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1 Introduction and the model

Spontaneous symmetry breaking (SSB) is a broad class of ef-
fects occurring in systems combining spatial or inter-component

symmetry and intrinsic nonlinearity [1]. While in linear systems
the ground state (GS) exactly reproduces the underlying sym-

metry [2], and the GS is always a single (non-degenerate) state,
self-attraction in binary systems drives a phase transition which
destabilizes the symmetric GS, replacing it by a pair of asym-

metric ones that are mirror images of each other (so as to main-
tain the overall symmetry). The transition takes place when the

nonlinearity strength attains a certain critical value. Starting
from early works [3,4], many realizations of the SSB phenomenol-

ogy have been supplied by nonlinear optics and studies of Bose-
Einstein condensates (BECs). The similarity of these areas is

underlain by the fact that the nonlinear Schrödinger equations
[5] and Gross-Pitaevskii equations (GPEs) [6,7]), which are basic
models for optics and BEC, respectively, are essentially identical,

with the difference that the evolution variable is the propagation
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distance, z, in optical waveguides, and time, t, in BEC. In both
cases SSB effects have been predicted in two-components systems,

with linear coupling between the components and self-attraction
in each component. In optics, a natural realization of the nonlin-

ear couplers and SSB phenomenology in them is offered, in terms
of the temporal-domain propagation, by dual-core optical fibers.

This setting was studied in detail theoretically [8]-[21] (see also
review [22]), and nonlinear switching in the couplers was demon-

strated experimentally [23,24]. The same model may be realized
in the spatial domain, considering a planar dual-core nonlinear
waveguide [25,15,26]. Another class of nonlinear-optical symmet-

ric systems and SSB dynamics in them, which were explored both
theoretically and experimentally, is provided by dual-cavity lasers

[27]-[30].

A similar BEC system may be realized by loading the condensate
into a pair of parallel tunnel-coupled elongated traps, filled by

self-attractive BEC and linearly coupled by tunneling of atoms
[31]-[33]. SSB effects, chiefly for matter-wave solitons, have been

predicted in such dual traps.

A more general two-component system includes, in addition to
the self-interaction of each component and linear mixing between

them, nonlinear cross-component interaction [34,35]. In optics,
this model applies to the propagation of electromagnetic waves

with orthogonal circular polarizations in the fiber with linear-
polarization birefringence (that may be induced by ellipticity of

the fiber’s cross section), which induces the linear mixing [36]. In
BEC, the realization is possible in a single elongated trap filled
by a mixture of two different atomic states in the condensate,

while the linear (Rabi) mixing is imposed by a radiofrequency
field which resonantly couples the states [37]-[41].

A majority of the above-mentioned works addressed effectively
one-dimensional (1D) settings. In optics, 2D two-component spa-
tiotemporal propagationmay be realized in planar dual-core waveg-

uides [42], and similar realizations were considered for BEC loaded
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in dual-core “pancake-shaped” traps [43,44,45]. The more general
system, which includes the inter-component nonlinearity, can be

naturally implemented as the spatial-domain propagation in bulk
optical waveguides, with the linear mixing of orthogonal circu-
lar polarizations induced by intrinsic anisotropy (linear birefrin-

gence) in the transverse plane. In BEC, an implementation is
offered by a pancake trap filled by a binary condensate, with the

radiofrequency-induced coupling between two atomic states.

As said above, the SSB of GSs in previous works was driven

by attractive nonlinearity. Self-repulsion does not break the GS
symmetry, but it may drive spontaneous breaking of antisymme-

try of the first excited state, an example being an antisymmetric
bound state of matter-wave gap solitons in tunnel-coupled traps

equipped with periodic potentials [46,43,32]. The objective of the
present work is to demonstrate that, nevertheless, the symmetry
of the GS in 1D and 2D linearly-coupled systems with repulsive

nonlinearity may be spontaneously broken, replacing it by a pair
of asymmetric GSs, provided that the inter-component repulsion

dominates over the intra-component nonlinearity, and the GS is
made localized by a confining potential. This mechanism is simi-

lar to other effects in which the dominant repulsion between two
interacting fields (in the absence of the linear coupling between

them) makes their uniformly mixed state unstable, well-known
examples being phase separation in binary mixtures [49] and the
modulational instability in bimodal systems in which the cross-

repulsion is stronger than self-repulsion [50].

In terms of BEC, the system is represented by coupled GPEs
for wave functions φ1,2 of the two components, written in the
2D form, which includes the confining harmonic-oscillator (HO)

potential with strength Ω2, acting in the (x, y) plane, and scaled
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atomic mass m:

i
∂φ1

∂t
= − 1

2m
∇2φ1 + (g|φ1|2 + γ|φ2|2)φ1 +

Ω2

2

(

x2 + y2
)

φ1 − ǫφ2

(1)

i
∂φ2

∂t
= − 1

2m
∇2φ1 + (g|φ2|2 + γ|φ1|2)φ2 +

Ω2

2

(

x2 + y2
)

φ2 − ǫφ1.

(2)

Here, ǫ is the coefficient of the linear coupling, while γ > 0

and g > 0 account for, severally, the cross-repulsion and self-
repulsion. These coefficients are subject to the above-mentioned
condition of the dominant cross-interaction, γ > g, except for

Section IV (the case of g < 0, i.e., self-attractive nonlinearity,
may be considered too, although it is less interesting than the

case of the competition between the cross- and self-repulsion).
By means of obvious rescaling of t, coordinates, and wave func-

tions we fix

g = Ω2 = ǫ = 1, (3)

while m and γ are kept as free parameters (a different normaliza-
tion, with ǫ 6= 1, is adopted below in Section IV, where a different

potential is considered).

Equations (1) and (2) conserve the total norm,

N =
∫ ∫

(

|φ1|2 + |φ2|2
)

dxdy, (4)

Hamiltonian,

H=
∫ ∫

[

1

2m

(

|∇φ1|2 + |∇φ2|2
)

+
1

2

(

|φ1|4 + |φ2|4
)

+ γ |φ1|2 |φ2|2

+
1

2

(

x2 + y2
) (

|φ1|2 + |φ2|2 − (φ1φ
∗
2 + φ∗

1φ2)
)

]

dxdy, (5)

where normalization (3) is taken into regard, and ∗ stands for the
complex conjugate, as well as the total angular momentum,

M = i
∑

j=1,2

∫ ∫

φ∗
j

(

y
∂

∂x
− x

∂

∂y

)

φjdxdy. (6)
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In terms of optics, Eqs. (1) and (2) with t replaced by z and m
replaced by the Fresnel number provide a model of the spatial-

domain copropagation of waves with orthogonal circular polariza-
tions in a bulk waveguide made of a self-defocusing material, pro-
vided that relation g = γ/2 is imposed, which corresponds to the

copropagation of orthogonal circular polarizations. In that case,
the HO potential represents the transverse waveguiding structure,

and the linear-coupling terms represent linear mixing induced by
anisotropy (linear birefringence) of the material.

In Section II, we address the SSB effects in the GS produced by

the full 2D version of Eqs. 1), (2) and their 1D reduction, under
the above-mentioned condition γ > g. The relevant solutions are

obtained in an analytical form by means of the Thomas-Fermi
approximation (TFA), and confirmed by full numerical solutions.

Section III addresses vortex states, with topological charges S =
1 and 2, in the 2D system, in which SSB is again considered by
means of TFA and a full numerical solution. In Section IV we

address the symmetry breaking of two-component gap solitons in
the 1D system, which is described by Eqs. (1) and (2) with the HO

potential replaced by the spatially periodic one, see Eqs. (38) and
(39) below. In that case, the situation is drastically different, as

SSB takes place in antisymmetric two-component solitons, under
the condition opposite to the one mentioned above, i.e., γ < g,
which means that the cross-repulsion is weaker than the intrinsic

self-repulsion The paper is concluded by Section V.

2 Spontaneous symmetry breaking (SSB) of the ground states
(GSs)

Eigenstates of the system based on Eqs. (1), (2), and (3), with

chemical potential µ > 0, are looked for as

φ1,2 (x, y) = exp (−iµt)ϕ1,2(x, y), (7)
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where functions ϕ1,2 (x, y) satisfy stationary equations

µϕ1 = − 1

2m
∇2ϕ1 + |ϕ1|2ϕ1 + γ |ϕ2|2 ϕ1 +

1

2

(

x2 + y2
)

ϕ1 − ϕ2,

(8)

µϕ2 = − 1

2m
∇2ϕ2 + |ϕ2|2ϕ2 + γ |ϕ1|2 ϕ2 +

1

2

(

x2 + y2
)

ϕ2 − ϕ1.

(9)

The degree of asymmetry of solutions produced by Eqs. (8) and
(9) is quantified by parameter

R =
2

N

∫ ∫

|ϕ1 (x, y) |2dxdy − 1, (10)

where N is the total norm defined as per Eq. (4). Obviously,
R = 0 in the case when norms of both components are equal.

In the 1D case, ∇2 is replaced by ∂2/∂x2, y2 is dropped in the HO

potential, and functions ϕ1,2(x) are always real. In this case, the
asymmetry is defined by the 1D version of Eq. (10), definitions

of N and H, given by Eqs. (4) and (5) are also replaced by their
1D versions, while the definition of the angular momentum [see

Eq. (6)] is irrelevant.

2.1 The Thomas-Fermi approximation (TFA)

First, we apply the TFA to Eqs. (8) and (9), dropping, as usual,

the derivatives in these equations [6,7] (which is, formally, tanta-
mount to taking m → ∞):

µϕ1 = gϕ3
1 + γϕ2

2ϕ1 +
1

2

(

x2 + y2
)

ϕ1 − ϕ2, (11)

µϕ2 = gϕ3
2 + γϕ2

1ϕ2 +
1

2

(

x2 + y2
)

ϕ2 − ϕ1. (12)
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Equations (11) and (12) admit two nonzero solutions: an obvious
symmetric one,

ϕ2
1(x, y) = ϕ2

2(x, y) =
2 (µ+ 1)−

(

x2 + y2
)

2 (γ + 1)
, (13)

which exists at

1

2

(

x2 + y2
)

< µ+ 1, (14)

and a symmetry-broken (alias asymmetric) solution, which exists

under the condition adopted above, γ > 1 (the cross-repulsion is
stronger than self-repulsion):

ϕ2
1 + ϕ2

2 = µ− 1

2

(

x2 + y2
)

, ϕ1ϕ2 =
1

γ − 1
. (15)

Formally, solution (15) exists at γ < 1 too, but, having ϕ1ϕ2 <
0, it will make the last (linear-coupling) term in Hamiltonian

(5) positive, which definitely implies instability of the respective
states [22].

The asymmetric solution given by Eq. (15) exists in a region
where it complies with obvious condition ϕ2

1 + ϕ2
2 > 2ϕ1ϕ2, i.e.,

x2 + y2 < 2

(

µ− 2

γ − 1

)

. (16)

Note that condition (16) may hold if, at least, it is valid at
x = y = 0, thus a condition necessary for the existence of the
asymmetric solution is

µ > µ(cr) ≡ 2

γ − 1
. (17)

Thus, TFA produces the state with the spontaneously broken
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symmetry which features a two-layer structure:
















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































asymmetric, given by Eq.(15), in the inner (central) layer,

0 ≤ x2 + y2 < 2
(

µ− 2 (γ − 1)−1
)

;

symmetric, given by Eq.(13), in the outer (surrounding) layer,

2
(

µ− 2 (γ − 1)−1
)

≤ x2 + y2 < 2 (µ+ 1) ≡ r2
outer;

(18)

and zero outside of both layers, i.e., at x2+y2 > r2
outer. Of course,

the exact solution has a small nonzero “tail” in the latter area,

which is, as usual, ignored by TFA. Another difference of a nu-
merically exact solution is that the symmetry is slightly broken

in the TFA-symmetric layer.

If condition (17) does not hold, the inner layer does not exist,

and the entire TFA solution keeps the symmetric form, as given
by Eqs. (13) and (14). Its total norm, defined as per Eq. (4) or

its 1D version, is

(

N
(symm)
TFA

)

2D
=2π

(µ+ 1)2

γ + 1
, (19)

(

N
(symm)
TFA

)

1D
=
27/2

3

(µ+ 1)3/2

γ + 1
, (20)

With the increase of the cross-repulsion strength, γ, at a fixed

norm, the SSB sets in when µ, expressed in terms of the norm of
the symmetric GS by means of Eq. (20) or (19), attains critical
value (17). After a simple algebra, this condition leads to equa-

tions which predict, in the framework of TFA, the critical value
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of γ, above which SSB takes place for given N ,

3N

27/2
=

√

γ
(cr)
1D + 1

(

γ
(cr)
1D − 1

)3/2
, (21)

N

2π
=

γ
(cr)
2D + 1

(

γ
(cr)
2D − 1

)2 . (22)

In particular, for N large enough, when TFA is a natural ap-
proximation, Eqs. (21) and (22) yield critical values of γ close to

g ≡ 1, viz., γ
(cr)
1D ≈ 1 + (16/3N)2/3, γ

(cr)
2D ≈ 1 + 2

√

π/N .

2.2 Numerical results for 1D states

Numerical solutions for the 1D version of Eqs. (1), (2) and (8),
(9) are presented here for the total norm N = 10, as defined

by the 1D form of Eq. (4), since this value makes it possible to
produce generic results. Figure 1(a) displays profiles of compo-

nents ϕ1,2(x) ≡ |φ1,2(x)| of the GS, obtained by means of the
imaginary-time evolution method [51,52] applied to Eqs. (1), (2),
for γ = 2.5 and m = 1. Further, Fig. 1(b) produces TFA profiles

for the same parameters, constructed as per Eqs. (13), (15), and
(18), and provides explicit comparison of this approximate ana-

lytical solution for ϕ1(x) with its numerically found counterpart
[the comparison for component ϕ2(x) is provided by the juxta-

position of panels (a) and (b) in Fig. 1].

Figure 1(c) summarizes the numerical and analytical results by
plotting the asymmetry degree R, defined as per Eq. (10), vs. the

cross-repulsion strength, γ, at a fixed value of the norm, N = 10,
and fixed mass, m = 1, as obtained from the numerical solution,
and from TFA, i.e., as produced by the integration of expres-

sions (13), (15), and (18). It is seen that SSB takes place at
γ > γ(cr)

numer ≈ 1.83, while its TFA counterpart, obtained from Eq.

(21), is γ
(cr)
TFA ≈ 1.73 for N = 10. The analytically predicted curve

R(γ) is reasonably close to its numerical counterpart, both show-
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ing the SSB transition which may be identified as a supercritical
bifurcation [53].

Overall, TFA provides reasonable accuracy for m = 1, even if,
formally speaking, this approximation applies for small values of

coefficient 1/(2m) in Eqs. (8) and (9). To focus on the role of
this parameter, Fig. 2 displays R vs. 1/(2m) at γ = 2.5. The

SSB disappears at 1/(2m) > 2.8. Another essential characteristic
of the GS solutions is the critical value of γ, above which SSB
sets in; recall that, in the framework of TFA, it is predicted by

Eq. (21). A set of curves of γ
(cr)
1D (N) for several fixed values of

the inverse-mass parameter, viz., 1/ (2m) = 2, 0.5, and 0.05, are

plotted in Fig. 2(b), along with the corresponding TFA limit,
corresponding to 1/ (2m) = 0.

The SSB effect corresponding to the supercritical bifurcation im-

plies that, when symmetric and symmetry-broken stationary so-
lutions coexist as stationary ones, the symmetric solution should

be unstable. This expectation is corroborated in Fig. 3(a), which
shows the time evolution of the maximum values of |φ1(x)| and
|φ2(x)|, produced by direct simulations of coupled equations (1)
and (2), for γ = 2.5, m = 1, and N = 10. The input is a sym-

metric solution, with ϕ1(x) = ϕ2(x), and a small perturbation
added to it. It is unstable, clearly tending to spontaneously trans-
form into a broken-symmetry state. On the other hand, Fig. 3(b)

demonstrates stability of the asymmetric GS for the same values
of the parameters.

3 Symmetry-breaking 2D vortex states

3.1 The Thomas-Fermi approximation (TFA)

Solutions of the system of coupled 2D equations (1) and (2) with

embedded angular momentum are looked for, in the polar coor-
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Fig. 1. (a) Profiles of components |φ1(x)| ans |φ2(x)| (solid and dashed lines) in
the stable 1D ground state (GS) with broken symmetry between the components.
The solution was obtained by means of the imaginary-time-evolution method, ap-
plied to the 1D version of Eqs. (1) and (2) with γ = 2.5 and m = 1, for the total
norm N = 10 [see Eq. (4)]. (b) Comparison of |φ1(x)| (the solid line) taken from
the same numerical solution, and its TFA counterpart, produced by Eqs. (13), (15),
and (18) (the dashed line running close to the solid one); the TFA-produced compo-
nent |φ2(x)| is shown too, by the double-peaked dashed curve. (c) The asymmetry
measure, defined as per Eq. (10), vs. γ, for fixed m = 10 and N = 10. The chain
of rhombuses and the dashed line show, severally, the numerical results and their
TFA-produced counterparts.
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Fig. 2. (a) The numerically found asymmetry measure R for the 1D GS solutions
[see Eq. (10)], as a function of the inverse-mass parameter, 1/(2m). (b) The critical
values of γ, above which the GS symmetry is broken in 1D, as a function of N for
fixed values of the inverse-mass coefficient, 1/(2m) = 2 (pluses), 0.5 (rhombuses),
and 0.05 (squares). The dotted curve is the analytical result predicted by TFA, as
per Eq. (21).

dinates (r, θ), as

φ1,2 = exp (−iµt+ iSθ)ϕ1,2(r), (23)

where ϕ1,2(r) are real radial wave functions, and S = 1, 2, 3, ...

is the integer vorticity, S = 0 corresponding to the 2D GS. For
stationary states represented by ansatz (23), the angular mo-
mentum, defined as per Eq. (6), is related to the total norm,

M = SN .
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Fig. 3. The evolution of the largest values of |φ1(x)| and |φ2(x)| (solid and dashed
lines), produced by direct simulations of the 1D version of Eqs. (1) and (2) for
γ = 2.5, m = 1, and total norm N = 10, starting from (a) the unstable symmetrical
state and (b) the stable GS with broken symmetry.

In the framework of TFA (which was previously applied to delo-

calized vortex states [54]), the substitution of ansatz (23) leads
to the following radial equations, instead of 1D equations (11)

and (12):

µϕ1 = gϕ3
1 + γϕ2

2ϕ1 +
1

2



r2 +
S2

r2



ϕ1 − ϕ2, (24)

µϕ2 = gϕ3
2 + γϕ2

1ϕ2 +
1

2



r2 +
S2

r2



ϕ2 − ϕ1. (25)

Straightforward consideration of Eqs. (24) and (25) demonstrates
that solutions are different from zero in annulus

r2
core < r2 < r2

outer, (26)

r2
outer,core = µ+ 1±

√

(µ+ 1)2 − S2, (27)

provided that µ+ 1 > S. Note that the central “empty” core, in

which the TFA solution is zero, is absent in the GS solution (with
S = 0), as Eq. (27) yields r2

core (S = 0) = 0. In the same case, Eq.
(27) yields r2

outer (S = 0) = 2 (µ+ 1), which coincides with r2
outer

given above by Eq. (18) for the GS.

In annulus (26), the symmetric solution of Eqs. (24) and (25) is

ϕ2
1,2(r) ≡ ϕ2(r) =

µ+ 1

γ + 1
− 1

2 (γ + 1)



r2 +
S2

r2



 . (28)

Note that setting S = 0 makes this solution identical to its GS

12



counterpart given by Eq. (13). The total norm of symmetric ex-
pression (28) is

N
(symm)
TFA (S) = 2π

µ+ 1

γ + 1

√

(µ+ 1)2 − S2

− 2πS2

γ + 1
ln







µ+ 1 +
√

(µ+ 1)2 − S2

S





 , (29)

which, for S = 0 (the GS), is tantamount to Eq. (19).

Points at which the broken-symmetry solution with S ≥ 1 (if

any) branches off from the symmetric one, given by Eq. (28),
are determined by taking the difference of Eqs. (24) and (25),

linearizing it for ϕ1 − ϕ2 → 0, and cancelling the common in-
finitesimal factor (ϕ1 − ϕ2):

µ− 1 = (3− γ)ϕ2(r) +
1

2



r2 +
S2

r2



 . (30)

The substitution of the symmetric TFA solution (28) in Eq. (30)

leads to the conclusion that the asymmetric solution may exist
between the following branching points:

r2
max,min = µ− 2

γ − 1
±
√

√

√

√

√

(

µ− 2

γ − 1

)2

− S2 (31)

Thus, TFA predicts the vortex solution with a three-layer struc-
ture. First, it vanishes in the empty core and in the peripheral

zone,
ϕ1,2 (r < rcore) = ϕ1,2 (r > router) = 0. (32)

The symmetric solution, as given by Eq. (28), is supported in two
edge layers,

r2
core<r2 < r2

min, (33)

r2
max<r2 < r2

outer , (34)

with the edges determined by Eqs. (27) and (31). Finally, the

broken symmetry is featured by the TFA solution in the inner
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layer,
r2

min < r2 < r2
max. (35)

In the framework of TFA, the condition necessary for the exis-
tence of the asymmetric solution amount to the existence of real

values (31), i.e.,

µ > µ(cr)(S) ≡ 2

γ − g
+ S, (36)

cf. Eq. (17) for the GS. Further, combining Eq. (36) with expres-

sion (29) for the norm of the symmetric vortex state, one can
derive an equation for the critical strength of the cross-repulsion,

above which the symmetry of the vortex states is broken, cf. Eq.
(22) for the 2D GS (S = 0). In particular, for S = 1 the equation

is

N =
2πγ

(cr)
S=1

(

γ
(cr)
S=1 − 1

)2

√

√

√

√

√

√

3γ
(cr)
S=1 − 1

γ
(cr)
S=1 + 1

− 2π

γ
(cr)
S=1 + 1

ln













2γ
(cr)
S=1 +

√

(

γ
(cr)
S=1 + 1

) (

3γ
(cr)
S=1 − 1

)

γ
(cr)
S=1 − 1













. (37)

3.2 Numerical results for 2D ground and vortex states

Proceeding to numerical results for the 2D system, in Fig. 4(a)

we, first, display numerically found radial profiles, ϕ1,2(r) ≡ |φ1,2(r)|,
of the two components of the 2D GS (with S = 0), for γ = 2.3,

m = 1, and the total 2D norm N = 100. The numerical pro-
files are compared to their TFA-predicted counterparts, obtained

from Eqs. (24) and (25), in Fig. 4(b). Further, the numerical and
approximate analytical radial profiles of a stable vortex state,

with S = 1 and the same values of other parameters as in panels
(a,b), are displayed in Figs. 4(c,d). In addition to the 2D states
with S = 0 and S = 1, higher-order ones, with S ≥ 2 have been

constructed too (not shown here in detail).
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Fig. 4. (a) 1D cross sections (radial profiles) of components |φ1| ans |φ2| (solid
and dashed lines, respectively) of the stable 2D ground state (S = 0) with broken
inter-component symmetry. The solution was obtained by means of the imaginary–
time-evolution method applied to the axisymmetric reduction of Eqs. (1) and (2) in
the 2D form, with γ = 2.3 and m = 1, for the total 2D norm N = 100. (b) Com-
parison of |φ1| (the solid line) taken from the same numerical solution as in (a),
and its TFA counterpart, produced by Eqs. (24) and (25) (the dashed line which
almost completely overlaps with the solid one). The other dashed line shows the
TFA-produced component |φ2|. (c,d): The same as in (a,b), but for a stable vortex
mode with S = 1 and the same values of γ, m, and N .

The results are summarized in Figs. 5(a), (b), and (c) by means

of curves R(γ) for the dependence of asymmetry measure (10)
on the cross-component repulsion strength, γ, for the fixed mass,
m = 1, total norm, N = 100, and three values of the vorticity,

S = 0 [(a), the GS], S = 1 (b), and S = 2 (c). The TFA-
predicted analytical results are included too. In particular, for

S = 1 the numerically found SSB point is γ
(cr)
S=1 ≈ 1.55, while

its TFA counterpart, found from Eq. (37), is
(

γ
(cr)
S=1

)

TFA
≈ 1.45.

Similar to the conclusion made above for 1D GS [cf. Fig. 1(c)], for

all the cases of S = 0, 1, and 2 the SSB transitions, displayed in
Figs. 5(a-c), may be categorized as the supercritical bifurcation

[53].

In comparison with the similar results for the 1D GS, displayed
in Fig. 1(c), the relative error of TFA [in particular, in predicting

γ(cr)] is much larger in the 2D setting, being ≃ 5% in 1D and
≃ 15% in 2D. On the other hand, it is worthy to note that the

relative error is smaller by a factor ≃ 3 for the vortex states with
S = 1 and 2, in comparison to the 2D GS.

Numerical and approximate analytical dependences of the value

of γ at the SSB point, γ(cr), on the total norm, N , for the 2D
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Fig. 5. The asymmetry measure (10) vs. the cross-repulsion strength, γ, for families
of 2D states with S = 0 [the ground state, (a)], S = 1 (b), and S = 2 (c), with fixed
effective mass, m = 1, and 2D norm, N = 100. Chains of rhombuses and dashed
curves represent, severally, numerical results produced by the imaginary-time-prop-
agation method, and analytical results provided by TFA, viz., Eqs. (15) and (18)
for S = 0, and Eqs. (24), (25) for S = 1 and 2.

GS (S = 0) and vortex mode with S = 1 are plotted in Fig.
6, fixing the effective mass to be m = 1. The analytical curves

are produced by TFA, i.e., Eq. (22) for S = 0, and Eq. (37) for
S = 1. In comparison to similar results for the 1D GS, shown

in Fig. 2(b), the accuracy of TFA in 2D is only slightly poorer
(note, however, a great difference in the scale of N between the
1D and 2D cases).
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Fig. 6. The critical value of the cross-repulsion strength at the symmetry-breaking
point in the 2D system, as a function of N at m = 1. (a) The ground state, S = 0;
(b) the vortex, with S = 1. The dashed lines denote the TFA prediction, produced,
respectively, by Eqs. (22) and (37).

Finally, systematic direct simulations of the perturbed evolution
of the 2D states clearly demonstrate that families of the asym-

metric GS solutions with S = 0 and unitary-vortex ones with
S = 1 are completely stable, while asymmetric double vortices,
with S = 2, are not. A typical example of the instability devel-

opment in displayed in Fig. 7, which shows spontaneous splitting
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of the double vortex into a pair of unitary ones, that keep the
asymmetric structure, with respect to components φ1 and φ2. It

is relevant to mention that double vortices may be unstable in the
framework of the single GPE with the HO trapping potential and

self-repulsive nonlinearity, while unitary vortices are completely
stable in the same setting [55].
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Fig. 7. (a) A numerically found 2D stationary state with double vorticity, S = 2
and broken symmetry between the components. (b) Unstable evolution of this state,
leading to its spontaneous splitting in two unitary vortices. The parameters are
m = 1 and γ = 1.8, the total norm of the stationary state being N = 100. Both the
stationary state and the perturbed evolution are displayed by means of 1D cross
sections.

4 Spontaneous symmetry breaking (SSB) in two-component gap
solitons

Another possibility to create localized states in the presence of
a fully repulsive nonlinearity, is offered, instead of the HO trap-
ping potential, by a periodic one – namely, an optical lattice in

BEC [47,48], or a photonic-crystal structure in optics [56,57]. It is
well known that the interplay of the self-repulsion with a periodic

potential gives rise to stable gap solitons [59,58]. The analysis of
two-component gap solitons in linearly-coupled dual-core systems

with a periodic potential and intrinsic self-repulsive nonlinearity
in each layer (in the absence of the inter-component nonlinearity)

was developed in Refs. [46,43,32]. As mentioned above, symmetric
states in such systems are not subject to SSB, while antisymmet-
ric ones develop instability which replaces them by states with

broken antisymmetry. Here, we aim to demonstrate that SSB
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occurs in the coupled system if it includes relatively weak repul-
sion between the components (instead of the relatively strong

inter-component repulsion, which was necessary for the SSB ef-
fect considered above in the states trapped in the HO potential).

In the 1D setting, the system of linearly coupled GPEs, including
the periodic potential with amplitude U0, is written, in the scaled

form, as

i
∂φ1

∂t
= −1

2

∂2φ1

∂x2
− U0 cos (2πx)φ1 + (|φ1|2 + γ|φ2|2)φ1 − ǫφ2,

(38)

i
∂φ2

∂t
= −1

2

∂2φ2

∂x2
− U0 cos (2πx)φ2 + (|φ2|2 + γ|φ1|2)φ2 − ǫφ1.

(39)

Here, the period of the potential is fixed to be 1, and, to clearly
demonstrate the SSB effects, it is convenient to fix the linear-

coupling constant as ǫ = 0.05, instead of ǫ = 1 in Eqs. (1), (2).

To develop an analytical approach to the study of the gap soli-
tons, we resort to the averaging method [60], which looks for so-

lutions in the form of a rapidly oscillating carrier wave, with the
period equal to the double period of the lattice potential, modu-

lated by slowly varying (envelope) wave functions, Φ1,2(x, t):

φ1,2 (x, t) = Φ1,2 (x, t) cos (πx) . (40)

It is known that this approach makes it possible to predict gap
solitons existing close to edges of the spectral bandgap. The sub-

stitution of this ansatz in Eqs. (38) and (39) and application of
the averaging procedure leads, in the lowest approximation, to

the following system of equations for the slowly varying wave
functions:

i
∂Φ1

∂t
= − 1

2meff

∂2Φ1

∂x2
+

3

4
(|Φ1|2 + γ|Φ2|2)Φ1 − ǫΦ2, (41)

i
∂Φ2

∂t
= − 1

2meff

∂2Φ2

∂x2
+

3

4
(|Φ2|2 + γ|Φ1|2)Φ2 − ǫΦ1, (42)
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where the effective mass is

meff = |U0|/(|U0| − 2π2). (43)

At U0 < 2π2, the effective mass is negative, hence its interplay

with the repulsive sign of the nonlinearity in Eqs. (41) and (42)
gives rise to bright solitons, similar to how usual solitons are

produced by the balance of the positive mass and attractive non-
linearity.

To use the results reported in Ref. [34], it is convenient to ad-

ditionally rescale the variables in Eqs. (41) and (42), defining
t′ = −ǫt, x′ =

√−meffǫx, and

Φ′
1 =

√

4ǫ/(3γ)Φ1,Φ
′
2 = −

√

4ǫ/(3γ)Φ2, (44)

thus replacing Eqs. (41) and (42) by

i
∂Φ′

1

∂t′
= −1

2

∂2Φ′
1

∂x′2 −
(

1

γ
|Φ′

1|2 + |Φ′
2|2
)

Φ′
1 − Φ′

2. (45)

i
∂Φ′

2

∂t′
= −1

2

∂2Φ′
2

∂x′2 −
(

1

γ
|Φ′

2|2 + |Φ′
1|2
)

Φ′
2 − Φ′

1. (46)

Accordingly, the total norm of rescaled fields Φ′
1,2 is related to

the norm of the original ones, Φ1,2:

N ′ = (3γ/4)
√

meff/ǫN. (47)

As shown in Ref. [34], Eqs. (45) and (46) with γ < 1 give rise to

SSB of symmetric solitons, in terms of this system, i.e., ones with
Φ′

1 = Φ′
2, if γ belongs to interval γ < (γ ′)(cr), where the respective

critical value is related to N ′ by equation

N ′ =
256

[

1/ (γ ′)(cr) + 1
]−1

[
√

25/ (γ ′)(cr) − 7− 3
√

1/ (γ ′)(cr) + 1

] [
√

25/ (γ ′)(cr) − 7 +
√

1/ (γ ′)(cr) + 1

].

(48)
Actually, Eq. (44) implies that the solitons subject to constraint
Φ′

1 = Φ′
2 represent antisymmetric solitons, with Φ2(x) = −Φ1(x),

in terms of the original equations (41) and (42).
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Numerical solutions for asymmetric solitons can be readily gen-
erated by the imaginary-time integration method applied to Eqs.

(41) and (42). Figure 8(a) shows an example of a soliton with
broken antisymmetry, obtained at parameters γ = 0.2, U0 = 5,

ǫ = 0.05, and N = 2.5. Note that the signs of the two compo-
nents are opposite, in accordance with what is said above, and

the breaking of the antisymmetry is exhibited by the difference
of their amplitudes. Further, Fig. 8(b) summarizes the results,

by displaying the asymmetry measure R for the soliton family,
defined as per Eq. (10) with |ϕ1|2 replaced by |Φ1|2, and N re-
placed by the total norm defined in terms of envelope wave func-

tions Φ1,2, versus the relative strength γ of the inter-component
repulsion. The R(γ) dependence is plotted for fixed N = 2.5 and

the potential’s amplitude, U0 = 5, hence the respective effective
mass, given by Eq. (43), is meff ≈ −0.34. As shown in Ref. [34],

the R(γ) dependence may be accurately represented by means
of a variational approximation. It is seen in Fig. 8(b) that the
antisymmetry of the two-component gap solitons is broken at

γ < γ(cr) ≈ 0.28. The respective analytical result, determined by
Eq. (48) is (γ ′)(cr) ≃ 0.272, which is consistent with the numerical

findings.
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Fig. 8. (a) Profiles of Φ1 and Φ2 (solid and dashed lines, respectively), obtained as
a numerical solution to Eqs. (41) and (42), representing the two-component soliton
with broken antisymmetry, for U0 = 5, ǫ = 0.05, and total norm N = 2.5. (b) The
asymmetry measure R(γ), defined for the family of the two-component solitons, as
produced by the numerical solution for U0 = 5, ǫ = 0.05, and total norm N = 2.5.

The prediction of the breaking of antisymmetry in two-component
gap solitons was confirmed by direct simulations of underlying

equations (38) and (39), see an example shown in Figs. 9(a)-(c)
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for γ = 0.1 < γ(cr). The initial conditions were taken as per ansatz
(40):

φ1,2(x, t = 0) = Φ1,2(x, t = 0) cos(πx), (49)

where Φ1,2(x, t) is the above-mentioned numerically exact broken-
antisymmetry soliton solution of Eqs. (41) and (42), obtained by

means of the imaginary-time simulations. Figures 9(a) and (b)
show, severally, the resulting evolution of maximum values of
|φ1,2(x)|, and of the asymmetry measure, R, defined according

to Eq. (10). Periodic small-amplitude variations of the fields and
asymmetry are caused by a deviation of ansatz (40) from a nu-

merically exact form of the two-component gap soliton with bro-
ken inter-component antisymmetry. A nearly exact shape of both

components of the gap soliton is produced in Fig. 9(c), which dis-
plays snapshots of |φ1,2(x)| at t = 500. These numerical results
also demonstrate that the gap solitons with broken antisymmetry

are stable. Similar to the structure of the asymmetric localized
states produced by Eqs. (8) and (9) in the presence of the HO

trapping potential, see Fig. 1(a), the two-component gap solitons
feature broken antisymmetry in the central zone, and persistent

approximate antisymmetry in decaying tails.

Thus, an essential difference from the results reported above for
the localized states, trapped in the 1D or 2D HO potential, is that

the SSB transition, revealed by Fig. 8(b), is categorized as an
inverted bifurcation [53] (alias an extreme subcritical bifurcation,
cf. Ref. [61]), in comparison with the supercritical bifurcations

observed in Figs. 1(c) and 5. The inversion is explained by the fact
that effective mass (43), which drives the bifurcation of the gap

solitons, is negative. Another obvious difference is that the two-
component antisymmetric gap solitons undergo SSB at γ < 1, on

the contrary to the above condition, γ > 1, which is necessary to
impose SSB onto the HO-trapped states. On the other hand, it

is known that, in the interval of 1 < γ < 3, the system of Eqs.
(41) and (42) gives rise to a bifurcation which breaks symmetry
of two-component solitons with Φ1 = Φ2 (the symmetric state,

rather than the antisymmetric one considered here) [34]. The
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consideration of the latter effect in terms of Eqs. (38) and (39) is
beyond the scope of the present paper.
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Fig. 9. (a) The evolution of maximum values of |φ1(x)| and |φ2(x)| (green and blue
lines), as produced by direct simulations of Eqs. (38) and (39), initiated by the
input in the form of ansatz (49), with Φ1,2 taken as a numerically exact broken–an-
tisymmetry soliton solution of Eqs. (41) and (42) with γ = 0.1. (b) The evolution of
the asymmetry measure for the solution from panel (a), defined as per Eq. (10). (c)
Snapshots of |φ1(x)| and |φ2(x)| (green and blue lines, respectively) of the solution
from panels (b,c) at t = 500. The snapshots closely approximate an exact shape of
the two-component gap soliton with broken antisymmetry between the components.

5 Conclusion

In numerous works, SSB (spontaneous symmetry breaking) of

two-component localized modes in linearly-coupled systems was
found in the case of attractive self- and/or cross-component non-

linear interactions in the system. On the contrary to that, in
systems with repulsive interactions spontaneous breaking was
only shown for antisymmetric two-component states, but not for

symmetric ones. Here, we have demonstrated that SSB in both
1D and 2D symmetric states, trapped in the confining potential

[taken as the HO (harmonic oscillator)], is possible if the cross-
repulsion is stronger than intrinsic repulsion in each component.

This setting may be realized in BEC and nonlinear optics. In
the former case, it represents a binary condensate with natural

repulsive contact interactions and radiofrequency-induced linear
mixing between two atomic states, which compose the binary
BEC. In terms of self-defocusing optical waveguides, the system

is based on the copropagation of two orthogonal polarizations of
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light with the linear mixing induced by linear-polarization bire-
fringence of the material.

For both one- and two-dimensional GSs (ground states), as well
as for 2D vortex states, the transition from symmetric states to

asymmetric ones has been demonstrated analytically by means of
TFA (Thomas-Fermi approximation) and confirmed by system-
atically collected numerical solutions of the underlying system

of linearly coupled GPEs (Gross-Pitaevskii equations). A char-
acteristic feature of the asymmetric states is that they combine

strongly broken asymmetry in the inner area, while a surrounding
layer keeps the original symmetry, in the approximate form. The

SSB transition for all these states is identified as a supercritical
bifurcation. It produces stable 1D and 2D asymmetric GSs, as

well as stable asymmetric vortices with topological charge S = 1,
while the vortices with S = 2 are unstable against splitting in a
pair of unitary vortices.

The phenomenology of the spontaneous antisymmetry breaking
was also briefly considered for 1D antisymmetric two-component
gap solitons, maintained by the spatially periodic potential. In

this case, the antisymmetry breaks in the inner region of the gap
soliton under the condition opposite to that necessary for the

occurrence of the SSB effect in the HO-trapped modes, viz., the
cross-component repulsion must be weaker than the self-repulsion

in each component. The character of the antisymmetry-breaking
transition for the gap solitons is opposite too, namely, it amounts

to an inverted bifurcation.

The above analysis did not address motion of the trapped modes.
Application of a kick to the 1D trapped state, as well as of a radial

push to 2D ones, should excite a dipole mode of oscillations of the
perturbed states around the center. In this connection, the effect

of the Rabi coupling on the oscillations may be an interesting
feature, as suggested by recently studied effects of the same term
on the motion of spinor solitons in a random potential [62]. Gap

solitons feature mobility too, with a negative dynamical mass
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[63], and, accordingly, it may be interesting to address an effect of
the Rabi coupling on the motion of two-component gap solitons.

This work can be also extended by considering higher-order (first

of all, dipole) spatial modes in the system with the HO trap-
ping potential, as well as antisymmetric and symmetric two-
component configurations in the cases of the HO and periodic

potentials, respectively. A challenging possibility is to develop
the analysis for the three-dimensional version of the BEC model.
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