
PERIODIC ORBITS IN RÖSSLER SYSTEM

ANNA GIERZKIEWICZ AND PIOTR ZGLICZYŃSKI

Abstract. We prove the existence of n-periodic orbits for almost all n ∈ N in the
Rössler system with attracting periodic orbit, for two sets of parameters. The proofs
are computer-assisted.

1. Introduction

Rössler in [13] studied the system

(1)


x′ = −y − z,
y′ = by + x,

z′ = z(x− a) + b

with a = 5.7, b = 0.2 as an example of a low-dimensional polynomial system with a single
nonlinear term, which admits chaotic behaviour. The existence of symbolic dynamics in it
was proven with computer assistance in [17]. Studying Rössler system’s dynamics and its
periodic orbits for varying parameters is an active field of research (see [7, 9, 16, 2, 12, 4]
and references therein).

Numerical simulations of the Rössler system show that for wide range of parameters for
suitable Poincaré map there exists an attracting set, which is essentially one dimensional.
In such a situation one expects that the forcing relations between periods described in
the Sharkovskii’s theorem should be applicable. Let us recall the Sharkovskii’s theorem
in its original form in dimension one (see [14, 15, 1]):

Theorem 1 (Sharkovskii). Define an ordering ‘/’ of natural numbers:

3 / 5 / 7 / 9 / . . . / 2 · 3 / 2 · 5 / 2 · 7 / . . .
. . . / 2 · 32 / 2 · 52 / 2 · 72 / . . .
. . . / 2 · 33 / 2 · 53 / 2 · 73 / . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . / 2k+1 / 2k / 2k−1 / . . . / 22 / 2 / 1.

Let f : I → R be a continuous map of an interval. If f has an m-periodic point and
m / n, then f also has an n-periodic point.

In [20, 19] the above theorem has been extended to multidimensional perturbations
of 1-dimensional maps and in [18] it is explained how it fits to the symbolic dynamics
established [17] for system (1) with a = 5.7, b = 0.2.

In our study of (1) we fix b = 0.2. Consider the Poincaré map P partly defined on
the section Π = {x = 0, y < 0}. Studying the bifurcation diagram for (a, y) (see Fig.
1) we see that a 3-periodic attracting orbit appears, for example, for a = 5.25. The
other interesting case is the 5-periodic attracting point for a = 4.7. These are two sets
of parameter values treated in our work.

From numerical evidence we see that P exhibits a strong contraction in the z direc-
tion and the invariant sets containing the periodic orbits are almost 1-dimensional (see
Figs. 5 and 10). Therefore we can assume in both cases considered in our work (and,
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Figure 1. Bifurcation diagram for the Poincaré map of the system (1)
with b = 0.2. The attracting periodic orbits for a = 4.7 and a = 5.25 are
expected (3-periodic for a = 5.25 and 5-periodic for a = 4.7, respectively).

most probably, also for a larger range of as) that P can be treated as a 2-dimensional
perturbation of a 1-dimensional model map. Hence, as suggested by Theorem 1 and its
multidimensional version from [20, 19, 18], we can expect a large set of periodic points
also for P .

In this paper we prove the existence of all periods for a = 5.25 (with an attracting
3-periodic orbit). In the second case, a = 4.7 (with an attracting orbit of period 5), we
show the existence of all periods with an exception of the period 3, which agrees with the
forcing relation between periods for interval maps described in Theorem 1. Moreover, we
show that the period 3 is indeed not realised in an attracting set for P .

The methods used in the present work combine the topological tools, the covering
relations, with rigorous numerics. Our proofs are inspired by the approach to multidi-
mensional perturbations of 1-dimensional maps from [20, 19, 18], but the strategy of con-
structing suitable covering relations needed to obtain the desired infinite sets of periodic
orbits is different. In the second case some orbits with low periods has been established
using the interval Newton method [11].

All the programs are written in C++ with the use of CAPD (Computer-Assisted Proofs
in Dynamics) library [3, 8] for interval arithmetic, differentiation and integration.

2. Notation

In the paper, we consider the system (1) with fixed b = 0.2 and a = 5.25 or a = 4.7.
In both cases, we denote by Π the half-plane {x = 0, y < 0} with induced coordinates
(y, z), and P is a Poincaré map on section Π, that is the map

P (y, z) = π(y,z)
(
ΦT (y,z) (x = 0, y, z)

)
,

where π(y,z) is the projection on the (y, z) plane, Φt is the dynamical system induced
by considered system and T = T (y, z) is a return time, if well-defined. Note that for
y + z = 0 the vector field given by the right-hand-side of (1) is not transversal to Π. In
our area of interest, however, z is sufficiently small to guarantee ẋ > 0 on the section.

To simplify the notation, by ‘n-periodic orbit’ or ‘point’, we understand an orbit or
point with basic period n for map P . Whenever we refer to a ‘n-periodic orbit of the
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system’ we mean a periodic orbit of the system, which passes through an n-periodic orbit
of P .

3. Horizontal covering and periodic points

The idea of one-dimensional covering relation between intervals which Block et al. [1]
used to prove Sharkovskii’s theorem (Th. 1) is given by the following definition.

Definition 1. Assume that I, J ⊂ R are intervals and f : I → R is continuous.

An interval I f -covers J (denoted by I
f−→ J) if there exists a subinterval K ⊂ I such

that f(K) = J .

The following easy theorem gives the periodic orbits in the proofs of Sharkovskii’s
theorem (see, for example, [1]).

Theorem 2. Assume that f : R ⊃ I → R is continuous and we have a sequence of
intervals Ij ⊂ I for j = 0, . . . , n− 1 such that

I0
f−→ I1

f−→ I2
f−→ . . .

f−→ In−1
f−→ I0.

Then there exists x ∈ I0, such that f j(x) ∈ Ij for j = 1, . . . , n− 1 and fn(x) = x.

For higher-dimensional perturbations of f a stronger notion of covering is needed to
have an analogous result. We use the notion of the horizontal covering from [20, 18] with
small modifications. It is simplified, set in two-dimensional space, and the notion of ‘left-’
and ‘right side’ is slightly extended.

By C(r) we will denote the family of rectangles (two-dimensional cylinders) of the form
[a, b]× [−r, r] ⊂ R2 for r > 0.

Definition 2. A two-dimensional h-set (shortly: an h-set) is a rectangle N = [a, b] ×
[−r, r] ∈ C(r) with the following elements distinguished:

• its left edge L(N) = {a} × [−r, r];
• its right edge R(N) = {b} × [−r, r];
• its horizontal boundary H(N) = [a, b]× {−r, r};
• its left side SL(N) = (−∞, a)× (−∞,∞);
• its right side SR(N) = (b,∞)× (−∞,∞).

We need these notions to define horizontal covering relation.

Definition 3. Let N0, N1 ∈ C(r) be two h-sets and f : R2 → R2. We say that N0

f -covers N1 horizontally and denote by N0
f

=⇒ N1 if

(2) f(N0) ⊂ SL(N1) ∪N1 ∪ SR(N1) \H(N1),

and one of the two conditions hold:

(3)
either f(L(N0)) ⊂ SL(N1) and f(R(N0)) ⊂ SR(N1),

or f(L(N0)) ⊂ SR(N1) and f(R(N0)) ⊂ SL(N1).

See Fig. 2 for the illustration of horizontal covering. Let us emphasize that the above
conditions can be easily checked with the use of computer via interval arithmetic and ‘<’,
‘>’ relations.

The following theorem might be seen as the generalization of Theorem 2.
3



Figure 2. Horizontal covering N0
f

=⇒ N1

Theorem 3 ([20]). Suppose that we have a loop of n horizontal f -coverings:

N0
f

=⇒ N1
f

=⇒ . . .
f

=⇒ Nn−1
f

=⇒ Nn = N0,

then there exists x ∈ intN0 such that fn(x) = x and

for i = 0, . . . , n− 1 : f i(x) ∈ intNi.

The example of topological horseshoe discussed below shows how from a finite number
of covering relations we can obtain periodic orbits of all periods.

Example 1 (A topological horseshoe). Let N0, N1 ⊂ C(r) be two disjoint h-sets. Suppose
that a continuous map f : R2 → R2 fulfils the horizontal covering relations (see Fig. 3)

(4)
N0

f
=⇒ N0, N0

f
=⇒ N1,

N1
f

=⇒ N0, N1
f

=⇒ N1.

Figure 3. Topological horseshoe in R2: each N0,1 covers itself and the
other set. The vertical egdes of N0 and N1 are marked in red and green,
respectively.

Such a map is called in literature a topological horseshoe for N0, N1 [10].
4



Choose now any finite sequence of zeros and ones of any length l : (i0, i1, . . . , il−1), ik ∈
{0, 1}. The conditions (4) imply in particular the following chain of covering relations:

Ni0

f
=⇒ Ni1

f
=⇒ . . .

f
=⇒ Nil−1

f
=⇒ Ni0 ,

and, from Theorem 3, we can deduce that there exists an l-periodic orbit for f , which
additionally moves between the sets N0, N1 according to the pattern (i0, i1, . . . , il−1). We
can do it for any period l and we are able to choose such a sequence of length l to be
sure that l is the fundamental period of the orbit.

The same is also true for (bi-)infinite sequences of indicators ik. In general, the maps
admitting a topological horseshoe are semi-conjugate to the dynamical system generated
on the space Σ2 = {0, 1}Z by the shift map, called also the symbolic dynamics [10].

4. Orbits of all periods for a = 5.25

Consider now the system (1) with a = 5.25, b = 0.2, that is

(5)


x′ = −y − z,
y′ = 0.2 y + x,

z′ = z(x− 5.25) + 0.2

We expect from the bifurcation diagram (Fig. 1) that there exists a 3-periodic orbit for
the system (5). The Lemma 4 below establishes this fact.

Lemma 4. The Poincaré map P of the system (5) has a 3-periodic orbit O3 = {p31, p32, p33}
contained in the following rectangles in the (y, z) coordinates on the section Π:

(6)

p31 ∈ − 3.466415205008744
12922 × 0.03463160547651117

4013 ,

p32 ∈ − 6.264007533274157
82922 × 0.03265435884620798

02701,

p33 ∈ − 9.748889918088608
93569 × 0.03075287338070747

62635,

Figure 4. The attracting 3-periodic orbit for the system (5).

Proof. Computer-assisted by interval Newton method applied to P : [5], Case 1 of the
program 01-Roessler a525.cpp. See also the outline in Appendix, Subsec. 6.1. �

Theorem 5. The Rössler system (5) has n-periodic orbits for any n ∈ N.
5



Before we present a formal proof we explain the heuristics behind our construction.
We follow the idea of the proof of [18, Th. 2.11]. Assume that there exists a 1-

dimensional manifold M ⊂ Π with boundary (or simply a homeomorphic image of a
closed interval), such that O3 ⊂M and apparently P (M) is contained in a small neigh-
bourhood of M (see Fig. 5).

-10 -9 -8 -7 -6 -5 -4
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0.032

0.033

0.034

0.035

y

z p2

p3

p1

Π

-10 -9 -8 -7 -6 -5 -4

0.030
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0.032

0.033

0.034

0.035

y

z p2

p3

p1

Π L0

L1

Figure 5. To the left: the fragment of Π section containing the 3-periodic
orbit O3 (red) and some orbits attracted by it. The attracted orbits sketch
the shape of the hypothetical 1-dim manifold M.
To the right: the location of the sets L0, L1 relative to the orbit O3.

Considering Fig. 5, we see that it is reasonable to parameterizeM by the y coordinate.
We can now try to make a numerical ‘plot’ ofM’s self map P (a model map for P ), using
the y coordinates of the attracted orbits:

y 7→ πyP (y, z) =: P(y), where (y, z) apparently belongs to M,

as on Fig. 6.

p1p2p3

p1

p2

I 0I 1

I 0

I 1

-9 -8 -7 -6 -5 -4

πy p

-9

-8

-7

-6

-5

-4

πy P (p)

Figure 6. The images of the points nearM through P sketch the plot of
the model map P .

Let us denote the ‘segment’ [p31, p
3
2] by I0 and [p32, p

3
3] by I1, as on Fig. 6. Note that

M’s segments would fulfil the one-dimensional covering relations:

I0
P−→ I1

P−→ I1
P−→ I0.
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Basing on this observation, we find two-dimensional sets L0, L1 on Π, lying close to the
segments I0, I1, which most probably fulfil the similar horizontal covering relations. Their
location relative to the orbit O3 is depicted on Fig. 5, to the right. In the proof below
we show that these horizontal covering relations indeed occur.
Proof.

Let M =

[
−1 0.000706767

−0.000706767 −1

]
and (with some abuse of notation) p32 =[

−6.264007533274157
0.03265435884602701

]
. Define an affine map C on R2 by

C(x) = Mx+ p32.

The matrix M is chosen to place the images of horizontal h-sets through C approximately
along M. Consider now two h-sets N0, N1 ⊂ R2:

(7)
N0 = [−1.23094± 1.41278]× [±7 · 10−4],

N1 = [1.84699± 1.55949]× [±7 · 10−4].

Denote their images through C by

L0 = C(N0), L1 = C(N1),

and consider these parallelograms as sets on the section Π (see Fig. 7).

-9 -8 -7 -6 -5 -4

y

0.030

0.031

0.032

0.033

0.034

0.035

z

L0

L1

P(L0)

Π

-9 -8 -7 -6 -5 -4

y

0.030

0.031

0.032

0.033

0.034

0.035

z

L0

L1

P(L1)

Π

Figure 7. The sets L0, L1 and their images through P . The axes’ origin

is moved to the point p32. The sets fulfil L0
P

=⇒ L1
P

=⇒ L1
P

=⇒ L0 in an
affine coordinate system.

Denote PC = C−1 ◦P ◦C. Then the following horizontal covering relations occur (from
computer-assisted proof [5], Case 2 of the program 01-Roessler a525.cpp, see also the
outline in Appendix, Subsec. 6.2):

N0

PC
=⇒ N1

PC
=⇒ N1

PC
=⇒ N0.

Now, all periods for PC can be obtained as the loops of horizontal PC-covering, as in
Theorem 3:

• for n = 1: the existence of a stationary point follows from the self-covering

N1
PC=⇒ N1;
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• for n ≥ 2: the existence of an n-periodic orbit follows from the chain of covering
relations:

N0
PC=⇒ N1

PC=⇒ N1 . . .
PC=⇒ N1︸ ︷︷ ︸

‘
PC=⇒N1’ n−2 times

PC=⇒ N0.

Note that in this case n must be the fundamental period of the point.

Finally, observe that an n-periodic orbit for PC defines an n-periodic orbit for P . �

5. Periodic orbits for a = 4.7

Consider now the system (1) with a = 4.7, b = 0.2, that is

(8)


x′ = −y − z,
y′ = 0.2 y + x,

z′ = z(x− 4.7) + 0.2

Our goal is to establish the following result.

Theorem 6. Consider a parallelogram A in the (y, z) coordinates on the section Π (see
Fig. 8):

(9) A =

[
−6.19384
0.0356629

]
+

[
−1. 0.000777754

−0.000777754 −1.

]
·
[
±2.66856
±4 · 10−4

]
.

Then A is forward-invariant for the map P , that is

(10) P (A) ⊂ A,

and the Rössler system (8) has n-periodic orbits for any n ∈ N \ {3}, passing through A,
and it does not have any 3-periodic orbit there.

Let us comment first the statement about the existence of the forward-invariant A.
Such a set was not mentioned in the statement of Theorem 5 because we had proved
there the existence of all periods. Now beside the existence of some periodic points we
also want to exclude the period 3, and for this we need to be precise about where this
exclusion happens.

The proof relies on several lemmas.

-8 -7 -6 -5 -4

y

0.033

0.034

0.036

0.037

0.038

z

S



P()

Π

Figure 8. The forward-invariant set A containing an attractor for the
system (8), and its image through P . The blue rectangle S contains a
stationary point.
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From the bifurcation diagram (Fig. 1) it is apparent that there exists a 5-periodic orbit
for the system (8) (see Fig. 9), contained in A. As previously, one proves it by interval
Newton method [5] (Case 1 of the program 02-Roessler a47.cpp, see also Appendix,
Subsec. 6.1).

Lemma 7. The Poincaré map P of the system (8) on the section Π has a 5-periodic orbit
O5 = {p51, p52, p53, p54, p55}, contained in the following rectangles in the (y, z) coordinates on
the section Π:

(11)

p51 ∈ − 3.885277116888829
910041 × 0.03755839144485094

32487,

p52 ∈ − 6.858260447126429
62484 × 0.03505366666561609

495363,

p53 ∈ − 7.766631245348371
92379 × 0.03441713392863033

18681,

p54 ∈ − 5.895584354509201
611225 × 0.03578591178835873

706747,

p55 ∈ − 8.722396020049997
73123 × 0.0337962993643551

04972.

Figure 9. The attracting 5-periodic orbit for the system (8).

Lemma 8. The Rössler system (8) has n-periodic orbits for any n ∈ N \ {4, 3, 2}.

Heuresis.
Similarly as in the proof of Theorem 5, consider a hypothetical 1-dimensional manifold
M⊂ Π containing O5 and its self-map, for which the Poincaré map P is a 2-dimensional
perturbation (see Fig. 10).

Let us now parameterizeM by the y coordinate and consider, as previously, the ‘plot’
of the model map P : M → M. Denote the four ‘segments’ of M by I0, I1, I2 and
I3, as depicted on Fig. 11. In this case, M’s segments fulfil the following diagram of

9
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p1
3

p3
3

p4
3

p5
3

Π

-9 -8 -7 -6 -5 -4

0.034

0.035

0.036

0.037

0.038

y

z

p2

p1

p3

p4

p5

Π

L0

L2

Figure 10. To the left: The fragment of Π section containing the 5-
periodic orbit O5, marked in red. Some orbits attracted by O5 allow to
estimate the shape of M.
To the right: The location of the sets L0, L2 relative to the orbit O5.

p1p2p3 p4p5

p1

p2

p3

p4

I 0I 1I 2I 3

I 0

I 1

I 2

I 3

-9 -8 -7 -6 -5 -4

πy p

-9

-8

-7

-6

-5

-4

πy P (p)

Figure 11. The images of the points near M through the model map P .

one-dimensional covering relations:

(12) I0

P
��

P // I2

P
��

Phh

I3

P

OO

I1
Poo

In particular, the following chain of covering relations occurs:

I0
P−→ I2

P−→ I2
P3

−→ I0.

Similarly as before, we find two-dimensional sets L0, L2 on Π, close to the segments I0, I2,
which are expected to fulfil the analogous horizontal covering relations. One can compare
their positions to the orbit O5 on Fig. 10, to the right. Further we will see the proof of
these horizontal covering relations.
Proof.
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Let M =

[
−1 0.000842495

−0.000842495 −1

]
and p52 =

[
−6.858260447127058
0.03505366666527084

]
. Define an

affine map C on R2 by C(x) = Mx + p52 and denote PC = C−1 ◦ P ◦ C. As before,
the map C is chosen to straighten approximately the set M. Consider now two h-sets
N0, N2 ⊂ R2:

(13)
N0 = [−1.96783± 1.02]× [±2 · 10−4],

N2 = [0.454186± 0.476895]× [±2 · 10−4].

Denote their images through C by L0 = C(N0) and L2 = C(N2), and consider these
parallelograms as sets on the section Π (see Fig. 10, to the right). Compare also to Fig.
12, where the images of L0, L2 on the Π section are depicted.

-8.5 -8.0 -7.5 -7.0

0.0340

0.0345

0.0350
y

L2P(L0)

-7.5 -7.0 -6.5 -6.0

0.0340

0.0345

0.0350

0.0355

y

z

L2

P(L2)

-8 -7 -6 -5 -4

0.034

0.035

0.036

0.037

0.038

y

z

L0

P
3(L2)

Figure 12. The sets L0, L2 and their images through P and P 3. The axes’

origin is moved to the point p52. The sets fulfil L0
P

=⇒ L2
P

=⇒ L2
P 3

=⇒ L0 in
an affine coordinate system.

Let PC = C−1 ◦ P ◦ C. Then the following horizontal covering relations occur (from
computer-assisted proof [5], Case 2 of the program 02-Roessler a47.cpp, see also the
outline in Appendix, Subsec. 6.2):

N0

PC
=⇒ N2

PC
=⇒ N2

P 3
C

=⇒ N0.

Now, we obtain all desired periods for PC as the loops of horizontal PC-covering, as in
Theorem 3:

• for n = 1: the existence of a stationary point follows from the self-covering

N2
PC=⇒ N2;
11



• for n ≥ 5: the existence of an n-periodic orbit follows from the chain of covering
relations:

N0
PC=⇒ N2

PC=⇒ N2 . . .
PC=⇒ N2︸ ︷︷ ︸

‘
PC=⇒N2’ n−4 times

P 3
C=⇒ N0.

Also in this case n must be the fundamental period of the point.

An n-periodic orbit for PC defines an n-periodic orbit for P , so we get all periods n for
n ∈ N \ {2, 3, 4}. �

To complete the study, we find also 2- and 4-periodic orbits. Note that from Fig. 11
and diagram (12) we expect that for the model map P :

I0
P2

−→ I0, and I1
P4

−→ I1,

therefore we may look for a 2-periodic point on the segment I0 and for a 4-periodic point
on I1.

Lemma 9.

(1) The Poincaré map P of the system (8) on the section Π has a 2-periodic orbit
O2 = {p21, p22}, contained in the following rectangles in the (y, z) coordinates on
the section Π:

(14)
p21 ∈ − 4.883924258742264

3846 × 0.03663128109729599
0363,

p22 ∈ − 8.220951552233453
5825 × 0.03411620084269375

8562.

(2) The Poincaré map P of the system (8) on the section Π has a 4-periodic orbit
O4 = {p41, p42, p43, p44}, contained in the following rectangles in the (y, z) coordinates
on the section Π:

(15)

p41 ∈ − 6.332251180186209
91433 × 0.03544579954786024

48502,

p42 ∈ − 8.470343654119862
25783 × 0.03395554856440434

30393,

p43 ∈ − 4.3626672599017
1514 × 0.03710245585075971

53683,

p44 ∈ − 7.571669540341765
62099 × 0.03454970163427861

597 .

Proof. Computer-assisted [5], Cases 3 and 4 of the program 02-Roessler a47.cpp. See
also the outline in Appendix, Subsec. 6.1. �

Proof of Theorem 6.
First we verify the forward invariance ofA: [5], Case 5 of the program 02-Roessler a47.cpp

(see also the outline in Appendix, Subsec. 6.4).
From Lemmata 8 and 9 we have already n-periodic orbits for n ∈ N \ {3} in A. It

remains to prove that there is no 3-periodic orbit for P inA. We verify that by the interval
Newton method applied to P and P 3: [5], Case 6 of the program 02-Roessler a47.cpp

(see also the outline in Appendix, Subsec. 6.4). �

6. Appendix. Outlines of computer-assisted proofs [5]

We use the CAPD library for C++ [8] containing, in particular, modules for interval
arithmetic, linear algebra, differentiation and integration of ODEs. The important utility
of the library is calculating Poincaré maps rigorously: we are able to enclose the image of
an interval vector (a rectangle R, in our case) through P in an interval vector, denoted
below by [P (R)]. Applying suitable affine coordinate systems helps to reduce the wrap-
ping effect. If that is not enough and the estimated images are too large, we also often

12



divide the sets into grids of smaller boxes and use the fact that the image of the whole
set must be contained in the sum of small boxes’ images.

The programs have been tested under Linux Mint 18.1 with gcc compiler. They use
the CAPD library ver. 5.0.6. All cases execute within seconds on a laptop type computer
with Intel Core i7 2.7GHz × 2 processor (Case 6 of the program 02-Roessler a47.cpp

takes the longest time: no more than 10 seconds).

6.1. Detecting stationary points for a Poincaré map’s nth iterate P n. The out-
line refers to the following proofs:

• existence of a 3-periodic orbit for P , a = 5.25 (Lemma 4)
– Case 1 of the program 01-Roessler a525.cpp;
• existence of a 5-periodic orbit for P , a = 4.7 (Lemma 7)

– Case 1 of the program 02-Roessler a47.cpp;
• existence of 2- and 4-periodic orbits for P , a = 4.7 (Lemma 9)

– Cases 3 and 4 of the program 02-Roessler a47.cpp.

Outline of the computer-assisted proof.

(1) We define the system and a starting point x0 close to the expected periodic point;
(2) We apply the function anyStationaryPoint, which:

• initially iterates the interval Newton operator (INO)

N(x0, X) = x0 − [DP n(X)]−1P n(x0)

in a small neighbourhood X of x0 to get a better starting point (this step is
not necessary, but we finally obtain a better approximation of the periodic
point);
• finally applies INO on the small neighbourhood of the better starting point: if

the image N is contained in the interior of the neighbourhood, then a unique
stationary point exists in it.
• returns N .

(3) Finally we apply a given iteration of P to N , to print the whole orbit.

6.2. Horizontal covering relations between h-sets on the section Π for the
Poincaré map P or its higher iterate.

The outline refers to the following proofs:

• the chain of covering relations N0

PC
=⇒ N1

PC
=⇒ N1

PC
=⇒ N0 (Theorem 5)

– Case 2 of the program 01-Roessler a525.cpp;

• the chain of covering relations N0

PC
=⇒ N2

PC
=⇒ N2

P 3
C

=⇒ N0 (Theorem 6)
– Case 2 of the program 02-Roessler a47.cpp;

Outline of the computer-assisted proof.

(1) We define the system and the h-sets with their affine coordinate systems;
(2) We apply the function covers2D, which checks the conditions from Definition 3

for the estimated images of the h-sets and their vertical edges;
(3) If the conditions are fulfilled, then the function returns true.

See also a similar method for 2-dimensional covering described in [6].

6.3. Forward invariance of the set A.
The outline refers to the case of the Poincaré map P , a = 4.7 and the set A from

Theorem 6) – Case 5 of the program 02-Roessler a47.cpp.
Outline of the computer-assisted proof.

(1) We define the set A with its affine coordinate system;
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(2) We apply the function inside, which divides A into small boxes Ai and checks if
each Ai is mapped to the interior of A.

(3) If the above condition is fulfilled, then the function returns true.

6.4. Non-existence of the 3-periodic point for the Poincaré map P in the set
A.

The outline refers to the case of the Poincaré map P , a = 4.7 and the set A from
Theorem 6) – Case 6 of the program 02-Roessler a47.cpp.

Outline of the computer-assisted proof.

(1) We define the set A with its affine coordinate system;
(2) We apply the function whatIsNotMappedOutside, which:

• divides A into 500× 10 small boxes Ai

• checks if each image [P 3(Ai)] ∩ Ai = ∅
• returns a set S, which is an interval closure of the sum of all Ai’s such that

[P 3(Ai)] ∩ Ai 6= ∅ (see on Fig. 8):

S = −7.165195528898398
86544568881281 × 0.03522742411001666

44908202443027 .

(3) We check by interval Newton method (function newtonDivided) that S contains
a unique stationary point for P 3; it still may be in fact a stationary point for P .

(4) We check by newtonDivided that S contains a unique stationary point also for
P and therefore S does not contain any points of fundamental period 3.
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[18] P. Zgliczyński. Multidimensional perturbations of one-dimensional maps and stability of S̆arkovsk̆i
ordering. International Journal of Bifurcation and Chaos, 09(09):1867–1876, 1999.
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