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Abstract

In this paper, we study the consensus formation over a directed hypergraph,

which is an important generalization of standard graph structure by allowing possible

neighbor-dependent synergy. The proposed model is situated in the social dynamics

providing key features including social observer effect and bounded confidence. Un-

der the minimal siphon condition of a directed hypergraph (Petri net), we show that

global consensus can be reached with the final consensus value residing in the com-

mon comfortable range if it is non-empty. To achieved this, we establish an equivalent

condition for the commensurate graph of a finite state machine to be strongly con-

nected. Convergence analysis is performed based on the proposed nonlinear dynamic

system model and Petri net method. The consensus result holds for any non-negative

confidence bound, which distinguishes from traditional bounded confidence opinion

models as we measure the difference among neighbors rather than the gap between

neighbors and the ego. Numerical studies are conducted to unravel some insights in

relation to the influence of observers, hypergraph architecture, and confidence bounds

on opinion evolution. The results and methodologies presented here facilitate research

of social consensus and also offer a way to make sense of synergy in networked complex

systems.
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1 Introduction and background

Consensus algorithms have become an essential constituent in the design of distributed co-

ordination in multi-agent networks, which have found fundamental applications in aerospace

engineering [1], sensor networks [2], evolutionary biology [3], and sociology [4], among oth-

ers. In a standard consensus problem, agents update their states to achieve a common

goal through local interactions using neighboring information flow over a communication

graph. A broad spectrum of control-theoretic results on consensus problems have been

presented in the literature [5–8].

Social dynamics, and more specifically, opinion evolutions in social networks, have

attracted a great research attention in recent years partly due to the pervasive growth

of social media and social networking sites [9]. As in the control-engineering studies,

decision-making processes in the setting of social dynamics also entail the state agree-

ment objective and distributed communications. Nevertheless, theoretical study of social

consensus-building tends to be more challenging as social networks are often comprised of

a large number of heterogeneous agents and complex socio-psychological processes need

to be factored in [10–12]. The seminal DeGroot model [13] proposed a state update rule,

where an individual is influenced by its neighbors as a weighted average. Opinion dynamics

models under bounded confidence [14] capture homophily between individuals as opinion

update occurs only when two individuals have opinions sufficiently close according to a

given confidence bound. The discrepancy between private and expressed opinions arising

from conformity pressure has been examined in [15,16]. The unique roles of psychological

aversion/contrarian [18], affinity [19], first impression [20], and biased assimilation [21]

have also been investigated. We refer the reader to [11,22] for updated surveys of opinion

formation models.

All the above mentioned works model agent interaction using a network structure,

which implicitly assumes that communication among agents happens in pairs indepen-

dently [12]. However, this assumption is only an approximation in many real applications.

For example, co-authors of a paper all have to approve the final version before it can be

published; directors sitting on the board in a corporation need to reach a majority to sanc-

tion or veto a decision; a metabolic reaction requires systematic synergy of participatory

metabolites in their respective roles. In social networks, it is also common for an individ-

ual to adjust their opinion only if a group of their neighbors becomes unanimous. In all

these situations, the edge structure in networks is a simplification, which could arguably

engender a bias of the underlying real decision-making process because the interactions

among agents are essentially neighbor-dependent.

A handy generalization of the standard network structure is called hypergraph, and
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in the directed case, Petri net (a directed hypergraph) [23, 24]. Hypergraph structures

allow hyperedges involving more than two nodes and ideally accommodate complex syn-

ergy among multiple nodes. Although these mathematical tools have found numerous

remarkable applications in the structural characterization in biology and computer sci-

ence [25, 26] with Petri nets mostly appeared in discrete event systems [27, 28], much less

has been done regarding their implications in collective decision-making dynamics. In

fact, consensus formation over hypergraphs is a challenging issue yet to be solved and

presents an important and appealing direction in the generalization of standard network-

based distributed coordination. Some sufficient criteria for synchronization problems over

a 3-uniform undirected hypergraph have been proposed in [31] by using a joint degree

notion. As the hypergraph considered there is 3-uniform, some form of matrix algebra is

still applicable. For a general directed hypergraph, it is shown in [32] that a topological

condition called siphon overlapping is sufficient to guarantee global consensus. The high-

level method utilized there, however, does not extend to many interesting scenarios in e.g.,

sociology, as specific features of the dynamics cannot be easily fed into the convergence

analysis. It is worth noting that in the physics literature, synchronization dynamics of

hypernetworks have been extensively studied [29,30], where “hypernetwork” is an alias of

multilayer network [12] disparate to the hypergraph considered here.

The decision-making dynamics in social networks relates to not only the communica-

tion architectures but the complicated socio-psychological processes. Many of them have

been dealt with by using agent-based modeling and simulations in consensus formation

problems as mentioned above [11,22]. The observer effect, or sometimes referred to as the

Hawthorne effect, is well-known and has a long history in anthropological research [33].

This phenomenon refers to the behavioral change of individual or group being aware of

the presence of observers – their behavior tends to become more moderate or neutral than

otherwise. This potential bias has been widely recognized in observational data and field

studies in the likes of police research [34], ethnography [35], health care [36] and sociol-

ogy [37], etc. The social observer effect is certainly reminiscent of its physical counterpart

in quantum mechanics [42], which nonetheless is manifested in the microscopic world of

particles.

Theoretical research in consensus formation related to observer effect can be largely

found in the category of state constrained consensus problems; see e.g. [38–41]. States

of the agents are usually forced to be contained in some geometrically convex sets (com-

fortable ranges) typically by means of projection operators and barrier functions. The

regulation protocols have been mainly designed in the control theory community and do

not take into consideration of substantive social interactions or neighbor dependent syn-

ergy. Several recent work [15–17] has scoped the difference between expressed and private
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opinions in social networks, but they again do not directly speak to the observer effect in

social dynamics.

Here, we aim to bridge the gap between cooperative consensus control and opinion

formation dynamics featuring neighboring synergy and social observer effect, by developing

a consensus formation framework over directed hypergraphs. To model the neighbor-

dependent interactions, we adopt the language of Petri nets and establish an equivalent

condition for the graph-theoretic strongly connectedness associated with a finite state

machine. The neighborhood of an agent can be divided into multiple subgroups, each of

which has a collective influence on the agent governed by a bounded confidence mechanism.

The group decision-making process designed is informed by the bounded confidence theory

[14], the social trust theory [47], as well as the social influence theory [43], where agents are

bound to conform with neighbors’ opinion to some extent according to different trust levels

but their strategies can be fluid and state-dependent. This is essentially different from

weighted-average type control protocols, where the weights in protocols are often specified

initially and independent of states [6]. Moreover, the opinion value of each agent has their

individual upper and lower comfortable bounds, which define their comfortable range of

expressed opinion under external observation [34, 35]. We show that the consensus can

be achieved with the ultimate agreement value lying in the intersection of all comfortable

ranges if the communication topology satisfies a hypergraph connectivity condition and the

opinions within each subgroup are asymptotically unanimous. The proposed framework is

purely distributed. Note that a spiritually similar concept of comfortable range has also

been examined recently in [46] recently, but the focus there is resilient consensus against

external attacks and the methods adopted are totally different.

Numerical simulations are performed to further explore the consensus behavior in re-

lation to the observer effect, the hypergraph structure, as well as the confidence bounds.

Some key impacts of comfortable bounds and disparity between traditional bounded con-

fidence models are revealed. The rest of the paper is organized as follows. In Section 2,

some preliminary concepts are given and the model is formulated. We present our main

convergence result and numerical studies in Section 3 with the proofs deferred to Section

4. Finally, conclusions are provided in Section 5.

2 Preliminaries and problem statement

2.1 Petri net formulation for neighbor-dependent synergy

The topology relationship between agents in a social network is traditionally modeled by

using a directed graph G = (P,E) with P = {p1, p2 · · · , pn} representing the agents and

E ⊆ P × P the arcs characterizing the information flows between agents. For example,
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(p1, p2) ∈ E means p1 can influence p2. For pi ∈ P , let Ñi = {p ∈ P : (p, pi) ∈ E} be the

neighborhood of pi. Its cardinality |Ñi|, i.e. the number of agents that can send informa-

tion directly to pi, is called the degree of pi. For t ≥ 0, let x(t) = (x1(t), x2(t), · · · , xn(t)) ∈
Rn capture the states of agents at time t. We will often suppress t when the time depen-

dence is clear for the context. Such a graph-theoretical characterization has shown to be

very powerful and successful in analyzing multi-agent coordination [5] as matrix algebra

methods can be readily applied. However, it ignores a critical information regarding joint

neighbor interaction.

We hereby borrow the language of Petri net theory, which was first introduced by Carl

Petri [44] as a process modeling technique having formal semantics and analysis methods.

It has found a wide range of applications in control engineering (e.g. in the field of discrete

event systems), computer science and biological signaling networks [25–28]. We formally

consider a Petri net to be a directed bipartite graph (P, T, F ), encompassing two finite

node sets, places (i.e., agents) P and transitions T = {t1, t2, · · · , tm}, and F = F1 ∪ F2 is

a set of arcs, where F1 ⊆ T × P and F2 ⊆ P × T , respectively. In this paper, with some

ambiguity we use t both for time and a transition by convention since the exact meaning

will always be clear from the context. For any set SP ⊂ P , we denote the input transition

set of SP by InP(SP ) = {t ∈ T : (t, p) ∈ F1 for some p ∈ SP } and the output transition set

of SP by OutP(SP ) = {t ∈ T : (p, t) ∈ F2 for some p ∈ SP }. Similarly, for any set ST ⊂ T ,

we denote the input place set of ST by InT(ST ) = {p ∈ P : (p, t) ∈ F2 for some t ∈ ST }
and the output place set of ST by OutT(ST ) = {p ∈ P : (t, p) ∈ F1 for some t ∈ ST }.
Here, each place p ∈ P is an agent in the network G, and each transition t ∈ T represents

a joint interaction between agents (the precise meaning will be clear below). We assume

each transition t ∈ T has exactly one out-going arc in F1, namely, |OutT({t})| = 1 for

any t ∈ T . See Fig. 1(a) for an example of Petri net.

Given an agent pi ∈ P , we partition the indices of the agents in Ñi as mutually

exclusive sets {k : pk ∈ Ñi} = ∪ji
j=1Jij , where 1 ≤ ji ≤ |Ñi| is an integer. Denote by

Ni = {Jij : j = 1, 2, · · · , ji} the collection of these subgroups. We call each Jij a minimal

influence on the agent pi in the sense that the state of pi can be influenced only by all

agents (with indices) in Jij but not any proper subset of it. In Fig. 1(b), for example,

J11 is a minimum influence on p1 because p2 or p3 by its own cannot influence p1 by

definition but some synergy (i.e., simultaneous change of states) in them may influence

p1. Concrete examples are given in the system description in Section 2.2. Clearly, the

traditional graph presentation G = (P,E) can be regarded as a special case with ji = |Ñi|
for all i ∈ [n] := {1, 2, · · · , n}, i.e. all subgroups are simply single agent. The other

extreme situation is ji = 1 for all i, which means the agent pi views all neighbors as a

whole group and any proper subset of it will not be able to influence its state.
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Figure 1: (a) A Petri net (P, T, F ) with P = {p1, p2, p3, p4}, T =

{t1, · · · , t5}, F1 = {(t1, p2), (t2, p3), (t3, p4), (t4, p1), (t5, p1)}, and F2 =

{(p1, t1), (p2, t2), (p2, t5), (p3, t3), (p3, t5), (p4, t4)}. (b) A schematic illustration of the

minimal influences of J11 and J12 on p1, where Ñ1 = {p2, p3, p4} and N1 = {J11, J12}.

Remark 1. The above type of interactions between subgroups {Jij}ji
j=1 and the agent pi

is referred to as “neighbor-dependent synergy” since in general each minimum influence

Jij can have more than one node. Only their consistent and simultaneous action could

influence the behavior of pi. As such, Petri net is a more appropriate tool than the classical

graph theory.

A set SP ⊆ P is called a minimal siphon of the Petri net if InP(SP ) ⊆ OutP(SP ) and no

proper subset of SP satisfies this condition [44,45]. Roughly, a minimal siphon is a minimal

set of agents whose influence comes from themselves at least partly. For instance, P is a

minimal siphon in the Petri net in Fig. 1(a). Therefore, it is also the only minimal siphon

in this example. Intuitively, this Petri net is well-connected and we can make this concept

precise. If for any t ∈ T we have | InT({t})| = |OutT({t})| = 1, then the Petri net (P, T, F )

is called a finite state machine. For a state machine, we associate the commensurate graph

G = (P,E) with it by linking pi1 to pi2 if pi1 ∈ InT({t}) and pi2 ∈ OutT({t}) for some t.

The following result relates minimal siphon to graph connectivity.

Lemma 1. Suppose (P, T, F ) is a finite state machine and its commensurate graph is

G = (P,E). G is strongly connected if and only if the minimal siphon of the state machine

is P .

Proof. (Sufficiency). Assume that P is the only minimal siphon of the Petri net. For

any p ∈ P , InP({p}) 6= ∅ since the atomic set {p} is not a minimal siphon. There exists

t ∈ T such that t ∈ InP({p}), i.e., (t, p) ∈ F1. As (P, T, F ) is a state machine, (pi1 , t) ∈ F2

for some (unique) pi1 ∈ P . Again we know pi1 6= p since {p} is not a minimal siphon. By

definition of the commensurate graph, we have (pi1 , p) ∈ E.

Next, we consider the set {p, pi1}. Repeating the above argument (by using the fact
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that {p, pi1} is not a minimal siphon), we obtain that there exists an agent pi2 6∈ {p, pi1}
such that pi2 is connected to {p, pi1} in G. Since G is a finite graph, by recursively applying

the argument, we see that every agent in G will be connected to p through a directed path.

Hence, G is strongly connected as p is an arbitrary agent.

(Necessity). Suppose G is strongly connected. We first show that InP(P ) ⊆ OutP(P )

holds. In fact, take any p ∈ P , we know InP({p}) 6= ∅ because G is strongly connected.

Take any t ∈ InP({p}) and there is a unique pi1 ∈ InT({t}). In other words, t ∈ OutP(P ).

This proves that InP(P ) ⊆ OutP(P ).

What remains to show is that for any proper subset SP ⊆ P , InP(SP ) 6⊆ OutP(SP ).

Since SP is a proper subset and G is strongly connected, we can choose (pi1 , p) ∈ E

satisfying pi1 6∈ SP and p ∈ SP . We have some t ∈ InP({p}) and pi1 ∈ InT({t}) by the

definition of commensurate graph. Since the Petri net is a state machine, | InT({t})| = 1.

Hence, t 6∈ OutP(SP ). This leads to the desired result. Therefore, P is the minimal

siphon. 2

2.2 Modeling observer effect and neighbor-dependent synergy

Recall that x(t) = (x1(t), x2(t), · · · , xn(t)) ∈ Rn describes the states of agents at time

t ≥ 0. Here we are interested in consensus formation for the group of agents in P .

Definition 1 (consensus formation). We say that the agents in P reach a consensus

if there is c ∈ R such that limt→∞ xi(t) = c for all pi ∈ P and x(0) ∈ Rn.

Under external observation, an agent in the social network tends to express their

opinion within a moderate comfortable range [34, 35, 37]. Hence, we consider a range

Ri = [ri, ri] for each pi ∈ P , and the expressed opinion of pi is characterized by a mask

function ϕi(·) : R −→ Ri given by

ϕi(z) :=


ri, z > ri;

z, ri ≤ z ≤ ri;

ri, z < ri.

(1)

Given an index set J ⊆ [n] := {1, 2, · · · , n}, denote by xJ = {xj : j ∈ J}. Recall

that J is a minimal influence on the agent pi ∈ P if xi is influenced only by all agents

with indices in J as a whole group but not any proper subset of J . Such a minimal

influence can be delineated by a function fJ(xJ). For example, given x1, the minimal

influence of p2 and p3 on p1 in Fig. 1 can be encoded in the intrinsically nonlinear function

f{2,3}(x2, x3) = 2−1(min{max{x2, x3}, x1} + max{min{x2, x3}, x1}). Clearly, only when

both x2 and x3 are greater than (or less than) x1, the result will be deviated from x1.

Another example could be f{2,3}(x2, x3) = tan
√

2−1(|h(x2)h(x3)| + h(x2)h(x3)), where
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h(x) = arctan(x − x1). On the other hand, the minimal influence of a single agent p4 on

p1 is typically represented by a linear function such as f{4}(x4) = x4 [5].

For each i ∈ [n], recall the partition of neighborhood Ni = {Jij : j = 1, 2, · · · , ji} with

1 ≤ ji ≤ |Ñi| in Section 2.1. We propose an agent pj0 in each Jij as the trusted agent

of agent i and associate a weight aij0 > 0 with the subgroup Jij . The trusted agent is

used to reconcile disagreement in the case of excessive disagreement within a subgroup (cf.

Remark 4). Combining the observer effect and neighbor-dependent synergy, the dynamics

of agent pi ∈ P is captured by the following equation

ẋi(t) =
∑
J∈Ni

aiJ

(
fJ(ϕJ(xJ(t))) − xi(t)

)
, (2)

where t ≥ 0, J = Jij , and aiJ = aij0 when J = Jij . Here in Equation (2) we use the

notation J for ease of presentation. Recall that xJ = {xk : k ∈ J} is a collection of states in

the subgroup J , and hence ϕJ(xJ) = {ϕk(xk) : k ∈ J} captures the collection of expressed

opinions modified by the mask functions ϕk defined in (1). The basic idea here is there is a

trusted node pj0 in each subgroup Jij ; it coordinates with other members in the subgroup

to together influence (via (3) below) the node pi. The system (2) specifies how the state of

pi responds to the influence of all its neighboring subgroups Ni = {Jij : j = 1, 2, · · · , ji}.
Given a non-negative locally Lipschitz continuous function δ = δ(t), we define the

function fJ(·) in (2) as follows:

fJ(xJ) =

{
gJ(xJ), max{|xk1 − xk2 | : k1, k2 ∈ J} ≤ δ;

xj0 , otherwise,
(3)

where gJ(xJ) can be any locally Lipschitz continuous function satisfying mink∈J xk ≤
gJ(xJ) ≤ maxk∈J xk.

Several remarks are in order.

Remark 2 (regarding δ(t)). The function δ(t) controls the disagreement within each

subgroup, which may depend on J . However, since there are only finite agents, without

loss of generality we consider a global δ(t) instead of δJ(t). The introduction of δ here is

reminiscent of the classical bounded confidence models [14], where the confidence bound is

measured between pi and any of its neighbors. For example, the critical confidence bound

is determined as 0.5 if the initial opinions of all agents are taken uniformly within the unit

interval [0, 1] and the underlying network is a connected graph [14]. In general, the critical

bound is proved to be related to the expected value of the initial opinion distribution [20].

Our function δ(t) can be viewed as a “transverse” confidence bound in the hypergraph

setting as the difference between neighbors are measured here. The classical bounded

confidence models, on the other hand, can be regarded as using “longitudinal” confidence

bounded in the standard network setting. Interestingly, a critical confidence bound in
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our case is non-existent (see Theorem 1 and Section 3.4) regardless of the initial opinion

configuration.

Remark 3 (regarding gJ). Equation (3) means that fJ(xJ) may take any value between

the two extreme opinions if the discrepancy within each subgroup is controlled by δ,

otherwise it adopts the opinion of the trusted agent. Typical examples of gJ(·) can be

the arithmetic average function gJ(xJ) = |J |−1
∑

k∈J xk and gJ(xJ) = xj0 , which implies

that pi has absolute trust in pj0 . The choice of gJ is fluid: (a) it can depend on the

subgroup J as well as the states of neighbors, and (b) it does not coupled with the

communication topology or affect convergence (see Theorem 1 below). This flexibility is

desirable in the social network setting and different from rigid control protocols typically

seen in the control theory literature on consensus problems either in a standard network

environment [5–7,15,16] or a hypergraph environment [28–32].

Remark 4 (regarding pj0). For each i ∈ [n], any agent in the subgroup Jij can be

chosen as a trusted agent pj0 , who has a higher “social influence” [43]. In other words,

pj0 may depend on the agent pi in question, and it is specified initially at time t = 0.

This is in line with the social trust theory [47,48], which predicts that individual tends to

only trust a very limited number of acquaintances (or strong ties), who one has the most

intimate knowledge, in cooperation involving more than a few individuals. The trusted

agent introduced here also naturally extends the standard network situation, where each

subgroup Jij contains only one node (hence every neighbor is a trusted agent).

3 Main result and numerical studies

3.1 Consensus formation

Our main result is the following consensus formation which will be shown in Section 4

through a series of lemmas.

Theorem 1. Consider the system (2), and assume that the Petri net (P, T, F ) has the

minimal siphon P and ∩n
i=1Ri 6= ∅. Then for any x(0) ∈ Rn, there exists c ∈ ∩n

i=1Ri such

that limt→∞ xi(t) = c for all i ∈ [n].

Remark 5. We refer to the above assumption of the minimal siphon being P as the

“minimal siphon condition”. This condition is essentially necessary. Suppose (P, T, F ) is a

finite state machine. By Lemma 1, this condition is tantamount to strongly connectedness

of its commensurate graph G. If G is not strongly connected, we can decompose it in

several strongly connected components. Let C1 be the component which has no in-coming

arcs. Take xi(0) 6∈ ∩n
i=1Ri for all i ∈ C1. If consensus along the system (2) is achieved,

then the final consensus value, say c, must satisfy c 6∈ ∩n
i=1Ri because c only depends on

the agents in C1. Therefore, for finite state machines, this condition is both sufficient and
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necessary for guaranteeing consensus value lying in the intersection of comfortable ranges.

In the following subsections we will demonstrate the result through some numerical

simulations, which will further shed lights on the impact of observers, hypergraph struc-

ture, and confidence bound on the consensus formation.

3.2 Influence of observer effect

Figure 2: A Petri net (P, T, F ) with P = {p1, p2, · · · , p6}.

We first consider the influence of the comfortable bounds ri and ri on the system

behavior of (2). The directed hypergraph (P, T, F ) here is illustrated in Fig. 2. It has

6 agents in P = {p1, p2, · · · , p6} and its only siphon is P itself. The comfortable bounds

for each agent are chosen as R1 = [1.5, 5], R2 = [3, 6.5], R3 = [3, 6], R4 = [2.5, 5], R5 =

[2, 5.5], R6 = [4, 7], respectively. The intersection becomes ∩6
i=1Ri = [4, 5]. We choose

δ(t) ≡ 1, aiJ = 0.3 and gJ(xJ) being the arithmetic average function for all i ∈ [6] and

J ∈ Ni. Note that there are two groups of neighbor-dependent synergy in this Petri net:

J11 = {2, 5, 6} and J41 = {2, 3}, where agent p2 is chosen as the trusted node in both

cases.

State trajectories for two different sets of different initial states x(1)(0) = (1.5, 3.5, 1, 0,

2.5, 0.5) and x(2)(0) = (2, 6.5, 8, 4.5, 3.5, 1) are shown in Fig. 3. We observe from Fig.

3(a) and Fig. 3(b) that the system reaches consensus at the equilibrium value 4 at the

boundary of ∩6
i=1Ri. With a different initial condition in Fig. 3(d) and Fig. 3(e), we

observe that the equilibrium is approximately at 4.19, which is inside the overlapping

range ∩6
i=1Ri. These results are in line with the prediction in Theorem 1. In Fig. 3(c)

and Fig. 3(f), we plotted the extreme values of states, maxi∈[6] xi(t) and mini∈[6] xi(t),

and the gap between maximum and minimum. It is interesting to notice that the gap is

not necessarily a monotonically non-increasing function. This is in contrast to many other

consensus multi-agent systems without taking observer effect into consideration [5–7].
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Figure 3: Top row: consensus formation of the system (2) under initial condition

x(1)(0) = (1.5, 3.5, 1, 0, 2.5, 0.5) for (a) state trajectories; (b) comfortable ranges and final

consensus equilibrium; (c) values of max, min and the gap of states. Bottom row: consen-

sus formation of the system (2) under initial condition x(2)(0) = (2, 6.5, 8, 4.5, 3.5, 1) for

(d) state trajectories; (e) comfortable ranges and final consensus equilibrium; (f) values of

max, min and the gap of states.

In Fig. 4(a) and Fig. 4(b), we display the states of the agents in the system (2) with

comfortable bounds R1 = [2, 5], R2 = [3.5, 6.5], R3 = [2, 4], R4 = [1, 3], R5 = [1.5, 3], R6 =

[3.5, 6] and the initial condition x(2)(0). All the other parameters are the same as those

adopted in Fig. 3. Noting that ∩6
i=1Ri = ∅, consensus is not achieved as one would expect.

In Fig. 4(c), we show the evolution of states for the system (2) with the same param-

eters as in Fig. 4(a) and Fig. 3(d) except that the comfortable ranges are removed. In

other words, the observer effect is no longer at play. We observe that consensus is achieved

at value 4.14 in agreement with Theorem 1. However, this final consensus value is slightly

different from the value 4.19 shown in Fig. 3(d). This confirms that the observer effect

essentially influences the opinion dynamics – not only impacts on the trajectories but the

consensus value (cf. Fig. 3(d) and Fig. 4(c)).

3.3 Influence of hypergraph structure

If we remove the blue transition (and its associated two arcs) in Fig. 2, it is direct to check

that the resulting Petri net (P, T ′, F ′) will not satisfy the condition of Theorem 1. In fact,

SP = {p1, p2, p3} will be a (minimal) siphon and hence P is no longer the minimal siphon
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4.14

(c)

Figure 4: (a) State trajectories for the system (2) under initial condition x(2)(0) =

(2, 6.5, 8, 4.5, 3.5, 1) with ∩6
i=1Ri = ∅; (b) Comfortable ranges and final values; (c) State

trajectories for the system (2) under initial condition x(2)(0) = (2, 6.5, 8, 4.5, 3.5, 1) with

∩6
i=1Ri = R.

of (P, T ′, F ′). In Fig. 5 we show the state evolution of the system (2) over the modified

hypergraph (P, T ′, F ′) with initial conditions x(1)(0) and x(3)(0) = (0, 1.5, 3.5, 4, 5.5, 3),

respectively, both with δ = 0.1 and all the other parameters kept the same as those in

Fig. 3.

0 20 40 60 80 100
0

1

2

3

4

5

time t

st
at

e 
x

 

 

x
1

x
2

x
3

 

 

x
4

x
5

x
6

(a)

0 20 40 60 80 100
0

1

2

3

4

5

6

time t

st
at

e 
x

 

 

x
1

x
2

x
3

 

 

x
4

x
5

x
6

(b)

Figure 5: State trajectories for the system (2) with δ = 0.1 under initial condition (a)

x(1)(0) = (1.5, 3.5, 1, 0, 2.5, 0.5) and (b) x(3)(0) = (0, 1.5, 3.5, 4, 5.5, 3). All the other pa-

rameters are the same as those in Fig. 3.

We observe that the systems fail to reach global consensus and the final values are

no longer in the range [4, 5]. The idea of choosing a smaller confidence bound δ here

is inspired by the comment given in Remark 5. For a smaller δ, the group {p1, p2, p3}
is more likely to have no in-coming arcs from outside as p2 is set as the trusted agent.

Therefore, these three agents are likely to form a separate cluster as observed in Fig. 5(a)

and Fig. 5(b). However, the cause effect relationship is complicated by the observer effect

and neighboring synergy in our scenario. In fact, if we adopt exactly the same parameters
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as in Fig. 3, global consensus will still be reached.

3.4 Influence of confidence bound δ(t)
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Figure 6: State trajectories for the system (2) with δ = 0 and all the other parameters

the same as those in Fig. 3(a).

In Fig. 6, we show the state convergence for the system (2) with δ = 0 and all the

other parameters are the same as those in Fig. 3(a). We observe that the global consensus

is reached at around t = 200, which is much more slowly than the case in Fig. 3(a)

with δ = 1. The slow convergence in this example can be intuitively seen as the result

of dilution of arcs in the hypergraph. When δ decreases, the confidence bounds become

more stringent and the trusted nodes are more likely to be utilized. For example, for the

minimal influence of J11 on p1, the other two arcs will be forfeited when x2 is taken as per

the rule (3).

Define the consensus time as t∗(ε) := min{t : |xi1(t) − xi2(t)| < ε, for any i1, i2 ∈ [n]}
for ε > 0. In Table 1, we show the the values of t∗(0.01). Clearly, the consensus time

decreases with respect to δ. As shown in Theorem 1, consensus will be achieved for all

δ(t) ≥ 0, which distinguishes it from the traditional bounded confidence models [14]. It also

worth noting that when δ is sufficiently large, for example larger than max{|xi1(0)−xi2(0)| :

for any i1, i2 ∈ [n]}, the consensus time will no longer decrease as one would expect from

the system dynamics (2) and (3).

δ(t) t−1 0 0.01 0.05 0.1 0.5 1 2 3

t∗(0.01) 255.51 259.42 257.28 223.35 189.56 105.52 68.06 66.58 66.58

Table 1: Consensus time t∗(0.01) for the system (2) with different δ(t) and all the other

parameters the same as those in Fig. 3(a).
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4 Proof of Theorem 1

In this section, we will prove Theorem 1 in two steps: in Step I we additionally assume

limt→∞ δ(t) = 0, and then in Step II we lift this condition.

4.1 Step I

Let r := maxi∈[n] ri and r := mini∈[n] ri. Define ρ(x(t)) = max{maxi∈[n] xi(t), r} and

ρ(x(t)) = min{mini∈[n] xi(t), r}. They are locally Lipschitz continuous functions. More-

over, define the gap ∆(x(t)) := ρ(x(t)) − ρ(x(t)) ≥ 0. Recall that the Dini derivative of a

continuous function h(t) is defined as d+h(t) := lim supε→0+ ε−1(h(t+ ε)−h(t)) [49]. The

gap ∆(x(t)) is non-increasing for any t ≥ 0, as stated in the following lemma.

Lemma 2. For t ≥ 0, we have d+∆(x(t)) ≤ 0.

Proof. Note that the intersection of comfortable ranges is ∩n
i=1Ri = [r, r]. For any t ≥ 0,

if ρ(x(t)) > r, then maxi∈[n] xi(t) > r in the interval [t, t + ε) for some ε > 0. Denote by

K(t) := {k ∈ [n] : xk(t) = maxi∈[n] xi(t)}. We have

d+ρ(x(t)) = d+ max
i∈[n]

xi(t) = max
k∈K(t)

ẋk(t)

= max
k∈K(t)

− ∑
J∈Nk

akJ

(
xk(t) − fJ(ϕJ(xJ(t)))

) , (4)

where we have taken the Dini derivative along the system (2) and applied the basic Dini

derivative property [49,50]. For any k0 ∈ K(t), we have xi(t) ≤ xk0(t) for each i ∈ [n]. We

know for each i ∈ [n], ri ≤ r < r ≤ ri. Consequently, when xi(t) > r, ϕi(xi(t)) ≤ xi(t);

when xi(t) ≤ r, ϕi(xi(t)) ≤ r. Therefore, for each pi ∈ Ñk, ϕi(xi(t)) ≤ max{xi(t), r} ≤
xk0(t). According to our model definition (2) and (3), fJ(ϕJ(xJ(t))) ≤ xk0(t). It then

follows from (4) that d+ρ(x(t)) ≤ 0 under the assumption ρ(x(t)) > r.

Note that ρ(x(t)) ≥ r for any t ≥ 0. If ρ(x(t′)) = r for some t′, then d+ρ(x(t′)) = 0,

and hence for any t ≥ t′ we have ρ(x(t)) = r. This indicates that ρ(x(t)) is non-decreasing

for all t ≥ 0. Similar arguments can be applied to ρ(x(t)) and we obtain d+ρ(x(t)) ≥ 0

for all t ≥ 0. This means that ρ(x(t)) is non-increasing for t ≥ 0. Therefore, we have

d+∆(x(t)) ≤ 0 and the proof is complete. 2

If we rewrite the system (2) using the vector field form ẋ(t) = F (x(t)), then the Dini

derivative along the vector field is equivalent to the Dini derivative along the trajectory

of the solution [51]. Namely, if x(t̃) = x̃ at time t̃ > 0, then

d+∆(x)|x=x̃ := lim sup
ε→0+

ε−1(∆(x + εF (x)) − ∆(x))|x=x̃ = d+∆(x(t))|t=t̃.

Define S := {x ∈ Rn : d+∆(x) = 0}.
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Lemma 3. If the Petri net (P, T, F ) admits the minimal siphon P , S ⊆ [r, r]n.

Proof. We prove this result by assuming the opposite and deriving contradiction. Suppose

there is a vector x′ = (x′
1, x

′
2, · · · , x′

n) ∈ S and x′ 6∈ [r, r]n. Without loss of generality, we

take x′
i := maxk∈[n] x

′
k and x′

i > r. (The other case x′
i := mink∈[n] x

′
k and x′

i < r can be

shown likewise.)

Consider the solution of system (2) with x(0) = x′. Denote by K := {k ∈ [n] : x′
k =

x′
i} 6= ∅. Recall that (P, T, F ) admits the minimal siphon P . For any i ∈ [n] and any

j ∈ [ji], if we remove all other nodes in Jij (apart from pj0), |Jij | − 1 arcs are deleted

from the Petri net. The resulting directed hypergraph is a state machine. Clearly, P

is still the minimal siphon of it. By Lemma 1, its commensurate graph G is strongly

connected. The system (2) over G is a standard average system [5]. The value of any

node in K will be pulled downwards by other nodes in P\K who have value less than x′
i,

or by r even if P\K = ∅. Accordingly, there is time t′ > 0 such that xk(t′) < x′
i for any

k ∈ [n]. This implies ρ(x(t′)) < ρ(x(0)) and hence ∆(x(t′)) < ∆(x(0)). It contradicts with

x(0) = x′ ∈ S (recall the definition of S). The proof is complete. 2

Signify by Λ+(x(0)) the positive limit set of the system (2). The LaSalle’s invariance

principle tells us that Λ+(x(0)) ⊆ S for any x(0) ∈ Rn. If follows from Lemma 3 that

Λ+(x(0)) ⊆ [r, r]n. Hence, x(t) ∈ [r, r]n for any sufficiently large t. The next two results

show that the gap between any two agents is vanishing.

Lemma 4. Consider the following system defined over a directed n-node graph G =

(V,E,A) containing a spanning tree:

ẋi(t) =
∑

j:(j,i)∈E

aij(xj(t) − xi(t)) + yi(t), i ∈ V, t ≥ 0,

where V = [n], A = (aij) ∈ Rn×n is the adjacency matrix with aij > 0 if (j, i) ∈ E, and the

function yi(t) is continuous except a set of measure zero. Denote by y = (y1, y2, · · · , yn),

and ‖y(t)‖[0,∞) := maxi∈V supt≥0 |yi(t)|. Then for any α > 0, there is ε > 0 satisfying the

following: If ‖y(t)‖[0,∞) ≤ ε, then

lim sup
t→∞

max
i1,i2∈V

|xi1(t) − xi2(t)| ≤ α

holds for any x(0) ∈ Rn.

Proof. This is a special case of Theorem 4.1 in [52]. 2

Lemma 5. limt→∞ xi1(t) − xi2(t) = 0 for any i1, i2 ∈ [n] and x(0) ∈ Rn.

Proof. It follows from (3) and Lemma 3 that there exists t′ > 0 such that along the

solution of the system (2), we have

|xj0(t) − fJij

(
ϕJij (xJij (t))

)
| ≤ δ(t) (5)
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for all t ≥ t′, i ∈ [n], and j ∈ [ji]. The system (2) can be rewritten as

ẋi(t) = −
∑

Jij∈Ni

aiJij

(
xi(t) − xj0(t)

)
+ yi(t), (6)

where

yi(t) =
∑

Jij∈Ni

aiJij

(
fJij (ϕJij (xJij (t))) − xj0(t)

)
.

By (5) and limt→∞ δ(t) = 0, we know that for any ε > 0 there exists t′ > 0 such that

‖y(t)‖[t′,∞) ≤ ε, where y(t) = (y1(t), y2(t), · · · , yn(t)).

Arguing similarly as in the proof of Lemma 3, we know that the commensurate graph

G of the resulting state machine is strongly connected. We take a sequence αk = k−1 for

integer k ≥ 1. It follows from Lemma 4 that for each k, there exists εk > 0 such that

when ‖y(t)‖[t′,∞) ≤ εk for some t′ > 0, we have

lim sup
t→∞

max
i1,i2∈[n]

|xi1(t) − xi2(t)| ≤ αk (7)

for any x(0) ∈ Rn. Utilizing the comment in the previous paragraph, we obtain limt→∞ xi1(t)−
xi2(t) = 0 for any i1, i2 ∈ [n] as desired. 2

We are now in a position to prove Theorem 1.

Proof of Theorem 1 (Step I). In the light of the comments below Lemma 3, any limit

point of xi(t) must lie in the range [r, r] for all i ∈ [n]. Fix an arbitrary i and take a limit

point, say c. Then c ∈ [r, r]. If r = r, the theorem holds immediately. We only need to

consider the case of r < r. It follows from (7) and the proof of Lemma 5, for any ε > 0,

there exists t′ > 0 such that |xi(t′) − c| ≤ ε holds for all i ∈ [n]. We consider the location

of c in three situations.

If r < c < r, then we choose a small ε > 0 satisfying r < c − ε ≤ xi(t′) ≤ c + ε < r

for all i ∈ [n]. By definition xi(t) = ϕi(xi(t)) for each i. Therefore, the system (2) can be

simplified as

ẋi(t) =
∑
J∈Ni

aiJ

(
fJ(xJ(t)) − xi(t)

)
,

whose solution converges to the solution of

ẋi(t) =
∑

j0∈Jij
j∈[ji]

aij0(xj0(t) − xi(t))

by invoking the Gronwall’s inequality; cf. [53, Thm. 2.1]. The latter is a standard con-

sensus system over strongly connected graph. Hence, we have limt→∞ xi(t) = c for all

i ∈ [n].

If c = r, we choose a small ε > 0 satisfying r < c − ε ≤ xi(t′) ≤ c + ε, which im-

plies r < xi(t′) ≤ c + ε for all i ∈ [n]. Arguing similarly as in Lemma 2 by setting
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ρ′(x(t)) = max{maxi∈[n] xi(t), r}, we can show ρ′(x(t)) is non-increasing and bounded

from below. Hence, limt→∞ ρ′(x(t)) = b for some b. Letting ε → 0, we obtain b = c and

limt→∞ maxi∈[n] xi(t) = c. By (7) and the proof of Lemma 5, we have limt→∞ mini∈[n] xi(t) =

c. Combining these estimates, we arrive at limt→∞ xi(t) = c for any i ∈ [n].

The case of c = r can be shown similarly. The proof of Stage I is complete. 2

4.2 Step II

For a general confidence bound δ(t), it is critical to observe that the change of δ(t) essen-

tially gives rise to the change of the underlying communication hypergraph structure in

(P, T, F ) in view of (2) and (3). As shown in the Step I, the extreme case of δ = 0 corre-

sponds to an underlying strongly connected directed graph reducing from | InT({t})| ≥ 1

to | InT({t})| = 1 for all t ∈ T (by removing all but one arcs in F2 for each transition

t ∈ T ). For a larger δ, the communication structure alters between the strongly connected

directed graph and the full structure of (P, T, F ).

Starting from a sufficiently large δ, where all arcs in (P, T, F ) are present, some arcs

in InT({t}) will be removed for some transitions t as δ decreases. Since P is the minimal

siphon of (P, T, F ), any such removal yields a Petri net (P, T, F ′) with P as its minimal

siphon. Noting that (i) the proof of Step I does not relies on the specific choice of j0 and

(ii) mink∈J xk ≤ gJ(xJ) ≤ maxk∈J xk, we know that the system (2) is equivalent to the

following system

ẋi(t) =
∑
j∈Ni

aij

(
ϕj(xj(t)) − xi(t)

)
,

over a strongly connected directed graph G corresponding to the above adjacency matrix

structure specified by (aij) ∈ Rn×n. Following the same line of Step I, we can similarly

establish Lemmas 2-5 by replacing j0 with j. Then Theorem 1 can be shown likewise

following the proof of Theorem 1 (Step I).

5 Conclusion

Interaction in many real networks is better characterized as a directed hypergraph, which

is a natural generalization of graphs by allowing possible neighbor-dependent synergy. In

this work we showed that consensus can be reached in directed hypergraphs featuring

social observer effect as well as confidence bounds among neighbors. To do this we in-

troduced a Petri net triad (P, T, F ) and established a sufficient and necessary condition

for the commensurate graph of a state machine to be strongly connected. We showed

that when the network has the minimal siphon P , global consensus is guaranteed as long

as there is a common non-empty comfortable range for all agents. The final consensus
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will lie in this common range and the result holds for all non-negative confidence bounds.

This deviates from traditional bounded confidence opinion models as we measure the dif-

ference among neighbors rather than the gap between neighbors and the ego. Numerical

simulations unraveled some interesting insights in relation to the influence of model pa-

rameters on opinion evolution. Although our methods are applied here to investigate the

social opinion dynamics, the theory can be similarly extended to study other networked

dynamical processes, to yield better understanding of their system behaviors.
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