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Abstract

A two-dimensional system of differential equations with delay modelling the glucose-

insulin interaction processes in the human body is considered. Sufficient conditions

are derived for the unique positive equilibrium in the system to be globally asymp-

totically stable. They are given in terms of the global attractivity of the fixed point

in a limiting interval map. The existence of slowly oscillating periodic solutions is

shown in the case when the equilibrium is unstable. The mathematical results are

supported by extensive numerical simulations. It is deduced that typical behaviour

in the system is the convergence to either a stable periodic solution or to the unique

stable equilibrium. The coexistence of several periodic solutions together with the

stable equilibrium is demonstrated as a possibility.

Keywords: delay differential equations, linearization, stability analysis, limiting inter-
val maps, global asymptotic stability, existence of periodic solutions, diabetes.

1 Introduction

This paper deals with further qualitative and numerical analyses of the Sturis-Bennett-
Gourley model of the glucose-insulin interaction in the human body. The model was
proposed in [4] as a simple two-dimensional system of nonlinear differential equations
with one delay. It can also be viewed as an abbreviated simplified version of a more
complex differential model with two delays [28, 29].

Only a limited number of parameters of the physiologically closed glucose-insulin inter-
action system are accessible for direct measurements. Therefore, mathematical modelling
is required to facilitate the estimation of the narrow physiological range of the glucose-
insulin system components [35]. The physiological time delay plays an important part in
the regulation and the feedback of the system and determines the important properties
of the mathematical description of the model.
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The glucose-insulin regulatory system is a key component in the metabolism of the
human body. The pancreas and the liver regulate the production of insulin and glucose
respectively in order to maintain normal level of the blood glucose. Failure to do this
can result in high blood sugar and diabetes which is related to many other long term
health problems. Within this regulation, both rapid (period ∼ 6−15 mins) and ultradian
(period ∼ 80−180 mins) oscillations of insulin have been observed [38], along with glucose
oscillations (period ∼ 80−150 mins) [39]. The ultradian oscillations were first discovered
by Hansen [16] and observed during fasting, meal ingestion, continuous enteral nutrition
and constant glucose infusion.

Due to the monotone nature of the nonlinearities involved in the two-dimensional
system it is a natural conjecture that some degree of the simplicity in the dynamical
behaviour of the solutions should be observed in the model. Such simpler dynamics
would be consistent with known behaviours in scalar differential delay equations with
monotone nonlinear feedback [33, 34, 42]. In fact, some of the known theoretical results
can be extended to the Sturis-Bennett-Gourley model (see further details in the next
section Preliminaries).

The primary objective of this paper is to derive conditions for the global asymptotic
stability in the model as well as conditions for the existence of nontrivial periodic solu-
tions. We apply and further develop some of our earlier approaches and results to study
differential delay equations and systems via underlying finite-dimensional discrete maps
[8, 14, 22, 23]. In our analyses in this paper we also use prior related results, in partic-
ular those obtained in [4, 5, 6, 32, 33, 34]. The differential delay model we consider was
introduced and studied in paper [4]. We further investigate its properties and interpret
some of them from an alternative prospective via a limiting interval map. The principal
result of paper [33], an extension of the Poincaré-Bendixson Theorem [37, 3, 9] to delay
differential equations, can be applied to the Sturis-Bennett-Gourley system as well. As
a result one can conclude that its every solution converges to either the unique equilib-
rium or to a periodic solution. In this paper, we demonstrate various possibilities of such
eventual dynamics through several numerical examples.

The approach we propose to analyse the system is through a limiting one-dimensional
map, which is formally obtained from the original differential delay system when the delay
goes to infinity. The resulting interval map is relatively simple: it is given by a monotone
decreasing function and can only have a unique fixed point and cycles of period two (which
can be either attracting, or repelling, or a combination of the two possibilities).

The dynamics of the limiting interval map largely determine the dynamics of our two-
dimensional differential delay system. When the only fixed point of the interval map
is globally attracting then the corresponding unique steady state of the delay system
is also globally asymptotically stable (for arbitrary delay τ > 0). However, when the
only fixed point of the interval map is repelling the dynamics in the differential delay
system are varied and dependent on the size of delay τ . When the delay is small enough,
0 6 τ < τ0 for some τ0 > 0, the unique equilibrium of the differential delay system is
locally asymptotically stable. Note that only the local stability of the equilibrium can
be claimed, as examples are possible that the delay system has stable periodic solutions
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away from the stable constant equilibrium (see an example in Section 4). When the delay
becomes large enough, τ > τ1 for some τ1 > 0, then the differential delay system has a
slowly oscillating periodic solution. In this case the corresponding characteristic equation
of the linearised system about the steady state has a leading pair of complex conjugate
solutions α0 ± β0i with the positive real part α0 > 0 and the imaginary part within the
interval β0 ∈ (0, π/τ). This leading eigenvalue makes the slow oscillation in the system
typical, in agreement with known results for the case of similar scalar differential delay
equations [34, 42].

It is important to note that from the mathematical point of view there is no unique-
ness in the model for stable periodic solutions or for the stable equilibrium. We construct
explicit examples of our two-dimensional differential delay system when the coexistence
of two stable periodic solutions is observed (Section 4). We also demonstrate the possi-
bility when a stable periodic solution coexists together with the locally stable equilibrium
(Section 4). The examples are easily generalised to the case when any finite number of
stable periodic solutions can coexist with or without the locally attracting equilibrium.
This multi-stability phenomenon implies the utmost importance of the proper choices of
the nonlinearities when the differential delay system is suggested as an actual model of a
particular applied problem. For some of such known and available in the literature mod-
els we numerically observe the uniqueness of the stable periodic solution and its global
attractivity within the admissible set of initial conditions.

The novelty of our approach is that we derive a simple one-dimensional dynamical
system (interval map) and use it to determine the global dynamical properties of our
infinite-dimensional dynamical system with delay. The typical dynamical behaviours in
our model are also simple - it is the convergence to either a stable periodic solution or to
the unique stable equilibrium, or a combination of such behaviours.

The paper is organised as follows. Section 2 describes the foundations of the math-
ematical problem. It includes references to and a brief review of existing closely related
results obtained by others. In Section 3, we derive the main analytical results, which are
then numerically confirmed in Section 4. A concluding summary and a brief discussion
are given in Section 5.

2 Preliminaries

2.1 Differential Delay Model and Assumptions

Consider the system of differential equations with delay [4],

I ′(t) = f1(G(t))−
1

τ0
I(t) (1)

G′(t) = Gin − f2(G(t)))− qG(t)f4(I(t)) + f5(I(t− τ)),

where I and G represent the relative concentrations of insulin and glucose, respectively,
1/τ0 is the insulin degradation rate, Gin is the external glucose input. The function f1

3



corresponds to pancreatic insulin production, dependent on glucose concentration, and f2
is the glucose consumption by the brain. The third term in the second equation represents
the insulin-dependent glucose utilisation in the muscles, while the last term, f5, represents
the hepatic glucose production. τ is the time delay between plasma insulin production
and its effect on hepatic glucose production.

The system is considered under the following assumptions:

(H1) Functions f1(u), f2(u), f4(u), f5(u) are non-negative and continuously differentiable
for u > 0, with f3 defined as f3(u) = qu for convenience. Real parameters τ0, Gin, q, τ
are all positive;

(H2) f1(u) > 0, f ′

1(u) > 0, ∀u > 0, f1(0) = a0 > 0 and limu→∞ f1(u) = a > 0;

(H3) f2(u) > 0, f ′

2(u) > 0, ∀u > 0, f2(0) = 0 and limu→∞ f2(u) = b > 0;

(H4) f4(u) > 0, f ′

4(u) > 0, ∀u > 0, f4(0) = d > 0 and limu→∞ f4(u) = e > 0;

(H5) f5(u) > 0, f ′

5(u) < 0, ∀u > 0, f5(0) = h > 0 and limu→∞ f5(u) = 0.

The assumptions (H1)-(H5) are derived from and justified by the physiological mechanisms
of the glucose-insulin interaction in the human body, see e.g. papers [4, 5, 28, 29] for
additional details.

The phase space of system (1) is defined as X = C([−τ, 0],R+)×R+ where R+ := {x ∈
R|x > 0}. For arbitrary initial function ψ = (ϕ(s), u) ∈ X the corresponding solution
x = x(t, ψ) = (I(t), G(t)) to system (1) can be constructed by the standard step methods
[2, 11, 15]. We assume that such solutions exist for an arbitrary initial function ψ ∈ X

and all t > 0 (which is the case under the assumptions that nonlinearities f1, f2, f4 are
continuously differentiable).

It is an easy observation that positive initial data for system (1) result in solutions that
are positive for all t > 0. More precisely, if the initial function ψ = (ϕ(s), u), s ∈ [−τ, 0], is
such that u > 0, ϕ(s) > 0 ∀s ∈ [−τ, 0] and ϕ(0) > 0 then I(t) > 0 and G(t) > 0 holds for
all t > 0 (see further details and proof in [4]). It can also be shown that both components
I and G of all solutions to system (1) are bounded from above and bounded away from
zero. Moreover, a stronger property called the persistence can be established here. It says
that positive constants mI , mG and MI ,MG can be identified, independent of particular
initial data, such that for an arbitrary initial function ψ ∈ X and the corresponding
solution x(t, ψ) = (I(t), G(t)) to system (1) there exists a time moment T = T (ψ) such
that the following holds

0 < mI 6 I(t) 6MI <∞, 0 < mG 6 G(t) 6MG <∞, for all t > T. (2)

These and other basic properties of the solutions are proved in [4] as Propositions 2.1,
2.2, and 2.4. We will revisit them later in the paper from a different point of view.
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2.2 Linearization and Characteristic Equation

In this subsection we present well-known facts about the unique positive equilibrium of
system (1), the linearized system about the equilibrium, and the characteristic equation
of the linear system. More related details can be found in papers [4, 5] and [28].

Equilibria of differential delay system (1) are found by solving the nonlinear system

I = τ0f1(G), f2(G) + qGf4(I) = Gin + f5(I), (3)

which reduces to a single scalar equation forG: f2(G)+qGf4(τ0f1(G)) = Gin+f5(τ0f1(G)).
It is straightforward to see that the latter has a unique positive solution G∗ > 0, implying
that the original system (1) has a unique equilibrium (I∗, G∗) where I∗ = τ0f1(G∗) > 0.

The linearized system about the positive equilibrium (I∗, G∗) has the form

u′(t) = −
1

τ0
u(t) + f ′

1(G∗)v(t) (4)

v′(t) = −[f ′

2(G∗) + qf4(I∗)]v(t)− qG∗f
′

4(I∗)u(t) + f ′

5(I∗)u(t− τ).

Note that system (4) is also the linearization of the translated system (7) (derived in
subsection 2.4). The characteristic equation of the linear system (4) has the form

(λ+ µ1)(λ+ µ2) + b+ a exp{−τλ} = 0, (5)

where µ1 = 1/τ0, µ2 = f ′

2(G∗) + qf4(I∗), b = qG∗f
′

1(G∗)f
′

4(I∗), a = −f ′

1(G∗)f
′

5(I∗). Since
f ′

1(G∗) > 0, f ′

2(G∗) > 0, f ′

4(I∗) > 0 and f ′

5(I∗) < 0 then µ1 > 0, µ2 > 0, b > 0, a > 0.
The form (5) of the characteristic equation allows us to use known facts about its prop-

erties derived elsewhere, see e.g. [1, 8, 28]. The stability/instability of the zero solution
of system (4) is determined by the location of the solutions of the characteristic equation
(5) in the complex plane. If all solutions of the characteristic equation have negative real
parts (or are negative themselves) then the zero solution of (4) is asymptotically stable.
If the characteristic equation (5) has a complex conjugate solution λ = α + iβ with the
positive real part α > 0 then the zero solution of (4) is unstable. In the latter case there
exists the so-called leading pair of complex conjugate solutions λ = α0 ± iβ0 of the char-
acteristic equation (5), where 0 < β0 < π/τ and α0 > 0. The leading means that α0 > 0
is the largest real part among all solutions of (5). All other complex conjugate solutions
λ = αk ± iβk, k ∈ N, of (5) satisfy α0 > α1 > α2 > . . . and βk ∈ [2kπ/τ, (2k+1)π/τ ]. See
Lemma 1 of [1] and Lemma 3 of [8] for more details and proofs.

The described above stability or instability of the zero solution of the linear system (4)
in terms of the eigenvalues of the characteristic equation (5) carry over to the nonlinear
system (1). The constant solution (I∗, G∗) of the latter has the same type of stability as
(0, 0) of the linear system provided all the nonlinearities f1, f2, f4, f5 are C1-smooth in a
neighborhood of (I∗, G∗) (see [17], Chapter 9, for further details and proof).

One of the main questions of interest in this paper is about the typical behaviour of
solutions in system (1). In view of the strong monotonicity properties of the nonlinearities
f1, f2, f4 and f5 some of the previously obtained results are applicable and can be used
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in our analysis. The main result of paper [33], Theorem 2.1, implies that for every initial
function ψ ∈ X the corresponding solution x(t, ψ) converges as t→ ∞ either to a periodic
solution or to the unique equilibrium (I∗, G∗) of system (1). The follow-up question is
which of these possible behaviours are typical, and which ones can be observed in numeri-
cal simulations. It turns out that both stable periodic solutions or a stable equilibrium or
a simultaneous coexistence of both are typical (as shown numerically in section 4). It is
also evident that there exist unstable periodic solutions (e.g. those separating neighboring
stable periodic solutions; they usually cannot be observed numerically).

Oscillatory solutions in differential delay systems are typical in general. It is a known
fact that all solutions to system (7) oscillate when the characteristic equation (5) has
no real eigenvalues [8] (also see Proposition 3.10 of subsection 3.4). Due to the over-
all negative feedback the slow oscillation can be typical in system (1) (see the related
definition 3.9 in subsection 3.10). In particular, initial functions ψ = (ϕ, u) ∈ X with
ϕ(s)− I∗ > 0 ∀s ∈ [−τ, 0], u > 0 give rise to slowly oscillating solutions. This oscillation
is typical as small perturbations of such initial functions leave them within the same initial
set.

Another possibility for a typical behaviour is that solutions converge monotonically
to the equilibrium (I∗, G∗) as t → ∞. This is the case when the characteristic equation
(5) has real eigenvalues (which are then necessarily negative). Such a case implies the
existence of the exponential decaying solutions to the linear equation (4), and also the
existence of solutions close to the exponential ones for the nonlinear system (1).

The results of papers [31, 34, 42] for scalar equations suggest that typical behaviour of
the oscillating solutions in system (1) is the eventual slow oscillation. That is, for almost
all initial functions ψ ∈ X the corresponding solution x(t, ψ) is slowly oscillating for
t > T for some T (ψ) > 0. This means that if an initial function ψ0 = (ϕ0, u0) ∈ X is such
that the solution x(t, ψ0) is not slowly oscillating for t > 0 then its every neighborhood
U(ψ0) contains an initial function ψ1 ∈ U1 such that the corresponding solution x(t, ψ1)
is eventually slowly oscillating.

Note that the problem of typical behaviour in a differential delay system is a very
challenging one in general (many aspects of this problem remain unsolved even for the
scalar case of a simple single equation; the basic paper [34] on the issue exists in a preprint
form only). Therefore, we are in a position in this paper to only numerically verify the
assumed theoretical results about the typical behaviours. The rigorous mathematical
proofs will hopefully be accomplished at a later time.

2.3 Related Interval Maps

In this subsection we recall some basic notions and definitions on interval maps related
to the needs of this paper. Comprehensive expositions on the theory of one-dimensional
maps can be found e.g. in monographs [10, 40].

Given a continuous map F : L → L of a closed interval L ⊆ R into itself a forward
trajectory through an initial point x0 ∈ L is defined as the set {F n(x0), n ∈ N0} where
F n = F ◦ F ◦ · · · ◦ F is the nth iteration of F (F 0(x) := x; N0 := N ∪ {0}). A set J ⊂ L
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will be called invariant under F if F (J) ⊆ J . Note that a proper inclusion is allowed
under this definition.

Definition 2.1. (i) A fixed point x = x∗ of a continuous map F of an interval L ⊆ R

into itself is called attracting if there exists an open interval J ⊆ L such that x∗ ∈ J ,
f(J) ⊆ J , and for every point x ∈ J one has that limn→∞ F n(x) = x∗ holds.
(ii) The largest connected interval J ⊆ L with this property is called the domain of im-
mediate attraction of the fixed point x∗. (iii) A point x0 is called periodic with period
m if Fm(x0) = x0 and F k(x0) 6= x0 for every 1 6 k 6 m − 1. The corresponding set
{x0, x1, . . . , xm−1} := Cm is called a cycle of period m.

Clearly that every point of the cycle xk ∈ Cm is periodic of period m for the map F ;
it is also a fixed point for the map Fm.

The following statement is a well-known simple fact in the theory of interval maps.
Its proof easily follows from related facts of Section 2.4 in [40].

Proposition 2.2. For an arbitrary point x ∈ J in the domain of immediate attraction
of the fixed point x∗ there always exists a closed finite interval L0 = L0(x) ⊂ J such that
x ∈ L0, F (L0) ⊆ L0, and ∩n>0F

n(L0) = x∗.

Definition 2.3. Let x∗ be an attracting fixed point of a continuous map F . An infinite
set of intervals {Ln, n ∈ N0} will be called a squeezing sequence of imbedded intervals if
the following holds:

Lk+1 ⊆ Lk, F (Lk) ⊆ Lk+1, and ∩k>0 Lk = x∗.

It is evident that the sequence of intervals Lk = F k(L0), n ∈ N0, in Proposition 2.2
is a squeezing imbedded sequence. Given an initial point x0 in the domain of immediate
attracting it is also clear that a squeezing imbedded sequence of intervals containing its
iterations always exists but is not uniquely defined in general.

2.4 Translation to Zero Equilibrium

It was demonstrated in [4, 5] that under the assumptions (H1)-(H5) the system (1) has
unique equilibrium (I∗, G∗), I∗ > 0, G∗ > 0, where I∗ = τ0f1(G∗) and G∗ is a unique
positive solution of the nonlinear equation f2(G) + qGf4(τ0f1(G)) = Gin + f5(τ0f1(G)).
As a matter of convenience, for various theoretical considerations and computational tasks
of this paper it is advantageous to have this equilibrium shifted to the zero equilibrium
state (I∗, G∗) = (0, 0). One of the reasons for this need is that the equilibrium (I∗, G∗)
depends on all the parameters and functions involved in system (1). Such shift is achieved
by the change of the dependent variables by

x(t) = I(t)− I∗, y(t) = G(t)−G∗. (6)
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System (1) is then transformed into the following one:

x′(t) = F1(y(t))−
1

τ0
x(t) (7)

y′(t) = −F2(y(t))− q f4(I∗ + x(t)) y(t)− q G∗ F4(x(t)) + F5(x(t− τ)),

where F1(y) = f1(y + G∗) − f1(G∗), F2(y) = f2(y + G∗) − f2(G∗), F4(x) = f4(x + I∗) −
f4(I∗), F5(x) = f5(x + I∗) − f5(I∗). Functions F1, F2, F4 are strictly monotone increasing
and satisfying the positive feedback condition y ·Fi(y) > 0 for y 6= 0, i = 1, 2, 4. Function
F5(x) is strictly decreasing and satisfying the negative feedback assumption x · F5(x) < 0
for x 6= 0. System (7) has the unique zero equilibrium (x, y) = (0, 0).

We will perform most of our numerical simulations for systems of type (7). By using
appropriate inverse transformations such systems can always be represented in the form
of the original system (1).

3 Main Results

3.1 Limiting Interval Map

In this sub-section we derive a limiting interval map for the differential delay system (1)
as τ → ∞. First we transform system (1) to one with the normalised delay τ = 1 by
rescaling the independent variable by t = τ · s. It is a straightforward calculation then
that reduces system (1) to the following form

1

τ
I ′(s) = f1(G(s))−

1

τ0
I(s) (8)

1

τ
G′(s) = Gin − f2(G(s))− qG(s)f4(I(s)) + f5(I(s− 1)).

By taking the limit as τ → ∞ the latter becomes a system of functional difference
equations:

I(s) = τ0 f1(G(s)), f2(G(s)) + qG(s)f4(I(s)) = Gin + f5(I(s− 1)), (9)

which in turn is further reduced to a single scalar difference equation for the variable G:

f2(G(s)) + qG(s)f4(τ0f1(G(s))) = Gin + f5(τ0f1(G(s− 1))). (10)

It is easy to see, based on the assumptions (H1)-(H5), that the function F in the left hand
side of equation (10), F (G) := f2(G) + qG f4(τ0f1(G)), satisfies:

F (0) = 0, F ′(G) > 0, ∀G > 0, and lim
G→∞

F (G) = ∞. (11)

Likewise, the functionH in the right hand side of equation (10),H(G) := Gin+f5(τ0f1(G)),
satisfies:

H(0) = H0 > 0, H ′(G) < 0, ∀G > 0, and lim
G→∞

H(G) = H∞ > 0. (12)
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Therefore, the inverse function F−1 exists, and equation (10) can be explicitly solved for
G(s) as follows:

G(s) = F−1(H(G(s− 1))) =: Φ(G(s− 1)), (13)

where the composite function Φ = F−1◦H is defined and continuous on R+ = {G|G > 0}.
Besides, due to assumptions (H1)− (H5), function Φ(·) is continuously differentiable on
R+ with

Φ′(u) < 0 ∀u ∈ R+ and lim
u→0

Φ(u) = Φ0 > 0, lim
u→∞

Φ(u) = Φ∞ > 0. (14)

The values Φ0,Φ∞ are easily calculated as:

Φ0 = F−1(Gin + f5(τ0a0)), Φ∞ = F−1(Gin + f5(τ0a)). (15)

The asymptotic properties of solutions of equation (13) are completely determined by the
dynamical properties of the iterations of the interval map Φ. A comprehensive theory of
such equations is given in the monograph [41]. All relevant properties on interval maps
can be found in monographs [10, 40].

A convenient look at system (9) and equation (13) is via difference equation notations.
By denoting G(t) := Gn, I(t) := In, I(t− 1) := In−1, n ∈ N system (9) is rewritten as

f2(Gn) + q Gn f4(In) = Gin + f5(In−1), In = τ0f1(Gn).

The difference equation (13) is represented then as Gn = Φ(Gn−1), n ∈ N.

3.2 Principal Results

Based on property (14) we can build a sequence of imbedded intervals for map Φ as follows.
Set L0 := R+ and L1 := Φ(L0) = Φ(R) = [Φ∞,Φ0] ⊂ L0. Proceed then recursively as
L2 = Φ(L1) ⊂ L1, . . . , Ln+1 = Φ(Ln) ⊂ Ln, n ∈ N0. Define the limiting set L∗ by
L∗ := ∩n>0 Ln := [α∗, β∗].

The set L∗ is either a single point or a closed interval with a non-empty interior. In
the first case one has that α∗ = β∗ = G∗. In the second case the endpoints {α∗, β∗} form
a cycle of period two: α∗ = Φ(β∗), β∗ = Φ(α∗),Φ(L∗) = L∗, G∗ ∈ int (L∗).

The sequence {Ln} of imbedded interval for the component G generates the sequence
of imbedded intervals {Jn} for the component I through the first difference equation of
system (9) by Jn := τ0f1(Ln), n ∈ N0.

We shall formally distinguish the following subcases for the set L∗ and its structure:

(A1) The set L∗ is a single point G∗. It is the only fixed point of the interval map Φ
which is then globally attracting on R+: for every initial point G0 ∈ R+ one has
limn→∞Φn(G0) = G∗;

(A2) The set L∗ is a closed non-empty interval [α∗, β∗], α∗ 6= β∗,. Then Φ(L∗) = L∗,
and {α∗, β∗} is a cycle of period two, α∗ = Φ(β∗), β∗ = Φ(α∗), with G∗ ∈ int (L∗).
Assume also that the two-cycle is globally attracting: for every initial point G0 ∈
R+, G0 6= G∗, its forward iterations converge to the cycle: Φn(G0) −→ {α∗, β∗} as
n→ ∞. In addition, it is assumed that the generic condition Φ′(G∗) < −1 holds;
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(A3) The set L∗ is an interval formed by a cycle {α∗, β∗} of period two which is locally
attracting only. In addition, it is assumed that the condition Φ′(G∗) < −1 holds;

(A4) The set L∗ is an interval formed by a cycle {α∗, β∗} of period two. In addition, the
fixed point G∗ is locally attracting: there exists an interval (γ∗, δ∗) such that for
every initial point G0 ∈ (γ∗, δ∗) one has limn→∞Φn(G0) = G∗;

Below we state the principal results of this paper which are essentially dependent and
built based on the structure of the limiting sets of the map Φ as described above by
properties (A1)− (A4).

Theorem 3.1. Suppose that in addition to (H1)− (H5) assumption (A1) holds. Then for
every delay τ > 0 the unique equilibrium (I∗, G∗) of system (1) is globally asymptotically
stable: for an arbitrary initial data ψ = (ϕ, u) ∈ X the corresponding solution (I(t), G(t))
satisfies: limt→∞G(t) = G∗, limt→∞ I(t) = I∗.

Theorem 3.1 is a strong delay independent result about the global asymptotic stability
of the unique equilibrium (I∗, G∗) of system (1) with infinite-dimensional phase space
based on the global attractivity of the corresponding fixed point in a simple limiting
interval map defined by the real-valued function Φ. Theorem 3.1 is proved in subsection
3.3 (as Theorem 3.8).

Note that a closely related result to Theorem 3.1 is proved in paper [4] as Theorem 3.2.
However, their approach and method of proof are different from what we use in present
paper. We reflect more on paper [4] in the Conclusion section.

Theorem 3.2. Suppose that in addition to (H1) − (H5) assumption (A2) holds. Then
there exists τ0 > 0 such that for every delay τ > τ0 system (1) has a slowly oscillating
periodic solution.

The slow oscillation of solutions here means that both components I(t) and G(t) are
slowly oscillating functions about their respective equilibrium values I∗ and G∗. Therefore,
I(t)−I∗ and G(t)−G∗ are slowly oscillating functions with their successive zeros separated
by a time span larger than the delay τ . For more complete definitions and statements see
details in Subsection 3.4.

Under assumption (A2) the cycle {α∗, β∗} is globally attracting on R+: for every initial
value G0 ∈ R+, G0 6= G∗, the sequence of its iterations Φ

n(G0) is attracted by the cycle as
n → ∞. This means that both sequences Φ2n(G0) and Φ2n+1(G0), n ∈ N0, are monotone
and converge to either α∗ or β∗ (depending on the location of G0 in relation to the fixed
point G∗). To show the existence of a slowly oscillating periodic solution to system (1) we
use the standard and well developed techniques of the ejective fixed point theory [11, 15].
To that end the main points we have to show holding true for system (1) are:

(i) Construction of a cone of initial data for system (1) and a non-linear map which
maps the cone into itself. The map usually is an appropriately defined shift operator
along the solutions;

10



(ii) Existence of a leading eigenvalue to the characteristic equation (5) with the largest
positive real part and the imaginary part within the range (0, π/τ);

(iii) The compactness of the shift operator along solutions of the system starting on the
cone.

The outline of the proof of the existence of periodic solutions is given in Subsection 3.4.
Note that in general the ejective fixed point techniques do not address the issue of the

uniqueness of the slowly oscillating periodic solution. The existence of periodic solutions
can only be proved; the periodic solutions can be non-unique in many cases. This is true
for all the classes of delay equations and systems to which they were applied, including our
system (1). However, the uniqueness of the globally attracting cycle {α∗, β∗} of period two
for the one dimensional map Φ seems to yield the uniqueness of a stable slowly oscillating
periodic solution to system (1). This fact can be verified numerically. We have done it for
two classes of the nonlinearities fi, i = 1, 2, 4, 5, used in applications: Hill type functions
[19] and exponential functions [29].

Theorem 3.3. Suppose that in addition to (H1) − (H5) assumption (A3) holds. Then
there exist multiple choices of the nonlinearities f1, f2, f4, f5 and of the parameter values
τ0, τ, q such that system (1) possesses at least two slowly oscillating periodic solutions.

The key assumption in (A3) is that the two-cycle is locally attracting only; therefore,
there exists another cycle of period two. Since Φ′(G∗) < −1 the fixed point G∗ is repelling.
Hence, there exists the minimal cycle of period two, {γ∗, δ∗}, such that the open interval
(γ∗, δ∗) ∋ G∗ is attracted to it. In addition, the inequalities α∗ < γ∗ < G∗ < δ∗ < β∗
hold. Both cycles {α∗, β∗} and {γ∗, δ∗} are at least one-sided attracting. The structure
of the map Φ on the set [α∗, γ∗] ∪ [δ∗, β∗] can be arbitrary; however, since Φ is monotone
decreasing, it can only contains additional cycles of period two.

The non-uniqueness of the two-cycle {α∗, β∗}, and the existence of the second two-cycle
{γ∗, δ∗}, seem to be an important factor for the existence of multiple periodic solutions
to system (1). We construct an example of system (1) when it has one slowly oscillating
periodic solution related to the smallest two-cycle {γ∗, δ∗} and the second slowly oscillating
periodic solution related to the largest two-cycle {α∗, β∗} (see an example in subsection
3.5). Such example can be easily generalized to produce any finite number of slowly
oscillating periodic solutions to system (1).

Theorem 3.4. Suppose that in addition to (H1) − (H5) assumption (A4) holds. Then
there exist multiple choices of the nonlinearities f1, f2, f4, f5 and of the parameter values
τ0, τ, q such that system (1) possesses both a slowly oscillating periodic solution and the
locally attracting equilibrium (I∗, G∗).

The principal difference between Theorem 3.4 and Theorem 3.3 is that the fixed point
G∗ is attracting for the map Φ in the latter (while it was repelling for the former).
Therefore, its minimal two-cycle {γ∗, δ∗} is one-sided repelling with the interval (γ∗, δ∗)
being the domain of immediate attraction of the fixed point G∗. This fact makes the
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equilibrium (G∗, I∗) locally attracting for the system (1). Outside the interval (γ∗, δ∗) the
structure of the map Φ can largely be preserved to be the same as in Theorem 3.3. This
would guarantee the existence of a slowly oscillating periodic solution associated with the
two-cycle {α∗, β∗}. As in the case of Theorem 3.3 the example can be easily generalized to
produce any finite number of periodic solutions, while (I∗, G∗) remains a locally attracting
equilibrium. The phenomenon described by Theorem 3.4 is demonstrated by an example
of numerical solution of the system (7) in Subsection 3.5.

3.3 Invariance, Persistence, and Global Asymptotic Stability

Suppose that map Φ has a closed finite interval L = [a, b] invariant in the general sense
Φ(L) ⊆ L ⊆ R+, and let interval J be defined by J = τ0f1(L) := [c, d]. Consider the
following subset XL of the phase space X:

XL = {ψ = (ϕ, u) ∈ X | u ∈ L, ϕ(s) ∈ J ∀s ∈ [−τ, 0]}.

It is easily seen, based of the properties of functions F−1 and H , that the map Φ
has an invariant interval L such that for an arbitrary initial value u0 ∈ R+ its first
iteration under Φ, u1 = Φ(u0) satisfies u1 ∈ L. Indeed, the interval L can be defined as
L = [F−1(H∞), F−1(H0)], where the finite interval [H0, H∞] is the image of the positive
semi-axis R+ under the map H . The values of H∞ and H0 are given as H0 = Gin +
f5(τ0a0)), H∞ = Gin + f5(τ0a). The corresponding interval J is then defined as J :=
τ0f1(L) = [τ0f1(F

−1(H∞)), τ0f1(F
−1(H0)])].

The following statement describes the fact that the solutions of system (1) with initial
functions in the set XL remain within this set for all forward times t > 0.

Lemma 3.5. (Invariance) Suppose that an initial function ψ = (ϕ(s), u0) is such that
φ ∈ XL, where L is a closed interval invariant under map Φ. Then the corresponding
solution x = x(t, ψ) = (I(t), G(t)) of system (1) satisfies x(t) ∈ XL for all t > 0.

Lemma 3.5 shows that when the initial data for system (1) is such that G(0) ∈ L and
I(s) ∈ J ∀s ∈ [−τ, 0], then the components G and I of the corresponding solution to
system (1) satisfy the inclusions:

G(t) ∈ L, I(t) ∈ J for all t > 0.

Proof. The proof of Lemma 3.5 can be done by induction in time t by using the cyclic
structure of system (1). We provide its outline below.

Suppose that the initial function ψ = (φ(s), u0) ∈ X for system (1) is given such that
φ(s) = I(s) ∈ J ∀s ∈ [−τ, 0] and G(0) = u0 ∈ L. Assume first that G(t) ∈ L ∀t ∈ [0, T ]
for some T > 0. Then also I(t) ∈ J ∀t ∈ [0, T ] is satisfied. Indeed, suppose t0 > 0 is the
first time moment of exit of the component I from the interval J . To be definite assume
first that I(t0) = c and I ′(t0) < 0 and I(t) < c ∀t ∈ (t0, t0 + ε) for some ε > 0. Then
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τ0f1(G(t0)) ∈ J = [c, d] since G(t0) ∈ L = [a, b]. Therefore, τ0I
′(t0) = −c + τ0f1(G(t0)) >

0, a contradiction with I ′(t0) < 0.
In the case when I(t0) = c and I ′(t0) = 0 there exists a sequence {tn} of t-values

such that tn ↓ t0 and I ′(tn) < 0, I(tn) < c. This would imply that the derivative
I ′(tn) = (1/τ0)[−I(tn) + τ0f1(G(tn))] > 0 is positive in a small right neighborhood of
t0, a contradiction with t0 being the first point of exit from interval J .

Given I(s) = φ(s) ∈ J, ∀s ∈ [−τ, 0] and G(0) = u0 ∈ L we shall show next that
G(t) ∈ L ∀t ∈ [0, τ ]. This is done in a way similar to the reasoning for the component I
above. Assume t0 ∈ [0, τ ] is the first point of exit of the component G from the interval
L. To be specific let G(t0) = b and G′(t0) > 0 holds. Using the monotone nature of
functions f2 and f4 one sees that f2(G(t0))+qG(t0)f4((I(t0))) 6 f2(b)+qbf4(b). Therefore,
G′(t0) 6 Gin + f5(I(t0 − τ)) − f2(b) − qbf4(b) 6 0, a contradiction with G′(t0) > 0. The
case when G(t0) = b, G′(t0) = 0 holds at the first point of exit from interval L is treated
similarly to the analogous case for I(t) by selecting a sequence tn ↓ t0 with G(tn) > b and
G′(tn) > 0.

The proof can now be completed by induction in t with a step τ . Since G(t) ∈ L ∀t ∈
[0, τ ] then also I(t) ∈ J ∀t ∈ [0, τ ]. These values of G and I are considered next as new
initial data for the same solution to derive the inclusions G(t) ∈ L, I(t) ∈ J, ∀t ∈ [τ, 2τ ],
and so on.

From the proof of Lemma 3.5 it is seen that for every initial data ψ = (φ(s), u0) ∈ X

there exists a time moment t = tψ such that the corresponding solution x = x(t, ψ) =
(I(t), G(t)) satisfies

I(t) ∈ J0 = τ0f1(R+) and G(t) ∈ L0 = Φ(R+). (16)

Indeed, if I(t0) ∈ J0 at some t0 > 0 then I(t) ∈ J0 ∀t > t0, due to reasons in the
first part of the proof of Lemma 3.5. Likewise, G(t) ∈ L0 ∀t > t0 if G(t0) ∈ L0 for
some t0 > 0. Therefore, one has to consider the possibility that I(t) 6∈ J0 ∀t > 0 and
G(t) 6∈ L0 ∀t > 0. To be specific assume that I(t) > sup J0 and G(t) > supL0 for all
t > 0 (other options are treated along the same line). Then the respective equations of
system (1) imply that I ′(t) 6 0 and G′(t) 6 0 for all t > 0. Therefore, the finite limits
limt→∞ I(t) = I∞, limt→∞G(t) = G∞ exist. By applying the limit to both equations of
(1) along these components of the solution one sees that (I∞, G∞) satisfies the equilibrium
equations:

f1(G∞) =
1

τ0
I∞, f2(G∞) + qG∞f4(I∞) = Gin + f5(I∞).

Therefore, (I∞, G∞) is the only equilibrium of system (1), so that I∞ = I∗ and G∞ = G∗.
This is a contradiction with the inequalities I∞ > sup J0 and G∞ > supL0, since I∗ and
G∗ belong to the interior of the intervals J0 and L0, respectively.

The reasoning above leads to the following

Proposition 3.6. (Uniform Persistence I) There are positive constants 0 < mI < MI

and 0 < mG < MG such that for every initial data ψ = (ϕ(s), u0) ∈ X there is a time
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moment t = t(ψ) > 0 such that the corresponding solution x = x(t, ψ) = (I(t), G(t)) of
system (1) satisfies

mI 6 I(t) 6MI and mG 6 G(t) 6 MG ∀t > tψ.

Indeed, as it is seen from the above reasoning the values of the constants can be chosen
as

mI := inf{τ0f1(R+)}, MI := sup{τ0f1(R+)}, mG := inf{Φ(R+)}, MG := sup{Φ(R+)}.

We can now apply an inductive argument to the chain of reasoning preceding Propo-
sition 3.6. Since I(t) ∈ J0 and G(t) ∈ L0 ∀t > t0 > 0 then I(t) ∈ J1 = τ0f1(J0) ⊆
τ0f1(R+) = τ0f1(L0) and G(t) ∈ L1 = Φ(L0) ∀t > t1 > t0. This is shown exactly the
same way as the inclusions (16). By the induction reasoning, there exists a sequence of
t-values, t0 6 t1 6 t2 6 . . . 6 tn 6 tn+1 6 . . . , such that

I(t) ∈ τ0f1(Ln) := Jn+1 and G(t) ∈ Ln+1 := Φ(Ln) ∀t > tn+1 > tn, n ∈ N0. (17)

The crucial role for the asymptotic behaviour of solutions x(t) = (I(t), G(t)) is now played
by the structure of the set L∗ = ∩n>0 Ln. Note that the imbedded sequence of intervals
L0 ⊇ L1 ⊇ L2 ⊇ · · · ⊇ Ln ⊇ Ln+1 ⊇ . . . , and the limiting set L∗ were constructed in
Subsection 3.2. The following two possibilities can only happen.

(I) The set L∗ = [α∗, β∗] is a closed interval with non-empty interior. Then points
α∗ < β∗ form a cycle of period two under the map Φ. It is the maximal cycle of period two
for the map Φ in the sense that any other cycle of period two belongs to the open interval
(α∗, β∗). Also, the cycle {α∗, β∗} is at least one-sided attracting (from above). The latter
means that for every initial value G0 ∈ (−∞, α∗) one has that Φ2n(G0) is an increasing
sequence with limn→∞Φ2n(G0) = α∗. Likewise, for every initial value G0 ∈ (β∗,∞) the
sequence Φ2n(G0) is decreasing with limn→∞Φ2n(G0) = β∗. Therefore, in this case, the
persistence property of Proposition 3.6 can be essentially improved. Denote the interval
τ0f1([α∗, β∗]) = [c∗, d∗]. The following property holds:

Proposition 3.7. (Uniform Persistence II) For arbitrary initial data ψ = (ϕ(s), u0) ∈ X

the following holds for the corresponding solution x(t, ψ) = (I(t), G(t))

c∗ 6 lim inf
t→∞

I(t) 6 lim sup
t→∞

I(t) 6 d∗ and α∗ 6 lim inf
t→∞

G(t) 6 lim sup
t→∞

G(t) 6 β∗.

The proof immediately follows from the property (17). In fact, more precise inequali-
ties also hold under the assumptions of Proposition 3.7:

c∗ 6 I(t) 6 d∗ and α∗ 6 G(t) 6 β∗ ∀ t > t∗ > 0.

A proof of the latter requires certain preliminaries and details which cannot be included
in the paper due to their length.

(II) The set L∗ = [α∗, β∗] is a single point. This implies that α∗ = β∗ = G∗, and that
the fixed point G∗ is globally attracting on R+ for the map Φ. In this case one has that
the following global asymptotic stability property holds for system (1).
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Theorem 3.8. (Global Asymptotic Stability, also Theorem 3.1) Suppose that the unique
fixed point G∗ of the interval map Φ is globally attracting: limn→∞Φn(G) = G∗ for every
G ∈ R+. Then the unique constant solution (τ0f1(G∗), G∗) of system (1) is globally
asymptotically stable: for arbitrary initial function ψ = (G(s), I0) ∈ X and every delay
τ > 0 the following holds for the corresponding solution

lim
t→∞

x(t) = lim
t→∞

(I(t), G(t)) = (τ0f1(G∗), G∗) .

Again, the proof immediately follows from inclusions (17).
Remark. Note that a uniform persistence property of all solutions of system (1) is also

proved in [4], see Proposition 2.4 there. However, our uniform persistence results, given
by Propositions 3.6 and 3.7, provide explicit lower and upper bounds for the components
I and G in terms of one-dimensional map Φ (therefore, in terms of functions f1, f2, f4, f5
and parameters τ0, q). In fact, the bounds given by Proposition 3.7 are best possible in
certain circumstances, e.g. when τ → ∞. They are given in terms of the maximal cycle
of period two for the map Φ.

Paper [4] also contains a condition for the global convergence to the equilibrium value
G∗ of the component G(t) of system (1). It is given by Theorem 3.2 there, which requires
that the following system for x and y

Gin−f2(x)−qxf4(τ0f1(y))+f5(τ0f1(y)) = 0, Gin−f2(y)−qyf4(τ0f1(x))+f5(τ0f1(x)) = 0
(18)

has no solutions x > 0, y > 0. This is related to our more general and transparent
condition of Theorem 3.8, about the global asymptotic stability in (7), which simply
requires that the fixed point G∗ of the map Φ is globally attracting. If the later is satisfied
then system (18) has no solutions x > 0, y > 0, since the existence of such a solution would
mean that the pair x, y forms a cycle of period two for the map Φ, contradicting the global
attractivity of its fixed point G∗. In fact, it can be showed, with some additional effort,
that under the assumptions imposed on system (1) the only fixed point G∗ of map Φ is
globally attracting if and only if system (18) has no positive solutions.

3.4 Periodic Solutions

In this subsection we outline the algorithm how the existence of periodic solutions for
system (1) can be derived. It follows the well established techniques of the ejective fixed
point theory, see [11] and [15] for general theoretical basics; we also use some related
specific details from papers [1, 8, 20, 21, 22] to show the periodicity.

The basic components for the existence of periodic solutions are:

(1) Construction of a cone of initial functions, and a translation operator along solutions
on it (Poincaré map), such that its fixed points give us slowly oscillating periodic
solution. Some of these will have to be verified numerically;

(2) The instability of the zero solution of the corresponding linearized system. This
can be derived from the characteristic equation in terms of the existence of a pair
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of complex conjugate solutions with positive real part. Known results can be used
here with proper harvesting and compilation, e.g. those in [1, 8, 20];

(3) The compactness of the nonlinear map constructed in step (1) above. This is rather
straightforward derivation based of the boundedness and smoothness properties of
the nonlinear functions f1, f2, f4, f5 given in assumptions (H1)− (H5);

(4) Application of known results for the existence of periodic solutions for systems
similar to (1). In particular, application of the well established ejective fixed point
theory to our case;

The proof of existence of periodic solutions to system (1) (or equivalent system (7))
uses well established theory of the ejective fixed point techniques applied to specially
constructed maps on subsets of initial functions of the phase space. The subsets are
usually cones of the initial functions generating the so-called slowly oscillating solutions.
The related maps are appropriately constructed shifts along corresponding solutions. The
general theory of such approach is described in e.g. [11, 15]. In addition we shall use
specific cases and results obtained in papers [1, 8, 20, 21, 22].

Definition 3.9. (i) Given delay τ > 0 a continuous function u(t) : R+ → R is called
slowly oscillating (with respect to zero) if the distance between any two of its zeros is
greater than τ ;
(ii) A solution (I(t), G(t)) of system (1) is called slowly oscillating for t > 0 if each of the
functions G(t) − G∗ and I(t) − I∗ is slowly oscillating (with respect to zero in the sense
of part (i)).

In case when (ii) holds each of the components G(t) and I(t) is viewed as slowly
oscillating function with respect to its constant component of the unique equilibrium
(G∗, I∗) of system (1).

We need a sufficient condition which guarantees the oscillatory nature of all solutions
to system (1). We can use the corresponding result of paper [8], see Theorem 1 there.

Proposition 3.10. Suppose that nonlinearities f1, f2, f4, f5 are twice continuously differ-
entialble on R and the characteristic equation (5) has no real solutions. Then all solutions
to system (1) oscillate about the positive equilibrium (I∗, G∗).

For the remainder of this subsection we shall assume that the conditions of Proposition
3.10 are satisfied.

Cone. Consider the following set of initial functions K ⊆ X:

K = {ψ = (ϕ(s), u) ∈ X | u−G∗ > 0, ϕ(s)−I∗ > 0, and ϕ(s) exp{1/τ0 s} ↑, s ∈ [−τ, 0)}.

K is a cone on X.

Proposition 3.11. Suppose that the characteristic equation (5) has no real solutions and
the initial function ψ = (ϕ(s), u) ∈ K is such that ϕ(s) > I∗ ∀s ∈ [−τ, 0], ϕ(0) > I∗, u >
G∗. Then the corresponding solution (I(t), G(t)) of system (1) is slowly oscillating in the
sense that each component I(t)− I∗ and G(t)−G∗ is slowly oscillating. Moreover,
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(i) The component I(t)− I∗ has a sequence of zeros {tk} such that 0 < t1 < t2 < t3 <
· · · < tk < tk+1 < · · · and tk+1 − tk > τ for all k ∈ N. In addition, I(t)− I∗ < 0 for
t ∈ (t2k−1, t2k) and I(t)− I∗ > 0 for t ∈ (t2k, t2k+1), k ∈ N;

(ii) The component G(t)−G∗ has a sequence of zeros {sk} such that 0 < s1 < s2 < s3 <
· · · < sk < sk+1 < · · · and sk+1 − sk > τ for all k ∈ N. In addition, G(t)−G∗ < 0
for t ∈ (s2k−1, s2k) and G(t)−G∗ > 0 for t ∈ (s2k, s2k+1), k ∈ N;

(iii) The two sequences of zeros for I − I∗ and G−G∗ satisfy the following relationship:

s1 < t1 < s2 < t2 < s3 < t3 < · · · < sk < tk < sk+1 < tk+1 < · · ·

with sk+1 − tk > τ for all k ∈ N.

Main claims of Proposition 3.11 are proved along the lines of similar propositions
for other classes of equations; see e.g. [13] for scalar equations, and [20, 21, 22] for
systems. We are still missing several details of a rigorous mathematical proof of this
proposition; however, we have extensively verified it numerically for various choices of
nonlinear functions f1, f2, f4, f5.

Mapping on Cone. Proposition 3.11 allows one to define a nonlinear map F on
the cone K in the following way. Given initial function ψ = (φ(s), u) ∈ K consider the
corresponding solution x = (I(t), G(t)), t > 0, to system (1). Given its second zero s2
consider the first component I(t) at time s2 + 1 as an element φ1(s) of the Banach space
C([−τ, 0],R), i.e φ1(s) := I(s2 + 1 + s), s ∈ [−τ, 0]. Then φ1(s) > I∗ ∀s ∈ (−τ, 0] and
u1 := G(s2 + 1) > G∗, due to Proposition 3.11. Therefore, the mapping

F : ψ = (ϕ(s), u) 7→ (ϕ1(s), u1), (19)

maps cone K into itself. The mapping F is well defined for any ψ ∈ K, different from the
identical zero. For the trivial initial function ψ ≡ (I∗, G∗) one defines F((I∗, G∗)) := ψ1 =
(I∗, G∗), by the continuity of the map F.

It is an easy observation that a nontrivial fixed point ψ0 of the map F, F(ψ0) = ψ0,
gives rise to a slowly periodic solution of system (1). However, the map F always has
the zero ψ − (I∗, G∗) ≡ 0 as the trivial fixed point (which results in the identical zero
solution to system (7) for ∀ t > 0). Therefore, one is interested in finding fixed points of
map F which are different from the trivial zero one. This is done by application of the
well developed theory of the ejective fixed point theory, which has been applied to various
classes of functional differential equations elswhere.

Compactness and Boundedness. An important property required of map F in
the ejective fixed point theory is its compactness and boundedness. It is a well known
basic fact that that a shift operator along solutions of retarded differential delay equations
is compact [11, 15]. The boundedness of F easily follows from the invariance property,
Lemma 3.5. One sees that for arbitrary ψ = (ϕ, u) ∈ K its first image under F, ψ1 =
(ϕ1(s), u1) satisfies ϕ1(s) ∈ J0 and u1 ∈ L0 (where the intervals J0, L0 are defined earlier).
Thus the set F(K) is uniformly bounded from above and below. Alternatively, one can also
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start with a bounded convex part K0 of cone K, requiring that elements φ0 = (ϕ0(s), u0) ∈
K0 satisfy ϕ0(s) ∈ J0 ∀s ∈ [−τ, 0] and u0 ∈ L0.

Ejectivity. The jectivity of map F can be determined in terms of a linear operator
calculated on specific eigenvalues of the linearized system (4) [11, 15]. It has a closed form
in a general case [22]. In lower dimensions of scalar equations or delay systems of two
equations the property of ejectivity is eventually reduced to the existence of solutions of
the characteristic equation (5) with positive real part and the imaginary part within the
range (0, π/τ) [1, 13, 20, 21].

We shall show next that for all sufficiently large delays τ the characteristic equation
(5) has a pair of complex conjugate solutions α0 ± iβ0 with the positive real part α0 > 0
and the imaginary part β0 satisfying 0 < β0 < π/τ . This would imply the ejectivity of
the above map F.

It is more convenient to rewrite the characteristic equation (5) in an alternative form
by rescaling the time t = τ · s to get the normalized delay τ = 1 (see subsection 3.1,
system (7)). One derives the following

(ελ+ µ1)(ελ+ µ2) + b+ a exp{−λ} = 0, (20)

where ε = 1/τ > 0 is a small parameter when τ > 0 is large enough. By setting ε = 0
one gets the equation µ1µ2 + b+ a exp{−λ} = 0, which has a pair of complex conjugate
solutions λ = α0 ± iπ, where α0 = ln[a/(µ1µ2 + b)] > 0. Consider now the characteristic
equation (20) for small ε > 0. By Rouché’s Theorem it has a pair of complex conjugate
solutions λε = µ(ε)± iν(ε) such that µ(ε) is close to α0 > 0 and ν(ε) is close to π. We
shall show that ν(ε) < π for all sufficiently small ε > 0. One rewrites the characteristic
equation (20) for the solution λε in the form

(εµ+ µ1 + ενi)(εµ+ µ2 + ενi) + b+ a exp{−µ}(cos ν − i sin ν) = 0.

and considers its imaginary part:

εν(2εµ+ µ1 + µ2)− a exp{−µ} sin ν = 0.

By differentiating the last equation with respect to ε and setting ε = 0 one finds

ν ′(0) = −
π(µ1 + µ2)

µ1 + µ2 + b
< 0,

which proves that ν(ε) < π for all sufficiently small ε > 0, since ν(0) = π.

3.5 Multiple Periodic Solutions

We will demonstrate numerically the existence of multiple periodic solutions using sys-
tem (7). We start with linear functions F1, F2, and F4, which contain a constant function
f4. The only non-linear function is then F5(x) = F (x), which is monotonically decreasing
(see system (21) below). The two-dimensional system of this type is simply looking and
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close in a sense to a single scalar differential delay equation where the non-uniqueness of
slowly periodic solutions is known by several publications [23, 36]. Having derived multi-
ple periodic solutions for system (21) we will perturb it by the inverse tangent function to
produce a system of type (25) which will have the same two periodic solutions, however,
they are slightly perturbed compared with those in system (21).

With the first step, system (7) becomes

x′(t) = −
1

τ0
x(t) + a1y(t) (21)

y′(t) = −a2y(t)− a4x(t) + F (x(t− τ)),

where ai > 0 for i = 1, 2, 4. Here, we will consider two appropriate choices of the
monotonically decreasing F (x) designed as follows:

F (x) =



















f(x), x ∈ [0,M ]

−x, x ∈ [M, π
2
]

−π
2
−A arctan[k(x− π

2
)], x > π

2

−F (−x) x < 0.

(22)

where, A > 0 and k > 1 are positive arbitrary constants. For this definition, M is the
solution of the equation arctan(x) = x. Therefore, the function F is continuous (but not
C1) and odd by construction.

Another choice of function F is as follows:

F (x) =











−Bx2n+1, |x| 6 1, B > 0

−B −A arctan[k(x− 1)], x > 1

−F (−x) x 6 −1.

(23)

The function plots are shown in Fig. 1. These choices allow us to demonstrate the presence
of multiple periodic solutions of different types. The first choice (Equation (22)) leads to
two different periodic solutions, while the second choice (Equation (23)) to an attracting
equilibrium and oscillating periodic solutions of system (7), as demonstrated by numerical
solutions in Section 4.

We verify Theorem 3.1 numerically in Section 4. We make a small modification to
system (21) so that it can be viewed as the original system of the form (7).

We change function f4 from a constant to a monotonically increasing function with
0 < d = f4(0) < limx→∞ f4(x) = e > d. For such f4(u) one can choose:

f4(u) = ǫ(A +B arctan(u)), u ∈ R, (24)

where A, B and ǫ > 0 are constants, and A > π
2
B.

We consider an intermediate system (between (7) and (21)), as follows:

x′(t) = −
1

τ0
x(t) + a1y(t) (25)

y′(t) = −a2y(t)− f4(x(t))y(t)− δB arctan(x(t)) + F5(x(t− τ)),
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Figure 1: Functions F (x) used to demonstrate multiple solutions behaviour: left plot -
F (x) defined by Equation (22), right plot - F (x) defined by Equation (23).

where δ is a constant comparable to ǫ and F5 is chosen as F (x) from equations (22) and
(23).

By replacing the constants a1 and a2 in equation (25) with non-linear piecewise con-
tinuous functions, linearly proportional to the argument in its range within the span
of the periodic solutions and equal to constants outside this range, and by replacing
F5(x) outside the range of x(t) by a symmetric smooth nonlinearity with a finite limit
limx→∞ F (x) = −F∞ = − limx→−∞ F (x) for an appropriate F∞ > 0, the system (25) is
converted back to the original form (7).

Remark. The existence of any number of stable slowly oscillating periodic solutions
can be achieved in two different ways.

(i) An analogous construction to that of function F (x) given by (22) can be continued
on the interval beyond the amplitude of the second large periodic solution. Indeed, given
A > 0 and k > 1 such that the second periodic solution exists, one finds the unique
value M1 > π/2 such that it solves the equation π/2 + arctan[k(x − π/2)] = x. Then
one defines function F̃ , x > 0, such that F̃ ≡ F (x) for x ∈ [0,M1] and F̃ = −M1 −
A1 arctan[k1(x−M1)] for x >M1, and F̃ (x) = −F̃ (−x) for x < 0. Exactly as with F (x)
given by (22) it can be showed for the modified F̃ (x) that there exists k01 large enough
such that system (25) has three slowly oscillating periodic solutions, with the amplitude
of the largest one greater than M1. This procedure of additional modification of F (x) in
(22) can be continued step-by-step further so that one can obtain any finite number of
stable slowly oscillating periodic solutions. If the procedure is applied to function F (x)
given by (23) then one derives any number of stable periodic solutions together with the
locally stable equilibrium.

(ii) It is known that the existence of stable (hyperbolic in general) slowly oscillating
periodic solutions persists under small continuous perturbations of the non-linear right
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hand side (functions F, F5, f4, arctan(·) and constants a1, a2, a4, τ0 for systems (21) and
(25)) [26, 27]. Therefore, if the nonlinearity F in (22) is replaced, in a sufficiently small
neighborhood |x| < δ of x = 0, by an arbitrary and small function F̃ , and F remains the
same outside the small vicinity, for |x| > δ, then the two stable slowly oscillating periodic
solutions will persist, having changed only a little. The replacement of F (x) for |x| < δ
can be done in such a way that the resulting function F̃ (x) is monotone decreasing there
(therefore, it is monotone decreasing for all x ∈ R). We now consider function F (x) by
(22) on the interval [−M1,M1] where M1 is defined above in part (i). Rescale it next to

the interval [−δ, δ] by ˜F (x) = (δ/M1)F (
M1

δ
x). We now use the above F̃ to replace the

original F in the delta neighborhood of x = 0. The resulting nonlinearity is now such that
the corresponding system (25) has four stable slowly oscillating periodic solutions: two
are the perturbed original periodic solutions, and the other two are small scaled original
periodic solutions placed in the δ-neighborhood of x = 0. This procedure can be repeated
any finite number of times.

4 Numerical Analysis

Analytical investigation of systems of delay-differential equations and, in particular, sys-
tem (1), with biologically-inspired functions and experimentally measured parameters, is
usually very difficult or impossible. Therefore numerical methods have to be employed to
study the details of behaviours of the glucose-insulin regulation models [12]. Li, Kuang
and Mason [29] performed numerical analysis of a two-delay glucose-insulin regulation
system to analyse the dependence of bifurcations in the system on delays. This model
utilised functions f1 − f5 in their exponential forms with experimentally determined con-
stants. In papers [19, 18] numerical analyses are performed on a similar system with
more complex Hill functions, allowing for more realistic modelling of the physiological
mechanisms of glucose-insulin regulation. They also studied the sensitivity of the solu-
tions to the values of Hill parameters used and performed simulations, which represented
glucose-insulin regulation disorders, namely both Type 1 and Type 2 diabetes. Here we
also use numerical analysis to further clarify some of the analytical results, obtained in
the previous sections.

There are two main points we aim at to demonstrate numerically. First, we demon-
strate usability of equation (10) in diagnostics of the solution behaviour of system (1).
Then we revisit the statement on relative insignificance of the actual forms of functions
f1 − f5 [24] in comparison to their shapes.

4.1 Numerical Methods

To confirm the results obtained in the previous sections, we produce numerical solutions
for systems (1), (7), (25) and equation (10). Furthermore, some of the theoretical concepts
and results obtained in Section 3 cannot be proven analytically, therefore we use numerical
methods to verify their validity.
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The initial value problem to system (1) is solved by using a 4-th order Runge-Kutta-
Fehlberg method with an adaptive time step. The solution examples and their corre-
sponding phase portraits are shown in Figures 3 and 4, which represent a periodic and an
asymptotically stable solutions, respectively.

The delay term in the system is interpolated using Lagrange polynomials in their
barycentric form [7]. This method demonstrates 4-th order self-convergence for sufficiently
small time steps for both periodic and asymptotically stable solutions and a wide range
of delays (see Figure 5).

To demonstrate applicability of the limiting interval map analysis, described in Subsec-
tion 3.1, we numerically solve Equation (10). The solution of the (implicit with respect
to G(s)) difference equation (10) is preferential for numerical treatment as it does not
require numerically inverting a function on an arbitrary range of its argument, despite
equation (13) being mathematically simpler and providing an explicit solution for G(s).

Since the functions f1-f5 are monotone, numerical solution of the difference equa-
tion (10) for G(s) does not represent difficulties, and a simplest bisection method has
been implemented. To distinguish numerically the solution types is also straightforward,
as the period of the solution (if such period exists) is always 2 by construction. A solution
is considered periodic for a large integer s if |G(s+2)−G(s)| < ǫ and |G(s+1)−G(s)| > ǫ,
where ǫ = 10−3 is a constant, which determines the precision.

The solution of equation (10) either exhibits an asymptotic stability, which corresponds
to the asymptotically stable regime for any delay τ in system (1), or an oscillatory function
with a period 2. The latter case corresponds to the periodic solution of system (1), which
exists for the delay τ greater than some critical value τc, determined numerically from the
full solution of system (1) given a set of its parameters. If τ < τc, the system shows a
stable equilibrium solution. Examples of solutions to equation (10) are shown in Fig. 2.

Other advantages of using equation (10) in comparison to the original system (1) are
that it does not explicitly contain the delay value, neither does it require a priori knowledge
of the oscillation period (if present) and the solution derivatives. It is, therefore, beneficial
to numerically analyse the system’s behaviour using this equation.

4.2 Numerical Demonstration of Multiple Periodic Solutions

and Slow Oscillations

To further verify Theorem 3.1, we solve the system (25) numerically. The piecewise
functions f1 and f2, constructed as described above, and f4 as in equation (24), are used in
the calculation. Two different cases are considered for F (x), as given in equations (22) and
(23), leading to different solution types. In Figure 8, examples of the solutions are shown.
Transition between the different solutions of system (25) occurs in a very narrow range of
the initial conditions x(t = 0) = y(t = 0). Figure 6 demonstrates the solution amplitude
(left panel) and the solution period (right panel) for x(t = 0) = y(t = 0) = [1.59, 1.61].
This figure also shows that there is a small effect (2%) of the initial condition on the
period of oscillations, with the transition occurring at the same value as the transition
between the amplitudes of the solutions.
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Figure 2: Examples of periodic (green) and asymptotically stable (black) solutions of
Equation (10).

Figure 3: An example of periodic solution to the system (1). The time evolution of I
(black) and G (green) is shown in the left panel. Right panel shows the corresponding
phase portrait for the system, plotted for a larger time interval 0 < t < 200.
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Figure 4: Same as in Fig. 3, but for an asymptotically stable solution to the system (1).

Figure 5: Dependence of the absolute global mean L1 error on the time step for the
employed numerical scheme. To demonstrate the precision order, the red dashed lines
correspond to the power laws with the provided indices. Blue and black dash-dotted curves
show Euler integration of the system with 4-th order Lagrange-interpolated delay term
for I and G, respectively. The solid curves show the 4-th order Runge-Kutta integration.
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Figure 6: Demonstration of multiple solutions of the system (25) with F as defined by
equation (22). Left panel: dependence of the amplitude of the solution on the initial value
x(t = 0) = y(t = 0). Right panel: dependence of the period of the solution on the initial
value x(t = 0) = y(t = 0).

On the other hand, the time delay τ determines the period T of oscillations. This
is illustrated in Figure 7, where the dependence of ratio of the delay τ to the oscillation
half-period 2τ/T vs τ is shown. For all reasonable from the practical point of view values
of τ , T & 2τ . This confirms the existence of slow oscillations for this system. Recall
that an oscillation is considered to be a slow oscillation if its half-period is greater than
the delay τ . As system (25) mimics the behaviour of the original system (1), this shows
that the time delay to a great extent determines the period of the oscillations and slow
oscillations occur.

5 Conclusion

In this paper we performed a further analytical and numerical study of the Sturis-Bennett-
Gourley model describing the glucose-insulin regulation system in humans. The model is
given by a nonlinear two-dimensional system of delay-differential equations with a single
delay. One of the principal goals of the paper was to demonstrate the applicability of
the limiting interval maps approach to provide information on the system’s asymptotic
behaviour and to show the existence of slowly oscillating periodic solutions when the
unique equilibrium is unstable.

The model was introduced in papers [4, 5, 6]; it includes one delay - namely the delay
between plasma insulin production and its effect on hepatic glucose production. This
model was selected to demonstrate the power of limiting interval maps method.

The method not only reproduced some of the results obtained in [4, 5, 6], but also
showed the rich behaviour of the system with a choice of physiological functions fi, with
specific attention on f5. We investigated the behaviour of the system with f5(u) chosen
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Figure 7: Dependence of the ratio of the delay τ to half-period of the solution of sys-
tem (25) with F5 as defined by equation (22) on the delay τ , which confirms the slowly
oscillating solution property.
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Figure 8: Numerical demonstration of multiple periodic solutions of the two-dimensional
system. Top and bottom rows show examples of multiple solutions for systems (21)
and (25), respectively. Left and right columns demonstrate multiple periodic and peri-
odic/attractive equilibrium solutions, produced by functions F , defined by equations (22)
and (23). Green curves correspond to G(t) and black curves correspond to I(t). The
delay τ = 5 is used for all solutions in the plot.
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as monotonically decreasing function in u ∈ R+ and showed that this specific choice leads
to multiple oscillating periodic solutions or stable solutions converging to the equilibrium.
We have demonstrated that depending on the appropriate choices of functions f1 − f5
(which still satisfy all the conditions H1-H5), the non-uniqueness of the periodic solutions
and their coexistence with the stable equilibrium can be achieved.

We would like to further notice that our global asymptotic stability result Theorem
3.1 can likely be deduced from considerations in paper [4]. In particular, Theorem 3.2
there provides a sufficient condition for the global attractivity of the component G(t)
for a single integro-differential equation which is a truncated version of system (1). The
component G being attracted by its equilibrium value G∗ immediately implies, via an
integral representation of the first equation of system (1), that the other component I
is attracted by its respective constant value I∗. One principal issue with the relevant
considerations in [4] is that integro-differential equation (3.1) is not an exact reduction
but an approximation to system (1), which is achieved by dropping exponentially small
perturbation terms.

In all our numerical simulations the eventual periodic solutions appear to be of the
so-called ”sinusoidal type”. This means that they have a single maximum and a single
minimum values and are monotone in between on their period. This shape of periodic
solutions is rigorously proved in [33] for the so-called unidirectional systems. System (1)
is not of the unidirectional type, so this result cannot be directly extended to our case.

The model with single delay has been succeeded by a number of more sophisticated
models with two delays [29, 28, 30, 19], which involve control loops containing muscle [25]
or effect of diabetes type I or II [18]. However, as one of the delays is always significantly
larger than the other, a system with one delay can be a very good approximation to those
with two delays.

Constructing the nonlinear maps, we have found a difference equation, which repre-
sents the dynamics of the system in the large delay limit, which has the potential for
diagnostics of the solution types without the need to solve the full system of differential
equations with one delay.

The paper shows the elegance and efficiency of the approach via limiting interval
maps in solving systems of differential equations with one delay. Furthermore, using this
method, we revealed the existence of multiple slowly oscillating periodic solutions, their
coexistence with the stably equilibrium, or the global asymptotic stability of the unique
equilibrium.

Thus, the paper shows the potential of this method for solving complex problems in
mathematical physiology and is generally applicable for the systems of nonlinear differ-
ential equations with a single delay.
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