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Abstract 

This paper presents the 3D dynamic formulations for a flexible beam sliding through 

a revolute-prismatic joint. Considering the geometric nonlinearity, the configuration 

space of the 3D flexible beam is a nonlinear differentiable manifold (ℝ3 × SO(3)). 

Moreover, the beam manipulated by the revolute-prismatic joint can undergo large overall 

motion and slide through the joint. Because of the difficulty mentioned above, most 

studies on these problems focus on 2D cases or are tackled under a small deformation 

assumption. In this paper, the rotation matrices are parameterized using rotational vectors 

to describe accurately the spatial configuration of flexible beams. For convenience, to 

describe the finite deformation of the beams, the material frame is fixed on the revolute-

prismatic joint but will change over time. The corotational method is introduced to take 

the geometric nonlinearity (small strain and large rotation) of the beam into account. In 

the corotational frame, the strain energy and kinetic energy of the elements are derived 

with the same shape functions, which are used to describe the local displacements, to 

maintain the element-independent framework. Then a ‘standard element’ can be 

embedded within this framework. In order to consider the shear deformation, the flexible 

beam is discretized using a fixed number of variable-domain interdependent interpolation 

elements. Rotary inertia is also considered in this paper. The nonlinear equations of 

motion are derived by using the extended Hamilton’s principle and solved by using the 

Hilber-Hughes-Taylor method and the Newton-Raphson iteration method. Four examples 
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are presented to demonstrate the validity, accuracy and versatility of the present dynamic 

formulation. 

 

Keywords: co-rotational method; flexible robot manipulator; variable-domain beam 

elements; nonlinear dynamic analysis; rotating-prismatic joint 

 

1. Introduction 

Robot manipulator arms are widely used in engineering. Generally speaking, their 

weight should be as light as possible to reduce the cost and the energy consumption. But 

less material means the arms are more flexible. Thus the dynamic analysis of the flexible 

arms will be difficult, because their vibration involves not only the rigid motion but also 

the large elastic deformation. If the arms are manipulated by a revolute joint or a prismatic 

joint, the dynamic analysis will also be more difficult. 

Many researchers used the sliding beam model to study the dynamics of robot 

manipulator arms with prismatic joints. The nonlinear equations of motion of sliding 

beams were firstly given by Tabarrok et al. [1] through Newton’s Second Law. To obtain 

the approximate solution, they introduced small deformation and inextensibility 

assumptions. The equations of motion were also used to investigate band saws, spacecraft 

antenna and copy machines [2-4]. To take the geometric nonlinearity into account, 

Behdinan et al. [5, 6] derived the nonlinear equations of motion through an extension of 
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Hamilton’s principle [7]. Then they used the Galerkin’s method to solve the equations. 

Gürgöze and Yüksel [8] further investigated the effects of rotary inertia, end-mass and 

axial force in association with axial foreshortening. Stylianou and Tabarrok [9] used a 

fixed number of variable-domain beam elements to discretize the linear system of a 

sliding beam. Behdinan and Tabarrok [10] used the updated Lagrangian method [11] and 

co-rotational method [12] to derive the dynamic formulations for sliding beams 

respectively and discussed the effects of geometric nonlinearity on the dynamic response 

of the beam [13]. However, their formulations cannot maintain the consistency of the 

element because the elastic force vector and the inertia force vector are derived using 

different shape functions. In addition, the shape functions are used to describe the global 

displacement field rather than the local displacement field for the derivation of the inertia 

force vector. To take into account the deformation of the inside part of a sliding beam, 

Humer [14] presented dynamic formulations of a sliding beam with non-material 

boundary conditions where the position of the prismatic joint relative to the material 

points of the beam is unknown. Steinbrecher et al. [15] further used commercial software, 

ABAQUS, to study the sliding beam problem. Dilpare [16], Banerjee and Kane [17] used 

multibody dynamics to study the nonlinear motion of the sliding beam. 

Some researchers studied the dynamics of robot manipulator arms with revolute 

joints. In studying the dynamic problem, a convenient method is to introduce a floating 

frame [18, 19] which allows the potential energy of the beam to be expressed in a simple 
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form with the assumption of small strains. By contrast, the expression of the kinetic 

energy of the system will be cumbersome. To overcome this difficulty, Simo and Vu-

Quoc [20-25] derived the equations of motion of the beam in the inertial frame and took 

the geometric nonlinearity into account. Mcrobie and Lasenby [26] further presented a 

new formulation of Simo-Vu Quoc rods based on geometric algebra [27]. This 

formulation is easier to learn and manipulate. Damaren and Sharf [28] studied how 

nonlinear terms in the equations of motion of the beam influence the responses. To capture 

the motion-induced stiffness terms which are associated with the high-speed rotation of 

the beam, Liu and Hong [29] used non-Cartesian deformation variables to derive the 

equations of motion of the flexible beam. Similarly, Kane et al. [30] and Yoo et al. [31] 

studied the 3D dynamic problem of a beam attached to a moving rigid base under a small 

deformation assumption. Wu et al. [32] further took into account the geometric 

nonlinearity of the flexible beam. 

A beam manipulated by a revolute-prismatic joint can either slide through the joint 

or undergo large overall motion. Yuh and Young [33] derived the equations of motion of 

the dynamic problem through Newton’s Second Law. They used the assumed mode 

method to obtain approximate solutions and validated the model by experiments. In order 

to consider geometric nonlinearity and shear deformation of the flexible beam, Vu-Quoc 

and Li [34] studied the dynamic problems based on geometrically exact theory [22]. Al-

Bedoor and Khulief [35] used a fixed number of constant-domain elements to discretize 
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the sliding beam. To deal with the time-dependent boundary condition at the channel 

orifice, they introduced a transition element with variable stiffness. Kalyoncu [36] 

proposed a mathematical model of a flexible robot manipulator with special boundary 

conditions such that the tip end of the manipulator traces a multi-straight-line path. Rotary 

inertia, axial shortening and gravitation were also considered in the model. 

The aforementioned studies are all aimed at 2D problems, while most mechanical 

devices in engineering practice move in 3D space. The dynamic analysis of the 3D 

problems becomes more difficult for that the configuration space of the 3D flexible beam 

is a nonlinear differentiable manifold (ℝ3 × SO(3)). Recently, Korayem et al. [37, 38] 

derived the equations of motion of N-flexible link manipulators. But they did not take 

account of the large deformations of the flexible beam. 

In this paper, the model proposed by Vu-Quoc and Li [33] is extended to the 3D case. 

A flexible beam manipulated by a revolute-prismatic joint will not only undergo large 

overall motion but also slide through the joint. To investigate the geometric nonlinear 

dynamic problem of this kind of structures, the corotational method [39-41], which has 

high accuracy and efficiency [41]，is used. The key idea of the corotational method is to 

decompose the motion of the element into rigid body motion and pure deformation. By 

introducing a rotational frame, the rigid body motions generated by not only the 

deformation of the beam but also the revolute-prismatic joint can be removed 

conveniently. Then, the pure deformation of the element can be easily measured in the 
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rotational frame (the local system). Different assumptions can be made to describe the 

local deformation of the element. In addition, the strain energy and kinetic energy of the 

elements are derived with the same shape functions to ensure the consistency of the 

element. The above element-independent framework is consistent with the idea of Nour-

Omid and Rankin’s [39, 40] corotational method. Then, a ‘standard beam element’ can be 

embedded within the framework. To consider the shear deformation and rotary inertia, 

the interdependent interpolation element (IIE) [42] is embedded within the framework. 

Because the material configuration of the beam will change with time, variable-domain 

IIEs are used to discretize the system in space. The Hilber-Hughes-Taylor method (HHT) 

[43, 44] is used to discretize the system in time to maintain the numerical stability. 

 

2. 3D beam kinematics 

As shown in Fig. 1, a flexible beam manipulated by a revolute-prismatic joint can 

slide through the joint and undergo large overall motion. The deformation of the beam 

can be decomposed into a rigid motion manipulated by the joint (Fig. 1) and a superposed 

finite deformation (Fig. 2). To describe the finite deformation conveniently, the sliding 

undeformed beam (Fig. 1) is chosen as the material configuration. Interest is confined to 

the deformation of the part outside the joint channel of the material beam. The time-

varying material configuration can be expressed as 

 

 ℬm = {(𝑋1, 𝑋2, 𝑋3) ∈ ℝ3|𝑋1 ∈ [0, 𝐿(𝑡)], 𝑋2 ∈ [−ℎ2 , ℎ2] , 𝑋3 ∈ [−𝑏2 , 𝑏2]} (1) 
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Fig. 1  Description of the rigid motion of the beam 

 

where  𝐿(𝑡), ℎ and 𝑏 are the length, height and width of the material beam outside the 

joint channel, respectively. The material frame {𝑬1, 𝑬2, 𝑬3} is fixed on the revolute-

prismatic joint. The origin 𝑂 of the material coordinate system is located at the center of 

the channel orifice. An inertial coordinate system (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3  is set up for the 

spatial configuration  ℬs  with basis vectors {𝒆1, 𝒆2, 𝒆3} . The spatial and material 

coordinate systems have the same origin. The relationship between the material and 

spatial basis vectors can be denoted by 

 

 𝑬𝑖 = 𝑹0(𝑡)𝒆𝑖, 𝑖 = 1,2,3 (2) 

 

where 𝑹0(𝑡) = [𝒓10, 𝒓20, 𝒓30] ∈ SO(3) is a prescribed orthogonal matrix and SO(3) is 

the noncommutative Lie group [45]. 

A plane cross-section assumption is introduced. At an arbitrary material point 𝑷 =
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(𝑋, 0,0) ∈ ℬm of the beam centroidal line, an orthonormal frame {𝒕1(𝑋), 𝒕2(𝑋), 𝒕3(𝑋)} 
may be defined which can describe the finite rotations of the cross-section corresponding 

to the point. 𝒕1(𝑋) = 𝒕2(𝑋) × 𝒕3(𝑋) is the normal basis vector of the section, as shown 

in Fig. 2. The orthogonal matrices 𝑹g ∈ SO(3) and 𝑹 ∈ SO(3) describe the rotations 

from the material and spatial basis vectors to the orthonormal triads 𝒕𝑖  (𝑖 = 1,2,3), 

respectively, i.e. 

 

 𝒕𝑖(𝑋) = 𝑹g(𝑋)𝑬𝑖 = 𝑹g(𝑋)𝑹0𝒆𝑖 = 𝑹(𝑋)𝒆𝑖, 𝑖 = 1,2,3 (3) 

 

 

Fig. 2  Description of the finite deformation of the beam 

 

The material point 𝑷  and the corresponding spatial point 𝑷∗ ∈ ℬs  have the 

following relationship 
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   𝑷∗ = 𝑷 + 𝒖(𝑋) (4) 

 

where 𝒖(𝑋) denotes the displacement vector of the material point 𝑷. It should be noted 

that 𝒖 is not the absolute displacement but the relative displacement to the material 

configuration. The material point 𝑷a = (𝑋, 𝑋2, 𝑋3) ∈ ℬm has the same cross-section as 

the point 𝑷 and the corresponding spatial point 𝑷a∗ ∈ ℬs satisfies 

 

 𝑷a∗ = 𝑷∗ + 𝑋2𝒕2(𝑋) + 𝑋3𝒕3(𝑋) = 𝑷∗ + 𝑹(𝑋)(𝑋2𝒆2 + 𝑋3𝒆3) (5) 

 

According to Eqs. (4) and (5), the configuration space of the 3D flexible beam is a 

nonlinear differentiable manifold due to the introduction of 𝑹(𝑋). The displacement 

vector 𝒖(𝑋) and the rotation matrix 𝑹(𝑋) of the material points of the beam centroidal 

line directly determine the spatial configuration of the beam. The displacement space of 

the beam can be defined as follows 

 

 𝓠̅ = {(𝒖(𝑷), 𝑹(𝑷)) ∈ ℝ3 × SO(3)|𝑷 = (𝑋, 0,0) ∈ ℬm} (6) 

 

Euler’s theorem indicates that the rotation matrix 𝑹 can be parameterized using the 

rotational vector 𝜽 = [𝜃1 𝜃2 𝜃3]T. The relation is given by Rodrigues’ formula 

 

 𝑹(𝜽) = 𝑰 + sin𝜃𝜃 𝜽̃ + 1 − cos𝜃𝜃2 𝜽̃𝜽̃ = exp(𝜽̃) (7) 

 

where 𝜃 = √𝜽T𝜽  and 𝜽̃ ∈ so(3) . so(3)  denotes the Lie algebra of SO(3)  [45]. ̃ : ℝ3 → so(3) denotes the Lie algebra isomorphism, i.e. 
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 𝜽̃ = [ 0 −𝜃3 𝜃2𝜃3 0 −𝜃1−𝜃2 𝜃1 0 ] , 𝜽̃𝒉 = 𝜽 × 𝒉, ∀𝒉 ∈ ℝ3 (8) 

 

The operator vect( ) is defined by 

 

 vect(𝜽̃) = 𝜽 (9) 

 

Next, define a space 𝓠 which is isomorphic to the displacement space 𝓠̅, i.e. 

 

 𝓠 = {(𝒖(𝑷), 𝜽(𝑷)) ∈ ℝ3 × ℝ3|𝑷 = (𝑋, 0,0) ∈ ℬm} (10) 

 

The part of the beam ℬm inside the joint channel is assumed to be non-deformable, 

which implies that the beam has a clamped boundary condition at the channel orifice [10, 

34]. Then 𝒖(𝑷0) = 0, 𝜽(𝑷0) = 0, where 𝑷0 = (0,0,0) ∈ ℬm is the material point at 

the channel orifice. 

 

3. Local kinematic description of the variable-domain beam 

elements 

The sliding beam can be divided into 𝑛 elements with the lengths 𝑙0(𝑡) = 𝐿(𝑡)/𝑛 

which are changing in time. As shown in Fig. 3, the displacements of nodes 1 and 2 of 

the 𝑖 th element can be denoted by (𝒖1, 𝜽1) = (𝒖(𝑷), 𝜽(𝑷))𝑷=((𝑖−1)𝐿/𝑛,0,0) ∈ 𝓠  and (𝒖2, 𝜽2) = (𝒖(𝑷), 𝜽(𝑷))𝑷=(𝑖𝐿/𝑛,0,0) ∈ 𝓠, respectively. For convenience, the subscript 𝑖 
of variables which are associated with the 𝑖 th element will be ignored. The global 
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displacement vector of the 𝑖th element is defined by 

 𝒒 = [𝒖1T 𝜽1T 𝒖2T 𝜽2T]T (11) 

 

As shown in Fig. 3, 𝒕𝑗1 and 𝒕𝑗2 (𝑗 = 1,2,3), denote two unit triads fixed to nodes 1 and 

2. Then two orthogonal matrices 𝑹1 and 𝑹2 are used to specify the orientation of the 

two triads, respectively, 

 

 𝑹𝑖 = [𝒕1𝑘 𝒕2𝑘 𝒕3𝑘], 𝑘 = 1,2 (12) 

 

The spatial positions of the two nodes on the material configuration are expressed as 

 

 

Fig. 3  Description of the deformation of the beam element 

 

 𝑿1 = (𝑖 − 1)𝑙0𝑹0𝒆1, 𝑿2 = 𝑖𝑙0𝑹0𝒆1 (13) 
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3.1. Corotational frame 

The basis vectors of the corotational frame are denoted by {𝒓1, 𝒓2, 𝒓3}. The origin 

of the frame is taken at node 1, and its orientation is defined by an orthogonal matrix  

 

 𝑹r = [𝒓1 𝒓2 𝒓3] (14) 

 

The method proposed by Le et al. [41] is used to defined the orientation of 𝒓1, 𝒓2 and 𝒓3, as follows 

 

 𝑙c = √(𝑿2 + 𝒖2 − 𝑿1 − 𝒖1)T(𝑿2 + 𝒖2 − 𝑿1 − 𝒖1) (15) 

 

 𝒓1 = 𝑿2 + 𝒖2 − 𝑿1 − 𝒖1𝑙c  (16) 

 

 
𝒑 = 12 (𝒑1 + 𝒑2),𝒑𝑘 = 𝑹𝑘[0 1 0]T = 𝑹𝑘g𝑹0[0 1 0]T = 𝑹𝑘g𝒓20, 𝑘 = 1,2 (17) 

 

 𝒓3 = 𝒓1 × 𝒑‖𝒓1 × 𝒑‖ , 𝒓2 = 𝒓3 × 𝒓1 (18) 

 

where 𝑙c  is the distance between the nodes and 𝑹𝑘g  are the orthogonal matrices to 

describe the rotation from 𝒓𝑗0 to 𝒕𝑗𝑘(𝑗 = 1, 2, 3). 

 

3.2. Local displacement field of elements 

The pure deformation of the element is measured in the rotational frame. Due to the 

particular choice of the local system, the local displacements at node 1 are zero. Moreover, 
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at node 2, the only nonzero displacement is along 𝒓1  and can easily be evaluated 

according to 

 

 𝑢̅ = 𝑙c − 𝑙0 (19) 

 

Here and hereafter, an overbar denotes a deformational kinematic quantity.  

The local rotation is defined by the orthogonal matrix 𝑹̅𝑘, as shown in Fig. 3. The 

global rotation 𝑹𝑘 at node 𝑘 can be expressed in terms of the rigid rotation 𝑹r of the 

corotational frame followed by the local rotation 𝑹̅𝑘. As shown in Fig. 3, 𝑹𝑘 can also 

be obtained through the product 𝑹𝑘g𝑹0, i.e., 

 

 𝑹𝑘 = 𝑹r𝑹̅𝑘 = 𝑹𝑘g𝑹0, 𝑘 = 1,2 (20) 

 

The local rotation 𝑹̅𝑘 can be parameterized using a rotational vector from Eqs. (7)-(9). 

Consequently, we can define a local displacement vector with seven components, i.e., 

 

 𝒒̅ = [𝑢̅ 𝜽̅1T 𝜽̅2T]T (21) 

 

where 

 

 𝜽̅𝑘 = vect(ln(𝑹̅𝑘)), 𝑘 = 1,2 (22) 

 

To consider the shear deformation and rotary inertia, the IIE [42], which is locking-

free, is used to describe the local displacement field of the element. The shape functions 
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of this element are based on the exact solution of homogeneous form of the equilibrium 

equations for a Timoshenko beam. It should be noted that this exact solution is based on 

linear theory. The element should be small enough to ensure that only small deformations 

occur in the local system. Let 𝑢̿𝑖(𝜒)(𝑖 = 1, 2, 3)  and 𝜃̿𝑖(𝜒)(𝑖 = 1, 2, 3)  denote the 

local displacements and the local cross-section rotations of a material point with local 

coordinate 𝜒. A double overbar denotes a local kinematic quantity of an arbitrary material 

point. Considering the particular choice of the local displacement vector 𝒒̅, the local 

displacement field of the element can be expressed as [42] 

 

 

[  
   
 𝑢̿1𝑢̿2𝑢̿3𝜃̿1𝜃̿2𝜃̿3]  

   
 
=

[  
   
 𝑁2 0 0 0 0 0 00 0 0 𝑁33 0 0 𝑁430 0 −𝑁32 0 0 −𝑁42 00 𝑁1 0 0 𝑁2 0 00 0 𝑁52 0 0 𝑁62 00 0 0 𝑁53 0 0 𝑁63]  

   
 𝒒̅ (23) 

 

where 

 

 

𝑁1 = 1 − 𝜒𝑙0 , 𝑁2 = 𝜒𝑙0 , 𝑁3𝑗 = 1𝜇𝑗 𝜒 [6𝛺𝑗 (1 − 𝜒𝑙0) + (1 − 𝜒𝑙0)2] ,
𝑁4𝑗 = − 1𝜇𝑗 𝜒 [6𝛺𝑗 (1 − 𝜒𝑙0) + 𝜒𝑙0 − 𝜒2𝑙02 ] ,
𝑁5𝑗 = 1𝜇𝑗 (𝜇𝑗 − 12𝛺𝑗𝜒𝑙0 − 4𝜒𝑙0 + 3𝜒2𝑙02 ) ,
𝑁6𝑗 = 1𝜇𝑗 (12𝛺𝑗𝜒𝑙0 − 2𝜒𝑙0 + 3𝜒2𝑙02 ),   𝛺𝑗 = 𝐸𝐼𝑗𝐺𝐴𝑗𝑙02  ,
𝜇𝑗 = 1 + 12𝛺𝑗 ,    𝑗 = 2,3 

(24) 
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Here, 𝐸𝐼𝑗 is the principal bending stiffness relative to 𝒕𝑗 and  𝐺𝐴𝑗  is the shear stiffness 

along axis 𝒕𝑗  (𝑗 = 2,3). The local coordinate 𝜒 and the material coordinate 𝑋 have the 

following relationship: 

 

 𝜒 = 𝑋 − (𝑖 − 1)𝑙0 (25) 

 

3.3. Local elastic force vector and Local tangent stiffness matrix 

To consider the axial deformation, bending deformation and shear deformation of 

the beam, the strain energy of a beam element can be expressed as [23] 

 

 𝐸P = 12∫ 𝜿𝓒𝜿Td𝜒𝑙0  (26) 

 

The strain vector 𝜿 and elasticity matrix 𝓒 are given by 

 

 𝜿 = [𝜕𝑢̿1𝜕𝜒 −𝜕𝑢̿3𝜕𝜒 − 𝜃̿2 𝜕𝑢̿2𝜕𝜒 − 𝜃̿3 𝜕𝜃̿1𝜕𝜒 𝜕𝜃̿2𝜕𝜒 𝜕𝜃̿3𝜕𝜒 ] (27) 

 

 𝓒 = diag[𝐸𝐴, 𝐺𝐴2, 𝐺𝐴3, 𝐺𝐽, 𝐸𝐼2, 𝐸𝐼3 ] (28) 

 

where 𝐸𝐴 and 𝐺𝐽 are the axial stiffness and torsional stiffness, respectively. Using Eqs. 

(23)-(28), the local elastic force vector and tangent stiffness matrix are obtained as 

 

 𝒇L = 𝜕𝐸P𝜕𝒒̅ = 𝑲L𝒒̅ = [𝑓L1 𝑓L2 𝑓L3 𝑓L4 𝑓L5 𝑓L6 𝑓L7]T (29) 
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 𝑲L = 𝜕𝒇L𝜕𝒒̅ =

[  
   
   
   
   
  𝐸𝐴𝑙0 0 0 0 0 0 00 𝐺𝐽𝑙0 0 0 −𝐺𝐽𝑙0 0 00 0 4𝜆12𝜇22𝑙0 0 0 2𝜆22𝜇22𝑙0 00 0 0 0 0 0 00 0 0 4𝜆13𝜇32𝑙0 0 0 2𝜆23𝜇32𝑙00 −𝐺𝐽𝑙0 0 0 𝐺𝐽𝑙0 0 00 0 2𝜆22𝜇22𝑙0 0 0 4𝜆12𝜇22𝑙0 00 0 0 2𝜆23𝜇32𝑙0 0 0 4𝜆13𝜇32𝑙0]  

   
   
   
   
  

 (30) 

 

where 

 

 
𝜆1𝑗 = 9𝐺𝐴𝑗𝑙02𝛺𝑗2 + 36𝐸𝐼𝑗𝛺𝑗2 + 6𝐸𝐼𝑗𝛺𝑗 + 𝐸𝐼𝑗 ,𝜆2𝑗 = 18𝐺𝐴𝑗𝑙02𝛺𝑗2 − 72𝐸𝐼𝑗𝛺𝑗2 − 12𝐸𝐼𝑗𝛺𝑗 + 𝐸𝐼𝑗 ,   𝑗 = 2,3  (31) 

 

4. Nonlinear equation of motion 

According to the analysis in [1, 46], the Hamilton’s principle for a system of 

changing mass [7] can be expressed as  

 

 δ∫ (𝐸K − 𝐸P)d𝑡𝑡2𝑡1 + ∫ δ𝑊d𝑡𝑡2𝑡1 = 0 (32) 

 

The kinetic energy 𝐸K of a beam element can be expressed as 

 

 𝐸K = 12∫ (𝒖̇gT𝐴𝜌𝒖̇g + 𝒘̇gT𝑰𝜌𝒘̇g)dχ𝑙0  (33) 
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where 𝒖̇g and 𝒘̇g are the translational velocity and the spatial angular velocity of the 

cross-section. 𝐴𝜌  is the mass per unit of undeformed beam length.  𝑰𝜌  is the spatial 

inertia dyadic tensor defined as 

 

 𝑰𝜌 = 𝑹𝑱𝜌𝑹T (34) 

 

where 𝑱𝜌 is the material inertia dyadic tensor (constant with respect to time). The virtual 

work of the external forces is 

 

 δ𝑊 = δ𝒒gT𝒇 (35) 

 

where 𝒇 denotes the external force vector. 

 

4.1. Elastic force vector 

This section is devoted to the derivation of the elastic force vector. The term δ∫ 𝐸Pd𝑡𝑡2𝑡1  in Eq. (32) can be expressed in the global and local systems, respectively, i.e. 

 

 δ∫ 𝐸Pd𝑡𝑡2𝑡1 = ∫ δ𝒒gT𝒇Gd𝑡𝑡2𝑡1 = ∫ δ𝒒̅T𝒇Ld𝑡𝑡2𝑡1  (36) 

 

where 𝒇G denotes the global elastic force vector. δ𝒒gT and δ𝒒̅T are defined by 

 

 δ𝒒g = [δ𝒖1T δ𝒘1gT δ𝒖2T δ𝒘2gT]T (37) 

 

 δ𝒒̅ = [δ𝑢̅ δ𝒘̅1T δ𝒘̅2T]T (38) 
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It should be noted that δ𝒘𝑘g(𝑘 = 1,2)  are non-additive pseudo-vectors. The non-

additive (δ𝒘𝑘) and additive (δ𝜽𝑘) pseudo-vectors (as defined in Eq. (11)) have the 

following relationship [44]: 

 

 δ𝒘𝑘g = 𝑻(𝜽𝑘)δ𝜽𝑘, 𝑘 = 1,2 (39) 

 

where the operator 𝑻( ) is defined (using 𝜽 as an example) by 

 

 𝑻(𝜽) = sin𝜃𝜃 𝑰 + 1 − cos𝜃𝜃2 𝜽̃ + 𝜃 − sin𝜃𝜃3 𝜽̃𝜽̃ (40) 

 

Considering the local rotation is assumed to be small [41, 47] and using Eq. (40), the 

following approximation is adopted 

 

 δ𝒘̅𝑘 = 𝑻(𝜽̅𝑘)δ𝜽̅𝑘 ≈ δ𝜽̅𝑘, 𝑘 = 1,2 (41) 

 

The following derivation is to establish a relationship betweenδ𝒒gT and δ𝒒̅T. Then, 

the global elastic force vector 𝒇G  will be obtained by using Eq. (36). First, we will 

investigate the component δ𝑢̅ in δ𝒒̅T. 

Since the beam is manipulated by the revolute-prismatic joint, the prescribed 

orthogonal matrix 𝑹0 as defined in Eq. (2) and the element length 𝑙0 are functions of 

time. By taking the variation of Eq. (13), one obtains 

 

 δ𝑿1 = (𝑣𝑹0 + 𝐿𝑹̇0) 𝑖 − 1𝑛 𝒆1δ𝑡, δ𝑿2 = (𝑣𝑹0 + 𝐿𝑹̇0) 𝑖𝑛 𝒆1 δ𝑡 (42) 
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where 𝑣 = d𝐿/d𝑡 = d𝑋/d𝑡 denotes the sliding speed of the beam. It should be pointed 

out that 𝑹0, 𝑹̇0, 𝐿 and 𝑣 are prescribed according to the manipulation of the revolute-

prismatic joint. Using Eq. (42) and taking the variation of Eqs. (15) and (19), one obtains 

 

 δ𝑙𝑐 = 𝑼̅δ𝒒g + (𝑣𝑛 𝒓10T𝒓1 + 𝑙0𝒓̇10T𝒓1 ) δ𝑡 (43) 

 

 δ𝑢̅ = 𝑼̅δ𝒒g + [𝑣𝑛 (𝒓10T𝒓1 − 1) + 𝑙0𝒓̇10T𝒓1] δ𝑡 (44) 

 

where 

 

 𝑼̅ = [−𝒓1T 𝟎1×3 𝒓1T 𝟎1×3] (45) 

 

Next, we will investigate the components δ𝒘̅1 and δ𝒘̅2 in δ𝒒̅T. The variations of 𝑹̅𝑘, 𝑹𝑟 and 𝑹𝑘g  can be expressed as [44] 

 

 δ𝑹̅𝑘 = δ𝒘̅𝑘̃ 𝑹̅𝑘 , δ𝑹𝑟 = δ𝒘𝑟g̃ 𝑹𝑟, δ𝑹𝑘g = δ𝒘𝑘g̃𝑹𝑘g , 𝑘 = 1,2 (46) 

 

The orthogonal matrix 𝑹r transforms a vector 𝒙g and a tensor 𝒙g̃ from global to local 

coordinates according to 

 

 𝒙e = 𝑹𝑟T𝒙g, 𝒙ẽ = 𝑹𝑟T𝒙g̃𝑹𝑟 (47) 

 

Considering the property of the Lie algebra isomorphism ̃ T = − ̃  and using Eqs. (20) 

and (46), δ𝑹̅𝑘 can be further expressed as  
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δ𝑹̅𝑘 = δ𝑹𝑟T𝑹𝑘g𝑹0 + 𝑹𝑟Tδ𝑹𝑘g𝑹0 + 𝑹𝑟T𝑹𝑘gδ𝑹0= (−𝑹𝑟Tδ𝒘𝑟g̃ 𝑹𝑟 + 𝑹𝑟Tδ𝒘𝑘g̃ 𝑹𝑟) 𝑹̅𝑘 + 𝑹𝑟T𝑹𝑘g𝑹̇0𝑹0T𝑹𝑘gT𝑹𝑟δ𝑡𝑹̅𝑘= (−𝑹𝑟Tδ𝒘𝑟g̃ 𝑹𝑟 + 𝑹𝑟Tδ𝒘𝑘g̃ 𝑹𝑟 + 𝑹̅𝑘𝑹0T𝑹̇0𝑹̅𝑘Tδ𝑡) 𝑹̅𝑘 

(48) 

 

As in Eq. (47), following definitions are introduced: 

 

 

δ𝒘𝑘ẽ = 𝑹𝑟Tδ𝒘𝑘g̃𝑹𝑟δ𝒘𝑟ẽ = 𝑹𝑟Tδ𝒘𝑟g̃ 𝑹𝑟δ𝒘0𝑘̃ = 𝑹̅𝑘𝑹0T𝑹̇0𝑹̅𝑘Tδ𝑡 (49) 

 

Inserting Eq. (49) into Eq. (48) and using Eq. (46), δ𝒘̅𝑘̃  can be expressed in vector form, 

i.e., 

 

 δ𝒘̅𝑘 = δ𝒘𝑘e − δ𝒘𝑟e + 𝒘̇0𝑘δ𝑡 (50) 

 

where 

 

 𝒘̇0𝑘 = vect(𝑹̅𝑘𝑹0T𝑹̇0𝑹̅𝑘T) = 𝑹̅𝑘vect(𝑹0T𝑹̇0) (51) 

 

As shown in Eq. (15), δ𝒘̅𝑘 is related to δ𝒘𝑘e  and δ𝒘𝑟e. Next, we will investigate these 

two terms. Let 

 

 δ𝒒ge = 𝑬Tδ𝒒g, 𝑬 = [𝑹𝑟 𝟎 𝟎 𝟎𝟎 𝑹𝑟 𝟎 𝟎𝟎 𝟎 𝑹𝑟 𝟎𝟎 𝟎 𝟎 𝑹𝑟] (52) 

 

with 𝟎 denoting the 3 × 3 zero matrix. Further, the term δ𝒘𝑘e(𝑘 = 1,2) in Eq. (50) 
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can be rewritten as 

 

 [δ𝒘1eδ𝒘2e] = 𝜕𝒘𝑟e𝜕𝒒ge 𝜕𝒒ge𝜕𝒒g δ𝒒g = [𝟎 𝑰 𝟎 𝟎𝟎 𝟎 𝟎 𝑰] 𝑬Tδ𝒒g (53) 

 

Next, the relationships between δ𝒘𝑘e(𝑘 = 1,2) and δ𝒒g are obtained.  

From Eqs. (46) and (47), one obtains 

 

 δ𝒘𝑟ẽ = 𝑹𝑟Tδ𝑹𝑟 , δ𝒘𝑟e = vect(𝑹𝑟Tδ𝑹𝑟) = [−𝒓2Tδ𝒓3−𝒓3Tδ𝒓1𝒓2Tδ𝒓1 ] (54) 

 

with −𝒓2Tδ𝒓3, −𝒓3Tδ𝒓1 and 𝒓2Tδ𝒓1 given in Appendix A. Inserting these terms into Eq. 

(54), one obtains 

 

 δ𝒘𝑟e = 𝑮1T𝑬Tδ𝒒g + 𝑮2Tδ𝑡 (55) 

 

where 

 

 𝑮1T =
[  
   
 0 0 𝜂𝑙𝑐 𝜂122 −𝜂112 0 0 0 − 𝜂𝑙𝑐 𝜂222 −𝜂212 00 0 1𝑙𝑐 0 0 0 0 0 − 1𝑙𝑐 0 0 00 − 1𝑙𝑐 0 0 0 0 0 1𝑙𝑐 0 0 0 0]  

   
 
 (56) 

 

with 

 

 𝜂 = 𝒓1 ∙ 𝒑𝒓2 ∙ 𝒑 , 𝜂𝑖𝑗 = 𝒓𝑗 ∙ 𝒑𝑖𝒓2 ∙ 𝒑 , 𝑖, 𝑗 = 1,2 (57) 

 

and 
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 𝑮2T =
[  
   
  −(𝒓1T𝒑)𝒆3T𝑹𝑟T 𝑣𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 + 𝒆3T 𝑹̅1 + 𝑹̅22 𝑹0T𝒓̇20𝒓2T𝒑−𝒆3T𝑹𝑟T 𝑣𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐−𝒆2T𝑹𝑟T 𝑣𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 ]  

   
  = [𝐺21𝐺22𝐺23] (58) 

 

Inserting Eqs. (53) and (55) into Eq. (50),  

 

 

[δ𝒘̅1δ𝒘̅2] = ([𝟎 𝑰 𝟎 𝟎𝟎 𝟎 𝟎 𝑰] − [𝑮1T𝑮1T])𝑬Tδ𝒒g + [−𝑮2T + 𝒘̇01−𝑮2T + 𝒘̇02] δ𝑡= 𝑷1𝑬Tδ𝒒g + 𝑷2δ𝑡 

(59) 

 

Further, inserting Eqs. (44) and (59) into Eq. (38), δ𝒒̅ can be rewritten as 

 

 δ𝒒̅ = 𝑩1δ𝒒g + 𝑩2δ𝑡 (60) 

 

where 

 

 𝑩1 = [ 𝑼̅𝑷1𝑬T] , 𝑩2 = [𝑣 (𝒓10T𝒓1 − 1) + 𝐿𝒓̇10T𝒓1𝑛𝑷2 ] (61) 

 

Finally, by inserting Eq. (60) into Eq. (36) the relationship between the global and local 

elastic force vector is obtained, i.e. 

 

 𝒇G = 𝑩1T𝒇L (62) 
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4.2. Inertia force vector 

This section is devoted to the derivation of the inertia force vector. The material 

angular velocity is defined by 

 

 𝜴 = 𝑹T𝒘̇g, 𝜴̃ = 𝑹T𝑹̇ = 𝑹T𝒘̇g̃𝑹 (63) 

 

with 𝑹 as defined in Eq. (3). The kinetic energy of the element can be rewritten in the 

material form, i.e. 

 

 𝐸K = 12∫ (𝒖̇gT𝐴𝜌𝒖̇g + 𝜴T𝑱𝜌𝜴)dχ𝑙0  (64) 

 

Inserting Eq. (64) into Eq. (32) and integrating δ∫ 𝐸Kd𝑡𝑡2𝑡1  by parts, one obtains (see [48] 

for detailed derivations) 

 

 

δ∫ 𝐸Kd𝑡𝑡2𝑡1 = −∫ ∫ (δ𝒖gT𝐴𝜌𝒖̈g + δ𝜣T(𝑱𝜌𝜴̇ + 𝜴̃𝑱𝜌𝜴)) dχ𝑙0 d𝑡𝑡2𝑡1
= −∫ δ𝒒gT𝒇Id𝑡𝑡2𝑡1  

(65) 

 

where 𝒇I denotes the inertia force vector and δ𝜣 is the material spin variable defined 

by 

 

 δ𝜣 = 𝑹Tδ𝒘g, δ𝜣̃ = 𝑹Tδ𝑹 (66) 

 

The translational displacement variables and finite rotation variables in Eq. (65) will 



25 

 

now be derived. First, we consider the translational displacement variables.The spatial 

position of the material point 𝑷 = ((𝑖 − 1)𝐿/𝑛 + 𝜒, 0,0) on the 𝑖 th element can be 

expressed as 

 

 

𝑷g = 𝑿1 + 𝒖1 + (𝜒 + 𝑢̿1)𝒓1 + 𝑢̿2𝒓2 + 𝑢̿3𝒓3= 𝑁1𝑿1 + 𝑁2𝑿2 + 𝑵1𝒒g + 𝑹𝑟𝒖𝑙 (67) 

 

where 

 

 𝑵1 = [𝑁1𝑰 𝟎 𝑁2𝑰 𝟎] (68) 

 

 𝒖𝑙 = 𝑵2 [𝜽̅1𝜽̅2] (69) 

 

with 

 

 𝑵2 = [0 0 0 0 0 00 0 𝑁33 0 0 𝑁430 −𝑁32 0 0 −𝑁42 0 ] (70) 

 

The shape functions in Eqs. (67)-(70) are given by Eq. (24). By taking the derivation of 

Eq. (66), one obtains 

 

 δ𝑷g = δ𝒖g = 𝑯1δ𝑡 + 𝑹𝑟𝑯2𝑬Tδ𝒒g (71) 

 

with 𝑯1  and 𝑯2  given in Appendix B. Obviously, the translational velocity and 

acceleration of the material point can be evaluated from 
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 𝒖̇g = 𝑯1 + 𝑹𝑟𝑯2𝑬T𝒒̇g (72) 

 

 𝒖̈g = 𝑯̇1 + 𝑹𝑟(𝒘̇𝑟ẽ𝑯2 + 𝑯̇2 − 𝑯2𝑬̇𝑟)𝑬T𝒒̇g + 𝑹𝑟𝑯2𝑬T𝒒̈g (73) 

 

with 𝒒̇g = [𝒖̇1T 𝒘̇1T 𝒖̇2T 𝒘̇2T]T and 𝒒̈g = [𝒖̈1T 𝒘̈1T 𝒖̈2T 𝒘̈2T]T. 𝑯̇1, 𝑯̇2, 𝑹̇𝑟 and 𝑬̇𝑟 are given in Appendix B. 

Next, we consider the finite rotation variables. The local cross-section rotation can 

be expressed as 

 

 𝜽̅ = 𝑵3 [𝜽̅1𝜽̅2] (74) 

 

with 

 

 𝑵3 = [𝑁1 0 0 𝑁2 0 00 𝑁52 0 0 𝑁62 00 0 𝑁53 0 0 𝑁63] (75) 

 

Using Eqs. (47) and (50), the variation of the spatial spin 𝒘g is evaluated as [41] 

 

 δ𝒘g = 𝑹𝑟(δ𝒘𝑟𝑒 + δ𝒘̅) (76) 

 

With the approximation adopted in Eq. (41) and using Eq. (59), the variation of Eq. (74) 

can be evaluated using 

 

 δ𝒘̅ ≈ δ𝜽̅ = 𝑵3𝑷1𝑬Tδ𝒒g + (𝑵̇3 [𝜽̅1𝜽̅2] + 𝑵3𝑷2) δ𝑡 (77) 

 

Then inserting Eqs. (55) and (77) into Eq. (76), δ𝒘g can be rewritten as 
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 δ𝒘g = 𝑹𝑟𝑯3𝑬Tδ𝒒g + 𝑹𝑟𝑯4δ𝑡 (78) 

 

where 

 

 𝑯3 = 𝑮1T + 𝑵3𝑷1 = 1𝑙𝑐 (𝑰 − 𝑵3 [𝑰𝑰])𝑵4 + 𝑵3 [𝟎 𝑰 𝟎 𝟎𝟎 𝟎 𝟎 𝑰] (79) 

 

 𝑯4 = 𝑮2T + 𝑵̇3 [𝜽̅1𝜽̅2] + 𝑵3𝑷2 (80) 

 

with 𝑵4  given in Appendix B (B.20). Then the spatial angular velocity 𝒘̇g  and 

acceleration 𝒘̈g have the following expressions 

 

 𝒘̇g = 𝑹𝑟𝒘̇𝑒, 𝒘̇𝑒 = 𝑯3𝑬T𝒒̇g + 𝑯4 (81) 

 

 

𝒘̈g = 𝑹𝑟𝒘̈e,   𝒘̈e = (𝒘̇𝑟𝑒̃𝑯3 + 𝑯̇3 − 𝑯3𝑬̇𝑟)𝑬T𝒒̇g + 𝑯3𝑬T𝒒̈g + 𝒘̇𝑟𝑒̃𝑯4 + 𝑯̇4 

(82) 

 

It should be noted that 𝒘̇e and 𝒘̈e are defined for convenience. The time derivative of 𝒘̇e is not equal to 𝒘̈e. By taking the time derivative of Eqs. (79) and (80), one obtains 

 

 

𝑯̇3 = 𝑮̇1T + 𝑵3𝑷̇1 + 𝑵̇3𝑷1 = 𝑮̇1T − 𝑵3 [𝑮̇1T𝑮̇1T] + 𝑵̇3𝑷1= 𝑙𝑐̇𝑙𝑐2 (𝑵3 [𝑰𝑰] − 𝑰)𝑵4 + 𝑵̇3 ([𝟎 𝑰 𝟎 𝟎𝟎 𝟎 𝟎 𝑰] − 1𝑙𝑐 [𝑰𝑰]𝑵4) 

(83) 

 

 𝑯̇4 = 𝑮̇2T + 𝑵3𝑷̇2 + 𝑵̈3 [𝜽̅1𝜽̅2] + 𝑵̇3𝑷1𝑬T𝒒̇g + 2𝑵̇3𝑷2 (84) 
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By noting that 𝑹̇T𝒘̇ = 𝟎 and taking the time derivative of Eq. (63), one obtains 

 

 𝜴̇ = 𝑹T𝒘̈g (85) 

 

Inserting Eqs. (66), (71), (78), (82) and (85) into Eq. (65), the inertia force vector is 

obtained as  

 

 

𝒇I = ∫ [𝑬𝑯2T𝑹𝑟T𝐴𝜌𝑯̇1 + 𝑬𝑯2T𝐴𝜌(𝒘̇𝑟ẽ𝑯2 + 𝑯̇2 − 𝑯2𝑬̇𝑟)𝑬T𝒒̇g𝑙0 + 𝑬𝑯2T𝐴𝜌𝑯2𝑬T𝒒̈g + 𝑬𝑯3T𝑹̅(𝑱𝜌𝑹̅T𝒘̈e + 𝜴̃𝑱𝜌𝜴)]dχ 

(86) 

 

where 𝑹̅ denotes the local rotation matrix. Assuming the local rotation is small, 𝑹̅ can 

be approximately expressed as 

 

 𝑹̅ = 𝑹𝑟T𝑹 ≈ (𝑰 + 𝜽̃̅) (87) 

 

Finally, from Eqs. (32), (36), (62), (65) and (86), the equation of motion of the 

element is obtained as 

 

 𝒇I(𝒒g, 𝒒̇g, 𝒒̈g) + 𝒇G(𝒒g) = 𝒇 (88) 

 

5. Numerical algorithms 

The nonlinear equations of motion of the discrete system will be solved using the 

Newton-Raphson method. Because of the strong nonlinearity of the dynamic problem 

studied in this paper, numerical damping should be introduced to avoid numerical 
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instability. The HHT method [43, 44] is used to discretize the system in time. 

 

5.1. Tangent stiffness matrix and dynamic matrix 

To linearize Eq. (88), the following matrices should be obtained 

 

 𝑴 = 𝜕𝒇𝐼𝜕𝒒̈g , 𝑪 = 𝜕𝒇𝐼𝜕𝒒̇g , 𝑲 = 𝜕𝒇G𝜕𝒒g + 𝜕𝒇𝐼𝜕𝒒g = 𝑲T + 𝑲I (89) 

 

where 𝑴 , 𝑪  and 𝑲I  are the mass, gyroscopic and centrifugal dynamic matrices, 

respectively. 𝑲T is the global tangent stiffness matrix. 

From Eqs. (86) and (89), the mass matrix is given by 

 

 𝑴𝐾 = ∫ (𝑬𝑯2T𝐴𝜌𝑯2𝑬T + 𝑬𝑯3T𝑹̅𝑱𝜌𝑹̅T𝑯3𝑬T)dχ𝑙0  (90) 

 

Further, inserting Eqs. (63), (81) and (86) into Eq. (89), the gyroscopic dynamic 

matrix is obtained as 

 

 

 𝑪 = ∫ [𝑬𝑯2T𝑹𝑟T𝐴𝜌 𝜕𝑯̇1𝜕𝒒̇g − 𝑬𝑯2T𝐴𝜌(𝑯2𝑸1)̃ 𝜕𝒘̇𝑟e𝜕𝒒̇g + 𝑬𝑯2T𝐴𝜌 𝜕𝑯̇2𝜕𝒒̇g 𝑸1𝑙0
− 𝑬𝑯2T𝐴𝜌𝑯2 𝜕𝑬̇𝑟𝜕𝒒̇g 𝑸1 + 𝑬𝑯2T𝐴𝜌(𝒘̇𝑟ẽ𝑯2 + 𝑯̇2 − 𝑯2𝑬̇𝑟)𝑬T
+ 𝑬𝑯3T𝑹̅𝑱𝜌𝑹̅T 𝜕𝒘̈e𝜕𝒒̇g + 𝑬𝑯3T𝑹̅ (𝜴̃𝑱𝜌 − (𝑱𝜌𝜴)̃) 𝑹̅T 𝜕𝒘̇e𝜕𝒒̇g ] dχ 

(91) 

 

with 𝑸1 = 𝒒̇ge = 𝑬T𝒒̇g , 𝜕𝑯̇1/𝜕𝒒̇g , 𝜕𝑯̇2/𝜕𝒒̇g𝑸1  and 
𝜕𝑬̇𝑟𝜕𝒒̇g 𝑸1  given in Appendix C. 

Using Eq. (55), (81) and(82), 𝜕𝒘̇𝑟e/𝜕𝒒̇g, 𝜕𝒘̇e/𝜕𝒒̇g and 𝜕𝒘̈e/𝜕𝒒̇g can be obtained as 



30 

 

 

 
𝜕𝒘̇𝑟e𝜕𝒒̇g = 𝜕𝒘𝑟e𝜕𝒒g = 𝑮1T𝑬T (92) 

 

 
𝜕𝒘̇e𝜕𝒒̇g = 𝑯3𝑬T (93) 

 

 

𝜕𝒘̈e𝜕𝒒̇g = (𝒘̇𝑟𝑒̃𝑯3 + 𝑯̇3 − 𝑯3𝑬̇𝑟)𝑬T − (𝑯3𝑸1)̃ 𝜕𝒘̇𝑟e𝜕𝒒̇g + 𝜕𝑯̇3𝜕𝒒̇g 𝑸1 − 𝑯3 𝜕𝑬̇𝑟𝜕𝒒̇g 𝑸1
− 𝑯4̃ 𝜕𝒘̇𝑟e𝜕𝒒̇g + 𝜕𝑯̇4𝜕𝒒̇g  

(94) 

 

with 𝜕𝑯̇3/𝜕𝒒̇g𝑸1, 𝜕𝑬̇𝑟/𝜕𝒒̇g𝑸1 and 𝜕𝑯̇4/𝜕𝒒̇g given in Appendix C. 

From Eqs. (61), (62) and (89), one obtains 

 

 𝑲T = 𝜕𝒇G𝜕𝒒g = 𝑩1T𝑲L𝑩1 + 𝑓L1𝑼̂̅T + 𝑬𝑷̂1T𝑸2 + 𝑬𝑬̂𝑟𝑸3 (95) 

 

with [ ]̂ = 𝜕[ ]/𝜕𝒒g , 𝑸2 = [𝑓𝐿2 𝑓𝐿3 𝑓𝐿4 𝑓𝐿5 𝑓𝐿6 𝑓𝐿7]𝑇  and 𝑸3 = 𝑷1T𝑸2 . 

 𝑷̂1T𝑸2  and 𝑬̂𝑟𝑸3  are given in Appendix C. Using Eqs. (45) and (A.3), 𝑼̂̅T  can be 

obtained as 

 

 𝑼̂̅T = 𝜕𝑼̅T𝜕𝒒g = 1𝑙𝑐 [−𝑰𝟎𝑰𝟎 ] [𝑰 − 𝒓1 ⊗ 𝒓1][−𝑰 𝟎 𝑰 𝟎] (96) 

 

From Eqs. (86) and (89), 𝑲I can be expanded as 
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𝑲I = 𝜕𝒇𝐼𝜕𝒒g = ∫ [(𝑬𝑬̂𝑟𝑸4 + 𝑬𝑯̂2T𝑸5 + 𝑬𝑯2T(𝑹𝑟T𝐴𝜌𝑯̇1)̃ 𝒘̂𝑟e + 𝑬𝑯2T𝑹𝑟T𝐴𝜌𝑯̂̇1)𝑙0+ 𝑬𝑯2T𝐴𝜌 (𝒘̇𝑟ẽ𝑯̂2𝑸1 − (𝑯2𝑸1)̃ 𝒘̂̇𝑟e + 𝑯̂̇2𝑸1 + 𝑯̂2𝑸6− 𝑯2𝑬̂̇𝑟𝑸1) − 𝑬𝑯2T𝐴𝜌(𝒘̇𝑟ẽ𝑯2 + 𝑯̇2 − 𝑯2𝑬̇𝑟)𝑬̂𝑟𝑸1+ 𝑬𝑯2T𝐴𝜌𝑯̂2𝑸7 − 𝑬𝑯2T𝐴𝜌𝑯2𝑬̂𝑟𝑸7]+ [𝑬𝑬̂𝑟𝑸8 + 𝑬𝑯̂3T𝑸9 − 𝑬𝑯3T(𝑱𝜌𝑹̅T𝒘̈e + 𝜴̃𝑱𝜌𝜴)𝜽̂̅̃
+ 𝑬𝑯3T𝑹̅𝑱𝜌𝒘̈ẽ𝜽̂̅ + 𝑬𝑯3T𝑹̅𝑱𝜌𝑹̅T𝒘̂̈e+ 𝑬𝑯3T𝑹̅ (𝜴̃𝑱𝜌 − (𝑱𝜌𝜴)̃) 𝜴̂] dχ 

(97) 

 

with 

 

 
𝑸4 = 𝑯2T𝑹𝑟T𝐴𝜌𝒖̈,   𝑸5 = 𝑹𝑟T𝐴𝜌𝒖̈,    𝑸6 = 𝑬̇T𝒒̇g,   𝑸7 = 𝑬T𝒒̈g    𝑸8 = 𝑯3T𝑹̅(𝑱𝜌𝑹̅T𝒘̈e + 𝜴̃𝑱𝜌𝜴),   𝑸9 = 𝑹̅(𝑱𝜌𝑹̅T𝒘̈e + 𝜴̃𝑱𝜌𝜴).   (98) 

 𝒘̂𝑟e  is obtained from Eq. (92). 𝑯̂2T𝑸5 , 𝑹𝑟T𝑯̂̇1 , 𝑯̂2𝑸𝑘(𝑘 = 1,6,7) , 𝑯̂̇2𝑸1 , 𝑬̂̇𝑟𝑸1 ,  𝑯̂3T𝑸9, 𝜽̂̅, 𝒘̂̈e and 𝜴̂ are given in Appendix C. 

 

5.2. Time stepping algorithm 

Considering the finite rotation is non-additive and non-commutative, the iterative 

forms of node displacements can be expressed as [35, 41, 49] 

 

 𝒖(𝑛+1) = 𝒖(𝑛) + ∆𝑡𝒖̇(𝑛) + (∆𝑡)2 [(12 − 𝛽) 𝒖̈(𝑛) + 𝛽𝒖̈(𝑛+1)] (99) 

 

 𝒖̇(𝑛+1) = 𝒖̇(𝑛) + ∆𝑡[(1 − 𝛾)𝒖̈(𝑛) + 𝛾𝒖̈(𝑛+1)] (100) 
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 𝜽(𝑛+1)g = ∆𝑡𝒘̇(𝑛) + (∆𝑡)2 [(12 − 𝛽) 𝒘̈(𝑛) + 𝛽𝒘̈(𝑛+1)] (101) 

 

 𝒘̇(𝑛+1) = 𝜦(𝑛+1)g [𝒘̇(𝑛) + ∆𝑡(1 − 𝛾)𝒘̈(𝑛)] + ∆𝑡𝛾𝒘̈(𝑛+1) (102) 

 

 𝜦(𝑛+1)g = exp (𝜽(𝑛+1)g̃ ) = 𝑹(𝑛+1)𝑹(𝑛)T  (103) 

 

where ∆𝑡 denotes the time step and the subscript (𝑛 + 1) denotes the (𝑛 + 1)th step. 

The values of 𝛽 and 𝛾 can be obtained as in [43]. The linearizations of the velocity and 

acceleration are given by 

 

 ∆𝒖̇(𝑛+1) = 𝛾𝛽∆𝑡 (𝒖(𝑛+1) − 𝒖(𝑛)) (104) 

 

 ∆𝒖̈(𝑛+1) = 1𝛽(∆𝑡)2 (𝒖(𝑛+1) − 𝒖(𝑛)) (105) 

 

 ∆𝒘̇(𝑛+1) = 𝛾𝛽∆𝑡 𝑻−T (𝜽(𝑛+1)g ) ∆𝒘(𝑛+1) (106) 

 

 ∆𝒘̈(𝑛+1) = 1𝛽(∆𝑡)2 𝑻−T (𝜽(𝑛+1)g ) ∆𝒘(𝑛+1) (107) 

 

where the operator 𝑻−1( ) can be obtained using Eq. (40)  

 

 𝑻−1(𝜽) = 𝜃2 cot (𝜃2) 𝑰 − 12 𝜽̃ + (1 − 𝜃2 cot (𝜃2))𝜽𝜽T (108) 

 

with the relationship [50] 

 

 𝑻−T(𝜽) = exp(𝜽̃)𝑻−1(𝜽) (109) 
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According to the relations (99)-(103), the update procedures of the displacements, 

velocities and accelerations at the 𝑘th iteration of step (n+1) are performed as follows 

[51] 

 

 𝒖(𝑛+1)(𝑘) = 𝒖(𝑛+1)(𝑘−1) + ∆𝒖(𝑛+1)(𝑘)
 (110) 

 

 𝒖̇(𝑛+1)(𝑘) = 𝛾𝛽∆𝑡 (𝒖(𝑛+1)(𝑘) − 𝒖(𝑛)) + 𝛽 − 𝛾𝛽 𝒖̇(𝑛) + 2𝛽 − 𝛾2𝛽 ∆𝑡𝒖̈(𝑛) (111) 

 

 𝒖̈(𝑛+1)(𝑘) = 1𝛽(∆𝑡)2 (𝒖(𝑛+1)(𝑘) − 𝒖(𝑛)) − 1𝛽∆𝑡 𝒖̇(𝑛) + 2𝛽 − 12𝛽 𝒖̈(𝑛) (112) 

 

 exp (𝜽(𝑛+1)g,(𝑘)̃ ) = exp (∆𝒘(𝑛+1)(𝑘)̃ ) exp (𝜽(𝑛+1)g,(𝑘−1)̃ ) (110) 

 

 𝑹𝑖,(𝑛+1)g,(𝑘) = exp (𝜽(𝑛+1)g,(𝑘)̃ )𝑹𝑖,(𝑛)g , 𝑖 = 1,2. (113) 

 

 𝒘̇(𝑛+1)(𝑘) = 𝜦(𝑛+1)g,(𝑘) ( 𝛾𝛽∆𝑡 𝜽(𝑛+1)g,(𝑘) + 𝛽 − 𝛾𝛽 𝒘̇(𝑛) + 2𝛽 − 𝛾2𝛽 ∆𝑡𝒘̈(𝑛)) (114) 

 

 𝒘̈(𝑛+1)(𝑘) = 𝜦(𝑛+1)g,(𝑘) ( 1𝛽(∆𝑡)2 𝜽(𝑛+1)g,(𝑘) − 1𝛽∆𝑡 𝒘̇(𝑛) + 2𝛽 − 12𝛽 𝒘̈(𝑛)) (115) 

 

where 𝑹𝑖,(𝑛)g (𝑖 = 1,2) denotes the converged solution of 𝑹𝑖g at 𝑛th step. 

In the HHT method, the nonlinear equation of motion (88) is rewritten as [44, 49] 

 

 𝒇I,(𝑛+1) + (1 + 𝛼)(𝒇G,(𝑛+1) − 𝒇(𝑛+1)) − 𝛼(𝒇G,(𝑛) − 𝒇(𝑛)) = 𝟎 (116) 

 

where 𝛼 is a parameter giving a numerical damping. 

Finally, from Eqs. (89) and (110)-(116), the following equation should be solved to 
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obtain the incremental displacement at the 𝑘th iteration of step (n+1), i.e. 

 

 𝑲Total,(𝑛+1)(𝑘) ∆𝒒(𝑛+1)(𝑘) = 𝒇Total,(𝑛+1)(𝑘)
 (117) 

 

with 

 

 ∆𝒒(𝑛+1)(𝑘) = [(∆𝒖1,(𝑛+1)(𝑘) )T (∆𝒘1,(𝑛+1)(𝑘) )T (∆𝒖2,(𝑛+1)(𝑘) )T (∆𝒘2,(𝑛+1)(𝑘) )T]T (118) 

 

 𝒇Total,(𝑛+1)(𝑘) = (1 + 𝛼)(𝒇(𝑛+1)(𝑘) − 𝒇𝐺,(𝑛+1)(𝑘) ) + 𝛼(𝒇𝐺,(𝑛+1)(𝑘−1) − 𝒇(𝑛+1)(𝑘−1))−𝒇𝐼,(𝑛+1)(𝑘)
 (119) 

 

and the iterative tangent matrix 

 

 

𝑲Total,(𝑛+1)(𝑘) = (1 + 𝛼)𝑲T + 𝑲I,(𝑛+1)(𝑘) + 𝛾𝛽∆𝑡 𝑪(𝑛+1)(𝑘) 𝑩(𝑛+1)(𝑘)
+ 1𝛽(∆𝑡)2 𝑴(𝑛+1)(𝑘) 𝑩(𝑛+1)(𝑘)

 

(120) 

 

with 

 

 𝑩(𝑛+1)(𝑘) = [  
  𝑰 𝟎 𝟎 𝟎𝟎 𝑻−T (𝜽1,(𝑛+1)g,(𝑘) ) 𝟎 𝟎𝟎 𝟎 𝑰 𝟎𝟎 𝟎 𝟎 𝑻−T (𝜽2,(𝑛+1)g,(𝑘) )]  

  
 (121) 

 

6. Numerical examples 

Four examples are given in this section. The first example, introduced by 

Steinbrecher et al. [15], is used to verify the validity of the proposed dynamic 

formulations in dealing with a 2D sliding beam problem. The second example extends 
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the 2D cantilever beam model introduced by Le et al. [52] to the 3D case. The beam can 

rotate about the clamped end with a given angular velocity. The third example is used to 

study the dynamics of a 3D sliding beam. In the last example, a beam manipulated by a 

revolute-prismatic joint can not only undergo large overall motion but can also slide 

through the joint. It should be noted that the nodal displacement of the simulation curve 

is defined by Eq. (11) in the following examples. 

In the process of computation, the global elastic force vector 𝒇G and the global 

tangent stiffness matrix 𝑲T can be exactly evaluated by Eqs. (62) and (95). To obtain 

the inertia force vector 𝒇I, mass matrix 𝑴, gyroscopic matrix 𝑪 and centrifugal matrix 𝑲I, three Gauss points are used to integrate Eqs. (86), (90), (91) and (97). The time step 

is set to ∆𝑡 = 1 × 10−4s. The following convergence criterion is adopted: the norm of 

the residual virtual work must be less than the prescribed tolerance 10−5. 

 

6.1. Example 1 

As shown in Fig. 4(a), a cantilever beam of initial length 𝐿(0) = 5m is subjected to 

a uniform body force 𝑃𝑦 = 1kN/m3 in the negative y-axis direction and is in static 

equilibrium at 𝑡 = 0. The width and the height of the cross-section are 𝑏 = 1m and ℎ =0.2m, respectively. The elastic modulus and the density of the beam are 𝐸 = 10MPa and 𝜌 = 103kg/m3, respectively. When 𝑡 > 0, the beam begins to retract into the channel, 

and the retraction acceleration is depicted in Fig. 4(b). 
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Fig. 4  2D sliding beam dynamic problem: (a) sliding beam model; (b) retraction 

acceleration curve 

To obtain the reference solution, 20 elements are used to discretize the beam. The 

horizontal and vertical displacement histories of the free endpoint of the cantilever beam 

are depicted in Figs. 5 and 6, respectively. It can be observed that the simulation results 

with only 8 elements have sufficient computational accuracy. Making a comparison 

between these results and those obtained by Steinbrecher et al. [15] using the commercial 

software ABAQUS, there are some differences but they have the same trend, as shown in 

Fig. 6. These differences are partly because Steinbrecher et al. have taken the vibration 

of the beam in the channel into account. Additionally, when calculating the static 

equilibrium configuration of the beam, they assumed that the beam can slide out of the 

channel by a small amount. To investigate the effect of this small amount on the dynamic 

response of the beam, the initial length is modified to 𝐿(0) = 5.09  m. The 
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corresponding result obtained by the presented method is almost identical to that of 

Steinbrecher et al., as shown in Fig. 6. 

 

 

Fig. 5  2D sliding beam: horizontal displacement history 
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Fig. 6  2D sliding beam: vertical displacement history 

 

6.2. Example 2 

As shown in Fig. 7(a), a cantilever of length 𝐿 = 10m with rectangular cross-

section is subjected to a concentrated force 𝐹𝑦 = 𝐹0sin (𝜔1𝑡) with 𝐹0 = 10MN, and 𝜔1 = 50rad/s at the free end. The cross-section width and height are 𝑏 = 0.25m and ℎ = 0.5m, respectively. The elastic modulus and the density of the beam are 𝐸 =210GPa and 𝜌 = 7850kg/m3, respectively. The beam can be rotated with a prescribed 

angular velocity about the 𝑦-axis with the clamped end as the center. The time history 

curve of the angular velocity 𝜔2 is depicted in Fig. 7(b). 𝜔f is a given fixed value. 

When 𝜔f = 0, this example is reduced to the case given by Le et al. [52]. 
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Fig. 7  3D rotating beam dynamic problem: (a) rotating beam model; (b) time history 

of 𝜔2 

 

In this example, 10 elements are used to obtain a converged solution. The parameter of 

the HHT method is set as 𝛼 = −0.05. Figs. 8, 9 and 10 show the time history curves of 

the displacement of the free end in three directions. When 𝜔f takes different values the 

curves are all depicted in the same figure for comparison. As shown in Fig. 9, it can be 

found that the vibration frequency of the free end will increase with an increase in 𝜔2. 

This is because increasing 𝜔2 will increase the centrifugal force on the beam, making it 

more rigid. In particular, when 𝜔2 = 0, these curves are almost identical to the results 

obtained by Le et al. [52]. This is because the 2D dynamic formulation proposed by Le et 

al. is a special case of the formulation in this paper. 
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Fig. 8  3D rotating beam: time history of the displacement 𝑢1 of the free end 

 

 

Fig. 9  3D rotating beam: time history of the displacement 𝑢2 of the free end 

 



41 

 

 

Fig. 10  3D rotating beam: time history of the displacement 𝑢3 of the free end 

 

 

Fig. 11  3D sliding beam dynamic problem: (a) sliding beam model; (b) time history of 𝑀𝑧(𝑡) 

 

6.3. Example 3 

As shown in Figs. 11(a) and (b), a cantilever of length 𝐿 = 10m with rectangular 
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cross-section is subjected to a concentrated force 𝐹𝑧(𝑡) = 6sin (𝜔1𝑡)  and a bending 

moment 𝑀𝑧(𝑡) at the free end. The cross-section width and the height are 𝑏 = 0.3m 

and ℎ = 0.25m, respectively. The elastic modulus, the Poisson’s ratio and the density of 

the beam are 𝐸 = 210GPa, 𝜐 = 0.3 and 𝜌 = 7850kg/m3, respectively. The beam can 

slide through the channel at constant velocity 𝑣0. When 𝑣0 = 0, this example reduces to 

the example given by Le et al. [41]. 

In this example, 12 elements are used to obtain a converged solution. The parameter 

of the HHT method is set as 𝛼 = −0.01. Figs. 12, 13 and 14 show the time history curves 

of the displacement of the free end in three directions for different 𝑣0. When the beam is 

deployed through the channel, the vibration frequency will decrease. Otherwise, the 

vibration frequency will increase. Compared with the case for 𝑣0 = 0, the amplitude of 

the beam will increase when the beam is deployed or retrieved through the channel. This 

may be because the sudden increase in axial kinetic energy is converted into elastic 

potential energy. When 𝑣0 = 0, these curves are almost identical to those obtained by Le 

et al. [41]. This is because the 3D dynamic formulation proposed by Le et al. is a special 

case of the formulation in this paper. 
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Fig. 12  3D sliding beam: time history of the displacement 𝑢1 of the free end 

 

 

Fig. 13  3D sliding beam: time history of the displacement 𝑢2 of the free end 
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Fig. 14  3D sliding beam: time history of the displacement 𝑢3 of the free end 

 

6.4. Example 4 

The geometric model, the material properties and the external load of this example 

are the same as those of example 3. The beam manipulated by the revolute-prismatic joint 

can undergo large overall motion and slide through the joint. The length of the beam 

outside the joint channel is 𝐿 = 10 + 5sin(2π𝑡). The prescribed angular velocity of the 

beam about the 𝑦-axis is the same as that given by example 2. 

The geometric nonlinearity of this example is so strong that 100 elements are 

required to obtain a converged solution. The time history curves of the displacement of 

the free end in three directions are depicted in Figs. 15, 16 and 17. The parameter of the 

HHT method is set as 𝛼 = −0.05. The vibration frequency increases with increasing 𝜔2. 
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The phenomenon may be caused by the centrifugal force. In particular, when 𝜔2 = 4π 

rad/s and near the time 𝑡 = 0.4s, the displacements of the free end are very large as 

shown in Figs. 15 and 17. The phenomenon indicates that parametric resonance occurs. 

 

 

Fig. 15  3D rotating-sliding beam: time history of the displacement 𝑢1 of the free end 
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Fig. 16  3D rotating-sliding beam: time history of the displacement 𝑢2 of the free end 

 

 

Fig. 17  3D rotating-sliding beam: time history of the displacement 𝑢3 of the free end 
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7. Conclusions 

Nonlinear dynamic analysis of a 3D sliding beam which can undergo large overall 

motion has been performed based on the corotational method. To describe the spatial 

configuration of flexible beams accurately, the rotational vectors were used to 

parameterize the rotation matrices. The variable-domain IEE elements were used to 

discretize the time-varying system in space. The extension of Hamilton’s principle was 

used to derive the nonlinear equations of motion which can consider the effects of shear 

deformation and rotary inertia. The numerical simulations and comparisons of the 

numerical examples have demonstrated the validity, accuracy and versatility of the 

dynamic formulae of this paper. 

Some dynamic behaviors of the system have been shown by the results. The sliding 

and the overall motion of the flexible beam have great influence on the amplitude and 

frequency of the beam. In example 4, with the increase of the rotational angular velocity, 

the parametric resonance occurs. It should be pointed out that the introduction of the 

corotational frame makes the expression of the inertia force vector very complicated. To 

linearize the inertia force vector, the gyroscopic and centrifugal dynamic matrices should 

be evaluated. These two matrices are more complicated, as shown in Eqs. (91) and (97). 

These evaluations will lead to a huge increase of computation time for every iteration step. 

However, if we keep only the mass matrix for iteration based on Newton-Raphson method, 

the converged solution can be usually obtained [53]. Several examples are used to test the 
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effects of the gyroscopic matrix 𝑪 and the centrifugal matrix 𝑲I. They have no effect 

on the simulation results but do have an effect on the number of iterations. Compared 

with 𝑲I , 𝑪  has more potential to reduce the number of iterations. Therefore, it is 

proposed to ignore the term 𝑲I when solving the equation of motion using Newton-

Raphson method. This is consistent with the views of Le et al. [41, 49]. At the same time, 

it should be pointed out that the examples, convergence criteria and the HHT parameter 

have an influence on the number of iterations which should be studied further. 
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Appendix A 

The following relationship will be used in this section, i.e. 

 

 𝒓𝑖Tδ𝒓𝑗 = −𝒓𝑗Tδ𝒓𝑖,   𝑖, 𝑗 = 1,2,3. (A.1) 

 

 ‖𝒓1 × 𝒑‖ = 𝒓2T𝒑 (A.2) 

 

By taking the variation of Eqs. (16) and (17), one obtains 
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 δ𝒓1 = 1𝑙𝑐 [𝑰 − 𝒓1 ⊗ 𝒓1] ([−𝑰 𝟎 𝑰 𝟎]δ𝒒g + 𝑣0𝒓10 + 𝐿𝒓̇10𝑛 δ𝑡) (A.3) 

 

 δ𝒑𝑘 = −𝒑𝑘̃δ𝒘𝑘g + 𝑹𝑘g 𝒓̇20δ𝑡, 𝑘 = 1,2. (A.4) 

 

Eq. (A.4) can be expressed in a simple form 

 

 
δ𝒑1 = −𝒑1̃[𝟎 𝑰 𝟎 𝟎]δ𝒒g + 𝑹1g𝒓̇20δ𝑡δ𝒑2 = −𝒑2̃[𝟎 𝟎 𝟎 𝑰]δ𝒒g + 𝑹2g𝒓̇20δ𝑡 (A.5) 

 

Inserting Eq. (A.5) into Eq. (17), one obtains 

 

 δ𝒑 = −12 [𝟎 𝒑1̃ 𝟎 𝒑2̃]δ𝒒g + 𝑹1g + 𝑹2g2 𝒓̇20δ𝑡 (A.6) 

 

By taking the variation of Eq. (18), one obtains 

 

 δ𝒓3 = 1𝒓2T𝒑 (𝑰 − 𝒓3 ⊗ 𝒓3)(−𝒑 × δ𝒓1 + 𝒓1 × δ𝒑) (A.7) 

 

 δ𝒓2 = −𝒓1 × δ𝒓3 + 𝒓3 × δ𝒓1 (A.8) 

 

Inserting Eqs. (A.3)-(A.8) into Eq. (54), one obtains 
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−𝒓2Tδ𝒓3 = −𝒓2T𝒓2T𝒑 (𝑰 − 𝒓3 ⊗ 𝒓3)(−𝒑 × δ𝒓1 + 𝒓1 × δ𝒑)
= [2𝑙𝑐 𝒓1T𝒑𝒆3T 𝒓2T𝒑1𝒆1T − 𝒓1T𝒑1𝒆2T − 2𝑙𝑐 𝒓1T𝒑𝒆3T 𝒓2T𝒑2𝒆1T − 𝒓1T𝒑2𝒆2T]2𝒓2T𝒑 𝑬Tδ𝒒g
+ −𝒓1T𝒑𝒓3T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 + 𝒓3T 𝑹1g + 𝑹2g2 𝒓̇20𝒓2T𝒑  δ𝑡 

(A.9) 

 

 −𝒓3Tδ𝒓1 = −𝒆3T𝑙𝑐 [−𝑰 𝟎 𝑰 𝟎]𝑬Tδ𝒒g − 𝒓3T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 δ𝑡 (A.10) 

 

 −𝒓2Tδ𝒓1 = −𝒆2T𝑙𝑐 [−𝑰 𝟎 𝑰 𝟎]𝑬Tδ𝒒g − 𝒓2T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 δ𝑡 (A.11) 

 

Appendix B 

Using Eqs. (42) and (67), the variation of δ𝒖g can be expressed as 

 

 

δ𝒖g = [𝑁1(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖 − 1𝑛 𝒆1 + 𝑁2(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖𝑛 𝒆1] δ𝑡 + 𝑁̇1𝑿1δ𝑡+ 𝑁̇2𝑿2δ𝑡 + 𝑵̇1𝒒gδ𝑡 + 𝑵1δ𝒒g + 𝑹𝑟δ𝒖𝑙 + δ𝑹𝑟𝒖𝑙 (B.1) 

 

From Eqs. (41) and (59), by taking the variation of (69), one obtains 

 

 

δ𝒖𝑙 = 𝑵̇2 [𝜽̅1𝜽̅2] δ𝑡 + 𝑵2 [𝑻−1(𝜽̅1) 𝟎𝟎 𝑻−1(𝜽̅2)] δ [𝒘̅1𝒘̅2]≈ 𝑵2𝑷1𝑬Tδ𝒒g + (𝑵2𝑷2 + 𝑵̇2 [𝜽̅1𝜽̅2]) δ𝑡 

(B.2) 

 

From Eqs. (46), (47) and (55), δ𝑹𝑟𝒖𝑙 can be rewritten as 

 

 δ𝑹𝑟𝒖𝑙 = 𝑹𝑟δ𝒘𝑟ẽ 𝒖𝑙 = −𝑹𝑟𝒖𝑙̃δ𝒘𝑟e = −𝑹𝑟𝒖𝑙̃𝑮1T𝑬Tδ𝒒g − 𝑹𝑟𝒖𝑙̃𝑮2Tδ𝑡 (B.3) 
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Inserting Eqs. (B.2) and (B.3) into Eq. (B.1), one obtains 

 

 

𝑯1 = 𝑁1(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖 − 1𝑛 𝒆1 + 𝑁2(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖𝑛 𝒆1 + 𝑁̇1𝑿1 + 𝑁̇2𝑿2+ 𝑵̇1𝒒g + 𝑹𝑟𝑵̇2 [𝜽̅1𝜽̅2] + 𝑹𝑟𝑵2𝑷2 − 𝑹𝑟𝒖𝑙̃𝑮2T 

(B.4) 

 

 𝑯2 = 𝑵1 + 𝑵2𝑷1 − 𝒖𝑙̃𝑮1T (B.5) 

 

In Eqs. (B.4) and (B.5), the time derivative of the shape functions is evaluated as 

 

 𝑁̇𝑖 = d𝑁𝑖d𝑡 = 𝑣𝑛 𝜕𝑁𝑖𝜕𝑙0 + 𝜒̇ 𝜕𝑁𝑖𝜕𝜒  (B.6) 

 

By taking the time first and second derivative of Eq. (25), 𝜒̇ and 𝜒̈ are evaluated as 

 

 

𝜒̇ = (1 − 𝑖 − 1𝑛 ) 𝑣𝜒̈ = (1 − 𝑖 − 1𝑛 ) 𝑎 (B.7) 

 

Further, 𝑁̈𝑖 can be expressed as 

 

 𝑁̈𝑖 = d𝑁̇𝑖d𝑡 = 𝑣𝑛 𝜕𝑁̇𝑖𝜕𝑙0 + 𝜒̇ 𝜕𝑁̇𝑖𝜕𝜒 + 𝑎 𝜕𝑁̇𝑖𝜕𝑣 + 𝜒̈ 𝜕𝑁̇𝑖𝜒̇  (B.8) 

 

where 𝑎 = d𝑣/d𝑡. 

Assuming the local lateral displacement 𝒖𝑙̃  is small [41] and taking the time 

derivative of Eq. (B.4), one obtains 
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𝑯̇1 = [𝑁̇1(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖 − 1𝑛 𝒆1 + 𝑁1(𝑎𝑹0 + 2𝑣𝑹̇0 + 𝐿𝑹̈0) 𝑖 − 1𝑛 𝒆1]+ [𝑁̇2(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖𝑛 𝒆1 + 𝑁2(𝑎𝑹0 + 2𝑣𝑹̇0 + 𝐿𝑹̈0) 𝑖𝑛 𝒆1]+ [𝑁̈1𝑿1 + 𝑁̇1(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖 − 1𝑛 𝒆1]+ [𝑁̈2𝑿2 + 𝑁̇2(𝑣𝑹0 + 𝐿𝑹̇0) 𝑖𝑛 𝒆1] + (𝑵̈1𝒒g + 𝑵̇1𝒒̇g)+ [𝑹̇𝑟𝑵̇2 [𝜽̅1𝜽̅2] + 𝑹𝑟𝑵̈2 [𝜽̅1𝜽̅2] + 𝑹𝑟𝑵̇2(𝑷1𝑬T𝒒̇g + 𝑷2)]+ (𝑹̇𝑟𝑵2𝑷2 + 𝑹𝑟𝑵̇2𝑷2 + 𝑹𝑟𝑵2𝑷̇2) − 𝑹𝑟𝒖̇𝑙̃𝑮2T 

(B.9) 

 

where 𝒖̇𝑙 can be obtained from Eq. (B.2). By taking the time derivative of Eq. (59), 𝑃̇2 

is expressed as 

 

 𝑷̇2 = [−𝑮̇2T + 𝒘̈01−𝑮̇2T + 𝒘̈02] (B.10) 

 

where 𝑮̇2T and 𝒘̈0𝑘 are obtained by taking the time derivative of Eqs. (58) and (51), i.e. 

𝑮̇2T =
[  
   
   dd𝑡 (−(𝒑 ∙ 𝒓1)𝒆3T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 + 𝒆3T 𝑹̅1 + 𝑹̅22 𝑹0T𝒓̇20𝒓2 ∙ 𝒑 )
−𝒆3T𝑹̇𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 − 𝒆3T𝑹𝑟T 𝑎0𝒓10 + 2𝑣0𝒓̇10 + 𝐿𝒓̈10𝑛𝑙𝑐 + 𝒆3T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑙𝑐̇−𝒆2T𝑹̇𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 − 𝒆2T𝑹𝑟T 𝑎0𝒓10 + 2𝑣0𝒓̇10 + 𝐿𝒓̈10𝑛𝑙𝑐 + 𝒆2T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑙𝑐̇]  

   
   
 (B.11) 

 

 𝒘̈0𝑘 = 𝒘̇̅𝑘̃𝑹̅𝑘vect(𝑹0T𝑹̇0) + 𝑹̅𝑘vect(𝑹̇0T𝑹̇0 + 𝑹0T𝑹̈0), 𝑘 = 1,2. (B.12) 

 

where 𝑙𝑐̇ and 𝒘̇̅𝑘 can be obtained using Eqs. (43) and (50). 

Considering the local lateral displacement 𝒖𝑙̃  is small [41] and taking the time 

derivative of Eq. (B.5), one obtains 
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 𝑯̇2 = 𝑵̇1 + 𝑵̇2𝑷1 + 𝑵2𝑷̇1 − 𝒖̇𝑙̃𝑮1T (B.13) 

 

where 𝑷̇1 can be obtained using Eq. (59), i.e. 

 

 𝑷̇1 = −[𝑮̇1T𝑮̇1T] (B.14) 

 

By taking the time derivative of Eq. (56), one obtains 

 𝑮̇1T

=
[  
   
 0 0 𝜂̇𝑙𝑐 − 𝜂 𝑙𝑐̇𝑙𝑐2 𝜂̇122 − 𝜂̇112 0 0 0 𝜂 𝑙𝑐̇𝑙𝑐2 − 𝜂̇𝑙𝑐 𝜂̇222 − 𝜂̇212 0
0 0 − 𝑙𝑐̇𝑙𝑐2 0 0 0 0 0 𝑙𝑐̇𝑙𝑐2 0 0 0
0 𝑙𝑐̇𝑙𝑐2 0 0 0 0 0 − 𝑙𝑐̇𝑙𝑐2 0 0 0 0]  

   
 
 

(B.15) 

 

where 𝜂̇, 𝜂̇𝑘1 and 𝜂̇𝑘2 can be obtained by taking the variation of Eqs. (57), i.e. 

 

 δ𝜂 = 𝒑Tδ𝒓1 + 𝒓1Tδ𝒑𝒑T𝒓2 − 𝜂 𝒑Tδ𝒓2 + 𝒓2Tδ𝒑𝒑T𝒓2  (B.16) 

 

 δ𝜂𝑘1 = 𝒑𝑘Tδ𝒓1 + 𝒓1Tδ𝒑𝑘𝒑T𝒓2 − 𝜂𝑘1 𝒑Tδ𝒓2 + 𝒓2Tδ𝒑𝒑T𝒓2  (B.17) 

 

 δ𝜂𝑘2 = 𝒑𝑘Tδ𝒓2 + 𝒓2Tδ𝒑𝑘pT𝒓2 − 𝜂𝑘2 𝒑Tδ𝒓2 + 𝒓2Tδ𝒑𝒑T𝒓2  (B.18) 

 

Inserting Eqs. (B.14) and (B.15) into Eq. (B.13), 𝑯̇2 can be rewritten as  

 

 𝑯̇2 = 𝑵̇1 + 𝑵̇2 [𝟎 𝑰 𝟎 𝟎𝟎 𝟎 𝟎 𝑰] − 1𝑙𝑐 𝑵̇2 [𝑰𝑰]𝑵4 + 𝑙𝑐̇𝑙𝑐2 𝑵2 [𝑰𝑰]𝑵4 − 𝒖̇𝑙̃𝑮1T (B.19) 

 



54 

 

with 

 

 𝑵4 = [0 0 0 0 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 −1 0 0 00 −1 0 0 0 0 0 1 0 0 0 0] (B.20) 

 

From Eqs. (46) and (47), 𝑹̇𝑟 is obtained as 

 

 𝑹̇𝑟 = 𝑹𝑟𝒘̇𝑟ẽ (B.21) 

 

where 𝒘̇𝑟e is obtained using Eq. (55). Using Eq. (B.21), and taking the time derivative 

of Eq. (52), one obtains 

 

𝑬̇ = 𝑬 [  
  𝒘̇𝑟ẽ 𝟎 𝟎 𝟎𝟎 𝒘̇𝑟ẽ 𝟎 𝟎𝟎 𝟎 𝒘̇𝑟ẽ 𝟎𝟎 𝟎 𝟎 𝒘̇𝑟ẽ]  

  = 𝑬𝑬̇𝑟, 𝑬𝑟 = [  
  𝒘𝑟ẽ 𝟎 𝟎 𝟎𝟎 𝒘𝑟ẽ 𝟎 𝟎𝟎 𝟎 𝒘𝑟ẽ 𝟎𝟎 𝟎 𝟎 𝒘𝑟ẽ]  

  
 (B.22) 

 

Appendix C 

From Eq. (B.9), 𝑹𝑟T𝑯̂̇1 can be expanded as  
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𝑹𝑟T𝑯̂̇1 = 𝑹𝑟T𝑵̈1 + [−(𝒘̇𝑟ẽ𝑵̇2 [𝜽̅1𝜽̅2])̃ 𝒘𝑟ê − (𝑵̇2 [𝜽̅1𝜽̅2])̃ 𝒘̇𝑟ê + 𝒘̇𝑟ẽ𝑵̇2𝑷1𝑬T]
+ [−(𝑵̈2 [𝜽̅1𝜽̅2])̃ 𝒘𝑟ê + 𝑵̈2𝑷1𝑬T]
+ [−(𝑵̇2𝑷1𝑸1 + 𝑵̇2𝑷2)𝒘𝑟ễ + 1𝑙𝑐2 𝑵̇2 [𝑰𝑰]𝑵4𝑸1𝑼̅− 𝑵̇2𝑷1𝑬̂𝑟𝑸1 + (𝑵̇2𝑷2)̂ ]+ [−(𝒘̇𝑟ẽ𝑵2𝑷2)̃ 𝒘𝑟ê − (𝑵2𝑷2)̃ 𝒘̇𝑟ê + 𝒘̇𝑟ẽ(𝑵2𝑷2)̂ − (𝑵̇2𝑷2)̃ 𝒘𝑟ê+ (𝑵̇2𝑷2)̂ − (𝑵2𝑷̇2)̃ 𝒘𝑟ê + (𝑵2𝑷̇2)̂ ]− [−(𝒖̇𝑙̃𝑮2T)̃ 𝒘𝑟ê + 𝒖̇𝑙̃𝑮̂2T − 𝑮2T̃𝒖̂̇𝑙] 

(C.1) 

 𝒘̇𝑟ê , 𝒖̂̇𝑙 , (𝑵2𝑷2)̂ , (𝑵̇2𝑷2)̂ , 𝑮̂2T  and (𝑵2𝑷̇2)̂  can be obtained using Eqs. (55), 

(B.2), (59), (58) and (B.10). 

 

 𝒘̇𝑟ê = 𝑮̂1T𝑸1 − 𝑮1T𝑬̂𝑟𝑸1 + 𝑮̂2T (C.2) 

 

 𝒖̂̇𝑙 = 𝑵̇2𝑷1𝑬T + 1𝑙𝑐2 𝑵2 [𝑰𝑰]𝑵4𝑸1𝑼̅ − 𝑵2𝑷1𝑬̂𝑟𝑸1 + (𝑵2𝑷2)̂  (C.3) 

 

 (𝑵2𝑷2)̂ = 𝜕𝜕𝒒̇g (𝑵2𝑷̇2) = −𝑵2 [𝑰𝑰] [𝟎1×12𝐺̂22𝐺̂23 ] + 𝑵2 [𝒘̂̇01𝒘̂̇02] (C.4) 

 

 (𝑵̇2𝑷2)̂ = −𝑵̇2 [𝑰𝑰] [𝟎1×12𝐺̂22𝐺̂23 ] + 𝑵̇2 [𝒘̂̇01𝒘̂̇02] (C.5) 
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 𝑮̂2T = [𝐺̂21𝐺̂22𝐺̂23] =
[  
   
 𝐺̂21−𝒆3T (𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 )̃ 𝑮1T𝑬T + 𝒆3T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑼̅
−𝒆2T (𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 )̃ 𝑮1T𝑬T + 𝒆2T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑼̅]  

   
 
 (C.6) 

 

 (𝑵2𝑷̇2)̂ = −𝑵2 [𝑰𝑰] [𝟎1×12𝐺̂̇22𝐺̂̇23 ] + 𝑵2 [𝒘̂̈01𝒘̂̈02] (C.7) 

 𝒘̂̇0𝑘, 𝐺̂21, 𝐺̂̇22, 𝐺̂̇23 and 𝒘̂̈0𝑘(𝑘 = 1,2) can be obtained using Eqs. (51), (58), (B.11) and 

(B.12). 

 

 𝒘̂̇0𝑘 = 𝜕𝒘̈0𝑘𝜕𝒒̇g = −(𝑹̅𝑘vect(𝑹0T𝑹̇0))̃ [𝛿1𝑘𝑰 𝛿2𝑘𝑰]𝑷1𝑬T, 𝑘 = 1,2. (C.8) 

 

 

𝐺̂21 = −𝒆3T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 𝜂̂ − 𝜂𝒆3T (𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 )̃ 𝑮1T𝑬T
+ 𝜂𝒆3T𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑼̅
− 𝒆3T(𝑹̅1𝑹0T𝒓̇20)̃2𝒓2 ∙ 𝒑 ([𝟎 𝑰 𝟎 𝟎] − 𝑮1T)𝑬T
− 𝒆3T(𝑹̅2𝑹0T𝒓̇20)̃2𝒓2 ∙ 𝒑 ([𝟎 𝟎 𝟎 𝑰] − 𝑮1T)𝑬T
− 𝒆3T(𝑹̅1 + 𝑹̅2)𝑹0T𝒓̇202(𝒓2 ∙ 𝒑)2 (𝒑T𝒓̂2 + 𝒓2T𝒑̂) 

(C.9) 
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𝐺̂̇2𝑗 = (𝛿2𝑗𝒆3T + 𝛿3𝑗𝒆2T) [−(𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 )̃ 𝒘̇𝑟ê
+ 𝒘̇𝑟ẽ (𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐 )̃ 𝒘𝑟ê + 𝑹̇𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑼̅
− (𝑹𝑟T 𝑎0𝒓10 + 2𝑣0𝒓̇10 + 𝐿𝒓̈10𝑛𝑙𝑐 )̃ 𝒘𝑟ê
+ 𝑹𝑟T 𝑎0𝒓10 + 2𝑣0𝒓̇10 + 𝐿𝒓̈10𝑛𝑙𝑐2 𝑼̅ + (𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑙𝑐̇)𝒘𝑟ễ
− 2𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐3 𝑙𝑐̇𝑼̅ + 𝑹𝑟T 𝑣0𝒓10 + 𝐿𝒓̇10𝑛𝑙𝑐2 𝑙̇̂𝑐] ,   𝑗 = 2,3. 

(C.10) 

 

 

𝒘̂̈0𝑘 = − [𝒘̇̅𝑘̃ (𝑹̅𝑘vect(𝑹0T𝑹̇0))̃ + (𝑹̅𝑘vect(𝑹̇0T𝑹̇0 + 𝑹0T𝑹̈0))̃ ] 𝒘̂̅𝑘− (𝑹̅𝑘vect(𝑹0T𝑹̇0))̃ 𝒘̂̇̅𝑘 

(C.11) 

 

where 𝛿𝑖𝑗 = {1, 𝑖 = 𝑗0,   𝑖 ≠ 𝑗。The quantities 𝒑̂, 𝒓̂2, 𝜂̂ and 𝒘̂̅𝑘 in Eqs. (C.9) and (C.10) can 

be obtained using Eqs. (A.6), (A.8), (B.16) and (59), respectively. Using Eqs. (43) and 

(59), 𝑙̇̂𝑐 and 𝒘̂̇̅𝑘 can be expressed as 

 

 𝑙̇̂𝑐 = 𝒒̇gT𝑼̂̅T + 𝑣0𝒓10 + 𝐿𝒓̇10𝑛 𝒓̂1 (C.12) 

 

 𝒘̂̇̅𝑘 = −𝑮̂1T𝑸1 − [𝛿1𝑘𝑰 𝛿2𝑘𝑰]𝑷1𝑬̂𝑟𝑸1 − 𝑮̂2T + 𝒘̂̇0𝑘 (C.13) 

 

From Eqs. (92), (B.2) and (B.9), one obtains 
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𝜕𝑯̇1𝜕𝒒̇ = 𝑯̂1 = 𝑵̇1 − 𝑹𝑟 (𝑵̇2 [𝜽̅1𝜽̅2] + 𝑵2𝑷2)̃ 𝑮1T𝑬T + 𝑹𝑟𝑵̇2𝑷1𝑬T
+ 𝑹𝑟 𝜕𝜕𝒒̇g (𝑵2𝑷̇2) + 𝑹𝑟𝑮2T̃𝑵2𝑷1𝑬T 

(C.14) 

 

where 
𝜕𝜕𝒒̇g (𝑵2𝑷̇2) has been given by Eq. (C.4). 

From Eq. (82), 𝒘̂̈e can be expanded as 

 

 

𝒘̂̈e = −(𝑯3𝑸1)̃ 𝒘̇𝑟ê + 𝒘̇𝑟𝑒̃𝑯̂3𝑸1 + 𝑯̂̇3𝑸1 + 𝑯̂3𝑸6 − 𝑯3𝑬̂̇𝑟𝑸1− (𝒘̇𝑟𝑒̃𝑯3 + 𝑯̇3 − 𝑯3𝑬̇𝑟)𝑬̂𝑟𝑸1 + (𝑯̂3 − 𝑯3𝑬̂𝑟)𝑸7+ 𝑯4̃𝒘̇𝑟ê + 𝒘̇𝑟𝑒̃𝑯̂4 + 𝑯̂̇4 

(C.15) 

 

where 𝑯̂4 and 𝑯̂̇4 can be obtained using Eqs. (80) and (84), respectively 

 

 𝑯̂4 = 𝜕𝑯̇4𝜕𝒒̇g = (𝑰 − 𝑵3 [𝑰𝑰]) [𝟎1×12𝐺̂22𝐺̂23 ] + 𝑵3 [𝒘̂̇01𝒘̂̇02] + 𝑵̇3𝑷1𝑬T (C.16) 

 

 

𝑯̂̇4 = (𝑰 − 𝑵3 [𝑰𝑰]) [𝟎1×12𝐺̂̇22𝐺̂̇23 ] + 𝑵3 [𝒘̂̈01𝒘̂̈02] + 𝑵̈3𝑷1𝑬T + 1𝑙𝑐2 𝑵̇3 [𝑰𝑰]𝑵4𝑸1𝑼̅
− 𝑵̇3𝑷1𝑬̂𝑟𝑸1 − 2𝑵̇3 [𝑰𝑰] [𝟎1×12𝐺̂22𝐺̂23 ] + 2𝑵̇3 [𝒘̂̇01𝒘̂̇02] 

(C.17) 

 𝒘̇ê, 𝜽̂̅ and 𝜴̂ can be obtained using Eqs. (81), (74) and (63) , respectively 

 

 𝒘̇ê = 𝑯̂3𝑸1 − 𝑯3𝑬̂𝑟𝑸1 + 𝑯̂4 (C.18) 

 

 𝜽̂̅ = 𝑵3𝑷1𝑬T (C.19) 
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 𝜴̂ = 𝒘̇𝑒̃ 𝜽̂̅ + 𝑹̅T𝒘̇ê (C.20) 

 

Using Eq. (B.13), one obtains  

 

 

𝑯̂̇2𝑸1 = 1𝑙𝑐2 𝑵̇2 [𝑰𝑰]𝑵4𝑸1𝑼̅ − 2𝑙𝑐3 𝑵2 [𝑰𝑰]𝑵4𝑸1𝑼̅ + 1𝑙𝑐2 𝑵2 [𝑰𝑰]𝑵4𝑸1𝑙̇̂𝑐+ (𝑮1T𝑸1)̃ 𝒖̂̇𝑙 − 𝒖̇𝑙̃𝑮̂1T𝑸1 

(C.21) 

 

where 𝑙̇̂𝑐 and 𝒖̂̇𝑙 can be obtained using Eqs. (C.12) and (C.3), respectively. 

 𝑯̂2𝑸𝑘 = 𝜕𝑯̇2𝜕𝒒̇g 𝑸𝑘 = 1𝑙𝑐2 𝑵2 [𝑰𝑰]𝑵4𝑸𝑘𝑼̅ + (𝑮1T𝑸𝑘)̃ 𝒖̂𝑙 − 𝒖𝑙̃𝑮̂1T𝑸𝑘, 𝑘 = 1,6,7. (C.22) 

 

 𝑯̂2T𝑸5 = 𝑷̂1T𝑸10 + 𝑮̂1𝑸11 − 𝑮1𝑸5̃𝒖̂𝑙 (C.23) 

 

with 

 

 𝑸10 = 𝑵2T𝑸5, 𝑸11 = 𝒖𝑙̃𝑸5 (C.24) 

 𝑯̂̇3𝑸1 can be obtained using Eq. (83) 

 

 

𝑯̂̇3𝑸1 = 1𝑙𝑐2 (𝑵3 [𝑰𝑰] − 𝑰)𝑵4𝑸1𝑙̇̂𝑐 − 2𝑙𝑐̇𝑙𝑐3 (𝑵3 [𝑰𝑰] − 𝑰)𝑵4𝑸1𝑼̅+ 1𝑙𝑐2 𝑵̇3 [𝑰𝑰]𝑵4𝑸1𝑼̅ 

(C.25) 

 

Using Eq. (79), one obtains 

 

 𝑯̂3𝑸𝑘 = 𝜕𝑯̇3𝜕𝒒̇ 𝑸𝑘 = − 1𝑙𝑐2 (𝑰 − 𝑵3 [𝑰𝑰])𝑵4𝑸𝑘𝑼̅, 𝑘 = 1,6,7 (C.26) 
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 𝑯̂3T𝑸9 = − 1𝑙𝑐2 𝑵4T(𝑰 − [𝑰 𝑰]𝑵3T)𝑸9𝑼̅ (C.27) 

 

Using Eq. (59), one obtains  

 

 𝑷̂1T𝑸𝑘 = −𝑮̂1𝑸𝑘1 − 𝑮̂1𝑸𝑘2 , 𝑘 = 2,10 (C.28) 

 

with 

 

 𝑸2 = [𝑸21𝑸22] = [𝑸12𝑸13] , 𝑸10 = [𝑸101𝑸102 ] = [𝑸14𝑸15] (C.29) 

 𝑮̂1𝑸𝑘(𝑘 = 11,⋯ ,15) can be obtained using Eq. (56) 

 

 𝑮̂1𝑸𝑘 = − 1𝑙𝑐2 𝑵4T [ 0𝜂𝑄𝑘1 + 𝑄𝑘2𝑄𝑘3 ] 𝑼̅ + 𝑄𝑘1𝑨, 𝑘 = 11,⋯ ,15. (C.30) 

 

with 𝑸𝑘 = [𝑄𝑘1 𝑄𝑘2 𝑄𝑘3]T(𝑘 = 11,⋯ ,15) and 

 

 𝑨 = [𝟎12×2 𝜂̂𝑙𝑐 𝜂̂122 − 𝜂̂112 𝟎12×3 − 𝜂̂𝑙𝑐 𝜂̂222 − 𝜂̂212 𝟎12×1]T (C.31) 

 

where 𝜂̂, 𝜂̂𝑘1 and 𝜂̂𝑘2 (𝑘 = 1,2) can be obtained using Eqs. (B.16), (B.17) and (B.18). 𝑮̂1T𝑸1(𝑘 = 1,6,7) can also be obtained using Eq. (56) 

 

 𝑮̂1T𝑸𝑘 = − 1𝑙𝑐2 [𝜂[0 1 0]𝑵4𝑸𝑘[0 1 0]𝑵4𝑸𝑘[0 0 1]𝑵4𝑸𝑘 ] 𝑼̅ + [ 𝑸𝑘T𝑨𝟎1×12𝟎1×12] , 𝑘 = 1,6,7 (C.32) 

 

Let  
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 𝑸𝑘 = [𝑸𝑘1T 𝑸𝑘2T 𝑸𝑘3T 𝑸𝑘4T]T, 𝑘 = 1,3,4,7,8. (C.33) 

 

Then 𝑬̂̇𝑟𝑸1 and 𝑬̂𝑟𝑸𝑘(𝑘 = 1,3,4,7,8) can be obtained using Eq. (B.22) 

 

 𝑬̂̇𝑟𝑸1 = − [𝑸11̃T 𝑸12̃T 𝑸13̃T 𝑸14̃T]T 𝒘̂̇𝑟e (C.34) 

 𝑬̂𝑟𝑸𝑘 = 𝜕𝑬̇𝑟𝜕𝒒̇ 𝑸𝑘 = − [𝑸11̃T 𝑸12̃T 𝑸13̃T 𝑸14̃T]T 𝑮1T𝑬T, 𝑘 = 1,3,4,7,8. (C.35) 

 

References 

[1] Tabarrok B, Leech CM, Kim YI. On the dynamics of an axially moving beam. J. 

Franklin Instit. 1974; 297(3): 201-220 

[2] Wang PKC, Wei JD. Vibrations in a moving flexible robot arm. J. Sound Vib. 1987; 

116(1): 149-160 

[3] Mansfield L, Simmonds JG. The reverse spaghetti problem: drooping motion of an 

elastica issuing from a horizontal guide. ASME J. Appl. Mech. 1987; 54(1): 147-

150 

[4] Stolte J, Benson RC. Dynamic deflection of paper emerging from a channel. ASME 

J. Vib. Acoust. 1992;114(2): 187-193 

[5] Behdinan K, Stylianou MC, Tabarrok B. Dynamics of flexible sliding beams - non-

linear analysis part I: formulation. J. Sound Vib. 1997;208(4): 517-539 

[6] Behdinan K, Tabarrok B. Dynamics of flexible sliding beams - non-linear analysis 



62 

 

part II: transient response. J. Sound Vib. 1997; 208(4): 541-565 

[7] McIver DB. Hamilton's principle for systems of changing mass. J. Eng. Math. 1973; 

7(3): 249-261 

[8] Gürgöze M, Yüksel S. Transverse vibrations of a flexible beam sliding through a 

prismatic joint. J. Sound Vib. 1999; 223(3): 467-482 

[9] Stylianou M, Tabarrok B. Finite element analysis of an axially moving beam, part I: 

time integration. J. Sound Vib. 1994; 178(4): 433-453 

[10] Behdinan K, Tabarrok B. A finite element formulation for sliding beams. part I, Int. 

J. Numer. Methods Eng. 1998; 43(7): 1309-1333 

[11] Bathe KJ, Bolourchi S. Large displacement analysis of three-dimensional beam 

structures. Int. J. Numer. Methods Eng. 1979; 14(7): 961-986 

[12] Behdinan K, Stylianou MC, Tabarrok B. Co-rotational dynamic analysis of flexible 

beams. Comput. Methods Appl. Mech. Eng. 1998; 154(3-4): 151-161 

[13] Behdinan K, Stylianou MC, Tabarrok B. Sliding beams, part II: time integration. Int. 

J. Numer. Methods Eng. 1998; 43(7): 1335-1363 

[14] Humer A. Dynamic modeling of beams with non-material, deformation-dependent 

boundary conditions. J. Sound Vib. 2013; 332(3): 622-641 

[15] Steinbrecher I, Humer A, Vu-Quoc L. On the numerical modeling of sliding beams: 

a comparison of different approaches. J. Sound Vib. 2017; 408: 270-290 

[16] Dilpare AL. Transient nonlinear deflections of a cantilever beam of uniformly 



63 

 

varying length by numerical methods. AIAA J. 1970; 8(12): 2293-2295 

[17] Banerjee AK, Kane TR. Extrusion of a beam from a rotating base. J. Guid. Control 

Dynam. 1989; 12(2): 140-146 

[18] Ashley H. Observations on the dynamic behavior of large flexible bodies in orbit. 

AIAA J. 1967; 5(3): 460-469 

[19] Canavin JR, Likins PW. Floating reference frames for flexible spacecraft. J. Spacecr. 

Rockets. 1977; 14(12): 724-732 

[20] Simo JC, Vu-Quoc L. On the dynamics of flexible beams under large overall 

motions - the plane case: part I. ASME J. Appl. Mech. 1986; 53(4): 849-854 

[21] Simo JC, Vu-Quoc L. On the dynamics of flexible beams under large overall 

motions - the plane case: part II. ASME J. Appl. Mech. 1986; 53(4): 855-863 

[22] Simo JC, Vu-Quoc L. On the dynamics in space of rods undergoing large motions - 

a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 1988; 66(2), 

125-161 

[23] Simo JC, Vu-Quoc L. Three-dimensional finite-strain rod model. Part II: 

Computational aspects. Comput. Methods Appl. Mech. Eng. 1986; 58(1), 79-116 

[24] Vu-Quoc L, Simo JC. On the dynamics of Earth-orbiting flexible satellites with 

multibody components. J. Guid. Control Dynam. 1987; 10(6), 549-558 

[25] Vu-Quoc, L. Dynamics of Flexible Structures Performing Large Overall Motions: A 

Geometrically-Nonlinear Approach. PhD thesis. University of California; 1986 



64 

 

[26] McRobie FA, Lasenby J. Simo-Vu Quoc rods using Clifford algebra, Int. J. Numer. 

Methods Eng. 1999; 45(4), 377-398 

[27] Hestenes D, Sobczyk G. Clifford Algebra to Geometric Calculus: A Unified 

Language for Mathematics and Physics. Dordrecht: Reidel; 1984 

[28] Damaren C, Sharf I. Simulation of flexible-link manipulators with inertial and 

geometric nonlinearities. ASME J. Dyn. Syst. Meas. Control. 1995; 117(1): 74-87 

[29] Liu JY, Hong JZ. Geometric stiffening of flexible link system with large overall 

motion. Comput. Struct. 2003; 81(32): 2829-2841 

[30] Kane TR, Ryan RR, Banerjee AK. Dynamics of a cantilever beam attached to a 

moving base. J. Guid. Control Dynam. 1987; 10(2): 139-151 

[31] Yoo HH, Ryan RR, Scott RA. Dynamics of flexible beams undergoing overall 

motions. J. Sound Vib. 1995; 181(2): 261-278 

[32] Wu GY, He XS, Pai PF. Geometrically exact 3D beam element for arbitrary large 

rigid-elastic deformation analysis of aerospace structures. Finite Elem. Anal. Des. 

2011; 47(4): 402-412 

[33] Yuh J, Young T. Dynamic modeling of an axially moving beam in rotation: 

simulation and experiment. ASME J. Dyn. Syst. Meas. Control. 1991; 113(1): 34-

40 

[34] Vu-Quoc L, Li S. Dynamics of sliding geometrically-exact beams: large angle 

maneuver and parametric resonance. Comput. Methods Appl. Mech. Eng. 1995; 



65 

 

120(1-2): 65-118 

[35] Al-Bedoor BO, Khulief YA. Finite element dynamic modeling of a translating and 

rotating flexible link. Comput. Methods Appl. Mech. Eng. 1996; 131(1-2): 173-189 

[36] Kalyoncu M. Mathematical modelling and dynamic response of a multi-straight-line 

path tracing flexible robot manipulator with rotating-prismatic joint. Appl. Math. 

Model. 2008; 32(6): 1087-1098 

[37] Korayem MH, Shafei AM, Dehkordi SF. Systematic modeling of a chain of N-

flexible link manipulators connected by revolute-prismatic joints using recursive 

Gibbs-Appell formulation. Arch. Appl. Mech. 2014; 84(2): 187-206 

[38] Korayem MH, Dehkordi SF. Derivation of dynamic equation of viscoelastic 

manipulator with revolute-prismatic joint using recursive Gibbs-Appell formulation. 

Nonlinear Dyn. 2017; 89(3): 2041-2064 

[39] Crisfield MA. A consistent co-rotational formulation for non-linear, three-

dimensional, beam-elements. Comput. Methods Appl. Mech. Eng. 1990; 81(2): 131-

150 

[40] Nour-Omid B, Rankin CC. Finite rotation analysis and consistent linearization using 

projectors. Comput. Methods Appl. Mech. Eng. 1991; 93(3): 353-384 

[41] Le TN, Battini JM, Hjiaj M. A consistent 3D corotational beam element for 

nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. 

Eng. 2014; 269: 538-565 



66 

 

[42] Reddy JN: On locking-free shear deformable beam finite elements. Comput. 

Methods Appl. Mech. Eng. 1997; 149(1-4): 113-132 

[43] Hilber HM, Hughes TJR, Taylor RL. Improved numerical dissipation for time 

integration algorithms in structural dynamics. Earthq. Eng. Struct. D. 1977; 5(3), 

283-292 

[44] Crisfield MA. Nonlinear Finite Element Analysis of Solids and Structures. Vol. 2, 

Advanced Topics. Chichester: Wiley; 1997 

[45] Abraham R, Marsden JE, Ratiu T. Manifolds, Tensor Analysis, and Applications. 

New York: Springer; 2007 

[46] Behdinan K. Dynamics of geometrically nonlinear sliding beams. PhD thesis. 

University of Victoria; 1996 

[47] Battini JM, Pacoste C. Co-rotational beam elements with warping effects in 

instability problems. Comput. Methods Appl. Mech. Eng. 2002; 191(17-18): 1755-

1789 

[48] Géradin M, Cardona A. Flexible Multibody Dynamics: A Finite Element Approach. 

Chichester : Wiley; 2001 

[49] Le TN, Battini JM, Hjiaj M. Dynamics of 3D beam elements in a corotational 

context: A comparative study of established and new formulations. Finite Elem. 

Anal. Des. 2012; 61: 97-111 

[50] Pacoste C. Co-rotational flat facet triangular elements for shell instability analyses. 



67 

 

Comput. Methods Appl. Mech. Eng. 1998; 156(1-4): 75-110 

[51] Ibrahimbegovic A. On the choice of finite rotation parameters. Comput. Methods 

Appl. Mech. Eng. 1997; 149(1-4): 49-71 

[52] Le TN, Battini JM, Hjiaj M. Efficient formulation for dynamics of corotational 2D 

beams. Comput. Mech. 2011; 48(2): 153-161 

[53] Hsiao KM, Lin JY, Lin WY. A consistent co-rotational finite element formulation 

for geometrically nonlinear dynamics analysis of 3-D beams. Comput. Methods 

Appl. Mech. Eng. 1999; 169(1/2): 1-18 

 


