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Abstract

Mathematical models for complex systems under random fluctuations often certain uncertain param-
eters. However, quantifying model uncertainty for a stochastic differential equation with an α-stable
Lévy process is still lacking. Here, we propose an approach to infer all the uncertain non-Gaussian pa-
rameters and other system parameters by minimizing the Hellinger distance over the parameter space.
The Hellinger distance measures the similarity between an empirical probability density of non-Gaussian
observations and a solution (as a probability density) of the associated nonlocal Fokker-Planck equation.
Numerical experiments verify that our method is feasible for estimating single and multiple parameters.
Meanwhile, we find an optimal estimation interval of the estimated parameters. This method is benefi-
cial for extracting governing dynamical system models under non-Gaussian fluctuations, as in the study
of abrupt climate changes in the Dansgaard-Oeschger events.

Keywords: Non-Gaussian observations; Parameters estimation; Hellinger distance; Probability den-
sity

1 Introduction

Complex systems under influences of random fluctuations also have uncertain parameters [1]. An important
problem in modeling such random processes by stochastic differential equations (SDEs) is to estimate
uncertain parameters from observations of the stochastic paths.
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A Brownian motion has properties of continuous sample paths, normal diffusion and light tail (prob-
ability density decays exponentially), theoretical results on parametric estimations for SDEs driven by
Brownian motion are relatively well developed. The Gaussian kernel density estimator [2, 3] and the
Bayesian estimator [4, 5] are well-known approaches for parameters estimation of a drift function when
the observations of complete paths are available. Furthermore, by the nonparametric estimation method
of Kramers-Moyal coefficients [6], the statistical definitions of conditional first and second moments [7] or
variational formulation of the stationary Fokker-Planck equation [8], we could provide an expression for
the drift function and the diffusion one.

However, various complex phenomena involve non-Gaussian fluctuations, with properties such as inter-
mittent jumps, anomalous diffusion, and heavy tail (probability density decays with power law) distribu-
tion. A heavy-tailed distribution, like a Lévy distribution, is characterized by a high likelihood for extreme
events, compared to a normal distribution. For instance, Ditlevsen shows that the paleoclimatic records
for Dansgaard-Oeschger events have a strong non-Gaussian distribution [9]. The protein production occurs
in bursts which are observed during a genetic regulation [10]. Meanwhile, experimental studies find that
Lévy flights are an optimal pattern when the prey is sparsely and randomly distributed for open-ocean
predatory fish [11]. The Lévy process is also used in other scientific domains, for example, it has been
shown that certain stock price has statistical properties that are compatible with a Lévy random walk [12].
Additionally, in the field of cognitive research, a few studies provide evidence of Lévy processes, e.g., to
search and cluster in semantic memory [13] and human decision making [14]. An α-stable Lévy process is
thought to be an appropriate model for a non-Gaussian heavy-tailed process. Therefore, for modeling these
complex systems, it becomes necessary and significant to consider parameters estimation for a stochastic
system driven by the α-stable Lévy process. In general, the p-th moment of an α-stable Lévy random
variable is finite if and only if p < α (0 < α < 2), so it does not have second moments. Meanwhile, the
stationary probability density of an α-stable Lévy process does not always exist. Due to these disadvan-
tages, unfortunately, the existing methods for parameter estimation of Brownian motion are not applied
for dynamical system with non-Gaussian fluctuations.

There are few results about the parametric estimation for stochastic processes driven by Lévy processes.
In some special cases, it is possible to infer parameters only for the drift function assuming that the values
of other parameters are known. For example, a simple Ornstein-Uhlenbeck process is considered, i.e., the
drift function is known to be linear, or stochastic processes are driven by a compound Poisson process [15].
In these works, the quasi-maximum likelihood, a self-weighted least absolute deviation estimator [16] or
trajectory fitting estimator are established for discretely observed Lévy processes. For an α-stable Lévy
process, the parametric estimation problem becomes more difficult because the second moment does not
exist. Recently, Hu and Long et al. [17, 18] addresses a trajectory fitting and a least-square estimator on
estimation of a drift parameter for a stochastic system under an α-stable Lévy noise. Fasen [19] extended
the results to high dimensions.

In the above-mentioned works, one can only estimate the drift parameters. Meanwhile, the non-
Gaussian index α plays a decisive role in the construction of Lévy processes. An α-stable Lévy process has
larger jumps with lower jump probabilities when α is small (0 < α < 1), while it has smaller jumps with
higher jump frequencies for large α values (1 < α < 2). The special cases for α = 1 and α = 2 correspond
to the Cauchy process and the Brownian motion, respectively. Therefore, the estimation of the parameter
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α is extremely important. There are some simple and straightforward approaches to learn this α from the
path observation, such as the slope of the log-log linear regression [20] or the Hill estimator [21]. These
methods do not assume a parametric form for the entire distribution function, but focus only on the tail
behavior. However, the true tail behavior of Lévy distribution is visible only for extremely large data sets,
or it is a challenge to choose the right value of the largest order statistics.

There have been no available estimators simultaneously for the drift parameter and other α-stable
Lévy parameters, including α and other non-Gaussian parameters. An alternative method is relied on the
characteristic function of α-stable Lévy process [22]. Based on the ergodic theory and sample character-
istic functions, Cheng et al. [23] study a Ornstein-Uhlenbeck process with the α-stable Lévy noise. The
parameter estimation for α and the other parameters is obtained by matching the empirical characteristic
function with the corresponding theoretical one. We note that a method of numerical optimization is
devised in [24], where two deterministic quantities: mean exit time or the escape probability is observed to
estimate the uncertain parameter and other system parameters. It is based on solving an inverse problem
for a deterministic, nonlocal partial differential equation.

The existing works provide certain approaches to estimate the drift parameter and other α-stable Lévy
parameters. With severe limitations, (i) the drift term can only be a linear function; (ii) the empirical
characteristic function is approximately defined; (iii) it is difficulty to observe mean exit time or first escape
probability from the discrete time series data. In response to the existing challenge, we are interested in
finding an effective and feasible approach for parameter estimation of a stochastic system under an α-stable
Lévy noise. The method can be applied for a nonlinear drift term, α and other system parameters can be
estimated simultaneously. Compared with the characteristic function and other quantities, a probability
density or probability distribution becomes easy to obtain from an observation data set with heavy-tailed
distribution.

We recall some recent works on estimating parameters of α-stable Lévy processes based on probability
densities. Chen and Chen [25] choose a mixture of Cauchy and Gaussian distribution to approximate the
probability density function of the α-stable Ornstein-Uhlenbeck distribution. By means of transition func-
tion and Laplace transform, they construct an explicit approximate sequence of the maximum likelihood
function to obtain the estimation of parameters. Inspired by the derivation of the differential Chapman-
Kolmogorov equation, Li and Duan [26] derive Kramer-Moyal formulas to express the jump measure,
drift and diffusion coefficient of a stochastic differential equation with respect to the transition probability
density .

The probability density function for SDE driven by an α-stable Lévy process satisfies a deterministic,
nonlocal differential equation with an initial condition, i.e., nonlocal Fokker-Planck equation, which have
a nonlocal or fractional Laplacian term. In terms of theory, we derived the Fokker-Planck equations for
Marcus SDEs driven by Lévy processes in high dimensional [27]. In terms of numerical calculations, taking
advantage of the Toeplitz matrix structure of the time-space discretization, Gao et al. [28] proposed a fast
and accurate numerical algorithm to simulate nonlocal Fokker-Planck equations under either absorbing or
natural conditions. Meanwhile, a piecewise integro quadratic spline interpolation approach [29-31] and a
finite element method [32] are developed for the approximate nonlocal or fractional integral.

Consequently, we propose an approach to infer simultaneously the drift parameter and other α-stable
Lévy parameters. Our method is based on minimizing the Hellinger distance between the observed proba-
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bility distribution and the solution (as a probability distribution) of the associated Fokker-Planck equation
for a general stochastic dynamical system driven by an α-stable Lévy process.

In the present paper, we consider the parameter estimation problem of an α-stable Lévy stochastic
dynamical system containing uncertain parameters. In Section 2, we propose a method of estimating the
uncertain parameters based on the Hellinger distance of the probability densities. In Section 3, we present
some simulation results of estimation for single and multiple parameters by minimizing the Hellinger
distance. Finally we give some concluding and future works in Section 4.

2 Methods

We consider a dynamical system with heavy-tailed uncertainty, which could be modeled by a stochastic
process X(t)

dX(t) = f(X(t), θ)dt+ ǫdLα(t), X(0) = x0 ∈ R
1, (1)

where the drift function f(x, θ) has the uncertain parameter θ, and a scalar symmetric α-stable Lévy
process Lα(t) with the non-Gaussian index 0 < α < 2 is defined in a probability space (Ω,F ,P). The
parameter ǫ is the non-negative α-stable Lévy noise intensity.

A scalar symmetric α-stable Lévy process is characterized by a generating triplet (b,Q, να), a linear
coefficient b, a diffusion parameter Q, and a nonnegative Borel measure να. This jump measure να is
defined on (R1,B(R1)) [33] by:

να =
Cαdy

|y|1+α
,

with 0 < α < 2 and Cα = α
21−α

√
π

Γ( 1+α

2
)

Γ(1−α

2
) . In this paper, we consider an α-stable Lévy process with a triplet

(0, 0, ν), i.e., a pure jump process.

For 0 < α < 2, the α-stable Lévy process Lα(t) has a heavy-tailed distribution [34]

P(|Lα(t)| > y) ∼
1

yα
,

as the tail estimate decays in a power law. Therefore α is also called the power parameter. The tail
behavior is different from the Brownian motion with light tail, as the tail decays exponentially.

We assume that the drift term f is local Lipschitz continuous. Then the SDE (1) has a unique
solution [33]. The conditional probability density p(x, t|x0, 0) , p(X(t) = x|X(0) = x0) represents the
density of theX(t) given a value x0 at initial time. For convenience, we drop the initial condition and simply
denote it by p(x, t). There exists sufficient condition for the existence and regularity of the probability
density p(x, t) for some SDEs driven by Lévy processes. The existence is based on Malliavin calculus with
jumps under Hörmander’s condition, see Refs. [35-37] and the references therein for more details.

We see that the stochastic process Xt in Eq.(1) under Lévy noise depends on the following parameters.
The first one is an uncertain system parameter θ. In general, the estimated parameter θ plays a key
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Figure 1: (a) The stochastic sample path of the process Xt (Eq.(4)) with α = 1.7, ǫ = 0.3 and θ = 1. (b)
The empirical probability density pd of the stochastic trajectory (a).

role in the system model, which could be a bifurcation parameter inducing a transition between states.
The control parameter θ could be a greenhouse factor in the case of the energy balance model [38], or
a freshwater forcing strength in the thermohaline circulation one [39]. Besides, there are uncertain Lévy
parameters: the non-Gaussian index α and the Lévy noise intensity ǫ.

Let us assume that we have access to a set of observations y = (y1, y2, · · · , yn), which are the version of
the process Xt with a non-Gaussian distribution sampled at discrete times tk ∈ [0, T ] for k = 1, 2, · · · , n,
i.e., yk = Xtk for k = 1, 2, · · · , n. In this paper, we will discuss the problem of estimating the parameters
α, ǫ and θ simultaneously using the observations y = (y1, y2, · · · , yn).

To reach this purpose, we would like to introduce the Hellinger distance. It is used to quantify the
similarity between two probability distributions [40]. The Hellinger distance between two probability
density functions p(x) and pd(x) is

H2(p, pd) =
1

2

∫

R1

(

√

p(x)−
√

pd(x)
)2

dx.

The Hellinger distance H satisfies the property: 0 6 H(p, pd) 6 1. Here, pd is the empirical probability
density from an observation data set y = (y1, y2, · · · , yn). The probability density function p(x) is a solution
of the nonlocal Fokker-Planck equation p(x, t) at time t.

∂

∂t
p(x, t) = −

∂

∂x
(f(x, θ)p(x, t)) + ǫα

∫

R1\{0}

[

p(x+ y, t)− p(x, t)− I|y|<1(y) y
∂

∂x
p(x, t)

]

να(dy). (2)

The integral part in the right hand side is actually the nonlocal Laplacian operator. This nonlocality is the
manifestation of effect of non-Gaussian Lévy fluctuations [41]. The equation fulfills an initial condition

lim
t→0

p(x, t|x0, 0) = δ(x − x0).
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We consider that the observation set comes from an α-stable Lévy distribution p(x, t). Associated with
each probability density is the parameters set λ = (θ, α, ǫ) ∈ Θ, where Θ is called the parameter space, a
finite-dimensional subset of the Euclidean space. Evaluating the Hellinger distance at the observed data
set y gives an objective function

G(λ) = H2(p(x, λ), pd(x)).

The Hellinger distance estimation aims to find the value of the model parameters that minimize the
objective function over the parameter space Θ, that is

λ̂ = argmin
λ∈Θ

G(λ).

To address the probability density p(x, λ), we use the numerical algorithm of Gao et al. [28] to solve
the nonlocal differential equation in Eq.(2) under the absorbing condition. This absorbing condition means
that the probability of finding “partical” Xt outside the finite interval D = (a, b) is zero. We decompose
the integral part of Eq.(2) into three parts

∫

R1 =
∫ a−x
−∞ +

∫ a−x
b−x +

∫∞
b−x in R

1 and analytically evaluate the
first and third integrals, then Eq.(2) changes to

∂

∂t
p(x, t) = −

∂

∂x
(f(x)p(x, t)) −

ǫαCα

α

[

1

(x− a)α
+

1

(b− x)α

]

p(x, t)

+ ǫαCα

∫ b−x

a−x

p(x+ y, t)− p(x, t)− I|y|<1(y)y
∂
∂xp(x, t)

|y|1+α
dy, (3)

for x ∈ (a, b). The non-Gaussian index α ∈ (0, 2) and the Lévy intensity ǫ ∈ (0, 1].

3 Numerical Experiments

We now explore how the Hellinger distance can be used to estimate the parameters of SDE driven by a
symmetric α-stable Lévy process. We consider the following example

dX(t) = (−θX(t)3 +X(t))dt+ ǫdLα(t), X(0) = 0 ∈ R
1, (4)

In this example, a nonlinear drift term is f(x, θ) = −θx3 + x with uncertain parameter θ. We start
with training data from numerical simulations of Eq.(4). The stochastic trajectory can be regarded as a
heavy-tailed time series with the parameters α = 1.7, θ = 1 and ǫ = 0.3 shown in the Fig. 1(a). Here,
the choice of parameters α ∈ (0, 2), θ ∈ [0.5, 1.5] and ǫ ∈ (0, 1] are arbitrary. Our work focus on the
comparison the similarity between the estimated and original parameters in the SDE (4) by minimizing
the Hellinger distance. The Hellinger distance measures the similarity between an empirical probability
density of non-Gaussian observations and a solution (as a probability density) of the associated nonlocal
Fokker-Planck equation (2).

The empirical probability density function pd for observations (Fig. 1(a)) could be determined by the
normal kernel method. In the simulation, we use the MATLAB function ksensity to evaluate the pd(x)
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Figure 2: (a) The Hellinger distance estimation of α. The estimated value α̂ = 1.738 corresponds to the
minimum objective function Gα = 0.0014 (red ⋆). (b) The estimated density function p(x) with α̂ = 1.738,
θ = 1 and ǫ = 0.3 compared with the empirical density pd in Fig.1(b).

for x ∈ (−3, 3) as shown in Fig. 1(b). A selected bandwidth is h = 1.8s/n1/5, where n = 6 × 106 is the
number of observed data points and s is the standard deviation of the data set.

Now we provide the details of the computation to infer parameters from the observations. The value
of the parameters are estimated by minimizing the Hellinger distance over the parameter space Θ. We
shall first estimate single parameter assuming that the values of the other parameters are known, and then
estimate multiple parameters

3.1 Estimation for a single parameter

We want to find out an estimation of α by achieving a numerical optimization of the objective function G
of the Hellinger distance. We consider the parameter λ = α is in the parameter space Θ = (0, 2) ⊂ R

1,
and assume that the other parameters are known, i.e. ǫ = 0.3 and θ = 1. Then the objective function G
of the Hellinger distance is

G(α) =
1

2

∫

R1

(

√

p(x, α)−
√

pd(x)
)2

dx.

Based on the numerical algorithm of Gao et al. [28], the probability density p(x, α) is solved by the nonlocal
differential equation (2) given α ∈ (0, 2) for x ∈ D = (−3, 3) at t = 50. In the numerical simulations,

the probability profile of its initial position is Gaussian p(x, 0) =
√

40
π e−40x2

. We have chosen the spatial

resolution h = 0.003 and the time step size ∆t = 0.5h2.

In Fig. 2(a), we employ a discretization step of ∆α = 0.035 and use 55 grid points for α ∈ (0, 2). Then
the estimation of α̂ = 1.738 is obtained with the minimum value of the Hellinger distance G(α̂) = 0.001399
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Figure 3: (a) The Hellinger distance estimation of ǫ. The estimated value ǫ̂ = 0.3268 corresponds to
the minimum objective function G(ǫ̂) = 0.000951 (red ⋆). (b) The estimated density function p(x) with
ǫ̂ = 0.3268, θ = 1 and α = 1.7 compared with the empirical density pd in Fig.1(b).

over the parameter space Θ = (0, 2). Furthermore, we restrict α on a small region [1.5, 1.9] for accurately
estimation. The result illustrates that the estimated values of α̂ ∈ [1.684, 1.764] contains the true value
of α = 1.7 with the Hellinger distance G(α̂) < 0.00145 (inset figure in Fig. 2(a)) . It means that we
could find an optimal interval for the estimated parameter α. As an illustration, we show the results of
the probability density p(x, α) of SDE (4) with estimated value α̂ = 1.738 (dashed) and the empirical
density pd from the observed data (dotted) in Fig. 1(b). We can see that the estimated probability density
presents the goodness-of-fit to the empirical one.

Similarity, we explore the dependence of the objective function G on the value of ǫ keeping the other
parameters fixed. Fig. 3(a) shows the minimized the G(ǫ̂) = 0.0009 of the Hellinger distance that corre-
sponds to the estimated value of the Lévy noise intensity ǫ̂ = 0.3268. Meanwhile, we could get the optimal
estimation interval ǫ̂ ∈ [0.292, 0.348] for the Hellinger distance G(ǫ̂) < 0.0019. This domain includes the
true value of ǫ = 0.3. In Figure 3(b), the empirical density pd is well fitted by the probability density
p(x, ǫ) with ǫ̂ = 0.3268.

We have inferred the parameters α and ǫ by considering the Hellinger distance, respectively. Next,
we would like to compare the Hellinger distance with other commonly used metrics, such as the L2 norm
distance, the maximum absolute error distance and the Sørensen distance to quantify the similarity between
two probability distributions. The objective function of the L2 norm distance is defined as

G(λ) =
‖p(λ, x)− pd(x)‖

2
2

‖pd(x)‖
2
2

.

While the maximum absolute approximation distance is

G(λ) = max |p(λ, x)− pd(x)|.
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Figure 4: (a) Estimation of α and θ by optimization of the Hellinger distance. The estimated values are
α̂ = 1.707 and θ̂ = 0.9828 with the minimum G(α̂, θ̂) = 0.0014 (red ⋆). (b) The optimal estimation domain
of α̂ and θ̂ is [1.6867, 1.78] × [0.98, 1].

The Sørensen distance is used in ecology model. The expression of the objective function for the Sørensen
distance is

G(λ) =
‖p(λ, x)− pd(x)‖1
‖p(λ, x) + pd(x)‖1

.

Here the ‖z‖n = (|z1|
n + |z2|

n + · · · + |zm|n) is defined as n-norm of z = (z1, z2, · · · , zm). The estimation
of uncertain parameters set λ could be achieved by minimizing G, i.e., λ̂ = argminG(λ) for λ ∈ Θ.

Next, let us examine the effect of these kinds of distances on the estimation of α and ǫ, respectively.
We keep the other parameters and the divided subintervals the same as those in Figs. 2 and 3. In Table
1, the results on these distance show that the Hellinger distance gives a better estimation for α than the
others. In contrast, all four distances show a good fit to the true ǫ. In this example, the Hellinger distance
is the most effective method to estimate parameters.

Distance True value α Estimated α̂ True value ǫ Estimated ǫ̂ Gα Gǫ

Hellinger 1.7 1.7380 0.3 0.3268 0.0014 0.0009
L2 norm 1.7 1.8100 0.3 0.3070 0.0028 0.0032

Maximum absolute error 1.7 1.9180 0.3 0.3070 0.0427 0.062
Sørensen 1.7 1.7740 0.3 0.3070 0.0299 0.0295

Table 1: Compared with different distances: Hellinger distance, L2 norm distance, maximum absolute
error distance and the Sørensen distance.
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Figure 5: (a) Estimation of ǫ and θ. The estimated values are ǫ̂ = 0.3303 and θ̂ = 1.0185 with the minimum
G(ǫ̂, θ̂) = 0.0012 (red ⋆). (b) The optimal estimation domain is [0.3, 0.3267] × [0.9, 1.02].

3.2 Estimation for multiple parameters

The above example has verified that our method is feasible for estimating a single parameter by minimizing
the Hellinger distance. Next, we will apply this approach to estimate the multiple unknown parameters.
First, we simplify our model by assuming that one parameter ǫ = 0.3 is known and then estimate α and
θ, while keeping the other factors the same as in the section 3.1. The objective function G is given by
Hellinger distance

G(α, θ) =
1

2

∫

R1

(

√

p(x, α, θ)−
√

pd(x)
)2

dx.

The probability density p(x, α, θ) is a solution of the nonlocal differential equation (2) given values of
α ∈ (0, 2) and θ ∈ [0.5, 1.5] at t = 50. Fig. 4(a) shows that the objective function G changes with the
values of α and θ in the parameter space Θ = (0, 2)×[0.5, 1.5] ⊂ R

2. The minimum value ofG(α̂, θ̂) = 0.0014
is identified with α̂ = 1.707 and θ̂ = 0.9828. In the same manner, the optimal estimation domain of α̂ and
θ̂ is [1.6867, 1.78] × [0.98, 1] (orange rectangular frame) by further restricting the range of parameters as
shown in Fig. 4(b).

Parameter True value Estimated λ̂1 = (ǫ̂, θ̂) Estimated λ̂2 = (α̂, ǫ̂)

θ 1.0 1.0185 –
α 1.7 – 1.707
ǫ 0.3 0.3303 0.307

G 0 0.0012 0.0011

Table 2: Estimation of λ1 = (ǫ, θ) and λ2 = (α, ǫ).

10



(a)

non-Gaussian level α
Levy noise intensity ǫ

00
0

0.1

0.5 0.5

0.2

O
bj

ec
tiv

e 
fu

nc
tio

n

1

0.3

1.5

0.4

1

0.5

2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b)

0.1 0.2 0.3 0.4 0.5
Levy noise intensity ǫ

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

n
o
n
-G

a
u
ss

ia
n
 le

ve
l 
α

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 6: (a) Estimation of α and ǫ. The estimated values are α̂ = 1.707 and ǫ̂ = 0.307 with the minimum
G(α̂, ǫ̂) = 0.0011 (red ⋆). (b) The optimal estimation domain is [1.6733, 1.78] × [0.3133, 0.3267].

Second, we take into account the estimation of the other two combinations of all three parameters,
λ1 = (ǫ, θ) and λ2 = (α, ǫ) corresponding to the parameter spaces Θ1 = (0, 1]× [0.5, 1.5], Θ2 = (0, 2)×(0, 1],
respectively. The estimated results are found by the minimized the Hellinger distance as shown in Table
2. Meanwhile, we can also determine the optimal domains of the estimated parameters sets λ̂1 and λ̂2 as
shown in Figs. 5(b) and 6(b). The result shows that the Hellinger distance G(α̂, ǫ̂) 6 0.001 if the estimated
parameters set λ̂1 belongs to the domain [1.6733, 1.78] × [0.3, 0.3267]. Meanwhile, the estimation domain
of λ̂2 is [0.3, 0.34] × [0.98, 1] if the Hellinger distance G(ǫ̂, θ̂) 6 0.0015.

Finally, we seek all these parameters λ = (α, ǫ, θ) such that the Hellinger distance reaches the minimum
value in the parameter spaces Θ = (0, 1] × (0, 2] × (0, 2) ⊂ R

3.

G(θ, ǫ, α) =
1

2

∫

R1

(

√

p(x, θ, ǫ, α)−
√

pd(x)
)2

dx.

The values of the model parameters ǫ̂ = 0.307, θ̂ = 1.05 and α̂ = 1.7380 are achieved by minimizing the
Hellinger distance G(α̂, θ̂, ǫ̂) = 0.0027 over the parameter space Θ ⊂ R

3. Estimated results ǫ̂ = 0.307,
θ̂ = 1.05 and α̂ = 1.7380 defines a slice plane in the ǫ-axis, θ-axis, or α-axis direction as shown in Fig. 7.

4 Conclusion

In summary, we consider a non-Gaussian dynamical system containing uncertain parameters. An approach
of parameter estimation is proposed by numerical optimization of the Hellinger distance between two
probability distributions. The one probability density p(x) is a solution of the nonlocal Fokker-Planck
equation at time t for a stochastic dynamical system X(t) driven by an α-stable Lévy process. The other
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Figure 7: The Hellinger distance estimation of α, ǫ and θ. The estimated ǫ̂ = 0.307, θ̂ = 1.05 and
α̂ = 1.7380 for the minimum G(α̂, θ̂, ǫ̂) = 0.0027.

one is the empirical probability density pd from observations data of discrete version of the process. The
approach is used to find all out the estimation of single parameter and multiple parameters, by a numerical
optimization of the Hellinger distance over the parameters space. The results of an example verified that
this method is feasible for estimating non-Gaussian parameters α, ǫ and other system parameter by the
Hellinger distance. Compared with the L2 norm, the maximum absolute error distances and Sørensen
distance, the Hellinger distance is the most effective method to estimate parameters in this example.
Meanwhile, we could find an optimal interval for the estimated parameters.

This approach can be used to establish parameter estimations for a data-driven dynamical system, the
observations data with jumps and heavy-tailed distribution. A very important future work will be a model
study of the abrupt climate changes in the Dansgaard-Oeschger events with non-Gaussian distribution.
The approach would be applied to estimate the system parameters and non-Gaussian parameters in this
model.
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Data Availability

All computational results are implemented with MATLAB R2015b running in an Intel Xeon(R) CPU E5-
2667 v4 @ 3.20 GHz machine. The data that support the findings of this study are available in GitHub at:
https://github.com/yayun55/Estimating-uncertainty-for-the-observed-non-Gaussian-data.
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