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Abstract

We present an analysis of stationary solutions for two-dimensional (2D) Bose-
Einstein condensates (BECs) with the Rashba spin-orbit (SO) coupling and
Zeeman splitting. By introducing the generalized momentum operator, the
linear version of the system can be solved exactly. The solutions are semi-
vortices of the Bessel-vortex (BV) and modified Bessel-vortex (MBV) types,
in the presence of the weak and strong Zeeman splitting, respectively. The
ground states (GSs) of the full nonlinear system are constructed with the help
of a specially designed neural network (NN). The GS of the mixed-mode type
appears as cross-attraction interaction increases. The spin texture of the GS
is produced in detail. It exhibits the Néel skyrmion structure for the semi-
vortex GS of the BV type, and the respective skyrmion number is found in
an analytical form. On the other hand, GSs of the MBV and mixed-mode
types do not form skyrmions.
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1. Introduction

Atomic Bose-Einstein condensates (BECs) are perfectly controllable quan-
tum settings, which make it possible to emulate various effects which are well
known in condensed-matter systems [1, 2]. A well-known example is the spin-
orbit (SO) coupling in semiconductors, originating from the interaction of the
electron spin with the weak magnetic field induced as the Lorentz transform
of the electrostatic field of the crystalline lattice in the reference frame mov-
ing along with the electron. The solid-state SO coupling plays a fundamental
role in the realization of spin Hall effects [3], topological insulators [4], spin-
tronic devices [5], etc. There are two standard forms of the Hamiltonian of
the SO coupling, viz., ones of the Dresselhaus [6] and Rashba [7, 8] types.

The last decade has witnessed the experimental realization of the emula-
tion of the SO coupling in effectively one- [9, 10] and two-dimensional (2D) [11]
BEC, see also reviews of the experimental and theoretical results in Refs. [12,
13, 14, 15]. Simultaneously, using Gross-Pitaevskii equations modeling the
system [16], many remarkable effects have been predicted in SO-coupled
BECs with intrinsic nonlinearity. These include vortices [17, 18, 20, 19],
skyrmions [20] and many species of 1D [21, 22, 23, 24], 2D [25, 26, 27, 28, 29,
30, 31], and 3D [32] solitons, see also review [33]. Further, the SO coupling
makes it possible to predict novel states of matter, such as chiral super-
solids [34] and polariton topological insulators [35].

In this paper, we investigate stationary solutions for binary BEC with
the SO coupling and Zeeman splitting between its two components. Starting
from exact solutions of the linear version of the SO-coupled Gross-Pitaevskii
equations, represented by Bessel vortices (BV) and modified Bessel vortices
(MBV) in the presence of weak and strong Zeeman effects, respectively, we
develop a neural network (NN) for simulating the system with the intrinsic
attractive nonlinearity. The NN based numerical method [36, 37] is inher-
ently parallel and even large-scale system can easily get accelerated with
the mordern Artificial Intelligence based computer. In this study, both the
ground and excited states can be obtained by NN. In particular, the NN so-
lutions produce 2D (“baby” [38, 39, 40]) skyrmions in the SO-coupled BEC
(note that a baby skyrmion in a three-component condensate was created
experimentally [41]). The corresponding values of the skyrmion number can
be calculated analytically. Stability of the so predicted states is checked by
dint of numerical simulations.

We consider a binary SO-coupled 7Li BEC with attractive contact inter-
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action and the Zeeman splitting between its components in the 2D space.
SO coupling is created by laser beams which couple different states of 7Li
atoms [42]. The spinor wave function, Ψ = (Ψ1,Ψ2)

T , of this system is gov-
erned by the system of Gross-Pitaevskii equations. The scaled form of these
equations is [26, 43]

i∂tΨ1 = −1

2
∇2

⊥Ψ1 + β [(∂x − i∂y)Ψ2 + kzΨ1]−
(

g|Ψ1|2 + γ|Ψ2|2
)

Ψ1,

i∂tΨ2 = −1

2
∇2

⊥Ψ2 + β [−(∂x + i∂y)Ψ1 − kzΨ2]−
(

γ|Ψ1|2 + g|Ψ2|2
)

Ψ2,
(1)

and the characteristic length, energy and time are defined by l = 2µm, ǫ =
~
2/ml2 = 2.4×10−31J and τ = ~/ǫ = 0.44ms [43], wherem = 1.16×10−26kg is

the mass of 7Li. The operator ∇2
⊥ acts in the 2D plane (x, y). The coefficient

β = 1 is the SO coupling strength which can be varied in a broad range
depending on laser configurations [42]. g = 1 and γ = aγ/ag are coefficients
of the self- and cross-attraction interaction, respectively. ag and aγ are the s-
wave scattering lengths between atoms in same states and different states. In
order to maintain the generality of the system, both ag and aγ can be varied

in this system. The total number of atoms U = (N/ag)
√

~/8πmωz, where
N =

∫

Ψ†Ψdxdy is the norm integral and ωz = 800Hz [44] is the frequency
of tight confinement along the z axis. The Zeeman-splitting strength is Ω =
µBgFB/ǫ = βkz, where kz may be considered as the z component of the
momentum, gF is the Landé g factor for 7Li, µB is the Bohr magneton and
B is a uniform magnetic field in z axis. We can find that only kz and γ are
free parameters of the system.

Stationary solutions of Eq. (1) with chemical potential µ are sought for
in the usual form,

Ψ = {ψ1(x, y), ψ2(x, y)}T exp(−iµt). (2)

with stationary functions ψ1,2(x, y) satisfying equations

µψ1 = −1

2
∇2

⊥ψ1 + (∂x − i∂y)ψ2 + kzψ1 −
(

|ψ1|2 + γ|ψ2|2
)

ψ1,

µψ2 = −1

2
∇2

⊥ψ2 − (∂x + i∂y)ψ1 − kzψ2 −
(

γ|ψ1|2 + |ψ2|2
)

ψ2,
(3)

In the presence of the Zeeman splitting, Eq. (3) yields two uniform states,
viz.,

ψ1 = C, ψ2 = 0, µ = kz − C2; (4)
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ψ1 = 0, ψ2 = C, µ = −kz − C2, (5)

where C is a real constant. In this paper, we only focus on the branch
with lower chemical potential µ, as it is plausible that the higher branch is
unstable. As concerns the uniform states, the lower branch corresponds to
Eq. (5), in the case of kz > 0.

A family of vortex solutions is defined by the ansatz [25, 26] which is
compatible with the substitution of expression (2) in Eq. (1):

ψ1(x, y) = R1(r)e
−i(m+1)θ, ψ2(x, y) = R2(r)e

−imθ, (6)

where (r, θ) are the polar coordinates, m is an integer winding number, and
R1,2(r) are two radial wave functions. The simplest (fundamental) version
of ansatz (6), corresponding to m = 0, or its mirror image with m = −1,
represents the ground state (GS), in the form of the semi-vortex, as defined in
Ref. [19] (see also review [45]), and the ones with excitation number m ≥ 1 or
m ≤ −2 are defined, in the same works, as excited states of the semi-vortex
unlike the GS, the excited states were found to be completely unstable (in
the absence of the Zeeman splitting) [19], therefore only the GS solutions are
considered here. Note that Eq. (1) is compatible with substitution kz → −kz,
m→ −m−1, R1 → −R2, R2 → R1, therefore it is sufficient to consider only
positive values of kz.

2. Exact vortex states of the linearized system

First, we note that the stationary linear version of Eq. (1), i.e., Ĥψ = µψ
with Hamiltonian

Ĥ = −∇2
⊥/2− (iσx∂y − iσy∂x − kzσz), (7)

where σx,y,z are the Pauli matrices, admits an exact solution. Indeed, in
terms of the generalized momentum operator,

P̂ = iσx∂y − iσy∂x − kzσz, (8)

Hamiltonian (7) can be written as H = P̂ 2/2− P̂ − k2z/2. Then, solving the
eigenvalue equation P̂ψ = kψ with real k yields the exact solution of the
linearized system (1), written in terms of the Bessel functions:

R1(r) = CkrJm+1(krr), R2(r) = C(k + kz)Jm(krr), (9)
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where C is an arbitrary real constant [similar to that in Eqs. (4) and (5)],
kr is the radial momentum, and the total momentum k is defined by

k2 = k2r + k2z . (10)

The solution is built as a pair of the Bessel Vortices (BV) with winding
numbers −(m + 1) and −m in the ψ1 and ψ2 components, respectively. In
the absence of the Zeeman effect, i.e., kz = 0, this solution reduces to one
that was recently reported in Ref. [46]. Naturally, the norm integral for this
linear state in the free space diverges as

N ≡ N1 +N2 = lim
R→∞

{

2π

∫ R

0

[

R2
1(r) +R2

2(r)
]

rdr

}

≃ 4C2k (k + kz)

kr
R.

(11)
while the ratio of the norms of the two components is finite:

N1/N2 = k2r/ (k + kz)
2 . (12)

Because operator P̂ , defined by Eq. (8), commutes with Ĥ , the state ψ
given by Eq. (9) is also the eigenstate of Ĥ, with the respective chemical
potential

µ(k) = k2/2− k − k2z/2, (13)

where the three terms represent, severally, the kinetic energy, SO coupling,
and Zeeman energy shift. In the case of kz < 1, the chemical potential attains
its minimum,

µmin(kz < 1) = −1/2− k2z/2, (14)

at k = 1, hence Eq. (10) gives, in this case,

kr =
√

1− k2z . (15)

In the limit of kz = 1 and kr = 0, the BV solution (9) amounts to the uniform
state, with R1 = 0, R2 = 2C for m = 0, and to zero solution for m ≥ 1.

At kz > 1, Eq. (15) yields an imaginary radial momentum kr, and the
BV solution (9) becomes the modified Bessel Vortex (MBV)

R1 = −C|kr|Km+1(|kr|r), R2 = C(k + kz)Km(|kr|r), (16)

where Km is the standard modified Bessel function of the second kind (alias
the modified Hankel function), which exponentially decays at r → ∞,

Km(|kr|r) ≈
r→∞

√

π

2|kr|r
exp (−|kr|r) (17)
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but is singular at r → 0,

Km(|kr|r) ≈
r→0

1

2
(|m| − 1)!

(

2

|kr|r

)|m|

(18)

for m ≥ 1, and

K0(|kr|r) ≈
r→0

ln

(

2

|kr|r

)

. (19)

Accordingly, the norm (11) of the MBV solutions of the linearized system
diverges at r → 0 as r−2(m+1) for m ≥ 1, and as ln(1/r) for m = 0, while the
ratio of the norms of the two components vanishes in the same limit.

As shown below, taking into account the self-attractive nonlinearity in
Eq. (3) makes it possible to replace the GSs of the BV and MBV states by
similar ones, but with a finite norm. Note that the nonlinearity does not
affect the exponentially decaying asymptotic expression (17).

Finally, in the case of kz > 1, the minimum value of the chemical potential
is achieved at kr = 0, hence Eqs. (10) and (13) yield

µmin (kz > 1) = −kz . (20)

The results show that, with the increase of the Zeeman-splitting strength
kz, the minimum chemical potential, given by Eq. (14), decreases, as per
Eqs. (14) and (20), and the corresponding wave function carries over from
the BV state (0 ≤ kz < 1) to the MBV one (kz > 1). This is, in fact, an
example of the quantum phase transition, as it occurs in terms of the mean-
field wave function of the quantum gas, cf. Refs. [47, 48, 49]. A similar
phase transition between BV and MBV localized states, with finite norms, is
reported below. Note that all the vortex states are degenerate with respect
to the excitation number m, as µ, given by Eq. (13), does not depend on m.

3. Constructing nonlinear vortex states by means of the neural

network

Based on the exact vortex states found for the linear version, we aim
to construct their nonlinear counterparts, as solutions of Eq. (1), with the
help of a neural network (NN). First, we consider the case of γ = 0 [no
nonlinear interaction between the components of the wave function in Eq.
(1). Substituting the general ansatz (6) in Eq. (1) with γ = 0 yields

G1,2(r, R1, R
′
1, R

′′
1, R2, R

′
2, R

′′
2) = 0, (21)
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where

G1 =(−µ+ kz)R1 −
1

2

[

R′′
1 +

R′
1

r
− (m+ 1)2R1

r2

]

+R′
2 −

mR2

r
− R3

1,

G2 =(−µ− kz)R2 −
1

2

[

R′′
2 +

R′
2

r
− m2R2

r2

]

− R′
1 −

(m+ 1)R1

r
− R3

2.

(22)

Next, introducing the error index,

L ≡ 2π

∫ ∞

0

r
(

G2
1 +G2

2

)

dr, (23)

the task is to drive its value to zero as close as possible for given chemical
potential µ.

In the nonlinear system, localized solutions may exist in the bandgap of
the linear spectrum of Eq. (3), i.e., at values of µ at which the linear solutions
(9) and (16) do not exist, cf. Ref. [26]. As it follows from Eqs. (14) and (20),
the bandgap is

µ <

{

−1/2− k2z/2, at kz < 1,
−kz, at kz > 1.

(24)

It is shown by the yellow area in the plane of (kz, µ), in Fig. 1(b). Thus, the
chemical potential of localized states can be denoted as

µ = µmin −∆, with ∆ > 0. (25)

As the self-focusing nonlinearity can chop off the slowly decaying tails
of the Bessel wave function, which makes its norm integral norm diverging
[see Eq. (11)], we adopt the following ansatz, which agrees with the general
structure of the BV solutions (9) and includes the truncation factor sech(ar):

R1 = o1sech(ar)Jm+1(o3r), R2 = o2sech(ar)Jm(o4r), (26)

where a =
√
2∆ is an empirical choice, suggested by numerical computations

[recall ∆ is defined by Eq. (25)]. Both BV and MBV states can be produced
by the input taken as per ansatz (26).

A schematic of the NN used in this study is shown in Fig. 1(a). It
includes three layers, viz., an input one X = [1, r]T , hidden layer Hl =
[1, h1, h2, h3, · · · , hn]T , and the output one, O = [o1, o2, o3, o4]

T . The ap-
pended “1” in X and Hl is used to account for the bias in the input and
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Figure 1: (Color online) (a) The schematic of the NN with 1+1 input nodes, 1+n hidden
nodes, and 4 output nodes. (b) The linear dispersion spectrum of the system. Localized
states exist in the yellow area. Profiles of the radial wave functions R1,2 are displayed in
panels (c) for m = 0 and (d) for m = −1, at kz = 0.0, 0.5, 1 and 1.5. Here ∆ = 0.01 [see
Eq. (25)].
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hidden layer. The bias has the effect of shifting the activation function by a
constant, which can improve the accuracy of output generated by the NN.
The hidden and output layers can be expressed as

Hl = [1, f(WX)T ]T , O = Af(V Hl), (27)

where W and V are 2 × n and (n + 1) × 4 parameter matrices. Here, we
choose n = 12 and A = 2, initial values of W and V are given by random
numbers uniformly distributed between −1 and +1, and f(x) = 1/(1+e−x) is
a component-wise sigmoid activation function. A component-wise function
y = f(x) can be defined as that if x is matrix, then yij = f(xij). Thus,
for given W and V , we can obtain an error index L(W,V ) and its gradient
with respect to W and V . Based on the gradient, the parameter matrices W
and V can be updated by means of the adaptive-moment estimation (Adam)
method. Note that this method cannot avoid producing the trivial solution,
R1 = R2 = 0, of Eq. (21). In that case, the total norm quickly decays
toward zero, and we then need to generate a new set of W and V for the
next iteration. The soliton solution can be found if the total norm becomes
a constant instead of decaying to zero.

As mentioned above, we focus on the consideration of the GSs, which are
represented by ansatz (9) with m = 0 and −1. The BV (0 ≤ kz < 1) and
MBV (kz > 1) states with m = 0,−1 were calculated at ∆ = 0.01, as shown
in Figs. 1(c-d). It takes about 3× 104 iterations to reduce values of the error
index (23) to L < 10−6. Naturally, the radial wave functions of the BV states
feature the oscillatory decaying tail, while the oscillations are absent in the
MBV states. Because the presence or absence of the oscillations in the tails of
the localized states is the indicator of the quantum phase transition between
ones of the BV and MBV types, kz = 1 remains the phase-transition point,
exactly the same as in the linear system considered above. It is relevant
to mention that, although the system (1) dealt with here is similar to one
addressed in Ref. [26], the BV → MBV phase transition at kz = 1 was not
considered in that work. Profiles of the o1−4 functions generated by NN, as
intermediate results, are shown in Fig. 2.

The total norm N of the so obtained solutions are plotted, vs. ∆,
in Figs. 3(a,c). The stability of the stationary solutions can be identified
through the computation of eigenvalues for small perturbations added, in
the linear approximation, to the stationary states. It has thus been checked
that all the GS solutions obtained in this work [for γ = 0 in Eq. (1)] are
stable.
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Figure 2: (Color online) Profiles of the o1−4 functions generated by NN are displayed in
panels (a,c) for m = 0 and (b,d) for m = −1, at kz = 0.5 and 1.5. Here ∆ = 0.01

The true GS of the system can be identified by calculating the energy
corresponding to Eq. (1),

E =

∫∫
{

1

2

(

|∇ψ1|2 + |∇ψ2|2
)

+ ψ∗
1 (∂x − i∂y)ψ2 − ψ∗

2 (∂x + i∂y)ψ1

+kz
(

|ψ1|2 − |ψ2|2
)

− g

2

(

|ψ1|4 + |ψ2|4
)

− γ |ψ1|2 |ψ2|2
}

dxdy, (28)

where ∗ stands for the complex conjugate. From Figs. 3(b,d) it is seen that
energy of the BV and MBV states with m = 0 is always lower than that of
their counterparts with m = −1, which means that the state with m = 0
represent the GS. Thus, the introduction of the Zeeman splitting lifts the
degeneracy between the states with m = 0 and −1 [19].

Further, ratio N1/N2 of the norms of the ψ1 and ψ2 components of the
GS with m = 0 is plotted in Fig. 3(e). It is close to the same ratio found
for the exact solutions of the linearized equations, given by Eq. (12) at
∆ = 0.01. The two-component Bose gas can be considered as a (pseudo-
)spin system. The spin vector, S = ψ†

σψ/ψ†ψ, can be used to represent
the respective pseudo-magnetic ordering, where σ = (σx, σy, σz) is the Pauli
matrix vector. The average z-component of the spin S̄z = 〈ψ| σz |ψ〉 /N =
(N1/N2 − 1)/(N1/N2 + 1), and the magnetization is defined as M = |S̄z|.
Note that M = kz for 0 ≤ kz < 1 in linear regime. The magnetization curve
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for m = 0 is plotted in Fig. 3(f). Without the external magnetic field applied
to the BEC, i.e., at kz = 0, the atoms are evenly distributed in the ψ1 and
ψ2 components, i.e. N1/N2 = 1, hence the magnetization is negligibly small.
With the increase of the external magnetic field kz, the atomic population is
transferred from ψ1 to ψ2, which yields a higher magnetization. Eventually,
at the critical value of the effective field, kz = 1, nearly all the atoms are
transferred to ψ2. The magnetization remains nearly constant as kz > 1,
which means saturation of the magnetization.

The above consideration was performed for γ = 0 in Eq. (1). In the
presence of γ, i.e., the nonlinear interaction between the two components of
the wave function, one may expect that the GS is represented not by the
semi-vortex of the BV or MBV type, but by the mixed mode, in which both
components contain mixtures of azimuthal harmonics with winding numbers
0 and ±1, cf. Eq. (6). Here, we consider the mixed modes, the initial guess
for which is built as a superposition of semi-vortices of the BV or MBV types,
with m = 0 and m = −1:

ψ1 = sech(ar)
[

o1e
−iθJ1(o2r) + o3J0(o4r)

]

,

ψ2 = sech(ar)
[

o5J0(o6r) + o7e
iθJ−1(o8r)

]

,
(29)

cf. Eq. (26). The weight of each semi-vortex in this ansatz may be defined
as

c0 = d0/(d0 + d−1), c−1 = 1− c0, (30)

where

d0 =

∫∫

sech2(ar)
[

o21J
2
1 (o2r) + o25J

2
0 (o6r)

]

dxdy,

d−1 =

∫∫

sech2(ar)
[

o23J
2
0 (o4r) + o27J

2
−1(o8r)

]

dxdy.

(31)

are norms of both semivortex constituents. It follows from Eqs. (30) and
(31) that weights c0 and c−1 belong to the interval of 0 < c0, c−1 < 1.

Similar to the NN used above, parameters o1−8 from ansatz (29) can be
determined by means of the NN employing the Adam method to minimize
the error index, which is defined as

L ≡
∫ ∞

∞

∫ ∞

∞

(|G1|2 + |G2|2)dxdy, (32)
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Figure 4: (Color online) The schematic of the NN with 2 + 1 input nodes, two layers of
n+ 1 hidden nodes, and 8 output ones. (b) Diagram of the GS of the MBV semi-vortex
type with (I) m = −1 and (V) m = 0; the GS of the BV semi-vortex type with (II)
m = −1 and (IV) m = 0; and (III) the mixed-mode state in the (γ, kz) plane. (c) The
weight c0 and (d) skyrmion number Q in the mixed mode as functions of kz for γ = 3 in
Eq. (1) and ∆ = 0.1, see Eq. (25).
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cf. Eq. (23), where G1,2 are defined as

G1 =

(

−µ− 1

2
▽

2
⊥

)

ψ1 + (∂x − i∂y)ψ2 + kzψ1 −
(

|ψ1|2 + γ|ψ2|2
)

ψ1,

G2 =

(

−µ− 1

2
▽

2
⊥

)

ψ2 − (∂x + i∂y)ψ1 − kzψ2 −
(

γ|ψ1|2 + |ψ2|2
)

ψ2,

(33)

cf. Eq. (22). The schematic of the presently used NN is shown in Fig. 4(a).
There are four layers, viz., the input one X = [1, x, y]T , the first and second
hidden layers, Hl = [1, h1, h2, h3, · · · , hn]T and Sl = [1, s1, s2, s3, · · · , sn]T ,
and output one O = [o1, o2, o3, o4, · · · , o8]T . The hidden and output layers
can be written as

Hl = [1, f(W1X)T ]T , Sl = [1, f(W2Hl)
T ]T , O = Af(V Sl). (34)

where W1, W2, and V are 3 × n, (n + 1) × n and (n + 1) × 8 parameter
matrices, respectively.

The numerical calculation was performed for ∆ = 0.1 [see Eq. (25)]. After
≃ 104 iterations, the error index (32) is pushed down to ∼ 10−6. According
to the distribution of weight parameter c0 [see Eq. (30)], we plot the phase
diagram of the GS in the (γ,kz) parameter plane, as shown in Fig. 4(b),
where I, II, IV and V correspond to the semi-vortex of the BV type, and III
represents the mixed mode. We have found that, similar to Ref. [25], the
mixed mode exists only at γ > 1, and the phase-transition curve between
the mixed mode and semi-vortex of the BV type can be fitted by expression

γ = 8k2z + 4|kz|+ 1. (35)

As an example, Fig. 4(c) presents weight c0 as a function of kz at γ = 3, where
the two phase transition points are kz = ±0.31 (note that the respective value
|kz| = 0.31 is essentially smaller than kz = 1 at which the BM → MBV phase
transition occurs in the semi-vortices, as shown above). The corresponding
density distributions in each component are shown in the first and second
columns of Fig. 5. The prediction of spatial distribution of atoms for each
component can be tested by the Stern-Gerlach experiment.

For the semi-vortex of the BV type, with excitation number m [see Eq.
(6)], the spin vector produced by the linear solution is

Sm = [sin Φm(r) cos θ, sinΦm(r) sin θ, cosΦm(r)] , (36)

14



Figure 5: (Color online) Density distributions of the ψ1 and ψ2 components (the first and
second columns, resectively. The third column displays the corresponding spin textures
for γ = 3 and ∆ = 0.1. Arrows indicate the direction of the spin, and their colors represent
the component orthogonal to the (x, y) plane, that is, the respective directions vary from
vertical up (red) to vertical down (blue).
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where

sin Φm(r) = 2R1R2/
(

R2
1 +R2

2

)

, cosΦm(r) =
(

R2
2 − R2

1

)

/
(

R2
1 +R2

2

)

. (37)

Note properties of this vector: Sm = −S−m−1, and lim
r→0

Φm(r) = −πsign(m) =

−Φ(r0), where r0 is the minimal positive root of R1(r)R2(r) = 0 [and we set
sign(0) = 1].

The SO coupling in the BEC Hamiltonian is tantamount to the Dzyaloshinskii-
Moriya interaction, supporting topologically nontrivial spin textures, i.e.,
skyrmions [50]. This texture is characterized by the topological skyrmion
number

Q =
1

4π

∫∫

Σ

S ·
(

∂S

∂x
× ∂S

∂y

)

dxdy, (38)

where the integration domain is Σ : 0 ≤ r ≤ r0, 0 ≤ θ < 2π, with r0
defined above. The skyrmion number of the semi-vortex of the BV type with
excitation number m is given by

Q
(m)
SV = (1/4π) cosΦ(r)|r=r0

r=0 θ|θ=2π
θ=0 = −sign(m). (39)

The mixed mode can be considered as a weighted superposition of a skyrmion
and an antiskyrmion (which is sometimes called “skyrmionium” [51]), thus
the respective total skyrmion number is

QMM = c0Q
(0)
SV + c−1Q

(−1)
SV = 1− 2c0. (40)

The spin textures of the BV-semi-vortex and mixed-mode states are
summarized in Fig. 5, where the above-mentioned boundary value is r0 =
2.40/

√

1− k2z at |kz| < 1. The spin textures of the BV semi-vortex exhibit
the Néel skyrmion structure, while the MBV semi-vortex with kz > 1 and
mixed mode do not form skyrmions.

We have calculated the skyrmion number numerically, as shown in Fig. 4(d),
where the skyrmion number is correctly approximated by Eq. (40). In par-
ticular, the fact that Q takes integer values ±1 for semi-vortices of the BV
type in areas II and IV of the figure agrees with the above-mentioned fact
that only these modes form true skyrmions.

Lastly, all the GSs mentioned above are stable. This conclusion is con-
firmed by direct simulations, as well as by the computation of eigenvalues
for small perturbations, cf. the stability analysis performed for 2D localized
states in other models [26, 52, 53, 45].
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Compared with the traditional numerical method (imaginary-time prop-
agation method) for solving Gross-Pitaevskii equation, NN method has both
advantages and disadvantages. In terms of efficiency, the NN method is
time-consuming if there is no hardware acceleration. By employ a CPU (In-
tel Core i7-1165G7), NN method takes 28.3 hours to obtain a 2D solution,
while traditional numerical method only takes 7.2 hour to obtain the same
solution. However, NN method can be accelerated by a GPU (NVIDIA RTX-
2060) so that the calculation time can be reduced to 2.4 hours. The greatest
advantage of NN method is that both ground state and excited state can
be obtained as long as the correct ansatzs are given, while the traditional
numerical method can only obtain the ground state. However, it is difficult
to give the correct ansatzs, especially for a unfamiliar system. Note that
the ansatzs (26) and (29) given in this paper are based on the linear exact
solution (9).

4. Conclusion

We have investigated stationary solutions in the 2D model of the binary
BEC, including the SO (spin-orbit) coupling of the Rashba type and Zeeman
splitting. By introducing the generalized momentum operator, the linear ver-
sion of the system can be solved exactly. The solutions are a pair of the BVs
(Bessel vortices) or MBVs (modified Bessel vortices), in the cases of the weak
and strong Zeeman splitting, respectively. The corresponding stationary lo-
calized vortex solutions of the full nonlinear system are constructed by means
of specially designed NN (neural network). While the system is similar to
those addressed in earlier works, a new result is the exactly identified quan-
tum phase transition between the semi-vortex GSs (ground states) of the BV
and MBV types. In the presence of the nonlinear interaction between the
two components of the wave function, the GS of the mixed-mode type is con-
structed too, by a pair of BV states with excitation numbers m = 0 and −1,
is also considered. The spin texture of the GS of the BV-semi-vortex type
exhibits the Néel skyrmion structure, and its skyrmions number is calculated
analytically, while the semi-vortices of the MBV type and mixed modes do
not form skyrmions. All the GSs identified in this work are stable, which
implies that they have the potential to be realized in the experiment. The
analysis presented here may by readily extend to other SO-coupled systems,
such as three-component BEC with the spin-1 composition.

17



This research was supported by 111 project (grant No. D18001), the Hun-
dred Talent Program of the Shanxi Province (2018), the National Key R&D
Program of China under grants No. 2021YFA1400900, 2021YFA0718300,
2021YFA1400243, NSFC under grants Nos. 61835013 and by the Israel Sci-
ence foundation (grant No. 1286/17).

CRediT authorship contribution statement

Huan-Bo Luo: Methodology, Writing - original draft. B. A. Malomed:
Validation, Writing - review and editing. Wu-Ming Liu: Validation, Writing
- review and editing. Lu Li: Conceptualization, Supervision, Writing - review
and editing.

References

[1] Hauke P, Cucchietti FM, Tagliacozzo L, Deutsch I, Lewenstein M.
Can one trust quantum simulators? Rep. Prog. Phys. 2012;75.
https://doi.org/10.1088/0034-4885/75/8/082401.

[2] Lewenstein M, Sanpera A, Ahufinger V. Ultracold Atoms in Optical
Lattices: Simulating quantum many-body systems. OUP Oxford; 2012.

[3] Xiao D, Chang M-C, Niu Q. Berry phase effects
on electronic properties. Rev. Mod. Phys. 2010;82.
https://doi.org/10.1103/RevModPhys.82.1959.

[4] Hasan MZ, Kane CL. Colloquium: Topological insulators. Rev. Mod.
Phys. 2010;82. https://doi.org/10.1103/RevModPhys.82.3045.
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