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Abstract

This paper presents the 3D dynamic formulations for a flexible beam sliding through
a revolute-prismatic joint. Considering the geometric nonlinearity, the configuration
space of the 3D flexible beam is a nonlinear differentiable manifold (R3 x SO(3)).
Moreover, the beam manipulated by the revolute-prismatic joint can undergo large overall
motion and slide through the joint. Because of the difficulty mentioned above, most
studies on these problems focus on 2D cases or are tackled under a small deformation
assumption. In this paper, the rotation matrices are parameterized using rotational vectors
to describe accurately the spatial configuration of flexible beams. For convenience, to
describe the finite deformation of the beams, the material frame is fixed on the revolute-
prismatic joint but will change over time. The corotational method is introduced to take
the geometric nonlinearity (small strain and large rotation) of the beam into account. In
the corotational frame, the strain energy and kinetic energy of the elements are derived
with the same shape functions, which are used to describe the local displacements, to
maintain the element-independent framework. Then a ‘standard element’ can be
embedded within this framework. In order to consider the shear deformation, the flexible
beam is discretized using a fixed number of variable-domain interdependent interpolation
elements. Rotary inertia is also considered in this paper. The nonlinear equations of
motion are derived by using the extended Hamilton’s principle and solved by using the

Hilber-Hughes-Taylor method and the Newton-Raphson iteration method. Four examples



are presented to demonstrate the validity, accuracy and versatility of the present dynamic

formulation.

Keywords: co-rotational method; flexible robot manipulator; variable-domain beam

elements; nonlinear dynamic analysis; rotating-prismatic joint

1. Introduction

Robot manipulator arms are widely used in engineering. Generally speaking, their
weight should be as light as possible to reduce the cost and the energy consumption. But
less material means the arms are more flexible. Thus the dynamic analysis of the flexible
arms will be difficult, because their vibration involves not only the rigid motion but also
the large elastic deformation. If the arms are manipulated by a revolute joint or a prismatic
joint, the dynamic analysis will also be more difficult.

Many researchers used the sliding beam model to study the dynamics of robot
manipulator arms with prismatic joints. The nonlinear equations of motion of sliding
beams were firstly given by Tabarrok et al. [1] through Newton’s Second Law. To obtain
the approximate solution, they introduced small deformation and inextensibility
assumptions. The equations of motion were also used to investigate band saws, spacecraft
antenna and copy machines [2-4]. To take the geometric nonlinearity into account,

Behdinan et al. [5, 6] derived the nonlinear equations of motion through an extension of



Hamilton’s principle [7]. Then they used the Galerkin’s method to solve the equations.
Giirgoze and Yiiksel [8] further investigated the effects of rotary inertia, end-mass and
axial force in association with axial foreshortening. Stylianou and Tabarrok [9] used a
fixed number of variable-domain beam elements to discretize the linear system of a
sliding beam. Behdinan and Tabarrok [10] used the updated Lagrangian method [11] and
co-rotational method [12] to derive the dynamic formulations for sliding beams
respectively and discussed the effects of geometric nonlinearity on the dynamic response
of the beam [13]. However, their formulations cannot maintain the consistency of the
element because the elastic force vector and the inertia force vector are derived using
different shape functions. In addition, the shape functions are used to describe the global
displacement field rather than the local displacement field for the derivation of the inertia
force vector. To take into account the deformation of the inside part of a sliding beam,
Humer [14] presented dynamic formulations of a sliding beam with non-material
boundary conditions where the position of the prismatic joint relative to the material
points of the beam is unknown. Steinbrecher et al. [15] further used commercial software,
ABAQUS, to study the sliding beam problem. Dilpare [16], Banerjee and Kane [17] used
multibody dynamics to study the nonlinear motion of the sliding beam.

Some researchers studied the dynamics of robot manipulator arms with revolute
joints. In studying the dynamic problem, a convenient method is to introduce a floating

frame [18, 19] which allows the potential energy of the beam to be expressed in a simple



form with the assumption of small strains. By contrast, the expression of the kinetic
energy of the system will be cumbersome. To overcome this difficulty, Simo and Vu-
Quoc [20-25] derived the equations of motion of the beam in the inertial frame and took
the geometric nonlinearity into account. Mcrobie and Lasenby [26] further presented a
new formulation of Simo-Vu Quoc rods based on geometric algebra [27]. This
formulation is easier to learn and manipulate. Damaren and Sharf [28] studied how
nonlinear terms in the equations of motion of the beam influence the responses. To capture
the motion-induced stiffness terms which are associated with the high-speed rotation of
the beam, Liu and Hong [29] used non-Cartesian deformation variables to derive the
equations of motion of the flexible beam. Similarly, Kane et al. [30] and Yoo et al. [31]
studied the 3D dynamic problem of a beam attached to a moving rigid base under a small
deformation assumption. Wu et al. [32] further took into account the geometric
nonlinearity of the flexible beam.

A beam manipulated by a revolute-prismatic joint can either slide through the joint
or undergo large overall motion. Yuh and Young [33] derived the equations of motion of
the dynamic problem through Newton’s Second Law. They used the assumed mode
method to obtain approximate solutions and validated the model by experiments. In order
to consider geometric nonlinearity and shear deformation of the flexible beam, Vu-Quoc
and Li [34] studied the dynamic problems based on geometrically exact theory [22]. Al-

Bedoor and Khulief [35] used a fixed number of constant-domain elements to discretize



the sliding beam. To deal with the time-dependent boundary condition at the channel
orifice, they introduced a transition element with variable stiffness. Kalyoncu [36]
proposed a mathematical model of a flexible robot manipulator with special boundary
conditions such that the tip end of the manipulator traces a multi-straight-line path. Rotary
inertia, axial shortening and gravitation were also considered in the model.

The aforementioned studies are all aimed at 2D problems, while most mechanical
devices in engineering practice move in 3D space. The dynamic analysis of the 3D
problems becomes more difficult for that the configuration space of the 3D flexible beam
is a nonlinear differentiable manifold (R3 x SO(3)). Recently, Korayem et al. [37, 38]
derived the equations of motion of N-flexible link manipulators. But they did not take
account of the large deformations of the flexible beam.

In this paper, the model proposed by Vu-Quoc and Li [33] is extended to the 3D case.
A flexible beam manipulated by a revolute-prismatic joint will not only undergo large
overall motion but also slide through the joint. To investigate the geometric nonlinear
dynamic problem of this kind of structures, the corotational method [39-41], which has
high accuracy and efficiency [41], is used. The key idea of the corotational method is to
decompose the motion of the element into rigid body motion and pure deformation. By
introducing a rotational frame, the rigid body motions generated by not only the
deformation of the beam but also the revolute-prismatic joint can be removed

conveniently. Then, the pure deformation of the element can be easily measured in the



rotational frame (the local system). Different assumptions can be made to describe the
local deformation of the element. In addition, the strain energy and kinetic energy of the
elements are derived with the same shape functions to ensure the consistency of the
element. The above element-independent framework is consistent with the idea of Nour-
Omid and Rankin’s [39, 40] corotational method. Then, a ‘standard beam element’ can be
embedded within the framework. To consider the shear deformation and rotary inertia,
the interdependent interpolation element (IIE) [42] is embedded within the framework.
Because the material configuration of the beam will change with time, variable-domain
IIEs are used to discretize the system in space. The Hilber-Hughes-Taylor method (HHT)

[43, 44] 1s used to discretize the system in time to maintain the numerical stability.

2. 3D beam kinematics

As shown in Fig. 1, a flexible beam manipulated by a revolute-prismatic joint can
slide through the joint and undergo large overall motion. The deformation of the beam
can be decomposed into a rigid motion manipulated by the joint (Fig. 1) and a superposed
finite deformation (Fig. 2). To describe the finite deformation conveniently, the sliding
undeformed beam (Fig. 1) is chosen as the material configuration. Interest is confined to
the deformation of the part outside the joint channel of the material beam. The time-

varying material configuration can be expressed as

B = {0, X X5) € ROIX, € [0,L(D], X, € [—g,g],xs e [—gg]} (1)
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x|

Sliding Undeformed Beam

.. X
Initial Undeformed Beam !

Fig. 1 Description of the rigid motion of the beam

where L(t), h and b are the length, height and width of the material beam outside the
joint channel, respectively. The material frame {E,, E,, E5} is fixed on the revolute-
prismatic joint. The origin O of the material coordinate system is located at the center of
the channel orifice. An inertial coordinate system (x,x,,x3) € R? is set up for the
spatial configuration Bg with basis vectors {e;, e, e3}. The spatial and material
coordinate systems have the same origin. The relationship between the material and

spatial basis vectors can be denoted by

E;=R,(De;, i=123 )

where Ry(t) = [r?,79,73] € SO(3) is a prescribed orthogonal matrix and SO(3) is
the noncommutative Lie group [45].

A plane cross-section assumption is introduced. At an arbitrary material point P =



(X,0,0) € B, of the beam centroidal line, an orthonormal frame {t,(X),t,(X), t;(X)}
may be defined which can describe the finite rotations of the cross-section corresponding
to the point. £;(X) = t,(X) X t3(X) is the normal basis vector of the section, as shown
in Fig. 2. The orthogonal matrices R® € SO(3) and R € SO(3) describe the rotations
from the material and spatial basis vectors to the orthonormal triads ¢; (i = 1,2,3),

respectively, i.e.

t;(X) = R8(X)E, = R5(X)Roe; = R(X)e;, i=123 3)

Xy |

Sliding deformed

R

€4

Fig. 2 Description of the finite deformation of the beam

The material point P and the corresponding spatial point P* € By have the

following relationship



P'=P+ulX) 4)

where u(X) denotes the displacement vector of the material point P. It should be noted
that u is not the absolute displacement but the relative displacement to the material
configuration. The material point P, = (X, X,, X3) € By, has the same cross-section as

the point P and the corresponding spatial point P; € By satisfies
P; = P* + thz(X) + X3t3(X) = P* + R(X)(Xzez +X3e3) (5)

According to Egs. (4) and (5), the configuration space of the 3D flexible beam is a
nonlinear differentiable manifold due to the introduction of R(X). The displacement
vector u(X) and the rotation matrix R(X) of the material points of the beam centroidal
line directly determine the spatial configuration of the beam. The displacement space of

the beam can be defined as follows
9 ={(u(P),R(P)) € R® x SO(3)|P = (X,0,0) € By} (6)
Euler’s theorem indicates that the rotation matrix R can be parameterized using the

rotational vector @ = [6; 6, 03]T. The relation is given by Rodrigues’ formula

sinf . 1 —cosf ~
R(O)=1+——0+—77—60= exp(0) (7

where 0 =V0TO and 0 € so(3). so(3) denotes the Lie algebra of SO(3) [45].

iR so(3) denotes the Lie algebra isomorphism, i.e.
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O _93 92
[93 0 —61], Oh=60xh, VheR3 (8)
-6, 6, O

The operator vect( ) is defined by

vect(6) = 0 )

Next, define a space Q@ which is isomorphic to the displacement space Q, i.e.
9 = {(u(P),8(P)) € R® x R}|P = (X,0,0) € By, } (10)

The part of the beam B, inside the joint channel is assumed to be non-deformable,
which implies that the beam has a clamped boundary condition at the channel orifice [10,
34]. Then u(P,) =0, 8(P,) = 0, where P, = (0,0,0) € By, is the material point at

the channel orifice.

3. Local kinematic description of the variable-domain beam

elements

The sliding beam can be divided into n elements with the lengths [,(t) = L(t)/n

which are changing in time. As shown in Fig. 3, the displacements of nodes 1 and 2 of

the ith element can be denoted by (u,,0,) = (u(P),O(P)) € Q and

P=((i-1)L/n,0,0)

(u,,0,) = (u(P), 0(P))P= (iL/n.0,0) € Q, respectively. For convenience, the subscript i

of variables which are associated with the ith element will be ignored. The global
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displacement vector of the ith element is defined by

q=[ul o7 ul oI (11)

As shown in Fig. 3, t} and tjz (j = 1,2,3), denote two unit triads fixed to nodes 1 and
2. Then two orthogonal matrices R; and R, are used to specify the orientation of the

two triads, respectively,

R, =[th t& t¥], k=12 (12)

Fig. 3 Description of the deformation of the beam element

X1 = (l - 1)[0R061, XZ = iloR081 (13)
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3.1. Corotational frame
The basis vectors of the corotational frame are denoted by {r;,r,,73}. The origin

of the frame is taken at node 1, and its orientation is defined by an orthogonal matrix

R, =[r1 T, T3] (14)

The method proposed by Le et al. [41] is used to defined the orientation of 74, r, and

T3, as follows

lc =\/(X2+u2 - X; —u)T(X; +u, — X; —uy) (15)

_X2+u2_X1_u1

ry = (16)
le
=2y +p2)
Pr=Ri[0 1 0]"=RERo[0 1 0]"=R%ry, k=12
ryXp
r, = — r, ="y Xr 18
3 ”_r1 ><p” 2 3 1 ( )

where [. is the distance between the nodes and R,% are the orthogonal matrices to
describe the rotation from r}) to tJ’-‘(j =1,2,3).
3.2. Local displacement field of elements

The pure deformation of the element is measured in the rotational frame. Due to the

particular choice of the local system, the local displacements at node 1 are zero. Moreover,

13



at node 2, the only nonzero displacement is along 7; and can easily be evaluated

according to

=1 -1 (19)

Here and hereafter, an overbar denotes a deformational kinematic quantity.

The local rotation is defined by the orthogonal matrix Ry, as shown in Fig. 3. The
global rotation R; at node k can be expressed in terms of the rigid rotation R, of the
corotational frame followed by the local rotation Rj. As shown in Fig. 3, R, can also

be obtained through the product RiRO, 1e.,

R, =R.R,=R}R,, k=12 (20)

The local rotation R; can be parameterized using a rotational vector from Egs. (7)-(9).

Consequently, we can define a local displacement vector with seven components, i.e.,

g=1[z 6] 6" 21

where

0, = vect(In(Ry)), k=12 (22)

To consider the shear deformation and rotary inertia, the IIE [42], which is locking-

free, is used to describe the local displacement field of the element. The shape functions

14



of this element are based on the exact solution of homogeneous form of the equilibrium

equations for a Timoshenko beam. It should be noted that this exact solution is based on

linear theory. The element should be small enough to ensure that only small deformations

occur in the local system. Let u;(y)(i =1,2,3) and éi()()(i =1,2,3) denote the

local displacements and the local cross-section rotations of a material point with local

coordinate y. A double overbar denotes a local kinematic quantity of an arbitrary material

point. Considering the particular choice of the local displacement vector ¢, the local

displacement field of the element can be expressed as [42]

where

] N, 0 0 0 0 0 01
Uy 0 0 0 N} O 0 N}
;i fo 0 -Nf 0 0 -—-NZ O]f_
,]7to N, 0o o N, 0 o019
0, 0 0 N2 0 0 N2 0
g,0 Lo o o N 0o o N
X X ;1 X X\
N=1-%, N,=%, N]/=— 6[2-(1——)+<1——> ,
! Lo 2 lo ¥ .UjXI ’ lo Lo
: 1 N, x x
N} = —— 6.(2-(1——)+———,
* Mj)([ / Lo Lo l(z)
| 120,y 4y 3x2
N =—(p ——L=-S+2-),
S <ﬂ] Lo o 1§
-1 (120;x 2x 3x2 El
J=— (-2 g =L
Uj lO lO lO GAjlo

wi=1+120;, j=23
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Here, E1; is the principal bending stiffness relative to t; and GA; is the shear stiffness
along axis t; (j = 2,3). The local coordinate y and the material coordinate X have the

following relationship:
x=X—-(>-Dl (25)

3.3. Local elastic force vector and Local tangent stiffness matrix
To consider the axial deformation, bending deformation and shear deformation of

the beam, the strain energy of a beam element can be expressed as [23]

1
Ep=—

5 j KCk dy (26)

lo

The strain vector k and elasticity matrix C are given by

i i, - 0il, - 00, 08, 090
k=|—L —2_§, -—2_34 1 2 3 27)
ox ox ox oy Jdx 0y

C = diag[EA, GA,, GAs, GJ,ElL,, El; | (28)

where EA and GJ are the axial stiffness and torsional stiffness, respectively. Using Eqgs.

(23)-(28), the local elastic force vector and tangent stiffness matrix are obtained as

0Ep ]
szﬁzKLQZ[fu fiz fiz fia fis fie fidl (29)

16



EA
— 0 0 0 0 0 0
lo
G G
0 z_] 0 0 _z_] 0 0
0 0
42 22
0 0 —Z2 0 0 =2 0
Hzlo 1z lo
of, |00 0 0 0 0 0
_ 9 _ 42 21
Ke=22=lo o o B0 0 23 G30)
% K3lo K3lo
G G
o < v o L o o
lo lo
22 42
0 0 =2 0 0 —2 0
m3lo Hslo
22 42
o 0 0 =2 0 0 =
H3lo 3o

where

Aj = 9GA;I507 + 36E1.07 + 6ELj2; + EI;,

202 2 . €1V
Apj = 18GA;I20% — T2EL,0F — 12EL,Q; + Elj, j = 2,3

4. Nonlinear equation of motion
According to the analysis in [1, 46], the Hamilton’s principle for a system of

changing mass [7] can be expressed as

§| (Ex—Ep)dt+ | swdt=0 (32)

t1 t1

The kinetic energy Ex of a beam element can be expressed as

1 . ) . .
Ex = E-]; (uﬂngpug + wglpwg)dx (33)
0

17



where 1, and w, are the translational velocity and the spatial angular velocity of the
cross-section. A, is the mass per unit of undeformed beam length. I,, is the spatial

inertia dyadic tensor defined as
I, =RJ,R" (34)

where ], is the material inertia dyadic tensor (constant with respect to time). The virtual

work of the external forces is
W = 8q3f (35)

where f denotes the external force vector.

4.1. Elastic force vector
This section is devoted to the derivation of the elastic force vector. The term

) ttlz Epdt in Eq. (32) can be expressed in the global and local systems, respectively, i.e.

tz tz tz
5| Epdt=| 8qTfedt= | &q7f.dt (36)

ty ty ty
where f denotes the global elastic force vector. 6q;§ and 8q" are defined by
T
85qy = [sul sw8' sul oswt | (37)

8§q =[6u o&wl &wllT (38)

18



It should be noted that SW%(k = 1,2) are non-additive pseudo-vectors. The non-
additive (8wy,) and additive (80) pseudo-vectors (as defined in Eq. (11)) have the

following relationship [44]:

SWE =T(0,)80,, k=12 (39)

where the operator T( ) is defined (using @ as an example) by

T(0) _sint91_|_1—cosé?§_l_t9—sint9b,a 40)
0 02 63

Considering the local rotation is assumed to be small [41, 47] and using Eq. (40), the

following approximation is adopted

ka = T(gk)Sak = 65](, k= 1,2 (41)

The following derivation is to establish a relationship between&qg and 8g". Then,
the global elastic force vector fg will be obtained by using Eq. (36). First, we will
investigate the component 8% in 8q.

Since the beam is manipulated by the revolute-prismatic joint, the prescribed
orthogonal matrix R, as defined in Eq. (2) and the element length [, are functions of

time. By taking the variation of Eq. (13), one obtains

i—1

8X1 = (URO + LRo) 318t, 8X2 = (URO + LRO)%el ot (42)

n
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where v = dL/dt = dX/dt denotes the sliding speed of the beam. It should be pointed
out that Ry, Ry, L and v are prescribed according to the manipulation of the revolute-

prismatic joint. Using Eq. (42) and taking the variation of Egs. (15) and (19), one obtains

_ v
5l, = Udqy + (Hr(l)Trl + 1679 Ty ) Bt (43)
_ = Vi oT .oT
8t = Udqg + [E (r‘l’ ry— 1) + 1o rl] 8t (44)
where
U=[-1] 053 7] 05s] (45)

Next, we will investigate the components 8w, and 8w, in 8g". The variations of

R, R, and Ri can be expressed as [44]
SRy = 8w R,  OR,=8wSR,, SRS =0owlR%, k=12 (46

The orthogonal matrix R, transforms a vector x8 and a tensor x8 from global to local

coordinates according to

x® = RIx8,  x° = R'xER, 47)

Considering the property of the Lie algebra isomorphism "T=_"" and using Eqgs. (20)

and (46), S8R, can be further expressed as

20



SR, = SRTRER, + RTSRER, + RTRESR,

(—RTSWER, + RTSWER, ) Ry + RTRER,RTRE'R,5tR, (48)

(~RT6WER, + RTSWER, + R RERoRLSt) R,

As in Eq. (47), following definitions are introduced:

Swe = RTSWER,

swe = RTSwER, (49)

swk = R, RIR,RI5t

Inserting Eq. (49) into Eq. (48) and using Eq. (46), 6w} can be expressed in vector form,

1.€.,
5wy, = SwS — Swe + wkst (50)
where
wg = vect(R,R{RRY) = Ry vect(RER,) (51)

As shown in Eq. (15), 6w, isrelated to dwj and Swyg. Next, we will investigate these

two terms. Let

R, 0 0 0
0 R 0 O
_ T _
8q; = E'8qy, E=|, Or R, 0 (52)
0O 0 0 R

T

with 0 denoting the 3 X 3 zero matrix. Further, the term dwj,(k = 1,2) in Eq. (50)

21



can be rewritten as

0O I 0O

owe dqs
= Tﬁsqu[o o o I]ETng (53)

8w§] owr
dqg 09,

Sw$
Next, the relationships between dwy (k = 1,2) and 8¢, are obtained.

From Egs. (46) and (47), one obtains

—riér;
Swt = RTSR,,  &wS = vect(R}6R,) = |-rlér, (54)
ridr,

with —r18r;, —r16r; and r18r; givenin Appendix A. Inserting these terms into Eq.

(54), one obtains

Swg = GIE"8q, + G5t (55)
where
r n N N11 n M2 N21 T
0 o - = -— 00 0 - — — — 0
l. 2 2 l. 2 2
1 1
GT =10 0O — 0 0 0O 0 0 —/— ©0 0 0 (56)
le le
1 1
O — 0 O 0 0O 0 — O 0 0 0
le le
with
ry'p r; p; ..
= ) i = Ll = 112 57
n P Nij —— J (57)
and
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vr? + Li? R, +R o]

RT 1nlc Ltel—L > 2 RI#9
P G2

vrd + Li? = (G2 (58)

nl, G3

vrd + L

nl,

—(rip)e;

G, =
—e3R;

—ejR}

Inserting Egs. (53) and (55) into Eq. (50),

T GT —GT 21
el =(10 & 0 S1-[ci]) o[l
2 1 2 TWp (59)
= P,E"8q, + P,8t

Further, inserting Egs. (44) and (59) into Eq. (38), 8q can be rewritten as

8q = B16q; + B,5t (60)
where
Bi=|p |  Ba- . ©1)
P,

Finally, by inserting Eq. (60) into Eq. (36) the relationship between the global and local
elastic force vector is obtained, i.e.

fc = Bify (62)
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4.2. Inertia force vector

This section is devoted to the derivation of the inertia force vector. The material

angular velocity is defined by
2=R"W,, 02=R"R=R"W,R (63)

with R as defined in Eq. (3). The kinetic energy of the element can be rewritten in the

material form, i.e.
Lfr, -
Eg=> j (ufAyug + Q7] ,02)dx (64)
lo

Inserting Eq. (64) into Eq. (32) and integrating & [ :12 Exdt by parts, one obtains (see [48]
for detailed derivations)

t t2 o
§| Egdt=-— j j (SugApilg +807(J,2 + n],,:z)) dx dt

t1

(65)

t2

=— | sqifidte

t1

where f; denotes the inertia force vector and 8@ is the material spin variable defined

by
50 = R"sw,, 50 = R"SR (66)

The translational displacement variables and finite rotation variables in Eq. (65) will

24



now be derived. First, we consider the translational displacement variables.The spatial
position of the material point P = ((i —1DL/n+y, 0,0) on the ith element can be

expressed as

Pg=X1+u1+()(+171)1'1+1=121'2+1=13r3

(67)
= N X; + N,X; + Niq; + Ryu
where
N,=[NJ 0 N,I 0] (68)
u =N, lgj (69)
with

0O 0 0 0 0 0
N,=[0 0 N 0 0 N} (70)
0 -N2 0 0 —NZ 0

The shape functions in Egs. (67)-(70) are given by Eq. (24). By taking the derivation of

Eq. (66), one obtains

8Py = 8u; = H,6t + R,H,E"8q, (71)

with H; and H, given in Appendix B. Obviously, the translational velocity and

acceleration of the material point can be evaluated from
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u, =H, +R.H,E"q, (72)

it, = H, + R,(WEH, + H, — H,E,)E"q, + R, H,E"§j, (73)

with gz =[] w] ul wllT and g, =[a] w] @l wil™. Hy, H,, R, and

E, are given in Appendix B.
Next, we consider the finite rotation variables. The local cross-section rotation can

be expressed as
0=N, l_ l (74)

with

N, O O N, 0 0
N;=|0 N2 0 0 N2 O (75)
0 0 N 0 0 N

Using Egs. (47) and (50), the variation of the spatial spin w, is evaluated as [41]
8wy = R, (8w; + 6w) (76)

With the approximation adopted in Eq. (41) and using Eq. (59), the variation of Eq. (74)

can be evaluated using

8w ~ 860 = N3P,E"8q, + <N3 [gll + N3P2> St (77)
2

Then inserting Egs. (55) and (77) into Eq. (76), dw, can be rewritten as
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8wy = R,H3E"8q, + R, H,5t (78)

where

l(1—1\13[5])1\14“\133 (’) g (1) (79)

H3=GI+N3P1=Z
C

H, =Gl + N, [gll + N;P, (80)
2

with N, given in Appendix B (B.20). Then the spatial angular velocity wg and

acceleration W, have the following expressions
we =R,W,, Ww,=H3E"q,+H, (81)

Wg = R,w,,
(82)
We = (WeHs + Hy — H3E, )ETqy + HsE g + WeH, + H,

It should be noted that w, and w, are defined for convenience. The time derivative of

W, 1s not equal to w,. By taking the time derivative of Eqgs. (79) and (80), one obtains

T
H3:GI+N3P1+N3P1:GI I.:;,‘|+N3P1
I, " 1 83)
I 0 I
= [l-0ver (5 o o - li)
01 . T - :
H, = GT + N,P, + N, o |+ NsPiE"qy + 2N5P, (84)
2
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By noting that R™W = 0 and taking the time derivative of Eq. (63), one obtains
2 = RMw, (85)

Inserting Eqgs. (66), (71), (78), (82) and (85) into Eq. (65), the inertia force vector is

obtained as

fi= f |[EHTRTA,H, + EHJA,(WeH, + H, — H,E,)E"q,
o (86)
+ EHJA,H,E 4, + EHIR(J ,R"V, + 2] ,2)|dx

where R denotes the local rotation matrix. Assuming the local rotation is small, R can

be approximately expressed as
R=RIR~(I+0) (87)

Finally, from Egs. (32), (36), (62), (65) and (86), the equation of motion of the

element is obtained as

fl(qg' ng qg) +fa (qg) =f (88)

5. Numerical algorithms
The nonlinear equations of motion of the discrete system will be solved using the
Newton-Raphson method. Because of the strong nonlinearity of the dynamic problem

studied in this paper, numerical damping should be introduced to avoid numerical
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instability. The HHT method [43, 44] is used to discretize the system in time.

5.1. Tangent stiffness matrix and dynamic matrix

To linearize Eq. (88), the following matrices should be obtained

d d d d
M=#, C=i, K=ﬁ+ fI—KT+KI (89)
o 8 04, 0qy 0qq

where M, C and K; are the mass, gyroscopic and centrifugal dynamic matrices,
respectively. K is the global tangent stiffness matrix.

From Egs. (86) and (89), the mass matrix is given by

My = | (EHJA,H,E™ + EHIR] ,R"H;E")dx (90)

lo

Further, inserting Eqgs. (63), (81) and (86) into Eq. (89), the gyroscopic dynamic

matrix is obtained as

o=

27€

0 0H,
EH]A,(H,Q,) ‘;’ +EH;A,——Q,

0H,
[EHTRTA
P oqq

6q

0

— EH}A,H %Q + EHJA,(WEH, + H, — HLE,)ET  (91)
24p zaqg 1 28p\Wr il 2 2Ly

ow ——\ = OW
Tpr pT T T e
+ EHIR],R aqg ——+EH R(n]p (]pn))R aqgldx

with @, = 45 = Equ, aHl/aqg, aHz/angl and g—ZQl given in Appendix C.

Using Eq. (55), (81) and(82), dw;/dq,, 0W./dq, and 0W./0q, can be obtained as
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ows  ows
— = = GIET 92
oW,
— = H,ET 93
34, 3 (93)
oW, ,— . owe 0H3 oE,
— = (WéH, + H ET—(H,0)—+=—"20Q, - —Q
aqg ( T 3 37 ) 3¥1 aqg aqg 1 3 aqg 1
%94)
N AL
6qg 6qg

with 6H3/6qgQ1, aEr/angl and aH4/aqg given in Appendix C.

From Egs. (61), (62) and (89), one obtains

G 71 D ¥
K;=—=BJK B, + f,,U" + EPTQ, + EE,Q; (95)

with [ ]=0[ 1/0as, Q;=1fi2 fis fia fis fie fi7]" and Q3 = PIQ; .
PTQ, and E,Q; are given in Appendix C. Using Egs. (45) and (A.3), UT can be

obtained as

1
U'=—= —l?‘l—n@ﬁ][ I 0 I 0] (96)
0

From Egs. (86) and (89), K; can be expanded as
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with

K;

94,

? - _ I z
fi _ f (EE, Q. + ERSQs + EHI(RTAH.)W¢ + EHIRTA,H,)
lo

+ EHTA, (WeR,Q, — (H,Q)W5 + H,Q, + H,0,
- HZErQ1) - EH’{Ap(‘;;éHZ + HZ - HZEr)Er01

+ EH}4,H,Q, - EH}A,H,E,Q; | 97)

+ [EErQ8 + EHYQo — EHY(J ,R™W, + 2] ,2)0
+ EHIRJ,W.6 + EHIRJ ,R"W,

+ EHIR (0, - (T,,E)) fz] dy

Q.= HFZFRIApﬁ, Qs = RIApil, Qs = Equ' Q; = Equ

_ P _ __c _ 98
Qs = HIR(J,R™W. + 2] ,2), Qo =R(J,R™W. + 2] ,0). ©8)

We is obtained from Eq. (92). HTQ., RYH,, H,0,(k=167), H,Q,, E,Q,,

HTQ,, 6, W, and @ are given in Appendix C.

5.2. Time stepping algorithm

Considering the finite rotation is non-additive and non-commutative, the iterative

forms of node displacements can be expressed as [35, 41, 49]

. 1 . .
Umn+1) = U + Atu(n) + (At)z [(E - ,3) U + ﬂu(n+1)] 99)

Wins1) = Uy + AL[(1 — V)it + Viga) (100)
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. 1 ) )
0%n+1) = Atw(pny + (AL)? [(5 - ﬁ) W + ﬁW(n+1)] (101)
W(n+1) = A%n+1) [W(n) + At(1 - }/)W(n)] + At)/ﬁ’(n_H) (102)
g _ g _ T
Aln+1) = €XP (0(n+1)) = Ry R (103)

where At denotes the time step and the subscript (n + 1) denotes the (n + 1)th step.
The values of § and y can be obtained as in [43]. The linearizations of the velocity and

acceleration are given by

. 14
Mnan = 5py (uener) = ue) (104)
. 1
Aty = 50?2 (W) — Uw)) (105)
. I Ay
. 1 P
MWy = o T (9(n+1)) AWy (107)

where the operator T~1( ) can be obtained using Eq. (40)

T-1(0) = gcot (g) I- %’é + (1 - gcot (;)) 00" (108)

with the relationship [50]

T-T(0) = exp(0)T1(0) (109)
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According to the relations (99)-(103), the update procedures of the displacements,

velocities and accelerations at the kth iteration of step (n+1) are performed as follows

[51]

) _ (k1) ()
Unt1) = Ugner) T AUy
S0V B-v. 2—v .
Uy = BAt (u(n+1) - u(n)) + Tu(n) + TAtu(n)
1 1 28 —1
. (k) (k) . .
Umt1) = B(At)? (u(n+1) o u(n)) - Eu(n) + Tu(n)

exp (9@@5 ) = exp (Aw(k) )exp (Oé’—@i 1))

(n+1) (n+1) (n+1)

REY = exp (05 )RS, =12

i,(n+1) (n+1)

K gt (VY e BV 26—y .
Wat) = A(n+1) (ﬁAt 9(n+1) + _,B W) + —Zﬁ Atw )
1 1 20 —1
() ag) g (k) . ..
Waor) = A(n+1) (ﬁ(At)z 9(n+1) - Ew(n) + Tw(n)>

where Rg(n)(i = 1,2) denotes the converged solution of R at nth step.

(110)

(111)

(112)

(110)

(113)

(114)

(115)

In the HHT method, the nonlinear equation of motion (88) is rewritten as [44, 49]

fimin + A+ D (fomin — Farn) —a(fom — Fm) =0

where a is a parameter giving a numerical damping.

(116)

Finally, from Egs. (89) and (110)-(116), the following equation should be solved to
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obtain the incremental displacement at the kth iteration of step (n+1), i.e.

€9)
KTotal,(n+1

JAql0, = F3) (117)

(n+1) Total,(n+1)
with
T
* @ T ® T ®  \T ® T
Aqe gy = [(Aul,(n+1)) (Awl,(n+1)) (Auz,(n+1)) (AWZ,(n+1)) ] (118)
k k k k—1 k—1 k
f'(I‘o)tal,(n+1) =1+ “)(fgn)ﬂ) - fé,()n+1)) + “(ff;,(n+)1) - fEn+1g)_f§,(3z+1) (119)

and the iterative tangent matrix

(k) _ (k) Y (k)
Kigtaneny = A+ @)K+ K gy + EC(nH)B(nH)
(120)
(k) (k)
+ ﬁ(At)Z M(n+1)B(n+1)
with
[I 0 0 0 ]
-T ( p&(k)
B® |0 T (k) O 0 | (121)
(n+1) — lO 0 1 0
- g, (k) J
0 0 0T T(ez_(n+1))

6. Numerical examples
Four examples are given in this section. The first example, introduced by
Steinbrecher et al. [15], is used to verify the validity of the proposed dynamic

formulations in dealing with a 2D sliding beam problem. The second example extends
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the 2D cantilever beam model introduced by Le et al. [52] to the 3D case. The beam can
rotate about the clamped end with a given angular velocity. The third example is used to
study the dynamics of a 3D sliding beam. In the last example, a beam manipulated by a
revolute-prismatic joint can not only undergo large overall motion but can also slide
through the joint. It should be noted that the nodal displacement of the simulation curve
is defined by Eq. (11) in the following examples.

In the process of computation, the global elastic force vector fg and the global
tangent stiffness matrix Kt can be exactly evaluated by Eqs. (62) and (95). To obtain
the inertia force vector fi, mass matrix M, gyroscopic matrix € and centrifugal matrix
K, three Gauss points are used to integrate Egs. (86), (90), (91) and (97). The time step
is set to At = 1 X 10~*s. The following convergence criterion is adopted: the norm of

the residual virtual work must be less than the prescribed tolerance 107>,

6.1. Example 1

As shown in Fig. 4(a), a cantilever beam of initial length L(0) = 5m is subjected to
a uniform body force P, = 1kN/m® in the negative y-axis direction and is in static
equilibrium at ¢t = 0. The width and the height of the cross-sectionare b = Imand h =
0.2m, respectively. The elastic modulus and the density of the beam are E = 10MPa and
p = 103kg/m>, respectively. When t > 0, the beam begins to retract into the channel,

and the retraction acceleration is depicted in Fig. 4(b).

35



A i
y
Undeformed Configuration
_____ S
b
P, -
h
1 (b) I
a
[nitial Configuration
0 t
0 1 2

Fig.4 2D sliding beam dynamic problem: (a) sliding beam model; (b) retraction
acceleration curve

To obtain the reference solution, 20 elements are used to discretize the beam. The
horizontal and vertical displacement histories of the free endpoint of the cantilever beam
are depicted in Figs. 5 and 6, respectively. It can be observed that the simulation results
with only 8 elements have sufficient computational accuracy. Making a comparison
between these results and those obtained by Steinbrecher et al. [15] using the commercial
software ABAQUS, there are some differences but they have the same trend, as shown in
Fig. 6. These differences are partly because Steinbrecher et al. have taken the vibration
of the beam in the channel into account. Additionally, when calculating the static
equilibrium configuration of the beam, they assumed that the beam can slide out of the
channel by a small amount. To investigate the effect of this small amount on the dynamic

response of the beam, the initial length is modified to L(0) =5.09 m. The

36



corresponding result obtained by the presented method is almost identical to that of

Steinbrecher et al., as shown in Fig. 6.

-0.5¢ 8
— 20 elements

15k ° &8 elements |

E 2.5F .
:v—4

-3.5+ .

-4.5F 4

0 1 2 3 4 5 6

t(s)

Fig. 5 2D sliding beam: horizontal displacement history
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0 1 2 3 4 5 6
t(s)
Fig. 6 2D sliding beam: vertical displacement history
6.2. Example 2

As shown in Fig. 7(a), a cantilever of length L = 10m with rectangular cross-
section is subjected to a concentrated force F, = Fysin(w;t) with Fy = 10MN, and
w1 = 50rad/s at the free end. The cross-section width and height are b = 0.25m and
h = 0.5m, respectively. The elastic modulus and the density of the beam are E =
210GPa and p = 7850kg/m’, respectively. The beam can be rotated with a prescribed
angular velocity about the y-axis with the clamped end as the center. The time history
curve of the angular velocity w, is depicted in Fig. 7(b). w¢ is a given fixed value.

When w¢ = 0, this example is reduced to the case given by Le et al. [52].

38



Fig.7 3D rotating beam dynamic problem: (a) rotating beam model; (b) time history

of (05

In this example, 10 elements are used to obtain a converged solution. The parameter of
the HHT method is set as @ = —0.05. Figs. 8, 9 and 10 show the time history curves of
the displacement of the free end in three directions. When ws takes different values the
curves are all depicted in the same figure for comparison. As shown in Fig. 9, it can be
found that the vibration frequency of the free end will increase with an increase in w,.
This is because increasing w, will increase the centrifugal force on the beam, making it
more rigid. In particular, when w, = 0, these curves are almost identical to the results
obtained by Le et al. [52]. This is because the 2D dynamic formulation proposed by Le et

al. is a special case of the formulation in this paper.
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Fig. 8 3D rotating beam: time history of the displacement u; of the free end
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Fig. 9 3D rotating beam: time history of the displacement u, of the free end

40



—Ex. 2.1 w2=07rrad/s
3L --Ex.22 w2:27rrad/s 4
. Ex.2.3 w2=47rrad/s A
L I\ "A ’ i
2 l' ‘\ n ll ‘\. : < ‘|
l’ \ I"\ : ll:: \ :l \ V-\ " ‘L’ ‘:
\ S\ -. .
—~ 1r Lo TRV Y 1
: it 3¥ : !
E AT R I B A VY
SN At
Ploajw o TRV
N AT T N P
al fon S\ L T N S
1! LT \ H Vg A
2 VR VI SR .
Y TN
|" “:'
_37 ‘I ‘ ‘ Fi | 7
0 0.3 0.6 0.9 1.2 1.5

t(s)

Fig. 10 3D rotating beam: time history of the displacement us of the free end
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Fig. 11 3D sliding beam dynamic problem: (a) sliding beam model; (b) time history of

M, (t)

6.3. Example 3

As shown in Figs. 11(a) and (b), a cantilever of length L = 10m with rectangular
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cross-section is subjected to a concentrated force F,(t) = 6sin(w;t) and a bending
moment M,(t) at the free end. The cross-section width and the height are b = 0.3m
and h = 0.25m, respectively. The elastic modulus, the Poisson’s ratio and the density of
the beam are E = 210GPa,v = 0.3 and p = 7850kg/m°, respectively. The beam can
slide through the channel at constant velocity v,. When v, = 0, this example reduces to
the example given by Le et al. [41].

In this example, 12 elements are used to obtain a converged solution. The parameter
of the HHT method is set as @ = —0.01. Figs. 12, 13 and 14 show the time history curves
of the displacement of the free end in three directions for different v,. When the beam is
deployed through the channel, the vibration frequency will decrease. Otherwise, the
vibration frequency will increase. Compared with the case for v, = 0, the amplitude of
the beam will increase when the beam is deployed or retrieved through the channel. This
may be because the sudden increase in axial kinetic energy is converted into elastic
potential energy. When v, = 0, these curves are almost identical to those obtained by Le
et al. [41]. This is because the 3D dynamic formulation proposed by Le et al. is a special

case of the formulation in this paper.
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Fig. 12 3D sliding beam: time history of the displacement u; of the free end

T

—Ex. 3.1 v0=0m/s
--Ex. 32 v0:—5m/s
. Ex.3.3 v0=5m/s

0.1 0.2

Fig. 13 3D sliding beam: time history of the displacement u, of the free end
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Fig. 14 3D sliding beam: time history of the displacement u; of the free end

6.4. Example 4

The geometric model, the material properties and the external load of this example
are the same as those of example 3. The beam manipulated by the revolute-prismatic joint
can undergo large overall motion and slide through the joint. The length of the beam
outside the joint channel is L = 10 + 5sin(2mt). The prescribed angular velocity of the
beam about the y-axis is the same as that given by example 2.

The geometric nonlinearity of this example is so strong that 100 elements are
required to obtain a converged solution. The time history curves of the displacement of
the free end in three directions are depicted in Figs. 15, 16 and 17. The parameter of the

HHT method is set as @ = —0.05. The vibration frequency increases with increasing w,.
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The phenomenon may be caused by the centrifugal force. In particular, when w, = 4m
rad/s and near the time t = 0.4s, the displacements of the free end are very large as

shown in Figs. 15 and 17. The phenomenon indicates that parametric resonance occurs.

T T T

—Ex. 4.1 w_=0mnrad/s /‘\

20 - 2 / -
--Ex. 42 w2:27rrad/s

15+ - Ex. 4.3 w,=4wrad/s / ]

10 - j

£ s RN

0 0.1 0.2 0.3 0.4 0.5 0.6
£(s)

Fig. 15 3D rotating-sliding beam: time history of the displacement u; of the free end
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Fig. 16 3D rotating-sliding beam: time history of the displacement u, of the free end
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Fig. 17 3D rotating-sliding beam: time history of the displacement u; of the free end
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7. Conclusions

Nonlinear dynamic analysis of a 3D sliding beam which can undergo large overall
motion has been performed based on the corotational method. To describe the spatial
configuration of flexible beams accurately, the rotational vectors were used to
parameterize the rotation matrices. The variable-domain IEE elements were used to
discretize the time-varying system in space. The extension of Hamilton’s principle was
used to derive the nonlinear equations of motion which can consider the effects of shear
deformation and rotary inertia. The numerical simulations and comparisons of the
numerical examples have demonstrated the validity, accuracy and versatility of the
dynamic formulae of this paper.

Some dynamic behaviors of the system have been shown by the results. The sliding
and the overall motion of the flexible beam have great influence on the amplitude and
frequency of the beam. In example 4, with the increase of the rotational angular velocity,
the parametric resonance occurs. It should be pointed out that the introduction of the
corotational frame makes the expression of the inertia force vector very complicated. To
linearize the inertia force vector, the gyroscopic and centrifugal dynamic matrices should
be evaluated. These two matrices are more complicated, as shown in Egs. (91) and (97).
These evaluations will lead to a huge increase of computation time for every iteration step.
However, if we keep only the mass matrix for iteration based on Newton-Raphson method,

the converged solution can be usually obtained [53]. Several examples are used to test the
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effects of the gyroscopic matrix € and the centrifugal matrix Kj. They have no effect
on the simulation results but do have an effect on the number of iterations. Compared
with K;, € has more potential to reduce the number of iterations. Therefore, it is
proposed to ignore the term K; when solving the equation of motion using Newton-
Raphson method. This is consistent with the views of Le et al. [41, 49]. At the same time,
it should be pointed out that the examples, convergence criteria and the HHT parameter

have an influence on the number of iterations which should be studied further.
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Appendix A

The following relationship will be used in this section, i.e.

riér; = —rér;, i,j =123 (A.1)

lry x pll =73p (A.2)

By taking the variation of Egs. (16) and (17), one obtains
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1
c

Spr = —DpdWE + RETI8t, k=12
Eq. (A.4) can be expressed in a simple form

§p, =—P:[0 I 0 0]5q,+ REFI6¢
§p, =—p[0 0 0 [I18q,+ R5i)8t

Inserting Eq. (A.5) into Eq. (17), one obtains

8, ps
1+R2

2

1 __ — .
5p=-[0 Pi 0 Pzloqg+ 35t
By taking the variation of Eq. (18), one obtains

1
or; = E([ —r; @r3)(—p X 6ry + 11 X 8p)
2

61"2 = —1'1 X 81'3 + 1'3 X 81'1

Inserting Eqgs. (A.3)-(A.8) into Eq. (54), one obtains
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T
-r

—r}8r3 = ﬁ(l —13Q1r3)(—p X éry + 11 X 6p)
2

2 2
[-ripel vipel —vipiel —Tripel rip,el —ripsel]
_ e L ETsq, (A9)
2rlp &
vor + Lid R + RS .
—TI g Olnl 1 1‘; 12 zrg
4
+ = ot
r;p
el vory + L7
—rIsr, =—[-1 0 I 0]ET8q, — 1} 2 st (A.10)
[, nl,
el vory + L¥?
—rIsr, = —-2[-1 0 I 0]ET8q, — 1] o ISt (A.11)
L, nl,
Appendix B
Using Egs. (42) and (67), the variation of du, can be expressed as
.\ i—1 Lo\ L .
Sug = [Nl(vRO + LRo) 61 + Nz(vRo + LR()) _el] 8t + N1X18t
n n
(B.1)
+ N, X,8t + N1qg5t + N18q, + R, 8u; + SR,
From Egs. (41) and (59), by taking the variation of (69), one obtains
. |6 T (0 0 W
su, = N, lﬁll St + N, l (g 1) Sy )l 5 [v‘i;l]
2 2 ’ (B.2)

~ N,P,E"8q, + (NZPZ + N, [glb 5t
2

From Egs. (46), (47) and (55), 8R,u; can be rewritten as

8R,u; = R.8wiu, = —R,;6we = —R,W,G1E"8q, — R, W,G}5t  (B.3)
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Inserting Egs. (B.2) and (B.3) into Eq. (B.1), one obtains

. i—1 .0 . .

H; = N;(vR, + LR,) e, + No(vRy + LRy) —e; + N X, + N, X,

" . n (B.4)
+N.q; + RN, lgll + R,N,P, — R, WG}
2

H, =N, +N,P, —u;G (B.5)

In Egs. (B.4) and (B.5), the time derivative of the shape functions is evaluated as

. le v aNl . aNl

N; = = (B.6)

{=q " nol, Yoy

By taking the time first and second derivative of Eq. (25), y and j are evaluated as

,_(1 i—1)
X = ” v

(B.7)

Further, N; can be expressed as

. le UaNl aNl aNl aNl
=9 "nal, Yoy T AT B8

where a = dv/dt.
Assuming the local lateral displacement u; is small [41] and taking the time

derivative of Eq. (B.4), one obtains
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. . . 1—1 . L l—1
Hl = [Nl(vRO + LRO) n el + Nl(aRO + ZURO + LR()) n el]

. N . N
+ |N,(vR, + LRO)Eel + Ny(aRy + 2vR, + LRO)Eel]

. Ci—1
+ |N,X; + N, (vRo + LR,) — el]
' (B.9)

+ _NZXZ + N,(vRy + LR,) Eel] + (N,qg + N1 q,)

+ |R,N, I_ l + R, N, [_ l +R.N,(P,E"q, + Pz)l

+ (RTNZPZ + Rerpz + RrNZPZ) - R?"u~lG§

where 11; can be obtained from Eq. (B.2). By taking the time derivative of Eq. (59), P,

is expressed as

. T 4+ it
P2=I 2+W°l (B.10)

~T ..

where C;r and w’g are obtained by taking the time derivative of Egs. (58) and (51), i.e.

0 . 0 — —
vory + Lr R.+R .
o (-0 roetr sy R Ry
-_— C
de r;:p
'T_ y L) .. .
€= —eTRTM_eT Taorg+2vor$+Lr8 T TM' (B.11)
Tl o nl, 3T 2 ‘
—eT'TM_eT T Qo + 207 + Li) oT TM'
B 254 r ’nlc 2% nlc 20y nlg C_

wk = W Rvect(RTR,) + Rivect(RIR, + RIR,), k=12 (B.12)

where [, and W), can be obtained using Eqgs. (43) and (50).
Considering the local lateral displacement u; is small [41] and taking the time

derivative of Eq. (B.5), one obtains
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H2=N1+N2P1+N2P1_EG;{‘ (B.IS)
where P; can be obtained using Eq. (59), i.e.

. GT
P, = IGH (B.14)

By taking the time derivative of Eq. (56), one obtains

G1
n le M2 N11 lc RIVY) 21
0.0 =1z 3 2 00 0 e 5 2 0
i i (B.15)
=0 0 ——= 0 0 0 0 O = 0 0 0
12 %
0 L 0 0 0 0 0 L 0 0 0 0
12 1z
where 77, 7,1 and 7, can be obtained by taking the variation of Egs. (57), i.e.
TSr, +r1s TSr, +rls
87’] _ P 1T 10p -7 p 2T 20P (B16)
| ) pr
T T T T
pi STy + 11 0P p or, +r;6p
811 = T L s (B.17)
T T T T
PO, + 1,8p) p or, +r;6p
81z = T ~ e T, (B.18)

Inserting Eqs. (B.14) and (B.15) into Eq. (B.13), H, can be rewritten as

0O I 0 O

Hy =N+ 80 o o I]—%NZ[;]N4+§—§N2[;]N4—EGI (B.19)
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with

O 0 00 O O OO O OO00O0
N,=|0 0 1 0 0 0 OO -1 00O (B.20)
0O -1 0 000 01 0 O0O00O
From Egs. (46) and (47), Rr is obtained as
R, = R,WE (B.21)

where W5 is obtained using Eq. (55). Using Eq. (B.21), and taking the time derivative
of Eq. (52), one obtains

Wwe 0 0 0] we 0 0 0]
, I e I _ I e I
E=g|® W 0 O gy g |0 W 0 0y (B.22)
lo 0 w¢ 0 0 0 wt 0
0 0 0 wt 0 0 0 wt
Appendix C

From Eq. (B.9), RIITI 1 can be expanded as
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—<@N2 glb‘j"\ﬁ—(ﬂ’z gll)@+vﬁN2P1ET

| V2 2

+

. [o, 1\ ~ . '
- (NZ [51 )wfi + N,P,ET
2]

. — — 1 I —
+ [—(1\12P1Q1 + NoP)We + - N, | N4, T
izl
- (C.1)
~ N,P.E.Q, + (szz)]
+ [~ (WEN,P2)WE — (NzP)WE + WE(N,P,) — (NoPo)We

+ (N/z?z) - (ﬁz)@"‘ (ﬁz)]

— [-(@GT)w + %6} - 6T

we, 1, (N,P,), (N,P,), G} and (N,P;) can be obtained using Egs. (55),

(B.2), (59), (58) and (B.10).

‘TV\? = aIQ1 - GIErQ1 + ’GE (C.2)
- . T 1 I _ . .
@ = N,P,E" + 5N, ||| N4QiU — NoP.E, @, + (NP,) (C3)
c

9 I 01x12 e
(N,P;) = —(N,P;) = —N, ] G |+N, ¢g (C4)

09, I A3 Wo

G3
I 01x12 !

(NoPy) = -Na ||| G5 |+ [ng (C5)

G3
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Gy
Gl vo1d + Li? vord + LI _
o |22 |-eb (RT =L 6TET + IR ————T
G} =|G?| = nl, nlé (C.6)
G3 vor? + L1? vord + L0 _
T 071 1)\ ~TET TpT_ 01 1
_ez <RI nlc )GlE +eer nlg
] 01x12 =1
—_— ~ w
(N,P,) = —N, [1] G¢ |+N, [ﬁgl (C.7)
i3 Wo
2

wk, G2, GAZZ, (323 and Wk (k = 1,2) can be obtained using Egs. (51), (58), (B.11) and

(B.12).

~, 0wk T
Wk =0 (Rkvect(RgRo)) 6. 6, 1P.EY, k=12. (C8)
09,
0 .0 0 .0
A Vo + LT7 Vo] + LT
63 = —err L et (R 2L g
c c

vord + LT

+nejR} " U

—%([0 I 0 0]-GDE" €9
_&%’E}Eﬂg)([o 0 0 I1-GDET
-SRI G, +12p)
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0 -0
2 vory + L7\ ~
G) = (5,€] + 65;€D) —<R;r— We

nl, "

0 :.0 0 .0
—_ VoTry + L7\ — . Vo1 + L7 _
+w‘$<R,T.—° 1nl 1)w$+RI—° 212 !
C C

04 9., 20 )

" nl,

0 ) .0 0, 7.0
anri; + 2v,1s + LT _ Vor: + LTS .\ —
rrr01 o1 1g <201 1C>

= o

nl?

wk = — [ﬁ;{ (I_kae;&gii’o)) + (I_kaect(REI‘{O + RERO))] Wy
— (C.11)
— (I_'\’kvect(RgRO)) Wi

1, i=j A ~ .
: ].o The quantities p, ¥,, 7 and wj in Egs. (C.9) and (C.10) can

where 6ij={0 P %

be obtained using Egs. (A.6), (A.8), (B.16) and (59), respectively. Using Egs. (43) and

(59), ic and vivk can be expressed as
2 = 1% T'O + Lro
lo=qiUT + ——-+ 1n L (C.12)

W, =—GTQ, — [6u 8 I1P,E.Q; — GT + W (C.13)

From Egs. (92), (B.2) and (B.9), one obtains
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——=H,=N,—R, <N2 lgll + N2P2> GIE" + R,N,P,ET
2 (C.14)

0 . —~
+ Rrﬁ (N,P;) + R.GIN,PET
g

where % (N 2P2) has been given by Eq. (C.4).
g

From Eq. (82), W, can be expanded as

We = —(H;Q)WE + WeH;Q, + H5Q, + H3Q¢ — H3E.Q
- (‘;EH3 +H; - H3Er)ErQ1 + (173 - H3Er)Q7 (C.15)

+ H,we + weH, + H,

where H, and H 4 can be obtained using Eqgs. (80) and (84), respectively

aH I 01><12 1’4'\)1
=2t (1—N3[ ]) G2 |+ Ny | 0|+ NyP,ET (C.16)
09, I A3 0
G;
01x12 o q 1
= _ 1 o) wWp .. T, - X 1 —
Hy=(1-Ns[)])| 63 |+, LAV%] +NoPLET + 5 N, | V.00
G; (C.17)
[ 01512 W
— N3P,E.Q, —2N; [1] G3 |+ 2N, Ljv(z)l
G3 0

vﬁ, 9 and 0 can be obtained using Eqgs. (81), (74) and (63) , respectively

w. = H;Q, — H;E.Q, + H, (C.18)

)

0 = N;P,ET (C.19)
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2 =w,8+R"W,
Using Eq. (B.13), one obtains

§ZQ1 = %Nz [;] N,Q.U —%Nz [ﬂ N,Q.U +%N2 [;] N4Q1ic
c

+(61Q U, — 1,61 Q,
where ll and ; can be obtained using Egs. (C.12) and (C.3), respectively.

0H,

-~ 1 1 — _—
H,Qi = =2Qu = 5 N2 [ 1| NaQuU + (6TQ0W, - T6TQ,, k= 167.
09, 12 I

ﬁng = ﬁIQw + a1Q11 - G16;3ﬁl
with
Qi = NEQs: Q1 =uQs
H 3@ can be obtained using Eq. (83)

H,0, = %(Ng UL zl—i (vs[}]-1)V.0.T

1. 11 —
+ s ;| V.00
Using Eq. (79), one obtains

A0, = aa—il,;qk - —%(1 -N [N, k=167
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(C.23)
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(C.25)

(C.206)



(C.27)

— S NI —[I 1IND)Q.U

Cc

Using Eq. (59), one obtains
PTQ,=-G,Q.-G.Q3, k=210 (C.28)
with
0, = Q%] _ [012] 0.0 = Qo _ 014] (C.29)
2 Q3 Qi:1” 10 Q3, Qs '
G,Q.(k = 11,---,15) can be obtained using Eq. (56)
1 0
G1Q, = ——Ni|nQk +Q¢|U+Qia, k=11, ,15. (C.30)
¢ Qi
with Q, = [Q; Qf Qil"(k=11,--,15) and
A PN A T
n N Ui
-7 % _ 12 01551 (C.31)
Cc

where 7, 7x; and Ay, (k = 1,2) can be obtained using Egs. (B.16), (B.17) and (B.18).

GTQ,(k = 1,6,7) can also be obtained using Eq. (56)
~ 1701 0IN.Qk| [ Q%A

G1Qu=—7[[0 1 0IN,Q¢ |U+04s,|, k=167  (C32)
‘1[0 0 1]N,Qx 01512

Let
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T
o =[or" " 03" "], k=13478 (C.33)

Then ErQl and E,Q,(k = 1,3,4,7,8) can be obtained using Eq. (B.22)

5 ~T ~T ~T ~T]T ~
EQ=-[g" ¢ @ ] w (C.34)
OE, ~T ~T ~T ~T|T orpT
EQ=-0=-[g]" @& @& @ 61" k=13478 (€39
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