut(s), ⌧ 6 t, s 2 (�1, 0], (3.1)

generate a continuous process {U(t, ⌧)}t>⌧ on the phase space C�(H), where u = u(·; ⌧,�) is the solu-
tion of the problem (1.1) corresponding to the initial function � at the initial time ⌧ . In this section, we
first prove that {U(t, ⌧)}t>⌧ possesses a bounded pullback absorbing set and is pullback asymptotically
compact in C�(H). Then we obtain the existence of the pullback attractor. For related definitions and
results concerning the evolution processes and pullback attractors, we can refer to [4, 10, 34] and the
references therein.

In the sequel, we pick � and some parameter µ such that

0 < µ < ⌫ and (⌫ � µ)�1 < �, (3.2)

where �1 = inf
v2V \{0}

kvk2
V

kvk2 > 0 is the first eigenvalue of the Stokes operator A. To obtain the existence

of the bounded pullback absorbing set, we need another assumption for the functions Lg(·)e�⇢(·) and f .
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(H2) Assume there is a constant µ satisfying (3.2) such that

ess sup
t2R

Lg(t)e
�⇢(t)

< (⌫ � µ)�1 6 �, (3.3)
Z 0

�1
e
�skf(s)k2ds < +1, (3.4)

hereinafter the constant � is given by

� := 2(⌫ � µ)�1 � 2 ess sup
t2R

Lg(t)e
�⇢(t)

. (3.5)

Remark 3.1. We set

8
>><

>>:

⇢(t) = |t|, t 2 R,

g(t, u) = exp(�e
|t|)u, t 2 R, u 2 H,

Lg(t) = exp(�e
|t|), t 2 R,

� = e,

(3.6)

then the conditions in (H1) are satisfied and

ess sup
t2R

Lg(t)e
�⇢(t) = e

� ln ��� = e
0 = 1 < e = �.

If we take 1 < ⌫ < e and µ small enough, then (3.3) are satisfied. Thus, the functions and constant

presented by (3.6) satisfy the conditions in (H1) and (H2). For the existence of the function f(x, t)

satisfying (H1) and (H2), we refer to [38, Example 3.1].

We denote by P(C�(H)) the family of all subsets of C�(H) and consider the families of nonempty
sets bD = {D(t) : t 2 R} ✓ P(C�(H)). Let D� be the nonempty class of families bD = {D(t) : t 2
R} ✓ P(C�(H)) parameterized by time t and satisfying

lim
⌧!�1

�
e
�⌧ sup

v2D(⌧)
kvk2�

�
= 0.

The class D� defined above is always called a tempered universe.

Lemma 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ possesses a

bounded pullback absorbing set in C�(H).

Proof. Pick some µ satisfying (3.2), and let u = u(·; ⌧,�) be the solution of the problem (1.1) corre-
sponding to the initial function � at the initial time ⌧ . Then we can get

d

dt
ku(t)k2 + 2(⌫ � µ)�1ku(t)k2 + µku(t)k2V . kf(t)k2 + 2Lg(t)e

�⇢(t)kutk2� , t > ⌧. (3.7)

Hence for all t > ⌧ ,

ku(t)k2 + µ

Z
t

⌧

e
�2(⌫�µ)�1(t�s)ku(s)k2V ds

.e
�2(⌫�µ)�1(t�⌧)ku(⌧)k2 +

Z
t

⌧

e
�2(⌫�µ)�1(t�s)

�
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
�
ds. (3.8)
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Inequality (3.8) implies that

kutk2� .max
n

sup
✓2(�1,⌧�t]

e
2�✓k�(✓ + t� ⌧)k2, sup

✓2[⌧�t,0]

�
e
2�✓�2(⌫�µ)�1(t+⌧�✓)ku(⌧)k2

+ e
2�✓

Z
t+✓

⌧

e
�2(⌫�µ)�1(t+✓�s)

�
|f(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
�
ds
�o

. (3.9)

By the choice of µ in (3.2), we have

sup
✓2(�1,⌧�t]

e
2�✓k�(✓ + t� ⌧)k 6 e

�(⌫�µ)�1(t�⌧)k�k� , (3.10)

sup
✓2[⌧�t,0]

e
2�✓�2(⌫�µ)�1(t+⌧�✓)ku(⌧)k2 6 e

�2(⌫�µ)�1(t�⌧)ku(⌧)k2, (3.11)

sup
✓2[⌧�t,0]

e
2�✓

Z
t+✓

⌧

e
�2(⌫�µ)�1(t+✓�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds

6
Z

t

⌧

e
�2(⌫�µ)�1(t�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds. (3.12)

It then follows from (3.9)-(3.12) that

kutk2� . e
�2(⌫�µ)�1(t�⌧)k�k2� +

Z
t

⌧

e
�2(⌫�µ)�1(t�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds. (3.13)

Applying Gronwall’s inequality to (3.13) yields

kutk2� .k�k2� exp
�
�2(⌫ � µ)�1(t� ⌧) + 2

Z
t

⌧

Lg(s)e
�⇢(s)ds

 

+

Z
t

⌧

kf(s)k2 exp
�
�2(⌫ � µ)�1(t� s) + 2

Z
t

s

Lg(�)e
�⇢(�)d�

 
ds

=k�k2�e��(t�⌧) +

Z
t

⌧

kf(s)k2e��(s�⌧)ds. (3.14)

Now we define the time-dependent family B̂ = {B(t) : t 2 R} 2 P(C�(H)) as

B(t) =
n
v 2 C�(H) : kvk2� . 1 +

Z
t

�1
e
��(t�s)kf(s)k2ds

o
. (3.15)

Then B̂ is the desired pullback D�-absorbing set for {U(t, ⌧)}t>⌧ in C�(H).

To establish the pullback D�-asymptotic compactness for {U(t, ⌧)}t>⌧ in C�(H), we will employ
the generalized Ascoli-Arzelà type theorem ( [1]) to prove the following auxiliary lemma.

Lemma 3.2. Let {⌧n}n>1 be a sequence such that ⌧n ! �1 as n ! +1 and ⌧n 6 t0 for some fixed

t0 2 R, and {�n}n>1 a sequence of functions with �n 2 B(⌧n) for each positive integer n. Denote by

u
(n) = u

(n)(·; ⌧n,�n) the solutions of the problem (1.1) corresponding to the initial data �n at the initial

time ⌧n. Then there exist a subsequence (still denoted the same) {u(n)
t0

}n>1 and a function  2 C�(H)

such that u
(n)
t0

!  in C([�T , 0];H) for each T > 0.
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Proof. Let t0, {⌧n}n>1, {�n}n>1 and u
(n) = u

(n)(·; ⌧n,�n) be given as in this lemma. Consider two
arbitrary positive numbers T , T with T > T . Let n0 = n0(t0, T ) be the positive integer such that
⌧n < t0�T for all n > n0. From (3.3) and (3.14)-(3.15) we deduce that for t 2 [t0�T, t0] and n > n0,

kun(t)k2 .R(t0, T ) := 1 + e
��(t0�T )

Z
t0

�1
e
�skf(s)k2ds < +1, (3.16)

kunt k2� .R(t0, T ). (3.17)

We next divide two steps to establish that the conditions of the Ascoli-Arzelà type theorem are satisfied.
Step one. We first prove that

{u(n)(t)}n>n0 is precompact in H for each t 2 [t0 � T , t0]. (3.18)

By Theorem 2.1, we conclude that u(n)(t) 2 D(A) for all t 2 [t0 � T, t0], whence,

1

2

d

dt
ku(n)(t)k2V + ⌫kAu

(n)(t)k2 + bN (u(n)(t), u(n)(t), Au(n)(t))

=(f(t), Au(n)(t)) + (g(t, u(n)(t� ⇢(t))), Au(n)(t)), t 2 [t0 � T, t0]. (3.19)

Using Young’s inequality, (2.1) and (2.6), we have

(f(t), Au(n)(t)) . ⌫

8
kAu(n)(t)k2 + kf(t)k2, (3.20)

(g(t, u(n)(t� ⇢(t))), Au(n)(t)) . ⌫

8
kAu(n)(t)k2 + L

2
g(t)e

2�⇢(t)ku(n)
t

k2� , (3.21)

|bN (u(n)(t), u(n)(t), Au(n)(t))| . ku(n)(t)k1/2
V

kAu(n)(t)k3/2 . ⌫

4
kAu(n)(t)k2 + ku(n)(t)k2V . (3.22)

Combining (3.19)-(3.22) gives

d

dt
ku(n)k2V + ⌫kAu(n)(t)k2 . kf(t)k2 + 2L2

g(t)e
2�⇢(t)ku(n)

t
k2� + ku(n)(t)k2V . (3.23)

Integrating (3.23) over [s, t] with t0 � T 6 s 6 t 6 t0 yields

ku(n)(t)k2V . ku(n)(s)k2V +

Z
t0

t0�T

h⇣
kf(✓)k2 + 2L2

g(✓)e
2�⇢(✓)ku(n)

✓
k2�
⌘
+ ku(n)(✓)k2V

i
d✓. (3.24)

Now integrating (3.24) with respect to s over [t0 � T, t], we obtain for t 2 [t0 � T , t0] that

(T � T )ku(n)(t)k2V 6 (t+ T � t0)ku(n)(t)k2V

.T

Z
t0

t0�T

ku(n)(s)k2V ds+ T

Z
t0

t0�T

⇣
kf(s)k2 + L

2
g(s)e

2�⇢(s)ku(n)s k2�
⌘
ds. (3.25)

In addition, from (3.8) and (3.14), we can get
Z

t

⌧

ku(n)(s)k2V ds .
�
1 +

Z
t

⌧

Lg(s)e
�⇢(s)

e
2
R s
⌧ Lg(�)e�⇢(�)d�ds

�
k�k2�

+

Z
t

⌧

e
�2(⌫�µ)�1(⌧�s)kf(s)k2ds (3.26)

+

Z
t

⌧

Lg(s)e
�⇢(s)

Z
s

⌧

e
�2(⌫�µ)�1(⌧��)+2

R s
� Lg(✓)e�⇢(✓)d✓kf(�)k2d�ds.
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Note that we have u
(n)(t; ⌧ (n),�(n)) = U(t, t0 � T )u(t0 � T ; ⌧n,�(n)). Thus from (3.8)-(3.9), (3.13)

and (3.15), we know that

the sequence {u(n)}n>n0 is bounded in L
1(t0 � T , t0;V ). (3.27)

Therefore, it follows from the compact embedding V ,! H and the continuity of u(n) (see (2.10)) that
the set

{un(t) : t 2 [t0 � T , t0], n > n0} is precompact in H, (3.28)

from which (3.18) immediately follows.
Step two. We establish the equicontinuity of {u(n)}n>n0 on [t0 � T , t0] by contradiction.

Suppose that this equicontinuity does not hold true, and then there exists a positive constant "0 and two
sequences {t(1)n } and {t(2)n }, satisfying t0 � T 6 t

(1)
n 6 t

(2)
n 6 t0 and |t(2)n � t

(1)
n | 6 1

n
, such that

ku(n)(t(1)n )� u
(n)(t(2)n )k > "0. (3.29)

By (3.28), we can assume that t(1)n ! t
⇤, u(n)(t⇤) ! z

⇤ and u
(n)(t(i)n ) ! z

(i) (i = 1, 2) in H as
n ! +1. Evidently, t(2)n ! t

⇤ as n ! +1 and t
⇤ 2 [t0 � T , t0]. By (3.23), we know that

kz(1) � z
(2)k > "0. (3.30)

Set y(n)(t) = u
(n)(t)� u

(n)(t⇤) for n > n0. Then we obtain

1

2

d

dt
ky(n)(t)k2 + ⌫ky(n)(t)k2V + ⌫

Z

⌦
ru

(n)(t⇤) ·ry
(n)(t)dx+ bN (u(n)(t), u(n)(t), y(n)(t))

=(f(t), y(n)(t)) + (g(t, u(n)(t� ⇢(t))), y(n)(t)), t 2 [t0 � T , t0]. (3.31)

Applying Schwartz’s inequality and (g3), we have

��
Z

⌦
ru

(n)(t⇤) ·ry
(n)(t)dx

�� 61

2
ku(n)(t⇤)k2V +

1

2
ky(n)(t)k2V , (3.32)

2|(f(t), y(n)(t))| 6kf(t)k2 + ky(n)(t)k2, (3.33)

2|(g(t, u(n)(t� ⇢(t))), y(n)(t))| 6L
2
g(t)e

2�⇢(t)ku(n)
t

k2� + ky(n)(t)k2. (3.34)

At the same time, by (2.3)-(2.6) and (2.7), we see that

|bN (u(n)(t), u(n)(t)), y(n)(t))| =|bN (y(n)(t), u(n)(t), y(n)(t))� bN (u(n)(t⇤), u(n)(t), u(n)(t⇤))|

.ky(n)(t)k3/2
V

ky(n)(t)k1/2 + ku(n)(t⇤)k2V
.⌫
2
ky(n)(t)k2V + ky(n)(t)k2 + ku(n)(t⇤)k2V . (3.35)

Taking (3.31)-(3.35) into account yields

d

dt
ky(n)(t)k2 . ky(n)(t)k2 + kf(t)k2 + L

2
g(t)e

2�⇢(t)ku(n)
t

k2� + ku(n)(t⇤)k2V . (3.36)
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Integrating (3.36) from t
⇤ to t

(i)
n and using (3.16)- (3.17) gives

ky(n)(tin)k2 6[R(t0, T ) + c1]|tin � t
⇤|+

��
Z

t
i
n

t⇤
kf(s)k2ds

��

+R(t0, T )
���
Z

t
i
n

t⇤
L
2
g(s)e

2�⇢(s)ds
���, (3.37)

where (see (2.10) and (3.27))

c1 := sup
t2[t0�T ,t0]

{kun(t)kV : n > n0}.

Letting n ! +1 in (3.37) and using the assumptions f 2 L
2
loc(R;L

2(⌦)) and (g3), we conclude that

kzi � z
⇤k2 = lim

n!+1
ku(n)(tin)� u

(n)(t⇤)k2 = 0, for i = 1, 2,

which contradicts (3.30).
At this stage, we can apply the Ascoli-Arzelà type theorem [1] to claim that for each T > 0,

{u(n)}n2N+ is precompact in C([t0 � T , t0];H). Thus there exists a function  2 C([�T , 0];H) and a
subsequence of u(n)

t0
such that u(n)

t0
|[�T ,0] !  in C([�T , 0];H). Repeating this procedure for nT with

n = 2, 3, · · · , and using the diagonal procedure, we can obtain a function  2 C((�1, 0];H) such that
(extract a subsequence if necessary) u(n)

t0
|[�T ,0] !  in C([�T , 0];H) for each positive number T . The

proof of Lemma 3.2 is complete.

Lemma 3.3. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ is pullback D�-

asymptotically compact in C�(H).

Proof. We continue to use the notations of the previous lemma. To establish the pullback D�-asymptotic
compactness, we shall prove that unt0 !  in C�(H), for which, it is sufficient to show that, for every
" > 0, there exists some positive integer n" such that

sup
s2(�1,0]

e
2�sku(n)

t0
(s)�  (s)k2 < ", for all n > n". (3.38)

Indeed, by (3.16)-(3.17) and the convergence proved in the previous lemma, we have that

k (s)k2 . 1 + e
��(t0�T )

Z
t0

�1
e
�skf(s)k2ds = R(t0, T ), for all s 2 [�T, 0] and T > 0.

The rest proof is similar to that of [27, Proposition 3] and we omit the details here.

At this stage we combine Lemmas 3.1, 3.3 and the general result of [15, Theorem 3.11] to obtain the
main result of this section, namely,

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ possesses a

pullback D�-attractor (denoted by) ÂH

D�
= {AH

D�
(t) : t 2 R} in C�(H).
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4 Existence of the invariant Borel probability measures in C�(H)

In this section, we first aim to prove that for each given t 2 R and � 2 C�(H), the C�(H)-valued
function ⌧ 7! U(t, ⌧)� is bounded and continuous on (�1, t]. Then we combine Theorem 3.1 and the
abstract result of [24, Theorem 3.1] to obtain the existence of invariant Borel probability measures for
{U(t, ⌧)}t>⌧ in C�(H).

Lemma 4.1. Let the assumptions (H1) and (H2) hold. Then for every � 2 C�(H) and every t 2 R the

C�(H)-valued function ⌧ 7! U(t, ⌧)� is bounded on (�1, t].

Proof. Let � 2 C�(H) and t 2 R be given. Note (3.4) is equivalent to (see [27, Remark 5])
Z

t

�1
e
�skf(s)k2ds < +1 for all t 2 R. (4.1)

Then (3.14) and (4.1) imply that for all ⌧ 2 (�1, t],

kU(t, ⌧)�k2� . e
��(t�⌧)k�k2� +

Z
t

⌧

e
��(t�s)kf(s)k2ds 6 k�k2� + e

��t

Z
t

�1
e
�skf(s)k2ds,

the right-hand side of which is bounded by a positive constant independent of ⌧ 2 (�1, t].

In the sequel, we set a positive number M(t,�) such that

M
2(t,�) := k�k2� + e

��t

Z
t

�1
e
�skf(s)k2ds.

Then M
2(t,�) is a continuous function with respect to t 2 R.

To establish the continuity of the C�(H)-valued function ⌧ 7! U(t, ⌧)� on (�1, t], we next prove
two auxiliary lemmas.

Lemma 4.2. Let � 2 C�(H) be given. Then for each " > 0, there exists some �1 = �1(",�) > 0 such

that for all s1, s2 2 (�1, 0] with |s1 � s2| < �1 there holds

e
�s2k�(s1)� �(s2)k < ". (4.2)

Proof. By the definition of C�(H), we set �1 := lim
s!�1

e
�s
�(s) 2 H . Then there exists some s0 < 0

such that
ke�s�(s)� �1k <

"

4
, 8 s 6 s0,

and thus

ke�s1�(s1)� e
�s2�(s2)k 6 ke�s1�(s1)� �1k+ ke�s2�(s2)� �1k <

"

2
, 8 s1, s2 6 s0. (4.3)

On the other hand, the H-valued function s 7! e
�s
�(s) is uniformly continuous on the interval [s0�1, 0],

whence there is some �01 2 (0, 1) such that

ke�s1�(s1)� e
�s2�(s2)k <

"

2
for s1, s2 2 [s0 � 1, 0] with |s1 � s2| < �

0
1. (4.4)
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Letting �1 = min
n
�
0
1,

1

�
ln
�
1+

"

2k�k�
�o

, we have by (4.3) and (4.4) that for all s1, s2 2 (�1, 0] with

|s1 � s2| < �1 there holds

e
�s2k�(s1)� �(s2)k 6 ke�s1�(s1)� e

�s2�(s2)k+ |e�s1 � e
�s2 |k�(s1)k

6"
2
+ |e�(s2�s1) � 1|k�k� < ".

The proof is complete.

Lemma 4.3. Let the assumptions (H1) and (H2) hold, and ⌧⇤ 2 R and � 2 C�(H) be given. Then for

each " > 0, there exists some �2 = �2(", ⌧⇤,�) > 0 such that

ku(s; ⌧,�)� �(0)k < ", for all ⌧ 2 (⌧⇤ � �2, ⌧⇤) and s 2 [⌧, ⌧⇤], (4.5)

where u(s; ⌧,�) is the solution of the problem (1.1) with the initial datum � at the initial time ⌧ .

Proof. Let ⌧⇤ 2 R and � 2 C�(H) be given. Firstly, we prove that
Z

⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓ 6 c2, (4.6)

where
c2 := k�k2� +

Z
⌧⇤

⌧⇤�1
kf(✓)k2d✓ + sup

[⌧⇤�1,⌧⇤]
M

2(✓,�),

is a bounded quantity depending on ⌧⇤, g, f , · · · , etc., but being independent of ⌧ 2 [⌧⇤ � 1, ⌧⇤]. Indeed,
from (2.9) we can see that

���
du(✓; ⌧,�)

d✓

���
2

V 0
.kAu(✓; ⌧,�)k2

V 0 + kBN (u(�; ⌧,�), u(�; ⌧,�))k2
V 0

+ kf(✓)k2 + kg(✓, u(✓ � ⇢(✓)))k2. (4.7)

By (2.5), (g2), (g3) and some simple observations, we have
8
><

>:

kAu(✓; ⌧,�)k2
V 0 . ku(✓; ⌧,�)k2

V
,

kBN (u(�; ⌧,�), u(�; ⌧,�))k2
V 0 . ku(✓; ⌧,�)k2

V
,

kg(✓, u(✓ � ⇢(✓)))k2 . sup
[⌧⇤�1,⌧⇤]

M
2(✓,�).

(4.8)

Inserting (4.7) and (4.8) into (4.6), then using (3.3), (3.5) and (3.26) gives
Z

⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓ .

Z
⌧⇤

⌧

ku(�; ⌧,�))k2V d✓ +
Z

⌧⇤

⌧

kf(✓)k2V d✓ + (⌧⇤ � ⌧) sup
[⌧⇤�1,⌧⇤]

M
2(✓,�)

.k�k2� +
Z

⌧⇤

⌧⇤�1
kf(✓)k2d✓ + sup

[⌧⇤�1,⌧⇤]
M

2(✓,�), 8⌧ 2 [⌧⇤ � 1, ⌧⇤], (4.9)

that is (4.6) is proved.
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Secondly, we observe that for ⌧⇤ � 1 6 ⌧ < s 6 ⌧⇤ there holds

ku(s; ⌧,�)� �(0)k2

=ku(s; ⌧,�)k2 � k�(0)k2 � 2
�
u(s; ⌧,�)� �(0),�(0)

�

=

Z
s

⌧

dku(✓; ⌧,�)k2

d✓
d✓ � 2

�
u(s; ⌧,�)� �(0),�(0)

�
. (4.10)

By (3.3) and (3.13), we obtain

���
Z

s

⌧

dku(✓; ⌧,�)k2

d✓
d✓
��� .

Z
s

⌧

kf(✓)k2d✓ +
Z

s

⌧

Lg(✓)e
�⇢(✓)ku✓k2�d✓

.
Z

⌧⇤

⌧

kf(✓)k2d✓ + (⌧⇤ � ⌧) sup
✓2[⌧⇤�1,⌧⇤]

M
2(✓,�). (4.11)

Notice that f 2 L
2
loc(R,L

2(⌦)), and sup
✓2[⌧⇤�1,⌧⇤]

M
2(✓,�) is a constant independent of ⌧ . Therefore,

from (4.11) we see that there exists some �02 = �
0
2(", ⌧⇤,�) 2 (0, 1) such that

���
Z

s

⌧

dku(✓; ⌧,�)k2

d✓
d✓
��� <

"
2

2
, ⌧⇤ � �

0
2 < ⌧ < s 6 ⌧⇤. (4.12)

At the same time, since �(0) 2 H and V is dense in H , there exists some  2 V such that

k � �(0)k < "
2
/16 sup

✓2[⌧⇤�1,⌧⇤]
M

2(✓,�).

Using (4.6),

|(u(s; ⌧,�)� �(0),�(0))| 6|(u(s; ⌧,�)� �(0),�(0)�  )|+ |(u(s; ⌧,�)� �(0), )|
62 sup

✓2[⌧⇤�1,⌧⇤]
M(⌧,�)k�(0)�  k+ |hu(s; ⌧,�)� �(0), i|

<
"
2

8
+
���
D Z s

⌧

du(✓; ⌧,�)

d✓
d✓, 

E���

6"
2

8
+ k kV

p
⌧⇤ � ⌧

⇣Z ⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓
⌘ 1

2

6"
2

8
+
p
c2k kV

p
⌧⇤ � ⌧ , (4.13)

which implies that there exists some �002 2 (0, 1), independent of ⌧ , such that

|(u(s; ⌧,�)� �(0),�(0))| 6 "
2

4
, ⌧⇤ � �

00
2 < ⌧ < s 6 ⌧⇤. (4.14)

Picking �2 = min{�02, �002}, the desired result follows from (4.10), (4.12) and (4.14). The proof of Lemma
4.3 is complete.

Lemma 4.4. Let the assumptions (H1) and (H2) hold. Then for every � 2 C�(H) and every t 2 R the

C�(H)-valued function ⌧ 7! U(t, ⌧)� is continuous on (�1, t].
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Proof. Let � 2 C�(H) and t 2 R be given. We shall prove that for each given ⌧⇤ 2 (�1, t] the
C�(H)-valued function ⌧ 7! U(t, ⌧)� is both left and right continuous at ⌧ = ⌧⇤. We next prove the left
continuity at ⌧ = ⌧⇤.

Firstly, on one hand, for every " > 0 we deduce from Lemma 4.2 that there exists some �03 =

�
0
3(",�) > 0 such that, for all s1, s2 2 (�1, 0] with |s1 � s2| < �1, there holds

e
�s2k�(s1)� �(s2)k < "/2. (4.15)

On the other hand, by Lemma 4.3, there is a �003 = �
00
3 (", ⌧⇤,�) > 0 such that whenever ⌧ 2 (⌧⇤ � �

00
3 , ⌧⇤)

there holds
ku(s; ⌧,�)� �(0)k < "/2, for all s 2 [⌧, ⌧⇤]. (4.16)

Thus, for the positive " above, there exists some �3 = �3(", ⌧⇤,�) = min{�03, �003} > 0 such that

ku⇤(✓)� u(✓)k = k�(✓ � ⌧)� u(✓)k
6 k�(✓ � ⌧)� �(0)k+ k�(0)� u(✓; ⌧,�)k < ", ⌧⇤ � �3 < ⌧ < ⌧⇤, ✓ 2 [⌧, ⌧⇤],

which implies that

max
✓2[⌧,⌧⇤]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k < ", ⌧⇤ � �3 < ⌧ < ⌧⇤, ✓ 2 [⌧, ⌧⇤], (4.17)

where u⇤(✓; ⌧⇤,�) is the solution corresponding to the initial datum � at the initial time ⌧⇤.
Secondly, by (2.18) and (3.3) we have

max
✓2[⌧⇤,t]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k

.k�(0)� u(⌧⇤; ⌧,�)k2 exp
� Z t

⌧⇤

Lg(s)e
�⇢(s)ds+ (t� ⌧⇤)

�

+ k�� u⌧⇤k2�
Z

t

⌧⇤

Lg(s)e
�⇢(s) exp

� Z s

⌧⇤

Lg(✓)e
�⇢(✓)d✓ + (s� ⌧⇤)

�
ds.

.k�(0)� u(⌧⇤; ⌧,�)k2 + k�� u⌧⇤k2� , (4.18)

using the representation u(✓; ⌧,�) = u(✓; ⌧⇤, u(⌧⇤; ⌧,�)) and the fact that t and ⌧⇤ are fixed. Now by
Lemma 4.3, we derive that for above " > 0 there exists �04 = �

0
4(", t, ⌧⇤,�) > 0 such that

k�(0)� u(⌧⇤; ⌧,�)k < "/2, for ⌧⇤ � �
0
4 < ⌧ < ⌧⇤. (4.19)

At the same time, by (4.15) and (4.17), there exists �004 = �
00
4 (", ⌧⇤,�) > 0 such that when ⌧⇤ � �

00
4 < ⌧ <

⌧⇤ then

k�� u⌧⇤k� 6max
n

sup
s6⌧⇤�⌧

e
�sk�(s)� u⌧⇤(s)k, sup

s2[⌧�⌧⇤,0]
e
�sk�(s)� u⌧⇤(s)k

o

6max
n

sup
s6⌧�⌧⇤

e
�sk�(s)� �(s+ ⌧⇤ � ⌧)k, sup

s2[⌧,⌧⇤]
ku⇤(s)� u(s)k

o

6max
n
sup
r60

e
�(r+⌧�⌧⇤)k�(r + ⌧ � ⌧⇤)� �(r)k, "

o
< "/2. (4.20)
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Picking �4 = �4(", t, ⌧⇤,�) = min{�04, �004}, then (4.18)-(4.20) imply

max
✓2[⌧⇤,t]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k < ", ⌧⇤ � �4 < ⌧ < ⌧⇤. < ". (4.21)

We now choose � = �(", t, ⌧⇤,�) = min{�3, �4}, and then deduce from (4.15), (4.17) and (4.21) that if
⌧⇤ � � < ⌧ < ⌧⇤ then

kU(t, ⌧)�� U(t, ⌧⇤)�k� = sup
✓60

e
�✓ku(t+ ✓)� u⇤(t+ ✓)k�

6max
n

sup
✓6⌧�t

e
�✓k�(✓ + t� ⌧⇤)� �(✓ + t� ⌧)k, sup

✓2[⌧�t,0]
e
�✓ku(t+ ✓)� u⇤(t+ ✓)k

o

6max
n
sup
r60

e
�(r+⌧⇤�t)k�(r)� �(r + ⌧⇤ � ⌧)k, sup

✓2[⌧,t]
ku(✓)� u⇤(✓)k

o
< ".

The left continuity of the C�(H)-valued function ⌧ 7! U(t, ⌧)� at ⌧ = ⌧⇤ is proved. Since the proof of
the right continuity of U(t, ⌧)� at ⌧ = ⌧⇤ is similar to that of the left continuity, we omit the details and
end the proof of Lemma 4.4.

To construct the invariant measures for the process {U(t, ⌧)}t>⌧ , we next recall the definition of
generalized Banach limits.

Definition 4.1. ( [13, 24]) A generalized Banach limit is any linear functional, denoted by LIMt!+1,

defined on the space of all bounded real-valued functions on [0,+1) and satisfying

(1) LIMt!+1⇣(t) > 0 for nonnegative functions ⇣(·) on [0,+1);

(2) LIMt!+1⇣(t) = lim
t!+1

⇣(t) if the usual limit lim
t!+1

⇣(t) exists.

Remark 4.1. Notice that we consider the “pullback” asymptotic behavior and we require generalized

limits as ⌧ ! �1. For a given real-valued function ⇣ defined on (�1, 0] and a given Banach limit

LIMt!+1, we define LIMt!�1⇣(t) = LIMt!+1⇣(�t).

The main result of this article reads as follows.

Theorem 4.1. Let the assumptions (H1) and (H2) hold. Let {U(t, ⌧)}t>⌧ be the process associated to

the problem (1.1) and bAD� = {AD�(t) : t 2 R} the pullback D�-attractor obtained in Theorem 3.1.

Then for a given generalized Banach limit LIMt!+1 and a continuous map ⇠⌧ : R 7�! C�(H) with

⇠⌧ (·) 2 D�, there exists a unique family of Borel probability measures {mt}t2R in C�(H) such that the

support of the measure mt is contained in AD�(t) and

LIM⌧!�1
1

t� ⌧

Z
t

⌧

⌥
�
U(t, s)⇠s

�
ds =

Z

AD� (t)
⌥(u)dmt(u)

=

Z

C�(H)
⌥(u)dmt(u)

= LIM⌧!�1
1

t� ⌧

Z
t

⌧

Z

C�(H)
⌥
�
U(t, s)u

�
dms(u)ds,
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for every real-valued continuous functional ⌥ on C�(H). Moreover, mt is invariant in the sense that

Z

AD� (t)
⌥(u)dmt(u) =

Z

AD� (⌧)
⌥
�
U(t, ⌧)u

�
dm⌧ (u), t > ⌧.

Proof. From Theorems 2.1 and 2.2, the solution operators of the problem (1.1) generate a continuous
process {U(t, ⌧)}t>⌧ on the space C�(H). Theorem 3.1 shows that {U(t, ⌧)}t>⌧ possesses a pullback
attractor in C�(H). Lemmas 4.1 and 4.4 indicate that for each given t 2 R and � 2 C�(H) the C�(H)-
valued function ⌧ 7! U(t, ⌧)� is bounded and continuous on (�1, t]. Using these facts and the abstract
result of [24, Theorem 3.1], we obtain the results of Theorem 4.1.

5 Conclusions and remarks

In this article, we first prove the global well-posedness of the 3D GMNS equations with unbounded
variable delays. Then we establish that its solution operators generate a continuous process {U(t, ⌧)}t>⌧

on the space C�(H). Furthermore, the process {U(t, ⌧)}t>⌧ possesses a pullback attractor in C�(H). Fi-
nally, we prove the existence of invariant Borel probability measures which are supported by the pullback
attractor. There are two points that we would like to point out.

Firstly, we apply the generalized Ascoli-Arzelà theorem to prove the “weak version” of the pullback
asymptotic compactness of the process {U(t, ⌧)}t>⌧ (see Lemma 3.2). This is prompted by the delay
phenomenon. Since the problem discussed contains unbounded variable delays, it seems suitable for us
to choose C�(H) as the phase space. The Ascoli-Arzelà theorem has been proved to be a powerful tool
to investigate the compactness of the sets such as the subset of C�(H).

Secondly, for each given t 2 R and � 2 C�(H), the continuity of the C�(H)-valued function ⌧ 7!
U(t, ⌧)� on (�1, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essen-
tial differences between the autonomous dynamical system and non-autonomous one, say the continuous
dependence of the dynamical system on their parameters. Consider a continuous process {S(t, ⌧)}t>⌧ on
some Banach space X . Even if we have known that the X-valued function t 7! S(t, ⌧)x0 is continuous
on R for every given ⌧ and x0 2 X , the convergence kS(t⇤, ⌧)x0 � x0kX ! 0 as ⌧ ! t

�
⇤ may still

depend on ⌧ . In fact, when ⌧ ! t
�
⇤ , S(t⇤, ⌧)x0 changes simultaneously with different initial times ⌧ .

This is caused naturally by the non-autonomous phenomenon.
In the end of this article, we want to propose a problem, saying, how to formulate reasonably and

construct the statistical solutions for the evolution system containing delays. As for the 3D GMNS equa-
tions discussed here, we have constructed the invariant measures on the phase space C�(H). However,
we seem unable to construct its statistical solutions via the invariant measures and pullback attractors,
as done in [40–43], because the invariant measures are contained in the phase space C�(H) while the
equation (2.9) is interpreted in the D(⌧,+1;V 0) sense.
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Abstract

This article investigates the three-dimensional globally modified Navier-Stokes equations with
unbounded variable delays. Firstly, we prove the global well-posedness of the solutions, and give the
existence of the pullback attractor for the associated process. Then, we construct a family of invariant
Borel probability measures, which is supported by the pullback attractor.

Keywords: Globally modified Navier-Stokes equations; Unbounded variable delays; Invariant mea-
sures; Pullback attractors.

MSC2010: 35B41, 34D35, 76F20

1 Introduction

In this article, we study the following three-dimensional (3D) system of globally modified Navier-

Stokes (GMNS for short) equations with unbounded variable delays

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
− ν∆u+ FN (∥u∥V )[(u ·∇)u]+∇p= f(x, t)+ g(t, u(t − ρ(t))) in (τ,+∞)× Ω,

∇ · u = 0 in (τ,+∞)× Ω,
u = 0 on (τ,+∞)× ∂Ω,
u(τ + s, x) = φ(s, x) in (−∞, 0] × Ω,

(1.1)

where the unknown functions u = u(x, t) and p = p(x, t) denote, respectively, the velocity field of the

fluid and the pressure, the positive constant ν is the viscosity coefficient, f(x, t) is the density of the

∗E-mail: wangjt@hust.edu.cn
†Corresponding author, E-mail: zhaocaidi2013@163.com or zhaocaidi@wzu.edu.cn
‡E-mail: caraball@us.es
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volume forces, g is the external force affected by memory during the time range (−∞, τ ], ρ : R → R+

is a delay function satisfying ρ ∈ L∞
loc(R) and φ is the initial datum on the interval (−∞, 0]. Here

∥u∥V = ∥∇u∥(L2(Ω))3 and the function FN (·) : (0,+∞) (→ (0, 1] is defined as

FN (r) := min{1, N/r}, r ∈ (0,+∞),

where N is a positive integer. In addition, Ω ⊂ R3 is an open bounded set with the smooth boundary

∂Ω.

The GMNS equations with g ≡ 0 (that is without delays) was formulated in [5]. It is one kind of

global modifications of the Navier-Stokes (NS for short) equations with the modifying factor FN (∥u∥V )
depending on the (L2(Ω))3-norm of ∇u. This modification brings some good properties to the solutions:

global existence, uniqueness and regularity, in comparison with the multiple-solution property of NS

equations (see [11,12,16] and the references therein for readers’ perspective). The GMNS equations are

useful in obtaining some new results for the 3D NS equations. For instance, it was used in [5] to establish

the existence of bounded entire weak solutions for the 3D NS equations, and in [23], the authors applied

it to show weak compactness and weak connectedness of the attainability set of the weak solutions of

the 3D NS equations satisfying an energy inequality. At the same time, it was proved in [5, 33] that

the solutions of the GMNS equations converge to those of the 3D NS equations in some proper sense.

Therefore, the GMNS equations (1.1) with g ≡ 0 can be regarded as an approximation to the 3D NS

equations.

The GMNS equations (1.1) with g ≡ 0 have been extensively studied. For example, one can see

[5, 6, 15, 21, 37] for the existence and uniqueness of the weak and strong solutions, [8, 22, 28, 41] for

invariant measure and statistical solutions, [43] for the existence of trajectory attractor and trajectory

statistical solutions. However, the real world is inundated with many situations in which the model

is better described with some terms containing delays appearing in the equations. These delays may

appear, for instance, when the current behavior is influenced by its previous states, or one wants to

control the system by imposing an external force which depends upon both the present state and the

history of the solutions. The delayed partial differential equations are usually used to describe these

delayed phenomena ( [14, 17]).

Nowadays, delayed partial differential equations have drawn much attention and have been exten-

sively studied. For example, the existence and asymptotic behaviors of solutions for the NS equations

with finite delays were investigated in [2–4,18,29]; the existence of pullback attractors for the NS equa-

tions with finite or infinite delays was studied in [7, 20, 25, 32]. Some known references concerning the

delayed 3D GMNS equations are summarized as:

1◦ Finite delays: the existence, uniqueness and global asymptotic exponentially stability of the sta-

tionary solution, as well as the convergence of solutions to those of the NS equations were established

in [33, 34].

2◦ Infinite delays: the well-posedness and global exponential decay of the solutions to the stationary

solution, as well as the existence of pullback attractor were investigated in [30, 31].

3◦ Bounded variable delays: the existence and uniqueness of solutions, as well as the existence of

pullback attractors were proved in [9, 35].

However, up to our knowledge, there is no reference concerning the 3D GMNS equations with un-

bounded variable delays.
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The motivation of this article is to investigate the existence of invariant Borel probability measures

for the 3D GMNS equations with unbounded variable delays. The invariant measures and statistical

solutions have played a significant role and developed into a crucial tool in the research of turbulence

(see Foias et al. [16]) in recent decades. This is mainly due to the fact that some time-average quantities

essentially measure several important aspects of turbulent flows. The invariant measures and statisti-

cal properties of dissipative systems were studied by a number of researchers after that. For instance,

Wang considered the upper semi-continuity of stationary statistical properties for dissipative systems

in [40]. Łukaszewicz, Real and Robinson in [27] constructed the invariant measures for general continu-

ous dynamical systems on metric spaces by using the generalized Banach limit. For a much wider class

of dissipative semigroups, Chekroun and Glatt-Holtz [13] also applied the generalized Banach limit to

constructing the invariant measures, but they generalized and simplified the proofs of [27] and [40].

Recently, a series of works developed some techniques to provide a construction of invariant mea-

sures for non-autonomous systems with minimal assumptions on the underlying dynamical process (see

Foias et al. [16], Wang [40] and Łukaszewicz et al. [26–28]). Nowadays, these theories have been em-

ployed to establish invariant measures for some evolution equations, (see e.g. [24, 36, 41, 48] and the

references therein). However, as far as we know, there is no reference investigating the invariant mea-

sures for delayed evolution equations.

The main result of the current article is the existence of invariant Borel probability measures for the

3D GMNS equations with unbounded variable delays. We will use the abstract theory for dissipative

non-autonomous system in [28, Theorem 3.1]. To this end, we shall prove that the solution operators

associated to the problem (1.1) generate a continuous process {U(t, τ)}t!τ in the phase space Cγ(H)

(see notation in Section 2) and

(1) the process {U(t, τ)}t!τ is pullback strongly bounded in Cγ(H);

(2) the process {U(t, τ)}t!τ is pullback asymptotically compact in Cγ(H);

(3) for each given t∗ ∈ R and φ∗ ∈ Cγ(H), the Cγ(H)-valued function τ (→ U(t∗, τ)φ∗ is continuous

and bounded on (−∞, t] (this is called τ -continuity of the process {U(t, τ)}t!τ ).

We first use a Galerkin approximation argument, and some a priori estimates, to prove the global

well-posedness of the solutions to the problem (1.1). Also we do some estimates of the solutions to

obtain the existence of strongly bounded pullback absorbing sets. Secondly we apply the Ascoli-Arzelà

type theorem ( [1]) to establish the pullback asymptotic compactness of the process {U(t, τ)}t!τ . This

is prompted by the delay appearing in the equations. Since the problem discussed contains unbounded

variable delays, it seems suitable for us to choose Cγ(H) as the phase space. It has been shown that the

Ascoli-Arzelà theorem is a powerful tool to investigate the compactness of subsets of Cγ(H). Thirdly,

for each given t∗ ∈ R and φ∗ ∈ Cγ(H), the continuity of the Cγ(H)-valued function τ (→ U(t∗, τ)φ∗
on (−∞, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essential

differences between the autonomous dynamical system and non-autonomous one, say the continuous

dependence of the dynamical system on their parameters. Even if we have known that the Cγ(H)-

valued function t (→ U(t, τ)φ∗ is continuous on R for every given τ and φ∗ ∈ Cγ(H), the convergence

∥U(t∗, τ)φ∗ − φ∗∥γ → 0 as τ → t−∗ may still depend on τ itself. In fact, when τ → t−∗ , U(t∗, τ)φ∗
also changes with different initial times τ . This is caused naturally by the non-autonomous and delayed

phenomena. We will take advantage of the structure of the GMNS equations to prove the τ -continuity of
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the process {U(t, τ)}t!τ .

This article is organized as follows. In the next section, we first introduce some notations and oper-

ators, and then prove the global well-posedness of solutions to the problem (1.1). Section 3 is devoted

to the proof of the existence of pullback attractors. In Section 4, we first prove the τ -continuity of the

process and then construct a family of invariant Borel probability measures which is supported by the

pullback attractors. We end the article with conclusions and remarks in Section 5.

2 Global well-posedness of solutions

In this section, we first introduce some notations and operators. Then we prove the global well-

posedness of the problem (1.1).

In this article, we use the following notations:

L2(Ω) = (L2(Ω))3–the 3D Lebesgue space with norm ∥ · ∥L2(Ω) = ∥ · ∥;

H1(Ω) = the 3D Sobolev space {φ ∈ L2(Ω)|∇φ ∈ L2(Ω)} with norm ∥∇ · ∥L2(Ω);

H1
0(Ω) = closure of (C∞

0 (Ω))3 in H1(Ω) with norm ∥ · ∥H1(Ω);

V = {φ ∈ (C∞
0 (Ω))3|∇ · φ = 0};

H = closure of V in L2(Ω) with norm ∥ · ∥ and inner product (·, ·);
V = closure of V in H1(Ω) with norm ∥ · ∥V = ∥∇ · ∥L2(Ω);

V ′ = dual space of V with norm ∥ · ∥V ′ ; ⟨·, ·⟩ – the dual pairing between V and V ′;

In addition, we will use the notation a " b to mean that a # cb for a universal constant c > 0 that only

depends on the parameters coming from the problem and will not result in confusion.

For short, we will write the problem (1.1) in a functional form. To this end, we introduce some

classical operators which are usually used to handle the 3D incompressible NS and GMNS equations. At

the same time, we will select some known estimates and properties (see e.g. [39]) of these operators.

We first consider the operator A : V → V ′ defined as

⟨Au, v⟩ = (∇u,∇v), ∀u, v ∈ V,

where D(A) = H2(Ω) ∩ V and H2(Ω) = {φ ∈ H1(Ω)|∆φ ∈ L2(Ω)}. In fact, for each u ∈ D(A),

Au = −P∆u, and hence A is the Stokes operator, where P is the Leray-Helmholtz projection from

L2(Ω) onto H .

Secondly, we define a trilinear form b(·, ·, ·) as follows,

b(u, v, w) =
3∑

i,j=1

∫

Ω
ui
∂vj
∂xi

wjdx, ∀u, v, w ∈ H
1
0(Ω).

Notice that V is a closed subspace of H1
0(Ω). One can check that b(u, v, w) is continuous on V ×V ×V ,

and b(u, v, w) = −b(u,w, v), b(u, v, v) = 0, ∀u, v, w ∈ V . For each u, v ∈ V ,

⟨B(u, v), w⟩ = b(u, v, w), ∀w ∈ V,

defines a continuous function B(u, v) on V × V . At the same time, we have (cf. [39])

∥b(u, v, w)∥ "∥u∥1/2V ∥Au∥1/2∥v∥V ∥w∥, ∀u ∈ D(A), v ∈ V, w ∈ H (2.1)

∥b(u, v, w)∥ "∥u∥V ∥v∥V ∥w∥
1/2
V ∥w∥1/2, ∀u, v, w ∈ V. (2.2)
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We further set

bN (u, v, w) = FN (∥v∥V )b(u, v, w), ∀u, v, w ∈ V,

⟨BN (u, v), w⟩ = bN (u, v, w), ∀u, v, w ∈ V.

Then bN (u, v, w) is linear in u and w, but not linear in v. However, we still have (see [37])

bN (u, v, v) =0, ∀u, v ∈ V, (2.3)

|bN (u, v, w)| "N∥u∥V ∥w∥V , ∀u, v, w ∈ V, (2.4)

|bN (u, v, w)| "N∥Au∥∥w∥, ∀u ∈ D(A), v ∈ V, w ∈ H. (2.5)

Furthermore, for every u, v ∈ V and each N > 0,

0 #∥u∥V FN (∥u∥V ) # N, (2.6)

|FN (∥u∥V )− FN (∥v∥V )| #
1

N
FN (∥u∥V )F (∥v∥V )∥u− v∥V . (2.7)

To formulate the problem (1.1) in a proper manner, we require that the functions ρ(t), f(x, t) and

g(t, u(t− ρ(t))) in (1.1) satisfy some natural hypotheses.

(H1) Suppose that the function ρ : R (→ R+ belongs to L∞
loc(R) and f(t, x) ∈ L2

loc(R;L
2(Ω)). Also

assume that g : R×H → H satisfies

(g1) for every u ∈ H , the mapping R ∋ t (→ g(t, u) is measurable;

(g2) g(t, 0) = 0 for all t ∈ R;

(g3) there exists a positive constant γ and a nonnegative function Lg : R → R+ such that

Lg(·)eγρ(·) ∈ L2
loc(R) and ∥g(t, u) − g(t, v)∥ # Lg(t)∥u − v∥, ∀t ∈ R,∀u, v ∈ H. (2.8)

Remark 2.1. In Remark 3.1 we will give a concrete example to show the existence of the functions ρ(t),

f(t, x), g(t, u), Lg(t) and the constant γ that satisfy our assumption (H1). In the sequel, the constant γ

is from (g3).

In order to deal with the unbounded variable delays, we consider the space

Cγ(H) :=
{
φ ∈ C((−∞, 0];H) : sup

s#0
eγs∥φ(s)∥ < +∞,∃ lim

s→−∞
eγsφ(s) ∈ H

}
,

with the norm ∥φ∥γ := sup
s#0

eγs∥φ(s)∥. Then (Cγ(H), ∥ · ∥γ) is a Banach space. In addition, for each

τ ∈ R we denote conventionally uτ (s) = u(τ + s) with s ∈ (−∞, 0].

We now specify the definition of the weak solution to the problem (1.1).

Definition 2.1. Let τ ∈ R and φ ∈ Cγ(H) be given. If for all T > τ , a function u ∈ C((−∞, T ],H) ∩
L2(τ, T ;V ) with uτ = φ satisfies

du(t)

dt
+ νAu(t) +BN (u(t), u(t)) = f(t) + g(t, u(t − ρ(t)), (2.9)

in the sense of distribution D′(τ,+∞;V ′), then we call u a weak solution of the problem (1.1) corre-

sponding to the initial datum φ.
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For the existence and uniqueness of solutions to the problem (1.1), we have the following result.

Theorem 2.1. Let the assumption (H1) hold true. Then for each τ ∈ R and φ ∈ Cγ(H), there corre-

sponds a unique weak solution u(·) = u(·; τ,φ) to the problem (1.1), and u is in fact a strong solution in

the sense that

u ∈ C((τ, T ], V ) ∩ L2(τ + ε, T ;D(A)), ∀ε > 0, ∀T > τ + ε. (2.10)

Moreover, if φ(0) ∈ V , then

u ∈ C([τ, T ];V ) ∩ L2(τ, T ;D(A)), ∀T > τ. (2.11)

Proof. The proof is similar to that of [30, Theorem 2] and [31, Theorem 1] with the unbounded vari-

able delays in place of the infinite delays. Following the proof of [30, Theorem 2] with some different

estimates, we present the parts that will be used in the sequel of this article.

For the Galerkin approximation solution u(m), we have

d

dt
∥u(m)(t)∥2 + 2ν∥u(m)(t)∥2V = 2(f(t), u(m)(t)) + 2(g(t, u(m)(t− ρ(t))), u(m)(t))

" ν∥u(m)(t)∥2V + ∥f(t)∥2 + 2Lg(t)∥u(m)(t− ρ(t))∥∥u(m)(t)∥
" ν∥u(m)(t)∥2V + ∥f(t)∥2 + 2Lg(t)e

γρ(t)∥umt ∥2γ ,

using the facts that ∥u(m)(t)∥ = ∥u(m)
t (0)∥ # ∥u(m)

t ∥γ and

∥u(m)(t− ρ(t))∥ = eγρ(t)e−γρ(t)∥u(m)(t− ρ(t))∥ # eγρ(t)∥u(m)
t ∥γ . (2.12)

Hence, for all t ! τ there holds

∥u(m)(t)∥2 + ν

∫ t

τ
∥u(m)(s)∥2V ds " ∥u(m)(τ)∥2 +

∫ t

τ

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥u(m)
s ∥2γ

)
ds. (2.13)

By (2.13) and the definition of the norm ∥u(m)
t ∥2γ , we have

∥u(m)
t ∥2γ " max

{
sup

θ#τ−t
e2γθ∥φ(θ + t− τ)∥2,

sup
θ∈[τ−t,0]

(
e2γθ∥u(τ)∥2 + e2γθ

∫ t+θ

τ

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥u(m)
s ∥2γ

)
ds

)}

" max
{
sup
θ#0

e2γ(θ+τ−t)∥φ(θ)∥2, ∥u(τ)∥2 +
∫ t

τ

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥u(m)
s ∥2γ

)
ds

}

" ∥φ∥2γ +

∫ t

τ

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥u(m)
s ∥2γ

)
ds. (2.14)

Applying Gronwall’s lemma to (2.14) gives

∥u(m)
t ∥2γ "

(
∥φ∥2γ +

∫ t

τ
∥f(s)∥2ds

)
exp

(
2

∫ t

τ
Lg(s)e

γρ(s)ds
)
. (2.15)
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We then conclude from (2.13) and (2.15) that, with the assumption (H1) in hand,

∥u(m)
t ∥2γ + ∥u(m)∥2L2(τ,T ;V ) " 1, ∀ t ∈ [τ, T ], ∀ ∥φ∥γ # R, ∀m ! 1,

∫ T

τ
∥g(s, u(m)(s − ρ(s)))∥2ds #

∫ T

τ
(Lg(s)e

γρ(s))2∥u(m)
s ∥2γds " ∥Lge

γρ∥2L2(τ,T ). (2.16)

Estimate (2.16) implies that

g(·, u(m)(·− ρ(·))) ∈ L2(τ, T ;L2(Ω)). (2.17)

The rest tasks are to prove that the Galerkin approximate solutions {u(m)} possess a convergent subse-

quence and its limiting function is the solution satisfying Theorem 2.1. The procedures are similar to

those of [30, Theorem 2] and we omit the details here.

The result below shows that the solutions to (1.1) depend continuously on the initial data.

Theorem 2.2. Let the assumption (H1) hold. Let u = u(·; τ,φ) and ũ = ũ(·; τ, φ̃) be two solutions of

the problem (1.1) with the initial data φ and φ̃ at the initial time τ , respectively. Then we have

max
θ∈[τ,t]

∥u(θ)− ũ(θ)∥2

"∥φ(0) − φ̃(0)∥2 exp
( ∫ t

τ
2Lg(s)e

γρ(s)ds+ (t− τ)
)

(2.18)

+ ∥φ− φ̃∥2γ
∫ t

τ
Lg(s)e

γρ(s) exp
( ∫ s

τ
2Lg(θ)e

γρ(θ)dθ + (s− τ)
)
ds.

The proof of Theorem 2.2 is analogous to that of [31, Proposition 1] and we omit the details.

3 Existence of the pullback attractors

From Theorems 2.1 and 2.2 we can conclude that the solution operators U(t, τ) : Cγ(H) → Cγ(H)

defined by

U(t, τ)φ(s) = ut(s), τ # t, s ∈ (−∞, 0], (3.1)

generate a continuous process {U(t, τ)}t!τ on the phase space Cγ(H), where u = u(·; τ,φ) is the solu-

tion of the problem (1.1) corresponding to the initial function φ at the initial time τ . In this section, we

first prove that {U(t, τ)}t!τ possesses a bounded pullback absorbing set and is pullback asymptotically

compact in Cγ(H). Then we obtain the existence of the pullback attractor. For related definitions and

results concerning the evolution processes and pullback attractors, we can refer to [4, 10, 38] and the

references therein.

In the sequel, we pick γ and some parameter µ such that

0 < µ < ν and (ν − µ)λ1 < γ, (3.2)

where λ1 = inf
v∈V \{0}

∥v∥2V
∥v∥2

> 0 is the first eigenvalue of the Stokes operator A. To obtain the existence

of the bounded pullback absorbing set, we need another assumption for the functions Lg(·)eγρ(·) and f .
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(H2) Assume there is a constant µ satisfying (3.2) such that

ess sup
t∈R

Lg(t)e
γρ(t) < (ν − µ)λ1 # γ, (3.3)

∫ 0

−∞
eσs∥f(s)∥2ds < +∞, (3.4)

hereinafter the constant σ is given by

σ := 2(ν − µ)λ1 − 2 ess sup
t∈R

Lg(t)e
γρ(t). (3.5)

Remark 3.1. We set
⎧
⎪⎪⎨

⎪⎪⎩

ρ(t) = |t|, t ∈ R,
g(t, u) = exp(−e|t|)u, t ∈ R, u ∈ H,
Lg(t) = exp(−e|t|), t ∈ R,
γ = e,

(3.6)

then the conditions in (H1) are satisfied and

ess sup
t∈R

Lg(t)e
γρ(t) = eγ ln γ−γ = e0 = 1 < e = γ.

If we take 1 < ν < e and µ small enough, then (3.3) are satisfied. Thus, the functions and constant

presented by (3.6) satisfy the conditions in (H1) and (H2). For the existence of the function f(x, t)

satisfying (H1) and (H2), we refer to [42, Example 3.1].

We denote by P(Cγ(H)) the family of all subsets of Cγ(H) and consider the families of nonempty

sets D̂ = {D(t) : t ∈ R} ⊆ P(Cγ(H)). Let Dσ be the nonempty class of families D̂ = {D(t) : t ∈
R} ⊆ P(Cγ(H)) parameterized by time t and satisfying

lim
τ→−∞

(
eστ sup

v∈D(τ)
∥v∥2γ

)
= 0.

The class Dσ defined above is always called a tempered universe.

Lemma 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, τ)}t!τ possesses a

bounded pullback absorbing set in Cγ(H).

Proof. Pick some µ satisfying (3.2), and let u = u(·; τ,φ) be the solution of the problem (1.1) corre-

sponding to the initial function φ at the initial time τ . Then we can get

d

dt
∥u(t)∥2 + 2(ν − µ)λ1∥u(t)∥2 + µ∥u(t)∥2V " ∥f(t)∥2 + 2Lg(t)e

γρ(t)∥ut∥2γ , t > τ. (3.7)

Hence for all t ! τ ,

∥u(t)∥2 + µ

∫ t

τ
e−2(ν−µ)λ1(t−s)∥u(s)∥2V ds

"e−2(ν−µ)λ1(t−τ)∥u(τ)∥2 +
∫ t

τ
e−2(ν−µ)λ1(t−s)

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥us∥2γ
)
ds. (3.8)
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Inequality (3.8) implies that

∥ut∥2γ "max
{

sup
θ∈(−∞,τ−t]

e2γθ∥φ(θ + t− τ)∥2, sup
θ∈[τ−t,0]

(
e2γθ−2(ν−µ)λ1(t+τ−θ)∥u(τ)∥2

+ e2γθ
∫ t+θ

τ
e−2(ν−µ)λ1(t+θ−s)

(
|f(s)∥2 + 2Lg(s)e

γρ(s)∥us∥2γ
)
ds

)}
. (3.9)

By the choice of µ in (3.2), we have

sup
θ∈(−∞,τ−t]

e2γθ∥φ(θ + t− τ)∥ # e−(ν−µ)λ1(t−τ)∥φ∥γ , (3.10)

sup
θ∈[τ−t,0]

e2γθ−2(ν−µ)λ1(t+τ−θ)∥u(τ)∥2 # e−2(ν−µ)λ1(t−τ)∥u(τ)∥2, (3.11)

sup
θ∈[τ−t,0]

e2γθ
∫ t+θ

τ
e−2(ν−µ)λ1(t+θ−s)

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥us∥2γ
)
ds

#

∫ t

τ
e−2(ν−µ)λ1(t−s)

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥us∥2γ
)
ds. (3.12)

It then follows from (3.9)-(3.12) that

∥ut∥2γ " e−2(ν−µ)λ1(t−τ)∥φ∥2γ +

∫ t

τ
e−2(ν−µ)λ1(t−s)

(
∥f(s)∥2 + 2Lg(s)e

γρ(s)∥us∥2γ
)
ds. (3.13)

Applying Gronwall’s inequality to (3.13) yields

∥ut∥2γ "∥φ∥2γ exp
{
−2(ν − µ)λ1(t− τ) + 2

∫ t

τ
Lg(s)e

γρ(s)ds
}

+

∫ t

τ
∥f(s)∥2 exp

{
−2(ν − µ)λ1(t− s) + 2

∫ t

s
Lg(σ)e

γρ(σ)dσ
}
ds

"∥φ∥2γe−σ(t−τ) +

∫ t

τ
∥f(s)∥2e−σ(s−τ)ds. (3.14)

Now we define the time-dependent family B̂ = {B(t) : t ∈ R} ∈ P(Cγ(H)) as

B(t) =
{
v ∈ Cγ(H) : ∥v∥2γ " 1 +

∫ t

−∞
e−σ(t−s)∥f(s)∥2ds

}
. (3.15)

Then B̂ is the desired pullback Dσ-absorbing set for {U(t, τ)}t!τ in Cγ(H).

To establish the pullback Dσ-asymptotic compactness for {U(t, τ)}t!τ in Cγ(H), we will employ

the generalized Ascoli-Arzelà type theorem ( [1]) to prove the following auxiliary lemma.

Lemma 3.2. Let {τn}n!1 be a sequence such that τn → −∞ as n → +∞ and τn # t0 for some fixed

t0 ∈ R, and {φn}n!1 a sequence of functions with φn ∈ B(τn) for each positive integer n. Denote by

u(n) = u(n)(·; τn,φn) the solutions of the problem (1.1) corresponding to the initial data φn at the initial

time τn. Then there exist a subsequence (still denoted the same) {u(n)t0 }n!1 and a function ψ ∈ Cγ(H)

such that u(n)t0 → ψ in C([−T , 0];H) for each T > 0.
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Proof. Let t0, {τn}n!1, {φn}n!1 and u(n) = u(n)(·; τn,φn) be given as in this lemma. Consider two

arbitrary positive numbers T , T with T > T . Let n0 = n0(t0, T ) be the positive integer such that

τn < t0−T for all n ! n0. From (3.3) and (3.14)-(3.15) we deduce that for t ∈ [t0−T, t0] and n ! n0,

∥un(t)∥2 "R(t0, T ) := 1 + e−σ(t0−T )
∫ t0

−∞
eσs∥f(s)∥2ds < +∞, (3.16)

∥unt ∥2γ "R(t0, T ). (3.17)

We next divide two steps to establish that the conditions of the Ascoli-Arzelà type theorem are satisfied.

Step one. We first prove that

{u(n)(t)}n!n0 is precompact in H for each t ∈ [t0 − T , t0]. (3.18)

By Theorem 2.1, we conclude that u(n)(t) ∈ D(A) for all t ∈ [t0 − T, t0], whence,

1

2

d

dt
∥u(n)(t)∥2V + ν∥Au(n)(t)∥2 + bN (u(n)(t), u(n)(t), Au(n)(t))

=(f(t), Au(n)(t)) + (g(t, u(n)(t− ρ(t))), Au(n)(t)), t ∈ [t0 − T, t0]. (3.19)

Using Young’s inequality, (2.1) and (2.6), we have

(f(t), Au(n)(t)) "
ν

8
∥Au(n)(t)∥2 + ∥f(t)∥2, (3.20)

(g(t, u(n)(t− ρ(t))), Au(n)(t)) "
ν

8
∥Au(n)(t)∥2 + L2

g(t)e
2γρ(t)∥u(n)t ∥2γ , (3.21)

|bN (u(n)(t), u(n)(t), Au(n)(t))| " ∥u(n)(t)∥1/2V ∥Au(n)(t)∥3/2 "
ν

4
∥Au(n)(t)∥2 + ∥u(n)(t)∥2V . (3.22)

Combining (3.19)-(3.22) gives

d

dt
∥u(n)∥2V + ν∥Au(n)(t)∥2 " ∥f(t)∥2 + 2L2

g(t)e
2γρ(t)∥u(n)t ∥2γ + ∥u(n)(t)∥2V . (3.23)

Integrating (3.23) over [s, t] with t0 − T # s # t # t0 yields

∥u(n)(t)∥2V " ∥u(n)(s)∥2V +

∫ t0

t0−T

[(
∥f(θ)∥2 + 2L2

g(θ)e
2γρ(θ)∥u(n)θ ∥2γ

)
+ ∥u(n)(θ)∥2V

]
dθ. (3.24)

Now integrating (3.24) with respect to s over [t0 − T, t], we obtain for t ∈ [t0 − T , t0] that

(T − T )∥u(n)(t)∥2V # (t+ T − t0)∥u(n)(t)∥2V

"T

∫ t0

t0−T
∥u(n)(s)∥2V ds+ T

∫ t0

t0−T

(
∥f(s)∥2 + L2

g(s)e
2γρ(s)∥u(n)s ∥2γ

)
ds. (3.25)

In addition, from (3.8) and (3.14), we can get
∫ t

τ
∥u(n)(s)∥2V ds "

(
1 +

∫ t

τ
Lg(s)e

γρ(s)e2
∫ s
τ Lg(σ)eγρ(σ)dσds

)
∥φ∥2γ

+

∫ t

τ
e−2(ν−µ)λ1(τ−s)∥f(s)∥2ds (3.26)

+

∫ t

τ
Lg(s)e

γρ(s)
∫ s

τ
e−2(ν−µ)λ1(τ−σ)+2

∫ s
σ Lg(θ)eγρ(θ)dθ∥f(σ)∥2dσds.

10



Note that we have u(n)(t; τ (n),φ(n)) = U(t, t0 − T )u(t0 − T ; τn,φ(n)). Thus from (3.8)-(3.9), (3.13)

and (3.15), we know that

the sequence {u(n)}n!n0 is bounded in L∞(t0 − T , t0;V ). (3.27)

Therefore, it follows from the compact embedding V ↪→ H and the continuity of u(n) (see (2.10)) that

the set

{un(t) : t ∈ [t0 − T , t0], n ! n0} is precompact in H, (3.28)

from which (3.18) immediately follows.

Step two. We establish the equicontinuity of {u(n)}n!n0 on [t0 − T , t0] by contradiction.

Suppose that this equicontinuity does not hold true, and then there exists a positive constant ε0 and two

sequences {t(1)n } and {t(2)n }, satisfying t0 − T # t(1)n # t(2)n # t0 and |t(2)n − t(1)n | # 1
n , such that

∥u(n)(t(1)n )− u(n)(t(2)n )∥ ! ε0. (3.29)

By (3.28), we can assume that t(1)n → t∗, u(n)(t∗) → z∗ and u(n)(t(i)n ) → z(i) (i = 1, 2) in H as

n → +∞. Evidently, t(2)n → t∗ as n → +∞ and t∗ ∈ [t0 − T , t0]. By (3.23), we know that

∥z(1) − z(2)∥ ! ε0. (3.30)

Set y(n)(t) = u(n)(t)− u(n)(t∗) for n ! n0. Then we obtain

1

2

d

dt
∥y(n)(t)∥2 + ν∥y(n)(t)∥2V + ν

∫

Ω
∇u(n)(t∗) ·∇y(n)(t)dx+ bN (u(n)(t), u(n)(t), y(n)(t))

=(f(t), y(n)(t)) + (g(t, u(n)(t− ρ(t))), y(n)(t)), t ∈ [t0 − T , t0]. (3.31)

Applying Schwartz’s inequality and (g3), we have

∣∣
∫

Ω
∇u(n)(t∗) ·∇y(n)(t)dx

∣∣ #
1

2
∥u(n)(t∗)∥2V +

1

2
∥y(n)(t)∥2V , (3.32)

2|(f(t), y(n)(t))| #∥f(t)∥2 + ∥y(n)(t)∥2, (3.33)

2|(g(t, u(n)(t− ρ(t))), y(n)(t))| #L2
g(t)e

2γρ(t)∥u(n)t ∥2γ + ∥y(n)(t)∥2. (3.34)

At the same time, by (2.3)-(2.6) and (2.7), we see that

|bN (u(n)(t), u(n)(t)), y(n)(t))| =|bN (y(n)(t), u(n)(t), y(n)(t))− bN (u(n)(t∗), u(n)(t), u(n)(t∗))|

"∥y(n)(t)∥3/2V ∥y(n)(t)∥1/2 + ∥u(n)(t∗)∥2V
"
ν

2
∥y(n)(t)∥2V + ∥y(n)(t)∥2 + ∥u(n)(t∗)∥2V . (3.35)

Taking (3.31)-(3.35) into account yields

d

dt
∥y(n)(t)∥2 " ∥y(n)(t)∥2 + ∥f(t)∥2 + L2

g(t)e
2γρ(t)∥u(n)t ∥2γ + ∥u(n)(t∗)∥2V . (3.36)
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Integrating (3.36) from t∗ to t(i)n and using (3.16)- (3.17) gives

∥y(n)(tin)∥2 #[R(t0, T ) + c1]|tin − t∗|+
∣∣
∫ tin

t∗
∥f(s)∥2ds

∣∣

+R(t0, T )
∣∣∣
∫ tin

t∗
L2
g(s)e

2γρ(s)ds
∣∣∣, (3.37)

where (see (2.10) and (3.27))

c1 := sup
t∈[t0−T,t0]

{∥un(t)∥V : n ! n0}.

Letting n → +∞ in (3.37) and using the assumptions f ∈ L2
loc(R;L

2(Ω)) and (g3), we conclude that

∥zi − z∗∥2 = lim
n→+∞

∥u(n)(tin)− u(n)(t∗)∥2 = 0, for i = 1, 2,

which contradicts (3.30).

At this stage, we can apply the Ascoli-Arzelà type theorem [1] to claim that for each T > 0,

{u(n)}n∈N+ is precompact in C([t0 − T , t0];H). Thus there exists a function ψ ∈ C([−T , 0];H) and a

subsequence of u(n)t0 such that u(n)t0 |[−T,0] → ψ in C([−T , 0];H). Repeating this procedure for nT with

n = 2, 3, · · · , and using the diagonal procedure, we can obtain a function ψ ∈ C((−∞, 0];H) such that

(extract a subsequence if necessary) u(n)t0 |[−T ,0] → ψ in C([−T , 0];H) for each positive number T . The

proof of Lemma 3.2 is complete.

Lemma 3.3. Let the assumptions (H1) and (H2) hold. Then the process {U(t, τ)}t!τ is pullback Dσ-

asymptotically compact in Cγ(H).

Proof. We continue to use the notations of the previous lemma. To establish the pullback Dσ-asymptotic

compactness, we shall prove that unt0 → ψ in Cγ(H), for which, it is sufficient to show that, for every

ε > 0, there exists some positive integer nε such that

sup
s∈(−∞,0]

e2γs∥u(n)t0 (s)− ψ(s)∥2 < ε, for all n ! nε. (3.38)

Indeed, by (3.16)-(3.17) and the convergence proved in the previous lemma, we have that

∥ψ(s)∥2 " 1 + e−σ(t0−T )
∫ t0

−∞
eσs∥f(s)∥2ds = R(t0, T ), for all s ∈ [−T, 0] and T > 0.

The rest proof is similar to that of [31, Proposition 3] and we omit the details here.

At this stage we combine Lemmas 3.1, 3.3 and the general result of [19, Theorem 3.11] to obtain the

main result of this section, namely,

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, τ)}t!τ possesses a

pullback Dσ-attractor (denoted by) ÂH
Dσ

= {AH
Dσ

(t) : t ∈ R} in Cγ(H).
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4 Existence of the invariant Borel probability measures in Cγ(H)

In this section, we first aim to prove that for each given t ∈ R and φ ∈ Cγ(H), the Cγ(H)-valued

function τ (→ U(t, τ)φ is bounded and continuous on (−∞, t]. Then we combine Theorem 3.1 and the

abstract result of [28, Theorem 3.1] to obtain the existence of invariant Borel probability measures for

{U(t, τ)}t!τ in Cγ(H).

Lemma 4.1. Let the assumptions (H1) and (H2) hold. Then for every φ ∈ Cγ(H) and every t ∈ R the

Cγ(H)-valued function τ (→ U(t, τ)φ is bounded on (−∞, t].

Proof. Let φ ∈ Cγ(H) and t ∈ R be given. Note (3.4) is equivalent to (see [31, Remark 5])

∫ t

−∞
eσs∥f(s)∥2ds < +∞ for all t ∈ R. (4.1)

Then (3.14) and (4.1) imply that for all τ ∈ (−∞, t],

∥U(t, τ)φ∥2γ " e−σ(t−τ)∥φ∥2γ +

∫ t

τ
e−σ(t−s)∥f(s)∥2ds # ∥φ∥2γ + e−σt

∫ t

−∞
eσs∥f(s)∥2ds,

the right-hand side of which is bounded by a positive constant independent of τ ∈ (−∞, t].

In the sequel, we set a positive number M(t,φ) such that

M2(t,φ) := ∥φ∥2γ + e−σt
∫ t

−∞
eσs∥f(s)∥2ds.

Then M2(t,φ) is a continuous function with respect to t ∈ R.

To establish the continuity of the Cγ(H)-valued function τ (→ U(t, τ)φ on (−∞, t], we next prove

two auxiliary lemmas.

Lemma 4.2. Let φ ∈ Cγ(H) be given. Then for each ε > 0, there exists some δ1 = δ1(ε,φ) > 0 such

that for all s1, s2 ∈ (−∞, 0] with |s1 − s2| < δ1 there holds

eγs2∥φ(s1)− φ(s2)∥ < ε. (4.2)

Proof. By the definition of Cγ(H), we set φ∞ := lim
s→−∞

eγsφ(s) ∈ H . Then there exists some s0 < 0

such that

∥eγsφ(s)− φ∞∥ <
ε

4
, ∀ s # s0,

and thus

∥eγs1φ(s1)− eγs2φ(s2)∥ # ∥eγs1φ(s1)− φ∞∥+ ∥eγs2φ(s2)− φ∞∥ <
ε

2
, ∀ s1, s2 # s0. (4.3)

On the other hand, the H-valued function s (→ eγsφ(s) is uniformly continuous on the interval [s0−1, 0],

whence there is some δ′1 ∈ (0, 1) such that

∥eγs1φ(s1)− eγs2φ(s2)∥ <
ε

2
for s1, s2 ∈ [s0 − 1, 0] with |s1 − s2| < δ′1. (4.4)
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Letting δ1 = min
{
δ′1,

1

γ
ln

(
1+

ε

2∥φ∥γ
)}

, we have by (4.3) and (4.4) that for all s1, s2 ∈ (−∞, 0] with

|s1 − s2| < δ1 there holds

eγs2∥φ(s1)− φ(s2)∥ # ∥eγs1φ(s1)− eγs2φ(s2)∥+ |eγs1 − eγs2 |∥φ(s1)∥

#
ε

2
+ |eγ(s2−s1) − 1|∥φ∥γ < ε.

The proof is complete.

Lemma 4.3. Let the assumptions (H1) and (H2) hold, and τ∗ ∈ R and φ ∈ Cγ(H) be given. Then for

each ε > 0, there exists some δ2 = δ2(ε, τ∗,φ) > 0 such that

∥u(s; τ,φ) − φ(0)∥ < ε, for all τ ∈ (τ∗ − δ2, τ∗) and s ∈ [τ, τ∗], (4.5)

where u(s; τ,φ) is the solution of the problem (1.1) with the initial datum φ at the initial time τ .

Proof. Let τ∗ ∈ R and φ ∈ Cγ(H) be given. Firstly, we prove that

∫ τ∗

τ

∥∥∥
du(θ; τ,φ)

dθ

∥∥∥
2

V ′
dθ # c2, (4.6)

where

c2 := ∥φ∥2γ +

∫ τ∗

τ∗−1
∥f(θ)∥2dθ + sup

[τ∗−1,τ∗]
M2(θ,φ),

is a bounded quantity depending on τ∗, g, f , · · · , etc., but being independent of τ ∈ [τ∗ − 1, τ∗]. Indeed,

from (2.9) we can see that

∥∥∥
du(θ; τ,φ)

dθ

∥∥∥
2

V ′
"∥Au(θ; τ,φ)∥2V ′ + ∥BN (u(θ; τ,φ), u(θ; τ,φ))∥2V ′

+ ∥f(θ)∥2 + ∥g(θ, u(θ − ρ(θ)))∥2. (4.7)

By (2.5), (g2), (g3) and some simple observations, we have

⎧
⎪⎨

⎪⎩

∥Au(θ; τ,φ)∥2V ′ " ∥u(θ; τ,φ)∥2V ,
∥BN (u(θ; τ,φ), u(θ; τ,φ))∥2V ′ " ∥u(θ; τ,φ)∥2V ,
∥g(θ, u(θ − ρ(θ)))∥2 " sup

[τ∗−1,τ∗]
M2(θ,φ).

(4.8)

Inserting (4.7) and (4.8) into (4.6), then using (3.3), (3.5) and (3.26) gives

∫ τ∗

τ

∥∥∥
du(θ; τ,φ)

dθ

∥∥∥
2

V ′
dθ "

∫ τ∗

τ
∥u(θ; τ,φ))∥2V dθ +

∫ τ∗

τ
∥f(θ)∥2dθ + (τ∗ − τ) sup

[τ∗−1,τ∗]
M2(θ,φ)

"∥φ∥2γ +

∫ τ∗

τ∗−1
∥f(θ)∥2dθ + sup

[τ∗−1,τ∗]
M2(θ,φ), ∀τ ∈ [τ∗ − 1, τ∗], (4.9)

that is (4.6) is proved.
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Secondly, we observe that for τ∗ − 1 # τ < s # τ∗ there holds

∥u(s; τ,φ) − φ(0)∥2

=∥u(s; τ,φ)∥2 − ∥φ(0)∥2 − 2
(
u(s; τ,φ) − φ(0),φ(0)

)

=

∫ s

τ

d∥u(θ; τ,φ)∥2

dθ
dθ − 2

(
u(s; τ,φ)− φ(0),φ(0)

)
. (4.10)

By (3.3) and (3.13), we obtain

∣∣∣
∫ s

τ

d∥u(θ; τ,φ)∥2

dθ
dθ

∣∣∣ "
∫ s

τ
∥f(θ)∥2dθ +

∫ s

τ
Lg(θ)e

γρ(θ)∥uθ∥2γdθ

"

∫ τ∗

τ
∥f(θ)∥2dθ + (τ∗ − τ) sup

θ∈[τ∗−1,τ∗]
M2(θ,φ). (4.11)

Notice that f ∈ L2
loc(R,L

2(Ω)), and sup
θ∈[τ∗−1,τ∗]

M2(θ,φ) is a constant independent of τ . Therefore,

from (4.11) we see that there exists some δ′2 = δ′2(ε, τ∗,φ) ∈ (0, 1) such that

∣∣∣
∫ s

τ

d∥u(θ; τ,φ)∥2

dθ
dθ

∣∣∣ <
ε2

2
, τ∗ − δ′2 < τ < s # τ∗. (4.12)

At the same time, since φ(0) ∈ H and V is dense in H , there exists some ψ ∈ V such that

∥ψ − φ(0)∥ < ε2/16 sup
θ∈[τ∗−1,τ∗]

M2(θ,φ).

Using (4.6),

|(u(s; τ,φ) − φ(0),φ(0))| #|(u(s; τ,φ) − φ(0),φ(0) − ψ)|+ |(u(s; τ,φ) − φ(0),ψ)|
#2 sup

θ∈[τ∗−1,τ∗]
M(τ,φ)∥φ(0) − ψ∥+ |⟨u(s; τ,φ) − φ(0),ψ⟩|

<
ε2

8
+

∣∣∣
〈 ∫ s

τ

du(θ; τ,φ)

dθ
dθ,ψ

〉∣∣∣

#
ε2

8
+ ∥ψ∥V

√
τ∗ − τ

(∫ τ∗

τ

∥∥∥
du(θ; τ,φ)

dθ

∥∥∥
2

V ′
dθ

)1
2

#
ε2

8
+

√
c2∥ψ∥V

√
τ∗ − τ , (4.13)

which implies that there exists some δ′′2 ∈ (0, 1), independent of τ , such that

|(u(s; τ,φ) − φ(0),φ(0))| #
ε2

4
, τ∗ − δ′′2 < τ < s # τ∗. (4.14)

Picking δ2 = min{δ′2, δ′′2}, the desired result follows from (4.10), (4.12) and (4.14). The proof of Lemma

4.3 is complete.

Lemma 4.4. Let the assumptions (H1) and (H2) hold. Then for every φ ∈ Cγ(H) and every t ∈ R the

Cγ(H)-valued function τ (→ U(t, τ)φ is continuous on (−∞, t].
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Proof. Let φ ∈ Cγ(H) and t ∈ R be given. We shall prove that for each given τ∗ ∈ (−∞, t] the

Cγ(H)-valued function τ (→ U(t, τ)φ is both left and right continuous at τ = τ∗. We next prove the left

continuity at τ = τ∗.

Firstly, on one hand, for every ε > 0 we deduce from Lemma 4.2 that there exists some δ′3 =

δ′3(ε,φ) > 0 such that, for all s1, s2 ∈ (−∞, 0] with |s1 − s2| < δ1, there holds

eγs2∥φ(s1)− φ(s2)∥ < ε/2. (4.15)

On the other hand, by Lemma 4.3, there is a δ′′3 = δ′′3 (ε, τ∗,φ) > 0 such that whenever τ ∈ (τ∗ − δ′′3 , τ∗)

there holds

∥u(s; τ,φ) − φ(0)∥ < ε/2, for all s ∈ [τ, τ∗]. (4.16)

Thus, for the positive ε above, there exists some δ3 = δ3(ε, τ∗,φ) = min{δ′3, δ′′3} > 0 such that

∥u∗(θ)− u(θ)∥ = ∥φ(θ − τ)− u(θ)∥
# ∥φ(θ − τ)− φ(0)∥ + ∥φ(0) − u(θ; τ,φ)∥ < ε, τ∗ − δ3 < τ < τ∗, θ ∈ [τ, τ∗],

which implies that

max
θ∈[τ,τ∗]

∥u∗(θ; τ∗,φ)− u(θ; τ,φ)∥ < ε, τ∗ − δ3 < τ < τ∗, θ ∈ [τ, τ∗], (4.17)

where u∗(θ; τ∗,φ) is the solution corresponding to the initial datum φ at the initial time τ∗.

Secondly, by (2.18) and (3.3) we have

max
θ∈[τ∗,t]

∥u∗(θ; τ∗,φ)− u(θ; τ,φ)∥

"∥φ(0) − u(τ∗; τ,φ)∥2 exp
( ∫ t

τ∗

Lg(s)e
γρ(s)ds+ (t− τ∗)

)

+ ∥φ− uτ∗∥2γ
∫ t

τ∗

Lg(s)e
γρ(s) exp

( ∫ s

τ∗

Lg(θ)e
γρ(θ)dθ + (s− τ∗)

)
ds.

"∥φ(0) − u(τ∗; τ,φ)∥2 + ∥φ− uτ∗∥2γ , (4.18)

using the representation u(θ; τ,φ) = u(θ; τ∗, u(τ∗; τ,φ)) and the fact that t and τ∗ are fixed. Now by

Lemma 4.3, we derive that for above ε > 0 there exists δ′4 = δ′4(ε, t, τ∗,φ) > 0 such that

∥φ(0) − u(τ∗; τ,φ)∥ < ε/2, for τ∗ − δ′4 < τ < τ∗. (4.19)

At the same time, by (4.15) and (4.17), there exists δ′′4 = δ′′4 (ε, τ∗,φ) > 0 such that when τ∗ − δ′′4 < τ <

τ∗ then

∥φ− uτ∗∥γ #max
{

sup
s#τ∗−τ

eγs∥φ(s)− uτ∗(s)∥, sup
s∈[τ−τ∗,0]

eγs∥φ(s) − uτ∗(s)∥
}

#max
{

sup
s#τ−τ∗

eγs∥φ(s)− φ(s + τ∗ − τ)∥, sup
s∈[τ,τ∗]

∥u∗(s)− u(s)∥
}

#max
{
sup
r#0

eγ(r+τ−τ∗)∥φ(r + τ − τ∗)− φ(r)∥, ε
}
< ε/2. (4.20)

16



Picking δ4 = δ4(ε, t, τ∗,φ) = min{δ′4, δ′′4}, then (4.18)-(4.20) imply

max
θ∈[τ∗,t]

∥u∗(θ; τ∗,φ)− u(θ; τ,φ)∥ < ε, τ∗ − δ4 < τ < τ∗. < ε. (4.21)

We now choose δ = δ(ε, t, τ∗,φ) = min{δ3, δ4}, and then deduce from (4.15), (4.17) and (4.21) that if

τ∗ − δ < τ < τ∗ then

∥U(t, τ)φ − U(t, τ∗)φ∥γ = sup
θ#0

eγθ∥u(t+ θ)− u∗(t+ θ)∥γ

#max
{

sup
θ#τ−t

eγθ∥φ(θ + t− τ∗)− φ(θ + t− τ)∥, sup
θ∈[τ−t,0]

eγθ∥u(t+ θ)− u∗(t+ θ)∥
}

#max
{
sup
r#0

eγ(r+τ∗−t)∥φ(r)− φ(r + τ∗ − τ)∥, sup
θ∈[τ,t]

∥u(θ)− u∗(θ)∥
}
< ε.

The left continuity of the Cγ(H)-valued function τ (→ U(t, τ)φ at τ = τ∗ is proved. Since the proof of

the right continuity of U(t, τ)φ at τ = τ∗ is similar to that of the left continuity, we omit the details and

end the proof of Lemma 4.4.

To construct the invariant measures for the process {U(t, τ)}t!τ , we next recall the definition of

generalized Banach limits.

Definition 4.1. ( [16, 28]) A generalized Banach limit is any linear functional, denoted by LIMt→+∞,

defined on the space of all bounded real-valued functions on [0,+∞) and satisfying

(1) LIMt→+∞ζ(t) ! 0 for nonnegative functions ζ(·) on [0,+∞);

(2) LIMt→+∞ζ(t) = lim
t→+∞

ζ(t) if the usual limit lim
t→+∞

ζ(t) exists.

Remark 4.1. Notice that we consider the “pullback” asymptotic behavior and we require generalized

limits as τ → −∞. For a given real-valued function ζ defined on (−∞, 0] and a given Banach limit

LIMt→+∞, we define LIMt→−∞ζ(t) = LIMt→+∞ζ(−t).

The main result of this article reads as follows.

Theorem 4.1. Let the assumptions (H1) and (H2) hold. Let {U(t, τ)}t!τ be the process associated to

the problem (1.1) and ÂDσ = {ADσ(t) : t ∈ R} the pullback Dσ-attractor obtained in Theorem 3.1.

Then for a given generalized Banach limit LIMt→+∞ and a continuous map ξτ : R (−→ Cγ(H) with

ξτ (·) ∈ Dσ, there exists a unique family of Borel probability measures {mt}t∈R in Cγ(H) such that the

support of the measure mt is contained in ADσ(t) and

LIMτ→−∞
1

t− τ

∫ t

τ
Υ
(
U(t, s)ξs

)
ds =

∫

ADσ (t)
Υ(u)dmt(u)

=

∫

Cγ(H)
Υ(u)dmt(u)

= LIMτ→−∞
1

t− τ

∫ t

τ

∫

Cγ(H)
Υ
(
U(t, s)u

)
dms(u)ds,
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for every real-valued continuous functional Υ on Cγ(H). Moreover, mt is invariant in the sense that
∫

ADσ (t)
Υ(u)dmt(u) =

∫

ADσ (τ)
Υ
(
U(t, τ)u

)
dmτ (u), t ! τ.

Proof. From Theorems 2.1 and 2.2, the solution operators of the problem (1.1) generate a continuous

process {U(t, τ)}t!τ on the space Cγ(H). Theorem 3.1 shows that {U(t, τ)}t!τ possesses a pullback

attractor in Cγ(H). Lemmas 4.1 and 4.4 indicate that for each given t ∈ R and φ ∈ Cγ(H) the Cγ(H)-

valued function τ (→ U(t, τ)φ is bounded and continuous on (−∞, t]. Using these facts and the abstract

result of [28, Theorem 3.1], we obtain the results of Theorem 4.1.

5 Conclusions and remarks

In this article, we first prove the global well-posedness of the 3D GMNS equations with unbounded

variable delays. Then we establish that its solution operators generate a continuous process {U(t, τ)}t!τ

on the space Cγ(H). Furthermore, the process {U(t, τ)}t!τ possesses a pullback attractor in Cγ(H). Fi-

nally, we prove the existence of invariant Borel probability measures which are supported by the pullback

attractor. There are two points that we would like to point out.

Firstly, we apply the generalized Ascoli-Arzelà theorem to prove the “weak version” of the pullback

asymptotic compactness of the process {U(t, τ)}t!τ (see Lemma 3.2). This is prompted by the delay

phenomenon. Since the problem discussed contains unbounded variable delays, it seems suitable for us

to choose Cγ(H) as the phase space. The Ascoli-Arzelà theorem has been proved to be a powerful tool

to investigate the compactness of the sets such as the subset of Cγ(H).

Secondly, for each given t ∈ R and φ ∈ Cγ(H), the continuity of the Cγ(H)-valued function τ (→
U(t, τ)φ on (−∞, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essen-

tial differences between the autonomous dynamical system and non-autonomous one, say the continuous

dependence of the dynamical system on their parameters. Consider a continuous process {S(t, τ)}t!τ on

some Banach space X. Even if we have known that the X-valued function t (→ S(t, τ)x0 is continuous

on R for every given τ and x0 ∈ X, the convergence ∥S(t∗, τ)x0 − x0∥X → 0 as τ → t−∗ may still

depend on τ . In fact, when τ → t−∗ , S(t∗, τ)x0 changes simultaneously with different initial times τ .

This is caused naturally by the non-autonomous phenomenon.

In the end of this article, we want to propose a problem, saying, how to formulate reasonably and

construct the statistical solutions for the evolution system containing delays. As for the 3D GMNS equa-

tions discussed here, we have constructed the invariant measures on the phase space Cγ(H). However,

we seem unable to construct its statistical solutions via the invariant measures and pullback attractors,

as done in [44–47], because the invariant measures are contained in the phase space Cγ(H) while the

equation (2.9) is interpreted in the D(τ,+∞;V ′) sense.
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Abstract

This article investigates the three-dimensional globally modified Navier-Stokes equations with
unbounded variable delays. Firstly, we prove the global well-posedness of the solutions, and give the
existence of the pullback attractor for the associated process. Then, we construct a family of invariant
Borel probability measures, which is supported by the pullback attractor.
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1 Introduction

In this article, we study the following three-dimensional (3D) system of globally modified Navier-
Stokes (GMNS for short) equations with unbounded variable delays
8
>>>><

>>>>:

@u

@t
� ⌫�u+ FN (kukV )[(u ·r)u]+rp= f(x, t)+ g(t, u(t� ⇢(t))) in (⌧,+1)⇥ ⌦,

r · u = 0 in (⌧,+1)⇥ ⌦,
u = 0 on (⌧,+1)⇥ @⌦,
u(⌧ + s, x) = �(s, x) in (�1, 0]⇥ ⌦,

(1.1)

where the unknown functions u = u(x, t) and p = p(x, t) denote, respectively, the velocity field of the
fluid and the pressure, the positive constant ⌫ is the viscosity coefficient, f(x, t) is the density of the

⇤E-mail: wangjt@hust.edu.cn
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volume forces, g is the external force affected by memory during the time range (�1, ⌧ ], ⇢ : R ! R
+

is a delay function satisfying ⇢ 2 L
1
loc(R) and � is the initial datum on the interval (�1, 0]. Here

kukV = kruk(L2(⌦))3 and the function FN (·) : (0,+1) 7! (0, 1] is defined as

FN (r) := min{1, N/r}, r 2 (0,+1),

where N is a positive integer. In addition, ⌦ ⇢ R
3 is an open bounded set with the smooth boundary

@⌦.
The GMNS equations with g ⌘ 0 (that is without delays) was formulated in [5]. It is one kind of

global modifications of the Navier-Stokes (NS for short) equations with the modifying factor FN (kukV )
depending on the (L2(⌦))3-norm of ru. This modification brings some good properties to the solutions:
global existence, uniqueness and regularity, in comparison with the multiple-solution property of NS
equations (see [11,12,16] and the references therein for readers’ perspective). The GMNS equations are
useful in obtaining some new results for the 3D NS equations. For instance, it was used in [5] to establish
the existence of bounded entire weak solutions for the 3D NS equations, and in [23], the authors applied
it to show weak compactness and weak connectedness of the attainability set of the weak solutions of
the 3D NS equations satisfying an energy inequality. At the same time, it was proved in [5, 33] that
the solutions of the GMNS equations converge to those of the 3D NS equations in some proper sense.
Therefore, the GMNS equations (1.1) with g ⌘ 0 can be regarded as an approximation to the 3D NS
equations.

The GMNS equations (1.1) with g ⌘ 0 have been extensively studied. For example, one can see
[5, 6, 15, 21, 37] for the existence and uniqueness of the weak and strong solutions, [8, 22, 28, 41] for
invariant measure and statistical solutions, [43] for the existence of trajectory attractor and trajectory
statistical solutions. However, the real world is inundated with many situations in which the model
is better described with some terms containing delays appearing in the equations. These delays may
appear, for instance, when the current behavior is influenced by its previous states, or one wants to
control the system by imposing an external force which depends upon both the present state and the
history of the solutions. The delayed partial differential equations are usually used to describe these
delayed phenomena ( [14, 17]).

Nowadays, delayed partial differential equations have drawn much attention and have been exten-
sively studied. For example, the existence and asymptotic behaviors of solutions for the NS equations
with finite delays were investigated in [2–4,18,29]; the existence of pullback attractors for the NS equa-
tions with finite or infinite delays was studied in [7, 20, 25, 32]. Some known references concerning the
delayed 3D GMNS equations are summarized as:
1� Finite delays: the existence, uniqueness and global asymptotic exponentially stability of the sta-
tionary solution, as well as the convergence of solutions to those of the NS equations were established
in [33, 34].
2� Infinite delays: the well-posedness and global exponential decay of the solutions to the stationary
solution, as well as the existence of pullback attractor were investigated in [30, 31].
3� Bounded variable delays: the existence and uniqueness of solutions, as well as the existence of
pullback attractors were proved in [9, 35].
However, up to our knowledge, there is no reference concerning the 3D GMNS equations with unbound-
ed variable delays.
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The motivation of this article is to investigate the existence of invariant Borel probability measures
for the 3D GMNS equations with unbounded variable delays. The invariant measures and statistical
solutions have played a significant role and developed into a crucial tool in the research of turbulence
(see Foias et al. [16]) in recent decades. This is mainly due to the fact that some time-average quantities
essentially measure several important aspects of turbulent flows. The invariant measures and statisti-
cal properties of dissipative systems were studied by a number of researchers after that. For instance,
Wang considered the upper semi-continuity of stationary statistical properties for dissipative systems
in [40]. Łukaszewicz, Real and Robinson in [27] constructed the invariant measures for general continu-
ous dynamical systems on metric spaces by using the generalized Banach limit. For a much wider class
of dissipative semigroups, Chekroun and Glatt-Holtz [13] also applied the generalized Banach limit to
constructing the invariant measures, but they generalized and simplified the proofs of [27] and [40].

Recently, a series of works developed some techniques to provide a construction of invariant mea-
sures for non-autonomous systems with minimal assumptions on the underlying dynamical process (see
Foias et al. [16], Wang [40] and Łukaszewicz et al. [26–28]). Nowadays, these theories have been em-
ployed to establish invariant measures for some evolution equations, (see e.g. [24, 36, 41, 48] and the
references therein). However, as far as we know, there is no reference investigating the invariant mea-
sures for delayed evolution equations.

The main result of the current article is the existence of invariant Borel probability measures for the
3D GMNS equations with unbounded variable delays. We will use the abstract theory for dissipative
non-autonomous system in [28, Theorem 3.1]. To this end, we shall prove that the solution operators
associated to the problem (1.1) generate a continuous process {U(t, ⌧)}t>⌧ in the phase space C�(H)

(see notation in Section 2) and
(1) the process {U(t, ⌧)}t>⌧ is pullback strongly bounded in C�(H);
(2) the process {U(t, ⌧)}t>⌧ is pullback asymptotically compact in C�(H);
(3) for each given t⇤ 2 R and �⇤ 2 C�(H), the C�(H)-valued function ⌧ 7! U(t⇤, ⌧)�⇤ is continuous

and bounded on (�1, t] (this is called ⌧ -continuity of the process {U(t, ⌧)}t>⌧ ).
We first use a Galerkin approximation argument, and some a priori estimates, to prove the global

well-posedness of the solutions to the problem (1.1). Also we do some estimates of the solutions to
obtain the existence of strongly bounded pullback absorbing sets. Secondly we apply the Ascoli-Arzelà
type theorem ( [1]) to establish the pullback asymptotic compactness of the process {U(t, ⌧)}t>⌧ . This
is prompted by the delay appearing in the equations. Since the problem discussed contains unbounded
variable delays, it seems suitable for us to choose C�(H) as the phase space. It has been shown that the
Ascoli-Arzelà theorem is a powerful tool to investigate the compactness of subsets of C�(H). Thirdly,
for each given t⇤ 2 R and �⇤ 2 C�(H), the continuity of the C�(H)-valued function ⌧ 7! U(t⇤, ⌧)�⇤
on (�1, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essential
differences between the autonomous dynamical system and non-autonomous one, say the continuous
dependence of the dynamical system on their parameters. Even if we have known that the C�(H)-
valued function t 7! U(t, ⌧)�⇤ is continuous on R for every given ⌧ and �⇤ 2 C�(H), the convergence
kU(t⇤, ⌧)�⇤ � �⇤k� ! 0 as ⌧ ! t

�
⇤ may still depend on ⌧ itself. In fact, when ⌧ ! t

�
⇤ , U(t⇤, ⌧)�⇤

also changes with different initial times ⌧ . This is caused naturally by the non-autonomous and delayed
phenomena. We will take advantage of the structure of the GMNS equations to prove the ⌧ -continuity of
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the process {U(t, ⌧)}t>⌧ .
This article is organized as follows. In the next section, we first introduce some notations and oper-

ators, and then prove the global well-posedness of solutions to the problem (1.1). Section 3 is devoted
to the proof of the existence of pullback attractors. In Section 4, we first prove the ⌧ -continuity of the
process and then construct a family of invariant Borel probability measures which is supported by the
pullback attractors. We end the article with conclusions and remarks in Section 5.

2 Global well-posedness of solutions

In this section, we first introduce some notations and operators. Then we prove the global well-
posedness of the problem (1.1).

In this article, we use the following notations:
L
2(⌦) = (L2(⌦))3–the 3D Lebesgue space with norm k · kL2(⌦) = k · k;

H
1(⌦) = the 3D Sobolev space {� 2 L

2(⌦)|r� 2 L
2(⌦)} with norm kr · kL2(⌦);

H
1
0(⌦) = closure of (C1

0 (⌦))3 in H
1(⌦) with norm k · kH1(⌦);

V = {� 2 (C1
0 (⌦))3|r · � = 0};

H = closure of V in L
2(⌦) with norm k · k and inner product (·, ·);

V = closure of V in H
1(⌦) with norm k · kV = kr · kL2(⌦);

V
0 = dual space of V with norm k · kV 0 ; h·, ·i – the dual pairing between V and V

0;
In addition, we will use the notation a . b to mean that a 6 cb for a universal constant c > 0 that only
depends on the parameters coming from the problem and will not result in confusion.

For short, we will write the problem (1.1) in a functional form. To this end, we introduce some
classical operators which are usually used to handle the 3D incompressible NS and GMNS equations. At
the same time, we will select some known estimates and properties (see e.g. [39]) of these operators.

We first consider the operator A : V ! V
0 defined as

hAu, vi = (ru,rv), 8u, v 2 V,

where D(A) = H
2(⌦) \ V and H

2(⌦) = {� 2 H
1(⌦)|�� 2 L

2(⌦)}. In fact, for each u 2 D(A),
Au = �P�u, and hence A is the Stokes operator, where P is the Leray-Helmholtz projection from
L
2(⌦) onto H .

Secondly, we define a trilinear form b(·, ·, ·) as follows,

b(u, v, w) =
3X

i,j=1

Z

⌦
ui
@vj

@xi
wjdx, 8u, v, w 2 H

1
0(⌦).

Notice that V is a closed subspace of H1
0(⌦). One can check that b(u, v, w) is continuous on V ⇥V ⇥V ,

and b(u, v, w) = �b(u,w, v), b(u, v, v) = 0, 8u, v, w 2 V . For each u, v 2 V ,

hB(u, v), wi = b(u, v, w), 8w 2 V,

defines a continuous function B(u, v) on V ⇥ V . At the same time, we have (cf. [39])

kb(u, v, w)k .kuk1/2
V

kAuk1/2kvkV kwk, 8u 2 D(A), v 2 V, w 2 H (2.1)

kb(u, v, w)k .kukV kvkV kwk1/2V
kwk1/2, 8u, v, w 2 V. (2.2)
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We further set

bN (u, v, w) = FN (kvkV )b(u, v, w), 8u, v, w 2 V,

hBN (u, v), wi = bN (u, v, w), 8u, v, w 2 V.

Then bN (u, v, w) is linear in u and w, but not linear in v. However, we still have (see [37])

bN (u, v, v) =0, 8u, v 2 V, (2.3)

|bN (u, v, w)| .NkukV kwkV , 8u, v, w 2 V, (2.4)

|bN (u, v, w)| .NkAukkwk, 8u 2 D(A), v 2 V, w 2 H. (2.5)

Furthermore, for every u, v 2 V and each N > 0,

0 6kukV FN (kukV ) 6 N, (2.6)

|FN (kukV )� FN (kvkV )| 6
1

N
FN (kukV )F (kvkV )ku� vkV . (2.7)

To formulate the problem (1.1) in a proper manner, we require that the functions ⇢(t), f(x, t) and
g(t, u(t� ⇢(t))) in (1.1) satisfy some natural hypotheses.

(H1) Suppose that the function ⇢ : R 7! R+ belongs to L
1
loc(R) and f(t, x) 2 L

2
loc(R;L

2(⌦)). Also

assume that g : R⇥H ! H satisfies

(g1) for every u 2 H , the mapping R 3 t 7! g(t, u) is measurable;

(g2) g(t, 0) = 0 for all t 2 R;

(g3) there exists a positive constant � and a nonnegative function Lg : R ! R+ such that

Lg(·)e�⇢(·) 2 L
2
loc(R) and kg(t, u)� g(t, v)k 6 Lg(t)ku� vk, 8t 2 R, 8u, v 2 H. (2.8)

Remark 2.1. In Remark 3.1 we will give a concrete example to show the existence of the functions ⇢(t),

f(t, x), g(t, u), Lg(t) and the constant � that satisfy our assumption (H1). In the sequel, the constant �

is from (g3).

In order to deal with the unbounded variable delays, we consider the space

C�(H) :=
n
� 2 C((�1, 0];H) : sup

s60
e
�sk�(s)k < +1, 9 lim

s!�1
e
�s
�(s) 2 H

o
,

with the norm k�k� := sup
s60

e
�sk�(s)k. Then (C�(H), k · k�) is a Banach space. In addition, for each

⌧ 2 R we denote conventionally u⌧ (s) = u(⌧ + s) with s 2 (�1, 0].
We now specify the definition of the weak solution to the problem (1.1).

Definition 2.1. Let ⌧ 2 R and � 2 C�(H) be given. If for all T > ⌧ , a function u 2 C((�1, T ], H) \
L
2(⌧, T ;V ) with u⌧ = � satisfies

du(t)

dt
+ ⌫Au(t) +BN (u(t), u(t)) = f(t) + g(t, u(t� ⇢(t)), (2.9)

in the sense of distribution D0(⌧,+1;V 0), then we call u a weak solution of the problem (1.1) corre-

sponding to the initial datum �.
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For the existence and uniqueness of solutions to the problem (1.1), we have the following result.

Theorem 2.1. Let the assumption (H1) hold true. Then for each ⌧ 2 R and � 2 C�(H), there corre-

sponds a unique weak solution u(·) = u(·; ⌧,�) to the problem (1.1), and u is in fact a strong solution in

the sense that

u 2 C((⌧, T ], V ) \ L
2(⌧ + ", T ;D(A)), 8" > 0, 8T > ⌧ + ". (2.10)

Moreover, if �(0) 2 V , then

u 2 C([⌧, T ];V ) \ L
2(⌧, T ;D(A)), 8T > ⌧. (2.11)

Proof. The proof is similar to that of [30, Theorem 2] and [31, Theorem 1] with the unbounded vari-
able delays in place of the infinite delays. Following the proof of [30, Theorem 2] with some different
estimates, we present the parts that will be used in the sequel of this article.

For the Galerkin approximation solution u
(m), we have

d

dt
ku(m)(t)k2 + 2⌫ku(m)(t)k2V = 2(f(t), u(m)(t)) + 2(g(t, u(m)(t� ⇢(t))), u(m)(t))

. ⌫ku(m)(t)k2V + kf(t)k2 + 2Lg(t)ku(m)(t� ⇢(t))kku(m)(t)k

. ⌫ku(m)(t)k2V + kf(t)k2 + 2Lg(t)e
�⇢(t)kumt k2� ,

using the facts that ku(m)(t)k = ku(m)
t

(0)k 6 ku(m)
t

k� and

ku(m)(t� ⇢(t))k = e
�⇢(t)

e
��⇢(t)ku(m)(t� ⇢(t))k 6 e

�⇢(t)ku(m)
t

k� . (2.12)

Hence, for all t > ⌧ there holds

ku(m)(t)k2 + ⌫

Z
t

⌧

ku(m)(s)k2V ds . ku(m)(⌧)k2 +
Z

t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds. (2.13)

By (2.13) and the definition of the norm ku(m)
t

k2� , we have

ku(m)
t

k2� . max
n

sup
✓6⌧�t

e
2�✓k�(✓ + t� ⌧)k2,

sup
✓2[⌧�t,0]

�
e
2�✓ku(⌧)k2 + e

2�✓
Z

t+✓

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds
�o

. max
n
sup
✓60

e
2�(✓+⌧�t)k�(✓)k2, ku(⌧)k2 +

Z
t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds
o

. k�k2� +
Z

t

⌧

�
kf(s)k2 + 2Lg(s)e

�⇢(s)ku(m)
s k2�

�
ds. (2.14)

Applying Gronwall’s lemma to (2.14) gives

ku(m)
t

k2� .
⇣
k�k2� +

Z
t

⌧

kf(s)k2ds
�
exp

�
2

Z
t

⌧

Lg(s)e
�⇢(s)ds

⌘
. (2.15)
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We then conclude from (2.13) and (2.15) that, with the assumption (H1) in hand,

ku(m)
t

k2� + ku(m)k2
L2(⌧,T ;V ) . 1, 8 t 2 [⌧, T ], 8 k�k� 6 R, 8m > 1,

Z
T

⌧

kg(s, u(m)(s� ⇢(s)))k2ds 6
Z

T

⌧

(Lg(s)e
�⇢(s))2ku(m)

s k2�ds . kLge
�⇢k2

L2(⌧,T ). (2.16)

Estimate (2.16) implies that

g(·, u(m)(·� ⇢(·))) 2 L
2(⌧, T ;L2(⌦)). (2.17)

The rest tasks are to prove that the Galerkin approximate solutions {u(m)} possess a convergent subse-
quence and its limiting function is the solution satisfying Theorem 2.1. The procedures are similar to
those of [30, Theorem 2] and we omit the details here.

The result below shows that the solutions to (1.1) depend continuously on the initial data.

Theorem 2.2. Let the assumption (H1) hold. Let u = u(·; ⌧,�) and ũ = ũ(·; ⌧, �̃) be two solutions of

the problem (1.1) with the initial data � and �̃ at the initial time ⌧ , respectively. Then we have

max
✓2[⌧,t]

ku(✓)� ũ(✓)k2

.k�(0)� �̃(0)k2 exp
⇣Z t

⌧

2Lg(s)e
�⇢(s)ds+ (t� ⌧)

⌘
(2.18)

+ k�� �̃k2�
Z

t

⌧

Lg(s)e
�⇢(s) exp

⇣Z s

⌧

2Lg(✓)e
�⇢(✓)d✓ + (s� ⌧)

⌘
ds.

The proof of Theorem 2.2 is analogous to that of [31, Proposition 1] and we omit the details.

3 Existence of the pullback attractors

From Theorems 2.1 and 2.2 we can conclude that the solution operators U(t, ⌧) : C�(H) ! C�(H)

defined by

U(t, ⌧)�(s) = ut(s), ⌧ 6 t, s 2 (�1, 0], (3.1)

generate a continuous process {U(t, ⌧)}t>⌧ on the phase space C�(H), where u = u(·; ⌧,�) is the solu-
tion of the problem (1.1) corresponding to the initial function � at the initial time ⌧ . In this section, we
first prove that {U(t, ⌧)}t>⌧ possesses a bounded pullback absorbing set and is pullback asymptotically
compact in C�(H). Then we obtain the existence of the pullback attractor. For related definitions and
results concerning the evolution processes and pullback attractors, we can refer to [4, 10, 38] and the
references therein.

In the sequel, we pick � and some parameter µ such that

0 < µ < ⌫ and (⌫ � µ)�1 < �, (3.2)

where �1 = inf
v2V \{0}

kvk2
V

kvk2 > 0 is the first eigenvalue of the Stokes operator A. To obtain the existence

of the bounded pullback absorbing set, we need another assumption for the functions Lg(·)e�⇢(·) and f .

7



(H2) Assume there is a constant µ satisfying (3.2) such that

ess sup
t2R

Lg(t)e
�⇢(t)

< (⌫ � µ)�1 6 �, (3.3)
Z 0

�1
e
�skf(s)k2ds < +1, (3.4)

hereinafter the constant � is given by

� := 2(⌫ � µ)�1 � 2 ess sup
t2R

Lg(t)e
�⇢(t)

. (3.5)

Remark 3.1. We set

8
>><

>>:

⇢(t) = |t|, t 2 R,

g(t, u) = exp(�e
|t|)u, t 2 R, u 2 H,

Lg(t) = exp(�e
|t|), t 2 R,

� = e,

(3.6)

then the conditions in (H1) are satisfied and

ess sup
t2R

Lg(t)e
�⇢(t) = e

� ln ��� = e
0 = 1 < e = �.

If we take 1 < ⌫ < e and µ small enough, then (3.3) are satisfied. Thus, the functions and constant

presented by (3.6) satisfy the conditions in (H1) and (H2). For the existence of the function f(x, t)

satisfying (H1) and (H2), we refer to [42, Example 3.1].

We denote by P(C�(H)) the family of all subsets of C�(H) and consider the families of nonempty
sets bD = {D(t) : t 2 R} ✓ P(C�(H)). Let D� be the nonempty class of families bD = {D(t) : t 2
R} ✓ P(C�(H)) parameterized by time t and satisfying

lim
⌧!�1

�
e
�⌧ sup

v2D(⌧)
kvk2�

�
= 0.

The class D� defined above is always called a tempered universe.

Lemma 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ possesses a

bounded pullback absorbing set in C�(H).

Proof. Pick some µ satisfying (3.2), and let u = u(·; ⌧,�) be the solution of the problem (1.1) corre-
sponding to the initial function � at the initial time ⌧ . Then we can get

d

dt
ku(t)k2 + 2(⌫ � µ)�1ku(t)k2 + µku(t)k2V . kf(t)k2 + 2Lg(t)e

�⇢(t)kutk2� , t > ⌧. (3.7)

Hence for all t > ⌧ ,

ku(t)k2 + µ

Z
t

⌧

e
�2(⌫�µ)�1(t�s)ku(s)k2V ds

.e
�2(⌫�µ)�1(t�⌧)ku(⌧)k2 +

Z
t

⌧

e
�2(⌫�µ)�1(t�s)

�
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
�
ds. (3.8)
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Inequality (3.8) implies that

kutk2� .max
n

sup
✓2(�1,⌧�t]

e
2�✓k�(✓ + t� ⌧)k2, sup

✓2[⌧�t,0]

�
e
2�✓�2(⌫�µ)�1(t+⌧�✓)ku(⌧)k2

+ e
2�✓

Z
t+✓

⌧

e
�2(⌫�µ)�1(t+✓�s)

�
|f(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
�
ds
�o

. (3.9)

By the choice of µ in (3.2), we have

sup
✓2(�1,⌧�t]

e
2�✓k�(✓ + t� ⌧)k 6 e

�(⌫�µ)�1(t�⌧)k�k� , (3.10)

sup
✓2[⌧�t,0]

e
2�✓�2(⌫�µ)�1(t+⌧�✓)ku(⌧)k2 6 e

�2(⌫�µ)�1(t�⌧)ku(⌧)k2, (3.11)

sup
✓2[⌧�t,0]

e
2�✓

Z
t+✓

⌧

e
�2(⌫�µ)�1(t+✓�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds

6
Z

t

⌧

e
�2(⌫�µ)�1(t�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds. (3.12)

It then follows from (3.9)-(3.12) that

kutk2� . e
�2(⌫�µ)�1(t�⌧)k�k2� +

Z
t

⌧

e
�2(⌫�µ)�1(t�s)

⇣
kf(s)k2 + 2Lg(s)e

�⇢(s)kusk2�
⌘
ds. (3.13)

Applying Gronwall’s inequality to (3.13) yields

kutk2� .k�k2� exp
�
�2(⌫ � µ)�1(t� ⌧) + 2

Z
t

⌧

Lg(s)e
�⇢(s)ds

 

+

Z
t

⌧

kf(s)k2 exp
�
�2(⌫ � µ)�1(t� s) + 2

Z
t

s

Lg(�)e
�⇢(�)d�

 
ds

.k�k2�e��(t�⌧) +

Z
t

⌧

kf(s)k2e��(s�⌧)ds. (3.14)

Now we define the time-dependent family B̂ = {B(t) : t 2 R} 2 P(C�(H)) as

B(t) =
n
v 2 C�(H) : kvk2� . 1 +

Z
t

�1
e
��(t�s)kf(s)k2ds

o
. (3.15)

Then B̂ is the desired pullback D�-absorbing set for {U(t, ⌧)}t>⌧ in C�(H).

To establish the pullback D�-asymptotic compactness for {U(t, ⌧)}t>⌧ in C�(H), we will employ
the generalized Ascoli-Arzelà type theorem ( [1]) to prove the following auxiliary lemma.

Lemma 3.2. Let {⌧n}n>1 be a sequence such that ⌧n ! �1 as n ! +1 and ⌧n 6 t0 for some fixed

t0 2 R, and {�n}n>1 a sequence of functions with �n 2 B(⌧n) for each positive integer n. Denote by

u
(n) = u

(n)(·; ⌧n,�n) the solutions of the problem (1.1) corresponding to the initial data �n at the initial

time ⌧n. Then there exist a subsequence (still denoted the same) {u(n)
t0

}n>1 and a function  2 C�(H)

such that u
(n)
t0

!  in C([�T , 0];H) for each T > 0.
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Proof. Let t0, {⌧n}n>1, {�n}n>1 and u
(n) = u

(n)(·; ⌧n,�n) be given as in this lemma. Consider two
arbitrary positive numbers T , T with T > T . Let n0 = n0(t0, T ) be the positive integer such that
⌧n < t0�T for all n > n0. From (3.3) and (3.14)-(3.15) we deduce that for t 2 [t0�T, t0] and n > n0,

kun(t)k2 .R(t0, T ) := 1 + e
��(t0�T )

Z
t0

�1
e
�skf(s)k2ds < +1, (3.16)

kunt k2� .R(t0, T ). (3.17)

We next divide two steps to establish that the conditions of the Ascoli-Arzelà type theorem are satisfied.
Step one. We first prove that

{u(n)(t)}n>n0 is precompact in H for each t 2 [t0 � T , t0]. (3.18)

By Theorem 2.1, we conclude that u(n)(t) 2 D(A) for all t 2 [t0 � T, t0], whence,

1

2

d

dt
ku(n)(t)k2V + ⌫kAu

(n)(t)k2 + bN (u(n)(t), u(n)(t), Au(n)(t))

=(f(t), Au(n)(t)) + (g(t, u(n)(t� ⇢(t))), Au(n)(t)), t 2 [t0 � T, t0]. (3.19)

Using Young’s inequality, (2.1) and (2.6), we have

(f(t), Au(n)(t)) . ⌫

8
kAu(n)(t)k2 + kf(t)k2, (3.20)

(g(t, u(n)(t� ⇢(t))), Au(n)(t)) . ⌫

8
kAu(n)(t)k2 + L

2
g(t)e

2�⇢(t)ku(n)
t

k2� , (3.21)

|bN (u(n)(t), u(n)(t), Au(n)(t))| . ku(n)(t)k1/2
V

kAu(n)(t)k3/2 . ⌫

4
kAu(n)(t)k2 + ku(n)(t)k2V . (3.22)

Combining (3.19)-(3.22) gives

d

dt
ku(n)k2V + ⌫kAu(n)(t)k2 . kf(t)k2 + 2L2

g(t)e
2�⇢(t)ku(n)

t
k2� + ku(n)(t)k2V . (3.23)

Integrating (3.23) over [s, t] with t0 � T 6 s 6 t 6 t0 yields

ku(n)(t)k2V . ku(n)(s)k2V +

Z
t0

t0�T

h⇣
kf(✓)k2 + 2L2

g(✓)e
2�⇢(✓)ku(n)

✓
k2�
⌘
+ ku(n)(✓)k2V

i
d✓. (3.24)

Now integrating (3.24) with respect to s over [t0 � T, t], we obtain for t 2 [t0 � T , t0] that

(T � T )ku(n)(t)k2V 6 (t+ T � t0)ku(n)(t)k2V

.T

Z
t0

t0�T

ku(n)(s)k2V ds+ T

Z
t0

t0�T

⇣
kf(s)k2 + L

2
g(s)e

2�⇢(s)ku(n)s k2�
⌘
ds. (3.25)

In addition, from (3.8) and (3.14), we can get
Z

t

⌧

ku(n)(s)k2V ds .
�
1 +

Z
t

⌧

Lg(s)e
�⇢(s)

e
2
R s
⌧ Lg(�)e�⇢(�)d�ds

�
k�k2�

+

Z
t

⌧

e
�2(⌫�µ)�1(⌧�s)kf(s)k2ds (3.26)

+

Z
t

⌧

Lg(s)e
�⇢(s)

Z
s

⌧

e
�2(⌫�µ)�1(⌧��)+2

R s
� Lg(✓)e�⇢(✓)d✓kf(�)k2d�ds.
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Note that we have u
(n)(t; ⌧ (n),�(n)) = U(t, t0 � T )u(t0 � T ; ⌧n,�(n)). Thus from (3.8)-(3.9), (3.13)

and (3.15), we know that

the sequence {u(n)}n>n0 is bounded in L
1(t0 � T , t0;V ). (3.27)

Therefore, it follows from the compact embedding V ,! H and the continuity of u(n) (see (2.10)) that
the set

{un(t) : t 2 [t0 � T , t0], n > n0} is precompact in H, (3.28)

from which (3.18) immediately follows.
Step two. We establish the equicontinuity of {u(n)}n>n0 on [t0 � T , t0] by contradiction.

Suppose that this equicontinuity does not hold true, and then there exists a positive constant "0 and two
sequences {t(1)n } and {t(2)n }, satisfying t0 � T 6 t

(1)
n 6 t

(2)
n 6 t0 and |t(2)n � t

(1)
n | 6 1

n
, such that

ku(n)(t(1)n )� u
(n)(t(2)n )k > "0. (3.29)

By (3.28), we can assume that t(1)n ! t
⇤, u(n)(t⇤) ! z

⇤ and u
(n)(t(i)n ) ! z

(i) (i = 1, 2) in H as
n ! +1. Evidently, t(2)n ! t

⇤ as n ! +1 and t
⇤ 2 [t0 � T , t0]. By (3.23), we know that

kz(1) � z
(2)k > "0. (3.30)

Set y(n)(t) = u
(n)(t)� u

(n)(t⇤) for n > n0. Then we obtain

1

2

d

dt
ky(n)(t)k2 + ⌫ky(n)(t)k2V + ⌫

Z

⌦
ru

(n)(t⇤) ·ry
(n)(t)dx+ bN (u(n)(t), u(n)(t), y(n)(t))

=(f(t), y(n)(t)) + (g(t, u(n)(t� ⇢(t))), y(n)(t)), t 2 [t0 � T , t0]. (3.31)

Applying Schwartz’s inequality and (g3), we have

��
Z

⌦
ru

(n)(t⇤) ·ry
(n)(t)dx

�� 61

2
ku(n)(t⇤)k2V +

1

2
ky(n)(t)k2V , (3.32)

2|(f(t), y(n)(t))| 6kf(t)k2 + ky(n)(t)k2, (3.33)

2|(g(t, u(n)(t� ⇢(t))), y(n)(t))| 6L
2
g(t)e

2�⇢(t)ku(n)
t

k2� + ky(n)(t)k2. (3.34)

At the same time, by (2.3)-(2.6) and (2.7), we see that

|bN (u(n)(t), u(n)(t)), y(n)(t))| =|bN (y(n)(t), u(n)(t), y(n)(t))� bN (u(n)(t⇤), u(n)(t), u(n)(t⇤))|

.ky(n)(t)k3/2
V

ky(n)(t)k1/2 + ku(n)(t⇤)k2V
.⌫
2
ky(n)(t)k2V + ky(n)(t)k2 + ku(n)(t⇤)k2V . (3.35)

Taking (3.31)-(3.35) into account yields

d

dt
ky(n)(t)k2 . ky(n)(t)k2 + kf(t)k2 + L

2
g(t)e

2�⇢(t)ku(n)
t

k2� + ku(n)(t⇤)k2V . (3.36)

11



Integrating (3.36) from t
⇤ to t

(i)
n and using (3.16)- (3.17) gives

ky(n)(tin)k2 6[R(t0, T ) + c1]|tin � t
⇤|+

��
Z

t
i
n

t⇤
kf(s)k2ds

��

+R(t0, T )
���
Z

t
i
n

t⇤
L
2
g(s)e

2�⇢(s)ds
���, (3.37)

where (see (2.10) and (3.27))

c1 := sup
t2[t0�T ,t0]

{kun(t)kV : n > n0}.

Letting n ! +1 in (3.37) and using the assumptions f 2 L
2
loc(R;L

2(⌦)) and (g3), we conclude that

kzi � z
⇤k2 = lim

n!+1
ku(n)(tin)� u

(n)(t⇤)k2 = 0, for i = 1, 2,

which contradicts (3.30).
At this stage, we can apply the Ascoli-Arzelà type theorem [1] to claim that for each T > 0,

{u(n)}n2N+ is precompact in C([t0 � T , t0];H). Thus there exists a function  2 C([�T , 0];H) and a
subsequence of u(n)

t0
such that u(n)

t0
|[�T ,0] !  in C([�T , 0];H). Repeating this procedure for nT with

n = 2, 3, · · · , and using the diagonal procedure, we can obtain a function  2 C((�1, 0];H) such that
(extract a subsequence if necessary) u(n)

t0
|[�T ,0] !  in C([�T , 0];H) for each positive number T . The

proof of Lemma 3.2 is complete.

Lemma 3.3. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ is pullback D�-

asymptotically compact in C�(H).

Proof. We continue to use the notations of the previous lemma. To establish the pullback D�-asymptotic
compactness, we shall prove that unt0 !  in C�(H), for which, it is sufficient to show that, for every
" > 0, there exists some positive integer n" such that

sup
s2(�1,0]

e
2�sku(n)

t0
(s)�  (s)k2 < ", for all n > n". (3.38)

Indeed, by (3.16)-(3.17) and the convergence proved in the previous lemma, we have that

k (s)k2 . 1 + e
��(t0�T )

Z
t0

�1
e
�skf(s)k2ds = R(t0, T ), for all s 2 [�T, 0] and T > 0.

The rest proof is similar to that of [31, Proposition 3] and we omit the details here.

At this stage we combine Lemmas 3.1, 3.3 and the general result of [19, Theorem 3.11] to obtain the
main result of this section, namely,

Theorem 3.1. Let the assumptions (H1) and (H2) hold. Then the process {U(t, ⌧)}t>⌧ possesses a

pullback D�-attractor (denoted by) ÂH

D�
= {AH

D�
(t) : t 2 R} in C�(H).

12



4 Existence of the invariant Borel probability measures in C�(H)

In this section, we first aim to prove that for each given t 2 R and � 2 C�(H), the C�(H)-valued
function ⌧ 7! U(t, ⌧)� is bounded and continuous on (�1, t]. Then we combine Theorem 3.1 and the
abstract result of [28, Theorem 3.1] to obtain the existence of invariant Borel probability measures for
{U(t, ⌧)}t>⌧ in C�(H).

Lemma 4.1. Let the assumptions (H1) and (H2) hold. Then for every � 2 C�(H) and every t 2 R the

C�(H)-valued function ⌧ 7! U(t, ⌧)� is bounded on (�1, t].

Proof. Let � 2 C�(H) and t 2 R be given. Note (3.4) is equivalent to (see [31, Remark 5])
Z

t

�1
e
�skf(s)k2ds < +1 for all t 2 R. (4.1)

Then (3.14) and (4.1) imply that for all ⌧ 2 (�1, t],

kU(t, ⌧)�k2� . e
��(t�⌧)k�k2� +

Z
t

⌧

e
��(t�s)kf(s)k2ds 6 k�k2� + e

��t

Z
t

�1
e
�skf(s)k2ds,

the right-hand side of which is bounded by a positive constant independent of ⌧ 2 (�1, t].

In the sequel, we set a positive number M(t,�) such that

M
2(t,�) := k�k2� + e

��t

Z
t

�1
e
�skf(s)k2ds.

Then M
2(t,�) is a continuous function with respect to t 2 R.

To establish the continuity of the C�(H)-valued function ⌧ 7! U(t, ⌧)� on (�1, t], we next prove
two auxiliary lemmas.

Lemma 4.2. Let � 2 C�(H) be given. Then for each " > 0, there exists some �1 = �1(",�) > 0 such

that for all s1, s2 2 (�1, 0] with |s1 � s2| < �1 there holds

e
�s2k�(s1)� �(s2)k < ". (4.2)

Proof. By the definition of C�(H), we set �1 := lim
s!�1

e
�s
�(s) 2 H . Then there exists some s0 < 0

such that
ke�s�(s)� �1k <

"

4
, 8 s 6 s0,

and thus

ke�s1�(s1)� e
�s2�(s2)k 6 ke�s1�(s1)� �1k+ ke�s2�(s2)� �1k <

"

2
, 8 s1, s2 6 s0. (4.3)

On the other hand, the H-valued function s 7! e
�s
�(s) is uniformly continuous on the interval [s0�1, 0],

whence there is some �01 2 (0, 1) such that

ke�s1�(s1)� e
�s2�(s2)k <

"

2
for s1, s2 2 [s0 � 1, 0] with |s1 � s2| < �

0
1. (4.4)

13



Letting �1 = min
n
�
0
1,

1

�
ln
�
1+

"

2k�k�
�o

, we have by (4.3) and (4.4) that for all s1, s2 2 (�1, 0] with

|s1 � s2| < �1 there holds

e
�s2k�(s1)� �(s2)k 6 ke�s1�(s1)� e

�s2�(s2)k+ |e�s1 � e
�s2 |k�(s1)k

6"
2
+ |e�(s2�s1) � 1|k�k� < ".

The proof is complete.

Lemma 4.3. Let the assumptions (H1) and (H2) hold, and ⌧⇤ 2 R and � 2 C�(H) be given. Then for

each " > 0, there exists some �2 = �2(", ⌧⇤,�) > 0 such that

ku(s; ⌧,�)� �(0)k < ", for all ⌧ 2 (⌧⇤ � �2, ⌧⇤) and s 2 [⌧, ⌧⇤], (4.5)

where u(s; ⌧,�) is the solution of the problem (1.1) with the initial datum � at the initial time ⌧ .

Proof. Let ⌧⇤ 2 R and � 2 C�(H) be given. Firstly, we prove that
Z

⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓ 6 c2, (4.6)

where
c2 := k�k2� +

Z
⌧⇤

⌧⇤�1
kf(✓)k2d✓ + sup

[⌧⇤�1,⌧⇤]
M

2(✓,�),

is a bounded quantity depending on ⌧⇤, g, f , · · · , etc., but being independent of ⌧ 2 [⌧⇤ � 1, ⌧⇤]. Indeed,
from (2.9) we can see that

���
du(✓; ⌧,�)

d✓

���
2

V 0
.kAu(✓; ⌧,�)k2

V 0 + kBN (u(✓; ⌧,�), u(✓; ⌧,�))k2
V 0

+ kf(✓)k2 + kg(✓, u(✓ � ⇢(✓)))k2. (4.7)

By (2.5), (g2), (g3) and some simple observations, we have
8
><

>:

kAu(✓; ⌧,�)k2
V 0 . ku(✓; ⌧,�)k2

V
,

kBN (u(✓; ⌧,�), u(✓; ⌧,�))k2
V 0 . ku(✓; ⌧,�)k2

V
,

kg(✓, u(✓ � ⇢(✓)))k2 . sup
[⌧⇤�1,⌧⇤]

M
2(✓,�).

(4.8)

Inserting (4.7) and (4.8) into (4.6), then using (3.3), (3.5) and (3.26) gives
Z

⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓ .

Z
⌧⇤

⌧

ku(✓; ⌧,�))k2V d✓ +
Z

⌧⇤

⌧

kf(✓)k2d✓ + (⌧⇤ � ⌧) sup
[⌧⇤�1,⌧⇤]

M
2(✓,�)

.k�k2� +
Z

⌧⇤

⌧⇤�1
kf(✓)k2d✓ + sup

[⌧⇤�1,⌧⇤]
M

2(✓,�), 8⌧ 2 [⌧⇤ � 1, ⌧⇤], (4.9)

that is (4.6) is proved.
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Secondly, we observe that for ⌧⇤ � 1 6 ⌧ < s 6 ⌧⇤ there holds

ku(s; ⌧,�)� �(0)k2

=ku(s; ⌧,�)k2 � k�(0)k2 � 2
�
u(s; ⌧,�)� �(0),�(0)

�

=

Z
s

⌧

dku(✓; ⌧,�)k2

d✓
d✓ � 2

�
u(s; ⌧,�)� �(0),�(0)

�
. (4.10)

By (3.3) and (3.13), we obtain

���
Z

s

⌧

dku(✓; ⌧,�)k2

d✓
d✓
��� .

Z
s

⌧

kf(✓)k2d✓ +
Z

s

⌧

Lg(✓)e
�⇢(✓)ku✓k2�d✓

.
Z

⌧⇤

⌧

kf(✓)k2d✓ + (⌧⇤ � ⌧) sup
✓2[⌧⇤�1,⌧⇤]

M
2(✓,�). (4.11)

Notice that f 2 L
2
loc(R,L

2(⌦)), and sup
✓2[⌧⇤�1,⌧⇤]

M
2(✓,�) is a constant independent of ⌧ . Therefore,

from (4.11) we see that there exists some �02 = �
0
2(", ⌧⇤,�) 2 (0, 1) such that

���
Z

s

⌧

dku(✓; ⌧,�)k2

d✓
d✓
��� <

"
2

2
, ⌧⇤ � �

0
2 < ⌧ < s 6 ⌧⇤. (4.12)

At the same time, since �(0) 2 H and V is dense in H , there exists some  2 V such that

k � �(0)k < "
2
/16 sup

✓2[⌧⇤�1,⌧⇤]
M

2(✓,�).

Using (4.6),

|(u(s; ⌧,�)� �(0),�(0))| 6|(u(s; ⌧,�)� �(0),�(0)�  )|+ |(u(s; ⌧,�)� �(0), )|
62 sup

✓2[⌧⇤�1,⌧⇤]
M(⌧,�)k�(0)�  k+ |hu(s; ⌧,�)� �(0), i|

<
"
2

8
+
���
D Z s

⌧

du(✓; ⌧,�)

d✓
d✓, 

E���

6"
2

8
+ k kV

p
⌧⇤ � ⌧

⇣Z ⌧⇤

⌧

���
du(✓; ⌧,�)

d✓

���
2

V 0
d✓
⌘ 1

2

6"
2

8
+
p
c2k kV

p
⌧⇤ � ⌧ , (4.13)

which implies that there exists some �002 2 (0, 1), independent of ⌧ , such that

|(u(s; ⌧,�)� �(0),�(0))| 6 "
2

4
, ⌧⇤ � �

00
2 < ⌧ < s 6 ⌧⇤. (4.14)

Picking �2 = min{�02, �002}, the desired result follows from (4.10), (4.12) and (4.14). The proof of Lemma
4.3 is complete.

Lemma 4.4. Let the assumptions (H1) and (H2) hold. Then for every � 2 C�(H) and every t 2 R the

C�(H)-valued function ⌧ 7! U(t, ⌧)� is continuous on (�1, t].
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Proof. Let � 2 C�(H) and t 2 R be given. We shall prove that for each given ⌧⇤ 2 (�1, t] the
C�(H)-valued function ⌧ 7! U(t, ⌧)� is both left and right continuous at ⌧ = ⌧⇤. We next prove the left
continuity at ⌧ = ⌧⇤.

Firstly, on one hand, for every " > 0 we deduce from Lemma 4.2 that there exists some �03 =

�
0
3(",�) > 0 such that, for all s1, s2 2 (�1, 0] with |s1 � s2| < �1, there holds

e
�s2k�(s1)� �(s2)k < "/2. (4.15)

On the other hand, by Lemma 4.3, there is a �003 = �
00
3 (", ⌧⇤,�) > 0 such that whenever ⌧ 2 (⌧⇤ � �

00
3 , ⌧⇤)

there holds
ku(s; ⌧,�)� �(0)k < "/2, for all s 2 [⌧, ⌧⇤]. (4.16)

Thus, for the positive " above, there exists some �3 = �3(", ⌧⇤,�) = min{�03, �003} > 0 such that

ku⇤(✓)� u(✓)k = k�(✓ � ⌧)� u(✓)k
6 k�(✓ � ⌧)� �(0)k+ k�(0)� u(✓; ⌧,�)k < ", ⌧⇤ � �3 < ⌧ < ⌧⇤, ✓ 2 [⌧, ⌧⇤],

which implies that

max
✓2[⌧,⌧⇤]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k < ", ⌧⇤ � �3 < ⌧ < ⌧⇤, ✓ 2 [⌧, ⌧⇤], (4.17)

where u⇤(✓; ⌧⇤,�) is the solution corresponding to the initial datum � at the initial time ⌧⇤.
Secondly, by (2.18) and (3.3) we have

max
✓2[⌧⇤,t]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k

.k�(0)� u(⌧⇤; ⌧,�)k2 exp
� Z t

⌧⇤

Lg(s)e
�⇢(s)ds+ (t� ⌧⇤)

�

+ k�� u⌧⇤k2�
Z

t

⌧⇤

Lg(s)e
�⇢(s) exp

� Z s

⌧⇤

Lg(✓)e
�⇢(✓)d✓ + (s� ⌧⇤)

�
ds.

.k�(0)� u(⌧⇤; ⌧,�)k2 + k�� u⌧⇤k2� , (4.18)

using the representation u(✓; ⌧,�) = u(✓; ⌧⇤, u(⌧⇤; ⌧,�)) and the fact that t and ⌧⇤ are fixed. Now by
Lemma 4.3, we derive that for above " > 0 there exists �04 = �

0
4(", t, ⌧⇤,�) > 0 such that

k�(0)� u(⌧⇤; ⌧,�)k < "/2, for ⌧⇤ � �
0
4 < ⌧ < ⌧⇤. (4.19)

At the same time, by (4.15) and (4.17), there exists �004 = �
00
4 (", ⌧⇤,�) > 0 such that when ⌧⇤ � �

00
4 < ⌧ <

⌧⇤ then

k�� u⌧⇤k� 6max
n

sup
s6⌧⇤�⌧

e
�sk�(s)� u⌧⇤(s)k, sup

s2[⌧�⌧⇤,0]
e
�sk�(s)� u⌧⇤(s)k

o

6max
n

sup
s6⌧�⌧⇤

e
�sk�(s)� �(s+ ⌧⇤ � ⌧)k, sup

s2[⌧,⌧⇤]
ku⇤(s)� u(s)k

o

6max
n
sup
r60

e
�(r+⌧�⌧⇤)k�(r + ⌧ � ⌧⇤)� �(r)k, "

o
< "/2. (4.20)
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Picking �4 = �4(", t, ⌧⇤,�) = min{�04, �004}, then (4.18)-(4.20) imply

max
✓2[⌧⇤,t]

ku⇤(✓; ⌧⇤,�)� u(✓; ⌧,�)k < ", ⌧⇤ � �4 < ⌧ < ⌧⇤. < ". (4.21)

We now choose � = �(", t, ⌧⇤,�) = min{�3, �4}, and then deduce from (4.15), (4.17) and (4.21) that if
⌧⇤ � � < ⌧ < ⌧⇤ then

kU(t, ⌧)�� U(t, ⌧⇤)�k� = sup
✓60

e
�✓ku(t+ ✓)� u⇤(t+ ✓)k�

6max
n

sup
✓6⌧�t

e
�✓k�(✓ + t� ⌧⇤)� �(✓ + t� ⌧)k, sup

✓2[⌧�t,0]
e
�✓ku(t+ ✓)� u⇤(t+ ✓)k

o

6max
n
sup
r60

e
�(r+⌧⇤�t)k�(r)� �(r + ⌧⇤ � ⌧)k, sup

✓2[⌧,t]
ku(✓)� u⇤(✓)k

o
< ".

The left continuity of the C�(H)-valued function ⌧ 7! U(t, ⌧)� at ⌧ = ⌧⇤ is proved. Since the proof of
the right continuity of U(t, ⌧)� at ⌧ = ⌧⇤ is similar to that of the left continuity, we omit the details and
end the proof of Lemma 4.4.

To construct the invariant measures for the process {U(t, ⌧)}t>⌧ , we next recall the definition of
generalized Banach limits.

Definition 4.1. ( [16, 28]) A generalized Banach limit is any linear functional, denoted by LIMt!+1,

defined on the space of all bounded real-valued functions on [0,+1) and satisfying

(1) LIMt!+1⇣(t) > 0 for nonnegative functions ⇣(·) on [0,+1);

(2) LIMt!+1⇣(t) = lim
t!+1

⇣(t) if the usual limit lim
t!+1

⇣(t) exists.

Remark 4.1. Notice that we consider the “pullback” asymptotic behavior and we require generalized

limits as ⌧ ! �1. For a given real-valued function ⇣ defined on (�1, 0] and a given Banach limit

LIMt!+1, we define LIMt!�1⇣(t) = LIMt!+1⇣(�t).

The main result of this article reads as follows.

Theorem 4.1. Let the assumptions (H1) and (H2) hold. Let {U(t, ⌧)}t>⌧ be the process associated to

the problem (1.1) and bAD� = {AD�(t) : t 2 R} the pullback D�-attractor obtained in Theorem 3.1.

Then for a given generalized Banach limit LIMt!+1 and a continuous map ⇠⌧ : R 7�! C�(H) with

⇠⌧ (·) 2 D�, there exists a unique family of Borel probability measures {mt}t2R in C�(H) such that the

support of the measure mt is contained in AD�(t) and

LIM⌧!�1
1

t� ⌧

Z
t

⌧

⌥
�
U(t, s)⇠s

�
ds =

Z

AD� (t)
⌥(u)dmt(u)

=

Z

C�(H)
⌥(u)dmt(u)

= LIM⌧!�1
1

t� ⌧

Z
t

⌧

Z

C�(H)
⌥
�
U(t, s)u

�
dms(u)ds,
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for every real-valued continuous functional ⌥ on C�(H). Moreover, mt is invariant in the sense that

Z

AD� (t)
⌥(u)dmt(u) =

Z

AD� (⌧)
⌥
�
U(t, ⌧)u

�
dm⌧ (u), t > ⌧.

Proof. From Theorems 2.1 and 2.2, the solution operators of the problem (1.1) generate a continuous
process {U(t, ⌧)}t>⌧ on the space C�(H). Theorem 3.1 shows that {U(t, ⌧)}t>⌧ possesses a pullback
attractor in C�(H). Lemmas 4.1 and 4.4 indicate that for each given t 2 R and � 2 C�(H) the C�(H)-
valued function ⌧ 7! U(t, ⌧)� is bounded and continuous on (�1, t]. Using these facts and the abstract
result of [28, Theorem 3.1], we obtain the results of Theorem 4.1.

5 Conclusions and remarks

In this article, we first prove the global well-posedness of the 3D GMNS equations with unbounded
variable delays. Then we establish that its solution operators generate a continuous process {U(t, ⌧)}t>⌧

on the space C�(H). Furthermore, the process {U(t, ⌧)}t>⌧ possesses a pullback attractor in C�(H). Fi-
nally, we prove the existence of invariant Borel probability measures which are supported by the pullback
attractor. There are two points that we would like to point out.

Firstly, we apply the generalized Ascoli-Arzelà theorem to prove the “weak version” of the pullback
asymptotic compactness of the process {U(t, ⌧)}t>⌧ (see Lemma 3.2). This is prompted by the delay
phenomenon. Since the problem discussed contains unbounded variable delays, it seems suitable for us
to choose C�(H) as the phase space. The Ascoli-Arzelà theorem has been proved to be a powerful tool
to investigate the compactness of the sets such as the subset of C�(H).

Secondly, for each given t 2 R and � 2 C�(H), the continuity of the C�(H)-valued function ⌧ 7!
U(t, ⌧)� on (�1, t] is not a clear fact (see Lemma 4.4 and the auxiliary lemmas). There are some essen-
tial differences between the autonomous dynamical system and non-autonomous one, say the continuous
dependence of the dynamical system on their parameters. Consider a continuous process {S(t, ⌧)}t>⌧ on
some Banach space X . Even if we have known that the X-valued function t 7! S(t, ⌧)x0 is continuous
on R for every given ⌧ and x0 2 X , the convergence kS(t⇤, ⌧)x0 � x0kX ! 0 as ⌧ ! t

�
⇤ may still

depend on ⌧ . In fact, when ⌧ ! t
�
⇤ , S(t⇤, ⌧)x0 changes simultaneously with different initial times ⌧ .

This is caused naturally by the non-autonomous phenomenon.
In the end of this article, we want to propose a problem, saying, how to formulate reasonably and

construct the statistical solutions for the evolution system containing delays. As for the 3D GMNS equa-
tions discussed here, we have constructed the invariant measures on the phase space C�(H). However,
we seem unable to construct its statistical solutions via the invariant measures and pullback attractors,
as done in [44–47], because the invariant measures are contained in the phase space C�(H) while the
equation (2.9) is interpreted in the D(⌧,+1;V 0) sense.
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