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Abstract

Cycles, which can be found in many different kinds of networks, make the prob-

lems more intractable, especially when dealing with dynamical processes on

networks. On the contrary, tree networks in which no cycle exists, are simpli-

fications and usually allow for analyticity. There lacks a quantity, however, to

tell the ratio of cycles which determines the extent of network being close to

tree networks. Therefore we introduce the term Cycle Nodes Ratio (CNR) to

describe the ratio of number of nodes belonging to cycles to the number of to-

tal nodes, and provide an algorithm to calculate CNR. CNR is studied in both

network models and real networks. The CNR remains unchanged in different

sized Erdős-Rényi (ER) networks with the same average degree, and increases

with the average degree, which yields a critical turning point. The approximate

analytical solutions of CNR in ER networks are given, which fits the simulations

well. Furthermore, the difference between CNR and two-core ratio (TCR) is an-

alyzed. The critical phenomenon is explored by analysing the giant component

of networks. We compare the CNR in network models and real networks, and

find the latter is generally smaller. Combining the coarse-graining method can

Email address: liw@mail.ccnu.edu.cn, wdeng@mail.ccnu.edu.cn (Wenjun Zhang1,3,
Wei Li1,2∗ and Weibing Deng1∗ )

Preprint submitted to Journal of LATEX Templates March 11, 2021

ar
X

iv
:2

10
3.

05
91

1v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 1

0 
M

ar
 2

02
1



distinguish the CNR structure of networks with high average degree. The CNR

is also applied to four different kinds of transportation networks and fungal net-

works, which give rise to different zones of effect. It is interesting to see that

CNR is very useful in network recognition of machine learning.

Keywords: Cycle nodes ratio, Network classification, Giant component, Depth

first search

1. Introduction

The study of network structures is a key point in the initial stage of network

science. The cycle property as the basic property of graph has been studied

extensively [1]. The cycles play crucial roles in network spreading [2, 3], com-

munity detection [3], and network control [4], etc. Bianconi et al [5] studied the

statistic of cycles in Barabási-Albert (BA) [6] scale-free networks and obtained:

〈Nh(t)〉 = [(m/2) log(t)]h[1+O(ζ−1)] ∼ [(m/2) log(t)]h, where ζ = m/(2 log(t)),

Nh(t) represents the number of loops with length h, m represents the number

of added edges at every step in BA model, and t is size of network. Noh [7]

calculated the distributions of cycles in both uncorrelated networks and corre-

lated ones. At nearly the same time the study of the tree property in complex

networks began to prevail. Gu et al [8] incorporated small-world effect and

scale-free property into a tree-like network model. Wechsatol et al [9] found

the cycles can enhance the robustness of the network. And it was paid atten-

tion again recently to study the effects of cycles [10, 11, 12, 13, 14]. Wylie

et al [10] found the switch integration in biological networks is controlled by

the cycles but not the network hubs. Fan et al [11] studied the properties of

loops in network models, based on which the node’s importance can be quanti-

fied. Given the proportion of minimum feedback vertex set, Zhou et al [15, 12]

proposed an algorithm to search for the minimum number of feedback edges,

and they concluded the feedback vertices are important for the structural and

dynamical properties of directed networks. Shi et al [13] proposed to search

for linearly independent cycles of a network, which was used in studying the
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cyclic structures in small-world networks. Wu et al [14] discussed the bridges

in complex networks, and proposed the concept of bridgeness to represent edge

centrality. Lately, there has been great interest in network classification by using

the method of machine learning. Kantarc et al [16] classified the networks by

the topological quantities. They considered 14 different topological measures to

characterize the networks, and found that the most favorable measures are den-

sity, modularity, average degree, and transitivity (global clustering coefficient).

Niousha et al [17] also proposed the method of network classification based on

the supervised learning and distance-based classification algorithm, which has

high classification accuracy, noise tolerance, and computation efficiency.

Although the structure of cycles is important and some qualities can de-

scribe the richness of cycles. But there is no more intuitive quality, to our best

knowledge, to tell whether a given network tends to be tree-like or not. We have

studied the cycle properties in Ref. [18], and found that it is crucial for trans-

portation whether the ports are located along with cycles or not in world marine

networks. Here we introduce the Cycle Nodes Ratio (CNR) of a given network,

defined as the ratio of nodes belonging to cycles to the number of total nodes.

The algorithm of calculating the number of cycles is hard in networks. Here we

propose an algorithm, named CDFS, based on the Depth First Search (DFS)

[19] algorithm, to calculate the CNR for the network of interest. The LDFS

has low computation complexity O(n+m), where n and m are the numbers of

nodes and edges, respectively. We calculate the CNR of three basic random net-

works and identify critical transition points in Erdős-Rényi (ER) [20] networks,

as well as the underlying mechanism. The approximate analytical solution of

the CNR in ER networks is given by calculating the giant component in ER

networks. Otherwise, the CNR is 1 in both BA networks and Watts-Strogatz

(WS) networks [21] with average degree no less than 4. In this process, we

proved the key difference between CNR and two-core ratio (TCR) in WS net-

work and fungal growth network. We also calculate the CNR in real networks

by using different data sets, which are slightly lower than the counterparts of

ER networks with the same average degree. To judge the CNR properties of
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networks in which the smallest degree is greater than 1, we combine the im-

proved spectral coarse-graining (ISCG) [22] to test the CNR of the macroscopic

property of this kind of networks. Last but not least, we compare the CNR

in different kinds of networks, and consider the CNR, density, modularity [23],

average degree, and global clustering coefficient [24], as the features to be clas-

sified by K-Nearest Neighbor (KNN) algorithm [25]. We have found that CNR

is the most important feature for network classification.

The rest of this paper is organized as follows: the concept of CNR and

the corresponding algorithm are given in Sec. 2. Sec. 3 discusses the CNR

properties in random networks and the approximate analytical solution of CNR

in ER networks. The CNR is studied for different kinds of complex networks

in Sec. 4, as well as its significance in classification of networks by machine

learning. The last section contains the conclusion including the applications

and the improvement of CNR.

2. The definition of cycle nodes ratio and its algorithm

2.1. Cycle nodes ratio

As we know, the cycle in a network is defined as: a cycle is an elementary

chain which returns to the initial node [26], as shown in Fig. 1. And we introduce

the definition of the cycle nodes as:

Cycle node: the node sites along one or more cycle(s) path in a network.

An example of a cycle nodes is shown in Fig. 2. The concept of cycle node

is different from the concept of k-core, which is defined as the remaining nodes

by recursively deleting the leaf nodes [27], We refer to nodes similar to node 7

as cycle connect node which is not cycle node but can connect different cycles.

The proportion of cycle nodes in a network can represent the characteristics of

how far a network is away from tree networks in which no cycle exists. The

CNR can be defined as:

Cycle nodes ratio: Suppose for an undirected, connected graph G(V,E)

with n vertices and m edges, the number of cycle nodes is nl. The cycle nodes
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ratio is R = nl/n, where n is the number of nodes in G(V,E).
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(a) Cycle in direct graph.
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(b) Cycle in undirect graph.

Figure 1: (Colour online) The graphical representation of cycle in directed network (a) and

undirected network (b) where the red lines and nodes constitute cycle.

The CNR is 1 in cycle graph and 0 in tree (star) graph as shown in Fig. 3.

Clearly, the normalization is satisfied.

2.2. The algorithm of calculating CNR

The statistics of the cycles in complex networks is a hard job [5]. It is almost

impossible to judge whether a node is cycle node by calculating the number of

cycles in a given network. But we find that a node is cycle node if there is

no-cut edge connecting to it. The cut edge is defined in graph theory [28] as:

Cut edges: In a graph, if removing a given edge causes the addition of one

connected component of this graph, then this edge is called cut edge, which also

known as bridge (Shown in Fig. 2).

The edge is simply called no-cut edge if it is not cut edge, and the cut edges

can be recognized by Tarjan algorithm [19]. We here introduce some basic

concepts of Tarjan algorithm:

1. Depth First Search (DFS) search tree: We can get the DFS search tree

from graph ergodic by DFS, shown in Fig. 4(b).
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Figure 2: (Colour online) A graph with 10 nodes and 9 edges, which has two cycles 1 ↔ 2 ↔

3 ↔ 1 and 4 ↔ 5 ↔ 6 ↔ 4. So nodes 1, 2, 3, 4, 5, 6 are cycle nodes. The black line is cut

edges. Otherwise, the orange region specifies 2-core nodes, which mean that the node 7 is

2-core but not a cycle node.

(a) Cycle with 50 nodes. (b) Tree with 50 nodes.

Figure 3: (Colour online) (a) A cycle graph with 50 nodes and 50 edges in which CNR is 1.

(b) A tree graph with 50 nodes and 49 edges in which CNR is 0.
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2. Tree edges: In the DFS process, the passing edges of visiting the nodes

which are not visited, like the edges not labeled in Fig. 4(b).

3. Back edges: In the DFS process, the passing edges of visiting the nodes

which are visited, like the edges labeled in Fig. 4(b).

A
C

B

F

L

D
E

M

G

H

I

K

J

(a) The graph with 13 nodes. (b) The DFS result of Fig. 4(a).

Figure 4: (Colour online) (a) A graph with 13 nodes and 18 edges. (b) The graph represen-

tation of DFS search tree. The dashed line are back edge.

For a node u, we need to record two values that are dfn[u] which represents

the order of node u in the DFS process, and low[u] which represents the node

u that can retrospect the earliest node and not pass through its father node.

The dfn[u] and low[u] are added 1 in the each step of DFS process, then we

recalculate the low[u] from the root node by following the rule that

low[u] =

 min{low[u], low[v]} (u, v) is tree edge,

min{low[u], dfn[v]} (u, v) is back edge.

The edge (u, v) is cut edge if low[v] > dfn[u]. The DFS result of Fig. 4(a) is

shown in Table. 1, the top line represents the node, and the second line and

third line represent the dfn and low of the corresponding node respectively.

Otherwise, the DFS just traverses the nodes which are in the same component

as father node of this algorithm. So we can take one chosen node of each

component as the father node of DFS for networks with multi-components.
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This algorithm is shown in Ref. [29]. Then we can get the corresponding cut

edges. For a graph G(V,E) with n vertices and m edges, the time complexity

of this algorithm is O(n + m) for adjacency list data or O(n2) for adjacency

matrix data. This algorithm has high efficiency in classifying cycle nodes and

non-cycle nodes in a network.

Table 1: The DFS results of Fig. 4(a).

Node A B C D E F G H I J K L M

dfn[i] 1 5 12 11 10 13 8 6 9 4 7 2 3

low[i] 1 1 1 5 5 13 5 5 9 2 5 1 1

3. The simulation and analytical results of CNR in networks

3.1. The simulation results of CNR and its applications in basic random net-

works

To study the properties of CNR, we calculate its value in ER networks. In

the first approach, we fix the average degree and change the size of networks,

and in the second one, we fix the size of networks and change the average degree.

The results are shown in Fig. 5. The major findings are concluded as follows:

• The CNR of ER model remains constant in different sized networks if the

average degree of ER networks is fixed.

• If we fix the size of ER networks, the value of CNR will increase with the

average degree of ER networks.

• A critical turning point occurs when the average degree of ER networks

is 1.

The simulation results of WS networks are shown in Fig. 6. Firstly, the

average degree is fixed at 2, and we study the change of CNR with network size

at rewiring probabilities of 0.1 and 0.2, respectively. Since the WS networks are

generated from regular networks (with mean degree of 2), their CNR have higher
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R 〈k〉=1.8
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〈k〉=3.6

(a) The CNR result in fixed average degree.
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〈k〉

R

(b) The CNR result in fixed networks

size.

Figure 5: (Colour online) (a) The relation between CNR and the number of nodes in ER

networks with fixed average degree of 1.8, 2.6, and 3.6. (b) The relation between CNR and

average degree of ER networks with 10000 nodes. The red lines are fittings, and the error

bars are too small to be visible. Moreover, R represents the CNR, k represents the average

degree of networks, and N represents the number of nodes in networks. (In this paper, all

simulation results were averaged over 200 different realizations. And all error bar is the value

of standard deviation.)

uncertainty in the rewiring process. The CNR will stabilize with increased

network size. And the CNR is 0.45 if the average degree is 2 and 1 if the

average degree is greater than 4 with low rewiring probability. But they show

different tendencies when the rewiring probability is increased. The CNR of

WS networks with average degree 4 will decrease with the rewiring probability

and the CNR of WS networks with average degree 2 will increase slowly with

rewiring probability. This is due to the fact that WS networks with high rewiring

probability tend to be like ER networks. It is then not strange that the CNR’s

of the two are close to one another.

In the modeling of BA networks, if exactly one edge and one node are added

at every step, the CNR will be 0 in this network, since this network is a tree

network. Otherwise, the CNR will be 1 if more edges than one are added since

every node constitutes a cycle when added.

To compare the difference between cycle node and two-core node, we study

the CNR and two-core-ratio (TCR) in both ER networks and WS networks.

CNR and TCR are very similar in ER networks, but much different in WS
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p=0.2

(a) The CNR result in WS networks

with fixed rewiring probability.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

R

〈k〉=2: Rn1=0.447+0.0336p

〈k〉=4: Rn2=1.01-0.0698p

(b) The CNR result in WS networks with fixed

size.

Figure 6: (Colour online) (a) The relation between CNR and the number of nodes in WS

networks with fixed average degree 2 and rewiring probability 0.1 and 0.2. The lines are

fittings. (b) The relation between CNR and rewiring probability of WS networks with 10000

nodes. Here, R represents the CNR, p represents the rewiring probability of networks, and N

represents the number of nodes in networks.

networks (shown in Fig. 7). As shown in Fig. 2, cycle connect nodes (node 7) is

the key factor that leads to the difference in cycle node and two-core node. In

WS networks, cycle connect nodes are easy to generate as WS networks have

a single line (the line constituted by nodes and edges one by one), the nodes

contained in this kind of structure are often seen as two-core nodes but unlikely

to be cycle nodes. For example, Fig. 8(a) shows the difference between cycle

nodes and two-core nodes. This cycle connect nodes appears frequently in fungal

growth networks (shown in Fig. 8(b)).

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

〈k〉

R

CNR

TCR

(a) The CNR and TCR in ER.

100 500 1000
0.0

0.2

0.4

0.6

0.8

1.0

N

R

CNR

TCR

(b) The CNR and TCR in WS.

Figure 7: (Colour online) (a) The CNR and TCR in ER, where the horizontal axis is the

average degree of networks, and the vertical axis is the ratio of CNR or TCR. (b) The CNR

and TCR in WS networks whose average degree is 2 and rewiring probability is 0.1. The

horizontal axis is the size of networks, and the vertical axis is the ratio of CNR or TCR.

The node centrality is introduced to describe the importance of nodes in
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(a) One network to show the difference be-

tween CNR and TCR.

(b) Fungal growth network.

Figure 8: (Colour online) To show the difference between cycle nodes and two-core nodes.

The red nodes are cycle nodes, and the rest nodes are two-core nodes in (a), and one sample

of fungal growth network (b).

complex networks. The commonly used centrality measures are degree central-

ity, betweenness centrality [30], PageRank centrality [31], closeness centrality

[32], etc. We have defined the cycle centrality of node i as the number of nodes

which are transformed from cycle nodes to none-cycle nodes with node i being

deleted. For example, in the below Fig. 9, node 22 has the largest cycle cen-

trality, that is 16, in this network, and its deletion will transform cycle nodes

to none-cycle nodes. Therefore, cycle centrality can represent the over-distance

connection capability of the node. Because if you delete this node, the shortest-

path lengths of its neighboring nodes will greatly increase. The node which has

large cycle centrality can decrease the average shortest-path length of network.

3.2. The analytical result of CNR in ER networks

In this part, the analytical solution of CNR in ER networks is given. Gener-

ally speaking, one node could be a cycle node if it is connected to two nodes that

belong to one component in a network (The two nodes could contact through

this network, as shown in Fig. 10). Suppose there are c components in ER-

network G, and Lr is the number of nodes in component r. The number of all

contact pairs is
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Figure 9: (Colour online) The giant component of WS network with 27 nodes and 28 edges,

the size of nodes represents the cycle centrality of this node. Node 22 can influence all circle

shape nodes, its cycle centrality is 16, and node 12 influence the red nodes, node 23 influence

the yellow nodes, which cycle centrality are 4 and 8 respectively.

Figure 10: (Colour online) The red node is cycle node if it connects to one component with

two edges.

12



nc =

c∑
r=1

Lr(Lr − 1)

2
. (1)

Then the probability that nodes with degree 2 are cycle nodes is

pl = 2nc/n(n− 1) ≈
c∑

r=1

L2
r

n2
, (2)

where n is the nodes number of the ER network. Otherwise the probability of

finding the node with degree k in ER networks is P (k) [33]:

P (k) =

(
n

k

)
pk(1− p)n−k, (3)

where p is the connecting probability of different nodes in ER-networks. And

the probability po of nodes, with different degrees, being a cycle node in ER

networks is shown in Tab. 2. The summation of the probabilities over all nodes

in ER-networks gives the CNR

R = 1− P (0)−
n∑

k=1

P (k)(1− pl)
k(k−1)

2 . (4)

Then we have the simulation of CNR in ER networks by Eq. 4 which is shown

in Fig. 11. The CNR calculated by the network components is fairly consistent

with the simulation result.

Table 2: The probability that nodes, with different degrees, are cycle nodes. Here k is the

degree, po is the probability of the node as cycle node, and P (n) is the probability of nodes

with degree n.

k po

2 P (2)pl

3 P (3)(1− (1− pl)3)

4 P (4)(1− (1− pl)6)
...

...

n P (n)(1− (1− pl)
n(n−1)

2 )

Consider the ER-network G(n, p) with size n and connecting probability p,
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CNR by CDFS:10000 nodes
CNR by Component: 1000 ndoes
CNR by Component: 10000 nodes
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Figure 11: (Colour online) The comparison between CNR in ER network with 10000 nodes

(gray points), CNR calculated by component in ER-network with 1000 nodes (red points),

and CNR calculated by component in ER-network with 10000 nodes (green points).

the number of nodes on tree components of G(n, p) (n→∞) is (see in Red. [34])

E

(
n∑

l=1

lTl

)
=

n

〈k〉

∞∑
l=1

ll−1

l!
(〈k〉e−〈k〉)l +O(1)

= nt(〈k〉), (5)

where Tl is the number of components in G(n, p) that are trees of size l, and

〈k〉 is the average degree of G(n, p). t(〈k〉) is the probability of a node belonging

to the tree component. By the manipulations of Eq. 5, s = s(〈k〉) = 〈k〉t(〈k〉)

is the only solution of

se−s = 〈k〉e−〈k〉 (6)

in the range 0 < s < 1. So

t(〈k〉) =
s(〈k〉)
〈k〉

= 1 for 0 < 〈k〉 < 1. (7)

This result means that all nodes on the tree components, and the number of

nodes on cycles is 0 for 0 < 〈k〉 < 1. In the range 〈k〉 > 1, G(n, p) is the union of

the giant component L1(G(n, p)), the small unicyclic components and the small

tree components. There are at most ω(n) vertices on the unicyclic components
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[34]. The size of the giant component satisfies (see in Ref. [34])

|L1(G(n, p))− {1− t(〈k〉)}n| ≤ ω(n)n1/2. (8)

From Ref. [34] we get

ω(n) ∼ 1

2

∞∑
l=3

(〈k〉e−〈k〉)l
l−3∑
j=0

lj/j! = µ(〈k〉), (9)

and since

lim
l→∞

(〈k〉e−〈k〉)l
l−3∑
j=0

lj/j! = (〈k〉e−〈k〉)lel

= (〈k〉e1−〈k〉)l

= o(l−M ), (10)

for every M > 0, since xe1−x ≤ 1 for x > 0. Thus ω(n) = O(1), and

ω(n)� ω(n)n1/2 � (1− t(〈k〉))n for n→∞. (11)

Then we conclude that (according to [20, 35])

L1(G(n, p)) ≈ (1− t(〈k〉))n for n→∞. (12)

This result is shown in Fig. 12, which is consistent with the simulation result.

By Eq. 2, pl can be calculated as:

pl ≈
c∑

r=1

L2
r

n2

=
1

n2
(L2

1 +

c∑
r=2

L2
r)

≈ (1− t(〈k〉))2 +
1

n2

n∑
l=2

l2Tl

= (1− 1

〈k〉

∞∑
l=1

ll−1

l!
(〈k〉e−〈k〉)l)2

+
1

〈k〉n

∞∑
l=1

ll

l!
(〈k〉e−〈k〉)l, (13)
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where Eq. 11 is used, and the third term could be omitted if n→∞. Combining

Eqs. 3, 4, 13 and 〈k〉 = np, the CNR could be written as:

R = 1− (1− p)n

−
n∑

k=1

(
n

k

)
pk(1− p)n−k(1− (1− 1

np

∞∑
l=1

ll−1

l!
(npe−np)l)2)

k(k−1)
2 . (14)

Since (1 − pl)
k(k−1)

2 decays rapidly with k, so we calculate it for k < 5, which

is shown in Fig. 13. The analytical result is in accordance with the simulation

result. And the giant component, which appears when 〈k〉 = 1, leads to the

turning point of CNR. The analytical result is close to the analytical result of

TCR which has been observed in Ref. [36]. These two analytical results have

different analytic forms which are caused by different methods, even though

they have very similar results in ER networks. Besides, our method is easier to

understand and calculate.

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

〈k〉

L
1

Figure 12: (Colour online) The comparison between simulation result (gray points) and ana-

lytical result (red line) of normalization size of giant component L1 in ER-network with 10000

nodes. They collapse onto each other very well except the transition point of the average

degree being 1 (Since the finite size effect).
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Figure 13: (Colour online) The comparison between simulation results (green line contains

20000 nodes.) and analytical results of normalized size of giant component L1 in ER-network

with 200, 2000, 20000, and infinite nodes. The curves collapse onto each other very well except

at the transition point of the average degree being 1 (due to the finite-size effect).

4. The CNR in real networks and its application in network classifi-

cation

4.1. CNR in real networks, and used in conjunction with improved spectral

coarse-graining

To study the properties of CNR in real networks, we employ the data sam-

ples from network repository [37], Stanford Large Network Dataset [38], Pajek

datasets [39], and some classic complex networks [40, 41, 42, 43, 44, 45, 46]. 30

unweighted and undirected complex networks were chosen randomly. The size

of these networks is between 34 and 65533, and their edges range from 78 to

51971.

Their CNR and average k are calculated and compared with ER network,

as shown in Fig. 14. The CNR of real networks increases with the increase of

average degree, and has a similar trend with that of the ER networks. But it is

obvious that the CNR of real networks is lower than that of the ER networks

and much lower than that of the BA networks and WS networks (the value of

CNR is 1 in BA and WS networks when the degree is large than 4). So, we

argue that the networks generated by basic network models cannot produce the

exact CNR properties. The real networks are much more tree-like compared
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with the network models.
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Figure 14: (Colour online) The CNR of some real networks (green points), compared with ER

networks (red line), where R is the value of CNR, and k is the average degree of networks.

The 30 networks were randomly chosen from 4 datasets. The green datasets have a similar

trend with that of the red line, but most green points are below the red line.

In real networks, we find that most networks with high average degree have

CNR close to 1. But their macroscopic properties do not look like cycles if we

zoom out the networks. So if we want to measure the CNR of macro states of

these graphs, we should combine the improved spectral coarse-graining (ISCG)

[22]. The ISCG is a new method to coarse-grain the graph based on the spectral

coarse-graining (SCG) [47]. Compared to the SCG method, the ISCG algorithm

has many advantages such as smaller errors, better effects, and greatly reduced

computational complexity. For the two networks in Fig. 15, both of their CNR

are 1, but it is obvious that the right one is more like cycle and the left one is

more close to a line. Coarse-graining these two networks by ISCG, we got the

corresponding new networks under them (the number of nodes is reduced by

two-thirds). The new CNR of these two networks is 1 and 0.1875, respectively.

In the transport and flow networks, the macro-structure is important than the

micro-structure. In this case, calculation of the CNR of the coarse-graining

networks is useful and feasible.

18



(a) One diag network. (b) One chemistry molecules network.

(c) The coarsely grained diag network. (d) The coarsely grained chemistry

molecules network.

Figure 15: (Colour online) The coarse grain result ((c) and (d))of networks with high average

degree which are a diag network (a) and one chemistry network (b).
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4.2. The application of CNR in network classification

Then we study the transport networks, and find that different kinds of trans-

port networks tend to form different zones which barely overlap with each other

(shown in Fig. 16). That is to say, they can be classified by different zones. To

be more compelling, we also included the network set of public transportation

in different cities and fungal growth network for classification. The datasets for

classification contain 28 subway networks of different cities, 41 marine transport

networks of different companies, 21 airline networks of different companies, 405

cities’ public transportation networks of different cities in China, and 270 fun-

gal growth networks. All these datasets can be downloaded from Ref. [29]. The

basic properties of these networks are shown in Table. 3.

Figure 16: (Colour online) The CNR of three transport network sets which are airline (blue

points), ship line (orange points), and subway (green points). Every point represents one

transport company or city. The points belong to same kind of network tend to together.

These five datasets are classified by employing the machine learning metric of

K-Nearest Neighbor (KNN) algorithm [25]. The basic process of the algorithm

is to calculate the distance in characteristic space and identify the category of

most samples of the K nearest neighbor of the new sample belongs to, then

set the new sample belonging to this category. As the results of Ref. [16], we

choose the four most discriminant features and CNR to be the machine learning
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Table 3: The size n, number of edges m, mean degree 〈k〉, and global clustering coefficient C

of 5 different kinds of networks.

Network n m 〈k〉 C

Subway networks 68∼595 69∼741 2.015∼2.491 0∼0.0319

Marine transport networks 12∼356 17∼844 2.512∼6.056 0.109∼0.519

Airline networks 17∼123 16∼521 1.882∼8.472 0.0803∼0.493

Fungal growth networks 69∼2741 72∼3665 1.607∼3.254 0.00595∼0.207

Public transportation networks 8∼13133 8∼19905 2∼4.620 0∼0.152

parameters: the density δ, modularity Q, average degree 〈k〉, global clustering

coefficient C, and CNR. The density δ(G) is the ratio of existing edges m to the

number of all possible edges in network G.

δ(G) =
m

n(n− 1)
. (15)

The modularity is the quantity which shows the quality of the community struc-

ture. It is the proportion of links inside the communities minus the estimated

result from the corresponding null model. The global clustering coefficient refers

to the proportion of triangles, which measures the connection density among

neighboring nodes of one node.

We classify this network set in six different approaches. In the first one, all

five features are chosen, and four features out of five are chosen in the next five

approaches. The classification result is shown in Tab. 4, and the accuracy of

classification without the CNR is significantly lower than the rest ones with the

CNR. This means that the CNR can increase the accuracy of network recog-

nition in machine learning obviously. So we think the CNR is one important

property of networks, which can not only show whether the networks tend to

be tree-like or cycle-like, but can distinguish different kinds of networks.

5. Conclusions

In this paper, we have proposed the concept of CNR to judge whether the

network tends to be treelike or not, and an algorithm to calculate this quan-
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Table 4: The classifications of datasets trained by KNN Classifier algorithm with the features

of density δ, modularity Q, average degree 〈k〉, global clustering coefficient C, and CNR R.

Features Precision Recall F1-score Support

All five features 0.91 0.92 0.91 192

Without δ 0.90 0.91 0.90 192

Without Q 0.89 0.90 0.89 192

Without 〈k〉 0.89 0.90 0.89 192

Without C 0.91 0.92 0.91 192

Without R 0.80 0.80 0.79 192

tity. The CNR is constant with different sized networks, and displays critical

turning points in ER networks. TCR is greater than CNR in WS networks and

some real networks. The cycle centrality is introduced to describe over-distance

connection capability of the node among its neighboring nodes. We have pro-

vided the analytical solution of CNR in ER networks, which can explain the

critical turning in ER networks by giant component. We then study the CNR

in real networks, and find that its value is lower than that of the basic networks

models with the same average degree. In addition, it is useful to combine the

coarse-graining method to judge the cycle structure of networks. Finally, we

have classified the networks of different kinds by machine learning. The CNR

is found to be the most compelling feature to enhance the accuracy of classifi-

cation. Therefore we may regard the CNR as one essential quantity of complex

networks.
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[35] P. Erdős, A. Rényi, On the strength of connectedness of a random graph,

Acta Mathematica Hungarica 12 (1-2) (1961) 261–267.

[36] J.-H. Zhao, H.-J. Zhou, Y.-Y. Liu, Inducing effect on the percolation tran-

sition in complex networks, Nature Communications 4 (2013) 2412.

[37] R. A. Rossi, N. K. Ahmed, The network data repository with interactive

graph analytics and visualization, in: AAAI, 2015.

URL http://networkrepository.com

[38] J. Leskovec, A. Krevl, SNAP Datasets: Stanford large network dataset

collection, http://snap.stanford.edu/data (Jun.).

[39] V. Batagelj, A. Mrvar, Pajek datasets [ol], hup://vladojmJuni-lj.

si/pub/networks/data.

[40] E. Kolaczyk, Analysis of network data: Methods and models (2009).

[41] Newman, M. E. J., The structure of scientific collaboration networks, Pro-

ceedings of the national academy of sciences 98 (2) (2001) 404–409.

[42] Newman, M. E. J., Scientific collaboration networks. i. network construc-

tion and fundamental results, Physical review E 64 (1) (2001) 016131.

[43] S. Gopal, The evolving social geography of blogs 88 (1) (2007) 275–293.

[44] D. Lusseau, The emergent properties of a dolphin social network, Pro-

ceedings of the Royal Society of London. Series B: Biological Sciences

270 (suppl 2) (2003) S186–S188.

[45] M. Girvan, M. E. J. Newman, Community structure in social and biological

networks, Proceedings of the national academy of sciences 99 (12) (2002)

7821–7826.

26

http://networkrepository.com
http://networkrepository.com
http://networkrepository.com
http://snap.stanford.edu/data


[46] W. W. Zachary, An information flow model for conflict and fission in small

groups, Journal of anthropological research 33 (4) (1977) 452–473.

[47] D. Gfeller, P. De Los Rios, Spectral coarse graining of complex networks,

Physical review letters 99 (3) (2007) 038701.

27


	1 Introduction
	2 The definition of cycle nodes ratio and its algorithm
	2.1 Cycle nodes ratio
	2.2 The algorithm of calculating CNR

	3 The simulation and analytical results of CNR in networks
	3.1 The simulation results of CNR and its applications in basic random networks
	3.2  The analytical result of CNR in ER networks

	4 The CNR in real networks and its application in network classification
	4.1 CNR in real networks, and used in conjunction with improved spectral coarse-graining
	4.2 The application of CNR in network classification

	5 Conclusions

