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Abstract: The overarching goal of this paper is to introduce and investigate a new nonlinear system driven

by a nonlinear differential equation, a history-dependent quasivariational inequality, and a parabolic vari-

ational inequality in Banach spaces. Such a system can be used to model quasistatic frictional contact

problems for viscoelastic materials with long memory, damage and wear. By using the Banach fixed point

theorem, we prove an existence and uniqueness theorem of solution for such a system under some mild

conditions. As a novel application, we obtain a unique solvability of a quasistatic viscoelastic frictional

contact problem with long memory, damage and wear.
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1 Introduction

Assume that V,X, Y and W are separable and reflexive Banach spaces, V ∗ and Y ∗ are the dual spaces of

V and Y , respectively. Let Y ⊂ Y1 ⊂ Y ∗, where Y1 is a separable Hilbert space. Suppose that KV and

KY are closed, convex and nonempty subsets of V and Y , respectively. Let I := [0, T ], where T > 0 is a

constant. In this paper, we are interested in studying a new class of differential quasivariational inequalities

(DQVIs) with the following form: find u : I → KV , ζ : I → KY and w : I → W such that, for all t ∈ I,






ẇ(t) = F (t, w(t), u̇(t)),〈
A(t, u(t)) +

∫ t

0 B(t− s, u(s), ζ(s))ds + C(t, u̇(t)), v − u̇(t)
〉

V ∗×V

+ j(w(t), u̇(t), v) − j(w(t), u̇(t), u̇(t)) ≥ 〈f(t), v − u̇(t)〉V ∗×V , ∀v ∈ KV ,

〈ζ̇(t), η − ζ(t)〉Y1 + a(ζ(t), η − ζ(t)) ≥ 〈φ(t, u(t), ζ(t)), η − ζ(t)〉Y1 , ∀η ∈ KY ,

u(0) = u0, w(0) = w0, ζ(0) = ζ0.

(1.1)

Clearly, if C,w and ζ are omitted, KV = V , A(t, u(t)) = A(u(t)) and j(w(t), u̇(t), v) = j(u(t), v), then
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(1.1) is reduced to the following problem: find u : I → V such that, for all t ∈ I,





〈
A(u(t)) +

∫ t

0 B(t− s, u(s))ds, v − u̇(t)
〉

V ∗×V

+j(u(t), v)− j(u, u̇(t)) ≥ 〈f(t), v − u̇(t)〉V ∗×V , ∀v ∈ V,

u(0) = u0,

which is the time-dependent quasivariational inequality with the history-dependent operator considered by

Kasri and Touzaline [15].

The research on differential variational inequalities (DVIs) has a long history (see, for example, the

excellent survey due to Brogliato and Tanwani [3] and the references therein). It is well known that Pang

and Stewart [28] are the first systematically to consider DVIs in finite-dimensional Euclidean spaces. Since

then, various theoretical results, approximating algorithms and real applications have been investigated

extensively for classical DVIs and DQVIs under different conditions in the literature; for instance we refer

the reader to [8, 12, 18–22,24, 34–39] and the references therein.

It is worth mentioning that contact mechanics has important applications in daily life and industry,

such as coupling devices, bearings, ultrasonic welding and many others. After nearly 40 years of research,

contact mechanics has formed a relatively complete set of mathematical theory. It is well known that the

variational inequalities and quasivariational inequalities as well as hemivariational inequalities are the most

important mathematical tools to obtain the existence and uniqueness of the solutions for various problems

arising in contact mechanics [2,4,9–11,14,16,17,26,31]. In order to describe the long memory property of

materials such as rock and rubber, Sofonea and Matei [30] introduced and studied a new class of history-

dependent quasivariational inequalities. Moreover, by relaxing the contact condition in [30], Sofonea and

Xiao [33] considered a new class of quasivariational inequalities involving two history-dependent operators.

On the other hand, applying Archard’s wear laws and Coulomb’s friction laws, Andrews et al. [1] obtained

the existence and uniqueness of the solution of a dynamic thermoviscoelastic contact problem. Furthermore,

Sofonea et al. [32] proposed a new mathematical model to capture frictional contact problem with wear.

Recently, Chen et al. [6] introduced a hyperbolic quasi-variational inequality to characterize a dynamic

viscoelastic contact problem with friction and wear. Very recently, in order to model an elastic frictional

contact problem with long memory, damage and wear, Chen et al. [5] considered a new class of differential

nonlinear system driven by a differential equation, a history-dependent hemivariational inequality and a

parabolic variational inequality in Banach spaces. Nevertheless, in the study of quasistatic viscoelastic

frictional contact problems, it is necessary to consider the properties of viscoelastic materials with long

memory, damage and wear (see Section 4 for more details). To the best of authors’ knowledge, there are

few works considering quasistatic frictional contact problems for viscoelastic materials with long memory,

damage and wear. Thus, it would be important and interesting to investigate DQVIs (1.1) which can be

used to model quasistatic frictional contact problems for viscoelastic materials with long memory, damage

and wear.

The overarching goal of this paper is to introduce and investigate a new nonlinear system driven by a

nonlinear differential equation, a history-dependent quasivariational inequality, and a parabolic variational

inequality in Banach spaces, which can be used to describe the quasistatic frictional contact problems

for viscoelastic materials with long memory, damage and wear. The main contributions of this paper are

twofold. One is to deliver some sufficient conditions for ensuring the existence and uniqueness of solution to

DQVIs (1.1). The other is to show the unique solvability result for a new quasistatic viscoelastic frictional

contact problem with long memory, damage and wear by applying the obtained results for DQVIs (1.1).

The rest of the paper is structured as follows. The next section recalls some known definitions and
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lemmas. After that in Section 3, we show the existence and uniqueness of solution for DQVIs (1.1)

under some mild conditions by employing the Banach fixed point theorem. In Section 4, we provide a

novel application of our abstract results to a quasistatic viscoelastic frictional contact problem with long

memory, damage and wear.

2 Preliminaries

Let (X, ‖ · ‖X) be a real Banach space with its dual X∗ and 〈·, ·〉X∗×X denote the duality pairing between

X∗ and X . In this section, we recall some known definitions and lemmas which will be used to obtain our

main results (see [25, 27] for more details).

A functional j(u) : X → R is called lower semicontinuous if and only if for any convergence sequence

{un}∞n=1 ⊂ X satisfying un → u ∈ X , one has lim infn→∞ j(un) ≥ j(u). Let j : X → R∪{+∞} be a lower

semicontinuous convex functional with domain D(j) = {u ∈ X | j(u) < +∞} and u ∈ D(j). Then there

exists u∗ ∈ X∗ such that j(v)− j(u) ≥ 〈u∗, v− u〉X∗×X holds for all v ∈ X . The set of all such u∗ ∈ X∗ is

called the convex subdifferential of j at u and we denote it by ∂j(u).

For a set-valued operator A : X → 2X
∗

, the graph of A is denoted by G(A), i.e.,

G(A) := {(u, u∗) ∈ X ×X∗ | u∗ ∈ A(u)}.

A set-valued operator A : X → 2X
∗

is called monotone if

〈u∗ − v∗, u− v〉X∗×X ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(A).

Moreover, a monotone operator A is called maximal monotone if for any (u, u∗) ∈ X ×X∗ satisfying

〈u∗ − v∗, u− v〉X∗×X ≥ 0, ∀(v, v∗) ∈ G(A),

one has (u, u∗) ∈ G(A).

A functional j : X → R ∪ {∞} is called proper if j(v) > −∞ for all v ∈ X and there exists a point

u ∈ X such that j(u) < +∞. For a proper, convex and lower semicontinuous functional j : X → R∪ {∞},
it is well known that ∂j : X → 2X

∗

is maximal monotone.

At the end of this section, we recall two known results which will be used to obtain our main results.

Lemma 2.1. [31, Proposition 3.1] Let Λ : C([0, T ];X) → C([0, T ];X) be an operator satisfying the

following property: there exists a constant h > 0 such that

‖Λu1(t)− Λu2(t)‖X ≤ h
∫ t

0
‖u1(s)− u2(s)‖X ds, ∀u1, u2 ∈ C([0, T ];X), t ∈ [0, T ].

Then there exists a unique element u∗ ∈ C([0, T ];X) such that Λu∗ = u∗.

Lemma 2.2. [23, Lemma 3.3] Let V be a reflexive Banach space and K be a closed convex nonempty

subset of V . Suppose that A : K → V ∗ and ϕ : K ×K → R satisfy the following hypotheses:

H(A): A : K → V ∗ is strongly monotone Lipschitz continuous, i.e.,

(a) 〈Au1 −Au2, u1 − u2〉V ∗×V ≥ m‖u1 − u2‖2V for all u1, u2 ∈ K with m > 0;

(b) ‖Au1 −Au2‖V ∗ ≤ L‖u1 − u2‖V for all u1, u2 ∈ K with L > 0.
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H(ϕ): ϕ : K ×K → R is such that

(a) for any u ∈ K,ϕ(u, ·) is convex and lower semicontinuous on K;

(b) for any u1, u2, v1, v2 ∈ K, there exists β > 0 such that

ϕ(u1, v2)− ϕ(u1, v1) + ϕ(u2, v1)− ϕ(u2, v2) ≤ β‖u1 − u2‖V ‖v1 − v2‖V .

If m > β, then for each f ∈ V ∗, there exists a unique element u ∈ K such that

〈Au, v − u〉V ∗×V + ϕ(u, v)− ϕ(u, u) ≥ 〈f, v − u〉V ∗×V , ∀v ∈ K.

3 Unique solvability for DQVIs (1.1)

In this section, we provide some sufficient conditions for ensuring the existence and uniqueness of solution

for DQVIs (1.1). To this end, we consider the Gelfand triplet of Banach spaces (V,H, V ∗) which have

compact and dense embeddings. We also need the following assumptions.

H(A): The operator A : I × V → V ∗ satisfies

(a) A(·, v) is continuous on I for any given v ∈ V .

(b) A(t, ·) is Lipschitz continuous with LA > 0 on V for any given t ∈ I, i.e.,

‖A(t, u1)−A(t, u2)‖V ∗ ≤ LA ‖u1 − u2‖V , ∀(t, u1, u2) ∈ I × V × V.

H(B): The operator B : I × V × Y → V ∗ satisfies

(a) B(·, v, ζ) is continuous on I for any given v ∈ V and ζ ∈ Y .

(b) B(t, ·, ·) is Lipschitz continuous with LB > 0 on V × Y for any given t ∈ I, i.e.,

‖B(t, u1, ζ1)−B(t, u2, ζ2)‖V ∗ ≤ LB(‖u1−u2‖V +‖ζ1−ζ2‖Y ), ∀t ∈ I, ∀u1, u2 ∈ V, ∀ζ1, ζ2 ∈ Y.

(c) There exists ρ ∈ L2(I;R+) such that

‖B(t, u, ζ)‖V ∗ ≤ ρ(t)(‖ζ‖Y + ‖u‖V ), ∀(t, u, ζ) ∈ I × V × Y.

H(C): The operator C : I × V → V ∗ satisfies

(a) C(t, ·) is Lipschitz continuous with LC1 > 0 on V for any given t ∈ I, i.e.,

‖C(t, u1)− C(t, u2)‖V ∗ ≤ LC1 ‖u1 − u2‖V , ∀(t, u1, u2) ∈ I × V × V.

(b) C(·, u) is Lipschitz continuous with LC2 > 0 on I for any given u ∈ V , i.e.,

‖C(t1, u)− C(t2, u)‖V ∗ ≤ LC2 ‖t1 − t2‖V , ∀(t1, t2, u) ∈ I × I × V.

(c) C(t, ·) is strong monotone with LC > 0 on V for any given t ∈ I, i.e.,

〈C(t, u1)− C(t, u2), u1 − u2〉V ∗×V ≥ mC‖u1 − u2‖2V , ∀(t, u1, u2) ∈ I × V × V.

H(j): The functional j : W × V × V → R satisfies
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(a) j(w, u, ·) is convex proper and lower semicontinuous on V for any given (w, u) ∈ W × V .

(b) There exist α0 > 0 and α1 > 0 such that

j (w1, u1, v2)− j (w1, u1, v1) + j (w2, u2, v1)− j (w2, u2, v2)

≤ α0 ‖w1 − w2‖W ‖v1 − v2‖V + α1 ‖u1 − u2‖V ‖v1 − v2‖V , ∀w1, w2 ∈ W, ∀u1, u2, v1, v2 ∈ V.

H(F): The operator F : I ×W × V → W satisfies

(a) F (·, w, v) is continuous on I for any given (w, v) ∈ W × V .

(b) F (t, ·, ·) is Lipschitz continuous with LF > 0 on V × Y for any given t ∈ I, i.e.,

‖F (t, w1, u1)− F (t, w2, u2)‖W ≤ LF (‖u1−u2‖V +‖w1−w2‖W ), ∀t ∈ I, ∀w1, w2 ∈ W, ∀u1, u2 ∈ V.

H(φ): The operator φ : I × V × Y → Y1 satisfies

(a) φ(t, ·, ·) is Lipschitz continuous with Lφ > 0 on V × Y for any given t ∈ I, i.e.,

‖φ(t, u, ζ) − φ(t, v, η)‖Y1
≤ Lφ(‖u− v‖V + ‖ζ − η‖Y1), ∀t ∈ I, ∀u, v ∈ V, ∀ζ, η ∈ Y.

(b) φ(·, 0V , 0Y ) ∈ L2(I;Y1).

H(a): The functional a : Y × Y → R satisfies

(a) a(·, ·) is a continuous bilinear symmetric coercive functional and there exist a1 ∈ R and a2 > 0

such that

a(η, η) + a1‖η‖2Y1
≥ a2‖η‖2Y , ∀η ∈ Y.

The main result of this section can be stated as follows.

Theorem 3.1. Suppose that assumptions H(A), H(B), H(C), H(j), H(F), H(φ), H(a) hold and mC > α1.

Then DQVIs (1.1) has a unique solution (ζ, u, w) ∈ (H1(I;Y1) ∩ L2(I;Y ))× C1(I;KV )× C1(I;W ).

We divide the proof of Theorem 3.1 into a series of lemmas. To this end, we first consider the following

auxiliary problem.

Problem 3.1. For any given w ∈ C(I;W ), find u̇w : I → KV such that, for all t ∈ I and

〈C(t, u̇w(t)), v − u̇w(t)〉V ∗×V + j(w(t), u̇w(t), v)− j(w(t), u̇w(t), u̇w(t))

≥ 〈f(t), v − u̇w(t)〉V ∗×V , ∀v ∈ KV . (3.1)

Lemma 3.1. Assume that H(C) and H(j) hold and mC > α1. Then for any given w ∈ C(I;W ) and

f ∈ C(I;V ∗), Problem 3.1 has a unique solution u̇w ∈ C(I,KV ).

Proof. For any fixed t, define an operator A : V → V ∗ and a function ϕ : V × V → R by setting

Au = C(t, u̇(t)), ϕ(u, v) = j(w(t), u̇(t), v), ∀u, v ∈ K, t ∈ I.

Clearly, A and ϕ satisfy all the assumptions of Lemma 2.2. Thus, it follows from Lemma 2.2 that Problem

3.1 has a unique solution u̇w(t) ∈ KV . Next we prove that u̇w ∈ C(I,KV ). For t1, t2 ∈ I, denote

u̇w(ti) = u̇i, f(ti) = fi, w(ti) = wi with i = 1, 2. Thus, inequality (3.1) yields

〈C(t1, u̇1), u̇2 − u̇1〉V ∗×V + j(w1, u̇1(t), u̇2)− j(w1, u̇1, u̇1) ≥ 〈f1, u̇2 − u̇1〉 (3.2)
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and

〈C(t2, u̇2), u̇1 − u̇2〉V ∗×V + j(w2, u̇2(t), u̇1)− j(w2, u̇2, u̇2) ≥ 〈f2, u̇1 − u̇2〉. (3.3)

Adding (3.2) to (3.2), one has

〈C(t1, u̇1)− C(t2, u̇2), u̇1 − u̇2〉V ∗×V

≤ j(w1, u̇1(t), u̇2)− j(w1, u̇1, u̇1) + j(w2, u̇2(t), u̇1)

− j(w2, u̇2, u̇2) + 〈f1 − f2, u1 − u2〉

and so

〈C(t1, u̇1)− C(t1, u̇2), u̇1 − u̇2〉V ∗×V

≤ j(w1, u̇1(t), u̇2)− j(w1, u̇1, u̇1) + j(w2, u̇2(t), u̇1)

− j(w2, u̇2, u̇2) + 〈f1 − f2, u̇1 − u̇2〉+ 〈C(t2, u̇2)− C(t1, u̇2), u̇1 − u̇2〉V ∗×V . (3.4)

By conditions H(j)(b) and H(C)(b)(c), inequality (3.4) becomes

(mC − α1)‖u̇1 − u̇2‖ ≤ α0‖w1 − w2‖W + ‖f1 − f2‖V ∗ + LC2|t1 − t2|. (3.5)

Since w ∈ C(I;W ) and f ∈ C(I;V ∗), it follows from (3.5) that

lim
t1→t2

‖u̇w(t1)− u̇w(t2)‖V = 0,

i.e., u̇w ∈ C(I,KV ). This finishes the proof.

Lemma 3.2. Suppose that H(A), H(B), H(C), H(j) hold and mC > α1. Then for any given ζ ∈ H1(I;Y1)∩
L2(I;Y ), w ∈ C(I;W ), and f ∈ C(I;V ∗), the following problem






find uwζ : (0, T ) → KV such that〈
A(t, uwζ(t)) +

∫ t

0 B(t− s, uwζ(s), ζ(s))ds + C(t, u̇wζ(t)), v − u̇wζ(t)
〉

V ∗×V

+ j(w, u̇wζ(t), v)− j(w, u̇wζ(t), u̇wζ(t)) ≥ 〈f(t), v − u̇wζ(t)〉V ∗×V , ∀t ∈ I, ∀v ∈ KV ,

where uwζ(0) = u0

(3.6)

has a unique solution uwζ ∈ C1(I;KV ).

Proof. Let us fix η ∈ C(I;KV ). We consider the following auxiliary for (3.6).





find uwζη : (0, T ) → KV such that

〈C(t, u̇wζη(t)), v − u̇wζη(t)〉V ∗×V + j(w(t), u̇wζη(t), v) − j(w(t), u̇wζη(t), u̇wζη(t))

≥ 〈fη(t), v − u̇wζη(t)〉V ∗×V , ∀t ∈ I, ∀v ∈ KV ,

where uwζη(0) = u0,

(3.7)

where fη is defined by

fη(t) := f(t)−
∫ t

0

B

(
t− s,

∫ s

0

η(s)ds, ζ(s)

)
−A

(
t,

∫ t

0

η(s)ds

)
.
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We first claim that fη ∈ C(I;V ∗). For any given t1, t2 ∈ I with t1 < t2, it follows from the definition

of fη that

‖fη(t2)− fη(t1)‖∗V

≤ ‖f(t1)− f(t2)‖+
∥∥∥∥
∫ t2

0

B

(
t2 − s,

∫ s

0

η(s)ds, ζ(s)

)
ds−

∫ t1

0

B

(
t1 − s,

∫ s

0

η(s)ds, ζ(s)

)
ds

∥∥∥∥

+

∥∥∥∥A
(
t2,

∫ t2

0

η(s)ds

)
−A

(
t2,

∫ t1

0

η(s)ds

)
+A

(
t2,

∫ t1

0

η(s)ds

)
−A

(
t1,

∫ t1

0

η(s)ds

)∥∥∥∥

≤ ‖f(t1)− f(t2)‖+
∫ t2

t1

∥∥∥∥B
(
t2 − s,

∫ s

0

η(s)ds, ζ(s)

)∥∥∥∥ ds

+

∫ t1

0

∥∥∥∥B
(
t2 − s,

∫ s

0

η(s)ds, ζ(s)

)
ds−B

(
t1 − s,

∫ s

0

η(s)ds, ζ(s)

)∥∥∥∥ds

+

∥∥∥∥A
(
t2,

∫ t1

0

η(s)ds

)
−A

(
t1,

∫ t1

0

η(s)ds

)∥∥∥∥+ LA

∥∥∥∥
∫ t2

t1

η(s)ds

∥∥∥∥ . (3.8)

By condition H(B)(c) and Hölder’s inequality, we have

∫ t2

t1

∥∥∥∥B
(
t2 − s,

∫ s

0

η(s)ds, ζ(s)

)∥∥∥∥ ds

≤
∫ t2

t1

|ρ(t2 − s)|
∥∥∥∥
∫ s

0

η(s)ds

∥∥∥∥ ds+
∫ t2

t1

|ρ(t2 − s)| ‖ζ(s)‖ ds

≤ T ‖η‖C(I;V )

(√
t2 − t1

)(∫ t2

t1

|ρ(t2 − s)|2ds
) 1

2

+

(∫ t2

t1

|ρ(t2 − s)|2ds
) 1

2
(∫ t2

t1

‖ζ(s)‖2ds
) 1

2

≤ T
3
2 ‖η‖C(I;V )‖ρ‖L2(t1,t2;R+) + ‖ρ‖L2(t1,t2;R+)‖ζ(s)‖L2(t1,t2;Y )

→ 0 as |t1 − t2| → 0. (3.9)

According to condition H(B)(a), one has

∫ t1

0

∥∥∥∥B
(
t2 − s,

∫ s

0

η(s)ds, ζ(s)

)
ds−B

(
t1 − s,

∫ s

0

η(s)ds, ζ(s)

)∥∥∥∥ ds → 0 as |t1 − t2| → 0. (3.10)

By the continuity of f and A(t, ·), we know that lim|t1−t2|→0 ‖fη(t2)− fη(t1)‖∗V = 0 and so fη ∈ C(I;V ∗).

Now it follows from Lemma 3.1 that problem (3.7) has a unique solution u̇wζη ∈ C(I;KV ). Thus, we

can define an operator Λ : η 7→ u̇wζη, where η ∈ C(I;V ) and u̇wζη(t) is the unique solution of problem

(3.7). Next we show that Λ has a unique fixed point in C(I;V ). In fact, let u̇0(t) and u̇1(t) be two solutions

of (3.7). Then

〈C(t, u̇i(t)), v − u̇i(t)〉V ∗×V + j(w, u̇i(t), v)− j(w, u̇i(t), u̇i(t)) ≥ 〈fηi
(t), v − u̇i(t)〉V ∗×V , i = 0, 1 (3.11)

for all v ∈ KV and all t ∈ I. Testing (3.11) with u̇1−i(t), we obtain

〈C(t, u̇0(t)) − C(t, u̇1(t)), u̇0 − u̇1(t)〉V ∗×V

≤ j(w, u̇0(t), u̇1(t)) + j(w, u̇1(t), u̇0(t))− j(w, u̇1(t), u̇1(t))

− j(w, u̇0(t), u̇0(t)) + 〈fη1 − fη0 , u̇0(t)− u̇1(t)〉V ∗×V (3.12)
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for all t ∈ I. According to conditions H(A)(b), H(B)(b) and H(j)(b), inequality (3.12) yields

mC‖u̇0(t)− u̇1(t)‖2V
≤ α1‖u̇0(t)− u̇1(t)‖2V + ‖fη1(t)− fη0(t)‖V ∗‖u̇0(t)− u̇1(t)‖V

≤ α1‖u̇0(t)− u̇1(t)‖2V ++

∥∥∥∥A
(
t,

∫ t

0

η0(s)ds

)
−A

(
t,

∫ t

0

η1(s)ds

)∥∥∥∥
V

‖u̇0(t)− u̇1(t)‖V

+

∥∥∥∥
∫ t2

0

B

(
t− s,

∫ s

0

η0(s)ds, ζ(s)

)
ds−

∫ t1

0

B

(
t− s,

∫ s

0

η1(s)ds, ζ(s)

)
ds

∥∥∥∥
V

‖u̇0(t)− u̇1(t)‖V

≤ α1‖u̇0(t)− u̇1(t)‖2V + LA

∫ t

0

‖η0(s)− η1(s)‖V ds‖u̇0(t)− u̇1(t)‖V

+ LB

∫ t

0

∫ t

0

‖η0(s)− η1(s)‖V dlds‖u̇0(t)− u̇1(t)‖V

≤ α1‖u̇0(t)− u̇1(t)‖2V + (LA + TLB)

∫ t

0

‖η0(s)− η1(s)‖V ds‖u̇0(t)− u̇1(t)‖V (3.13)

for all t ∈ I. Hence

‖u̇0(t)− u̇1(t)‖V ≤ LA + TLB

(mC − α1)

∫ t

0

‖η1(s)− η2(s)‖V ds.

From Lemma 2.1 we can see that Λ has a unique fixed point u̇wζ ∈ C(I;KV ). Since uwζ(0) = u0, we know

that (3.6) has a unique solution uwζ ∈ C1(I;KV ). This completes the proof.

Remark 3.1. We need some useful inequalities for the solution uwζ of problem (3.6). Let w1, w2 ∈ C(I;W )

and ζ1, ζ2 ∈ H1(I;Y1)∩L2(I;Y ). Replacing w = wi and ζ = ζi with i = 1, 2 in problem (3.6) and applying

Hölder’s inequality, we have

(mC − α1)‖u̇w1ζ1(t)− u̇w2ζ2(t)‖ ≤ LB

∫ t

0

∫ t

0

‖u̇w1ζ1(s)− u̇w2ζ2(s)‖ds+ LB

∫ t

0

‖ζ1(s)− ζ2(s)‖ds

+ α0‖w1(t)− w2(t)‖+ LA

∫ t

0

‖u̇w1ζ1(s)− u̇w2ζ2(s)‖ds

≤ (LA + LBt)

∫ t

0

‖u̇w1ζ1(s)− u̇w2ζ2(s)‖ds+ + α0‖w1(t)− w2(t)‖

+ LB

√
t

(∫ t

0

‖ζ1(s)− ζ2(s)‖2ds
) 1

2

ds (3.14)

and so

‖u̇w1ζ1(t)− u̇w2ζ2(t)‖ ≤ LA + LBt

mC − α1

∫ t

0

‖u̇w1ζ1(s)− u̇w2ζ2(s)‖ds+
LB

√
t

mC − α1
‖ζ1 − ζ2‖L2(I;Y1)

+
α0

mC − α1
‖w1(t)− w2(t)‖. (3.15)

Applying Gronwall’s inequality yields

‖u̇w1ζ1(t)− u̇w2ζ2(t)‖

≤ (LA + LBt)α0

(mC − α1)2
e

2LAt+LBt2

2(mC−α1)

∫ t

0

‖w1(s)− w2(s)‖ds+
α0

mC − α1
‖w1(t)− w2(t)‖

+

(
LB

√
t

mC − α1
+

2LBt
3
2 (LA + LBt)

3(mC − α1)2
e

2LAt+LBt2

2(mC−α1)

)
‖ζ1 − ζ2‖L2(I;Y1). (3.16)

In order to prove Theorem 3.1, we also need to introduce the following auxiliary problem.
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Problem 3.2. Find uζ : I → KV and wζ : I → W such that, for all t ∈ I,

ẇζ(t) = F (t, wζ(t), u̇ζ(t)),
〈
A(t, uζ(t)) +

∫ t

0

B(t− s, uζ(s)), ζ(s))ds + C(t, u̇ζ(t)), v − u̇ζ(t)

〉

V ∗×V

+ j(wζ(t), u̇ζ(t), v) − j(wζ(t), u̇ζ(t), u̇ζ(t)) ≥ 〈f(t), v − u̇ζ(t)〉V ∗×V , ∀v ∈ KV ,

where uζ(0) = u0, wζ(0) = w0 and ζ ∈ C(I;KY ).

Lemma 3.3. Suppose that H(A), H(B), H(C), H(j) and H(F) hold and mC > α1. Then for any given ζ ∈
H1(I;Y1)∩L2(I;Y ) and f ∈ C(I;V ∗), Problem 3.2 has a unique solution (uζ , wζ) ∈ C1(I;KV )×C1(I;W ).

Proof. Define an operator G : C1(I;W ) → C(I;KV ) by G(w)(t) = u̇wζ(t), where uwζ is the solution of

problem (3.6). By the proof of Lemma 3.2, we know that G is well-defined. Then we need to illustrate

that there exists a unique wζ ∈ C1(I;W ) such that

ẇζ(t) = F (t, wζ(t), G(wζ )(t)). (3.17)

Moreover, (G(wζ ), wζ) ∈ C(I;KV )× C1(I;W ) is the unique solution of Problem 3.2.

For this purpose, we consider an operator Λ : C(I;W ) → C1(I;KV ) defined as follows:

Λwζ(t) =

∫ t

0

F (s, wζ(s), G(wζ)(s))ds + w0, ∀t ∈ [0, T ].

According to the definition of operator G and conditions H(F)(a)(b) that Λwζ ∈ C1(I;W ) when wζ ∈
C(I;W ). Because the fixed point of Λ is the solution of (3.17), we only need to prove that Λ has a unique

fixed point in C(I;W ).

Let wζ1, wζ2 ∈ C(I;W ). We can draw a conclusion from G, Λ and condition H(F)(b) that

‖Λwζ1(t)− Λwζ2(t)‖

=

∥∥∥∥
∫ t

0

F (s, wζ1(s), G(wζ1)(s))ds −
∫ t

0

F (s, wζ2(s), G(wζ2)(s))ds

∥∥∥∥

≤
∫ t

0

‖F (s, wζ1(s), G(wζ1)(s))ds − F (s, wζ2(s), G(wζ2)(s))‖ ds.

≤
∫ t

0

LF (‖wζ1(s)− wζ2(s)‖ + ‖G(wζ1)(s) −G(wζ2)(s)‖) ds. (3.18)

Denote

cq =
(LA + LBT )α0

(mC − α1)2
e

2LAT+LBT2

2(mC−α1) , cp =
α0

mA − α1
.

Then it follows from Remark 3.1 that

‖G(wζ1)(s)−G(wζ2)(s)‖ ≤ cq

∫ s

0

‖wζ1(l)− wζ2(l)‖dl + cp‖wζ1(s)− wζ2(s)‖.

These inequalities give

‖Λwζ1(t)− Λwζ2(t)‖

≤ (LF + LF cp)

∫ t

0

‖wζ1(s)− wζ2(s)‖ds+ LF cq

∫ t

0

∫ s

0

‖wζ1(l)− wζ2(l)‖dlds (3.19)

and so

‖Λwζ1(t)− Λwζ2(t)‖β ≤
(
LF + LF cp

β

)
‖wζ1 − wζ2‖β +

LF cq
β2

‖wζ1 − wζ2‖β (3.20)
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with β > 0 and ‖w‖β = maxt∈I e
−βt‖w(t)‖W for all w ∈ C(I;W ). Thus, ‖ · ‖β is an equivalent norm

in C(I;W ). From inequality (3.20), we know that Λ is a contraction operator on C(I;W ) and C(I;W )

endowed with the norm ‖ · ‖β. Thus, Λ has a unique fixed point wζ ∈ C(I;W ) and so (wζ , G(wζ)) solves

the Problem 3.2, which concludes the proof.

Remark 3.2. We need some useful inequalities for the solution uζ of Problem 3.2. For any given ζ1, ζ2 ∈
H1(I;Y1)∩L2(I;Y ), let (u̇ζi , wζi) ∈ C(I;V )×C1(I;W ) be the unique solution of Problem 3.2 with ζ = ζi

for i = 1, 2. From the proof of Lemma 3.3, we have

‖wζ1(t)− wζ2(t)‖

≤ (LF + LF cp)

∫ t

0

‖wζ1(s)− wζ2(s)‖ds+ LF cq

∫ t

0

∫ s

0

‖wζ1(l)− wζ2(l)‖dlds+ LF crT ‖ζ1 − ζ2‖L2(I,Y1)

≤ (LF + LF cp + LF cqT )

∫ t

0

‖wζ1(s)− wζ2(s)‖ds+ LF crT ‖ζ1 − ζ2‖L2(I,Y1) (3.21)

and

‖u̇ζ1(t)− u̇ζ2(t)‖ ≤ cq

∫ t

0

‖wζ1(s)− wζ2(s)‖ds+ cp‖wζ1(t)− wζ2(t)‖ + cr‖ζ1 − ζ2‖L2(I,Y1).

≤ (cqT + cp)‖wζ1(s)− wζ2(s)‖+ cr‖ζ1 − ζ2‖L2(I,Y1), (3.22)

where

cr =
LB

√
t

mC − α1
+

2LBt
3
2 (LA + LBt)

3(mC − α1)2
e

2LAt+LBt2

2(mC−α1) .

By Gronwall’s inequality, it follows from (3.21) that

‖wζ1(t)− wζ2 (t)‖ ≤
(
LF crT ‖ζ1 − ζ2‖L2(I,Y1)

)
e(LF+LF cp+LF cqT )T . (3.23)

Combining (3.22) and (3.23) yields

‖u̇ζ1(t)− u̇ζ2(t)‖V ≤
(
(LF cqcrT

2 + LF cpcrT )e
(LF+LF cp+LF cqT )T + cr

)
‖ζ1 − ζ2‖L2(I,Y1).

Moreover, for the unique solution (uζ , wζ) ∈ C1(I;KV )×C1(I;W ) of Problem 3.2, we need to consider

the following auxiliary problem.

Problem 3.3. Find ζ : I → KY such that

〈ζ̇(t), η − ζ(t)〉Y1 + a(ζ(t), η − ζ(t)) ≥ 〈φ(t, uζ(t), ζ(t)), η − ζ(t)〉Y1 , ∀η ∈ KY , (3.24)

with ζ(0) = ζ0 ∈ KY .

Remark 3.3. We observe that if ζ ∈ H1(I;Y1) ∩ L2(I;Y ) is a unique solution of Problem 3.3, then

(ζ, uζ , wζ) ∈ H1(I;Y1) ∩ L2(I;Y )× C1(I;KY )× C1(I;W ) is a unique solution of DQVIs (1.1).

In order to prove Lemma 3.5, we need the following Lemma given in [13].

Lemma 3.4. [13] Suppose that condition H(a) holds. Then for any given λ ∈ L2(I;Y1), there exists a

unique ζ ∈ H1(I;Y1) ∩ L2(I;Y ) such that

〈ζ̇(t), η − ζ(t)〉Y1 + a(ζ(t), η − ζ(t)) ≥ 〈λ(t), η − ζ(t)〉Y1 , ∀η ∈ KY , (3.25)

with ζ(0) = ζ0 ∈ KY . Moreover, if ζi is the unique solution to problem (3.25) for λi ∈ L2(I;Y1) with

i = 1, 2, then

‖ζ1(t)− ζ2(t)‖2Y1
≤ d1

∫ t

0

‖λ1(s)− λ2(s)‖2Y1
ds for a.e. t ∈ (0, T ) (3.26)

with d1 > 0.
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Lemma 3.5. Suppose that conditions H(A), H(B), H(C), H(j), H(F), H(φ), H(a) hold and mC > α1.

Then Problem 3.3 has a unique solution ζ ∈ H1(I;Y1) ∩ L2(I;Y ).

Proof. For any given θ ∈ L2(I;Y1), it follows from Lemma 3.3 that Problem 3.2 has a unique solution

(uθ, wθ) ∈ C(I;KV ) × C1(I;W ). Let φθ(t) := φ(t, uθ(t), θ(t)). We claim that φθ ∈ L2(I;Y1). Indeed, the

condition H(φ)(a) derives the following inequality

‖φθ(t)‖2Y1
≤ 2‖φ(t, uθ(t), θ(t)) − φ(t, 0V , 0Y1)‖2Y1

+ 2‖φ(t, 0V , 0Y1)‖2Y1

≤ 2(Lφ(‖uθ(t)‖V + ‖θ‖Y1))
2 + 2‖φ(t, 0V , 0Y1)‖2Y1

≤ 4L2
φ(‖uθ(t)‖2V + ‖θ‖2Y1

) + 2‖φ(t, 0V , 0Y1)‖2Y1
. (3.27)

Thus inequality (3.27) and condition H(φ)(b) show that

‖φθ(t)‖2L2(I;Y1)
≤ 4L2

φT ‖uθ(t)‖2C(I:V ) + 4L2
φ‖θ‖2L2(I;Y1)

+ 2‖φ(t, 0V , 0Y1)‖2L2(I;Y1)
(3.28)

and so φθ(t) ∈ L2(I;Y1). Taking λ = φθ in Lemma 3.4, we know that there exists a unique ζθ ∈ H1(I;Y1)∩
L2(I;Y ) such that inequality (3.25) holds.

Next we define an operator Λ : L2(I;Y1) → H1(I;Y1)∩L2(I;Y ) by Λ(θ)(t) = ζθ(t). Because (Y, Y1, Y
∗)

is a Gelfand triplet with dense and compact embeddings, one has H1(I;Y1) ∩ L2(I;Y ) ⊂ L2(I;Y1). The

rest is to show that Λ has a unique fixed point in L2(I;Y1). To this end, let θi ∈ L2(I;Y1) with i = 1, 2.

Then Lemma 3.4 yields

‖Λ(θ1)(t)− Λ(θ2)(t)‖2Y1
= ‖ζθ1(t1)− ζθ2(t2)‖2Y1

≤ d1

∫ t

0

‖φ(s, uθ1(s), θ1(s)) − φ(s, uθ2(s), θ2(s))‖2Y1
ds.

Using condition H(φ)(a) to the above inequality obtains

‖Λ(θ1)(t) − Λ(θ2)(t)‖2Y1
≤ d1

∫ t

0

‖φ(s, uθ1(s), θ1(s))− φ(s, uθ2(s), θ2(s))‖2Y1
ds

≤ 2d1Lφ

∫ t

0

(
‖uθ1(s)− uθ2(s)‖2V + ‖θ1(s)− θ2(s)‖2Y1

)
ds. (3.29)

By Remark 3.2, we can adapt the inequality (3.29) as

‖Λ(θ1)(t)− Λ(θ2)(t)‖2Y1
≤ 2d1Lφ

∫ t

0

(∫ t

0

‖u̇θ1(s)− u̇θ2(s)‖2V ds+ ‖θ1(s)− θ2(s)‖2Y1

)
ds

≤ c‖θ1 − θ2‖2L2(I;Y1)
, (3.30)

where

c = 2d1Lφ

((
(LF cqcrT

2 + LF cpcrT )e
(LF+LF cp+LF cqT )T + cr

)2
T 2 + 1

)
.

Thus inequality (3.30) shows that

‖Λ(θ1)(t)− Λ(θ2)(t)‖L(I;Y1) ≤
√
c

∫ t

0

‖θ1 − θ2‖L2(I;Y1). (3.31)

Now it follows from Lemma 2.1 that there exists a unique element θ∗ in L2(I;Y1) such that θ∗ is the unique

fixed point of Λ, i.e., θ∗ = Λ(θ∗) = ζθ∗ ∈ H1(I;Y1) ∩ L2(I;Y ). Thus, θ∗ is a unique solution of Problem

3.3. This completes the proof.

Finally, we can give the proof of Theorem 3.1 as follows.

Proof. By Remark 3.3 and Lemma 3.5, it is easy to see that (ζ, uζ , wζ) ∈ (H1(I;Y1) ∩ L2(I;Y )) ×
C1(I;KY )× C1(I;W ) is a unique solution of DQVIs (1.1). This completes the proof of Theorem 3.1.

11



4 An application to a contact problem for viscoelastic materials

with long memory, damage and wear

In this section, we will use the results presented in Section 3 to solve a frictional contact problem of

viscoelastic materials with long memory, damage and wear. Assume that Ω is a bounded and open domain

in R
d(d = 2, 3) and its boundary Γ := ∂Ω is Lipschitz continuous. For any x ∈ Ω, we denote it as

x = (x1, x2, · · · , xd). Let ν denote the unit outward normal vector defined a.e. on Γ. The space of second

order symmetric tensors on R
d is denoted by S

d. Moreover, assume that Rd and S
d are equipped with the

following inner products and norms

u · v = uivi, ‖v‖Rd = (v · v)
1
2 , ∀u,v ∈ R

d,

σ · τ = σijτij , ‖τ‖Sd = (τ · τ )
1
2 , ∀σ, τ ∈ S

d,

where repeated indices represent summation convention.

We use notations u = (ui), σ = (σij) and ε(u) = (εij(u)) = (12 (ui,j + uj,i)), i, j = 1, 2, · · · , d to denote

the displacement vector, the stress tensor and the linearized strain tensor, respectively, where ui,j ≡ ∂ui

∂xj
.

Here and below, the spatial derivative is defined in the sense of distribution. The normal and tangential

components of stress field σ on Γ are denoted by σν = (σν)·ν and στ = σν−σνν, respectively. The normal

and tangential components of the displacement field on Γ are denoted by uν = u · ν and uτ = u − uνν,

respectively. We are interested in the evolution of the body on the time interval I := [0, T ], where T > 0

is a constant. The time partial derivative for a function f(x, t) is denoted by ḟ(x, t). For the sake of

simplicity, we usually omit the variable x in functions.

Now we are in the position to describe the physical background of viscoelastic materials’ quasistatic fric-

tional contact problems with damage, wear and long memory. We consider a viscoelastic body which occu-

pies Ω. The boundary ∂Ω is composed of three disjoint measurable parts Γ1, Γ2 and Γ3 with meas(Γ1) > 0.

Volume forces with density f0 act on Ω and surface tractions with density f2 act on Γ2. On Γ1, we suppose

that the body is clamped, i.e., the displacement field disappears there. The contact model is established by

a normal compliance condition on Γ3 with sliding Coulomb’s law of dry friction and wear. The foundation

is made of a perfectly rigid material. The velocity of the foundation is denoted by v∗(t) 6= 0. Let n∗ be

the direction of the foundation’s velocity and α be wear rate which are given respectively by

n∗(t) = −v∗(t)/ ‖v∗(t)‖ , α(t) = k ‖v∗(t)‖ ,

where k stands for the wear coefficient. We use the following abbreviations to simplify the notations

Q = Ω× I, Σ = Γ× I, Σi = Γi × I, i = 1, 2, 3.

Thus, we can present the formulation of the contact problem as follows.

Problem 4.1. Find a displacement field u : Q → R
d, a stress field σ : Q → S

d, a damage field ζ : Σ3 →

12



[0, 1] and a wear function w : Σ3 → R such that

σ(t) = A (t, ε(u(t))) +

∫ t

0

B (t− s, ε(u(s)), ζ(s)) ds+ C(t, ε(u̇(t))) in Q, (4.1)

ζ̇ − κ∆ζ + ∂I[0,1](ζ) ∋ φ(ε(u(t)), ζ) in Q, (4.2)

∂ζ

∂ν
= 0 on Σ, (4.3)

−Divσ(t) = f0(t) in Q, (4.4)

u(t) = 0 on Σ1, (4.5)

σ(t)ν = f2(t) on Σ2, (4.6)

u̇ν(t) ≤ g, σν(t) + p(w(t), u̇ν(t)) ≤ 0 on Σ3, (4.7)

(u̇ν(t)− g)(σν(t) + p(w(t), u̇ν(t))) = 0 on Σ3, (4.8)

−στ (t) = µp(w(t), u̇ν) · n∗(t) on Σ3, (4.9)

ẇ(t) = α(t)p(w(t), u̇ν (t)) on Σ3, (4.10)

u(0) = u0, w(0) = 0, ζ(0) = ζ0 ∈ (0, 1) on Γ3. (4.11)

Remark 4.1. The conditions (4.7) and (4.8) can be rewritten as

−σν(t) ∈ ∂IK(u̇ν) + p(w(t), u̇ν),

where K := {s ∈ R | s ≤ g}, IK is the indication function of K and ∂IK is the convex subdifferential of

IK . From the definition of convex subdifferential, one has

(−σν(t)− p(u̇ν(t)− w(t))) · (s− u̇ν) ≤ IK(s)− IK(u̇ν) = 0, ∀s ∈ K.

Equation (4.1) stands for the viscoelastic constitutive law with damage effect and long memory, where

ζ is the damage function, A, B and C are elasticity, relaxation and viscosity operators, respectively. The

evolution law of damage function can be modeled from a parabolic differential inclusion (4.2), where φ is

the mechanical source of damage which depends on the damage itself and the strain, I[0,1] is the indication

function of the interval [0, 1], ∂I[0,1] is the convex subdifferential of I[0,1] and κ > 0 is a constant mircrocrack

diffusion coefficient. We select the following damage source function

φ(ε(u), ζ) ≡ φFr(‖ε(u)‖, ζ) = λD

(
1− ζ

ζ

)
− 1

2
λE‖ε(u)‖2 + λw,

where λD, λE , and λw are three positive numbers ( [9, 10]). Equation (4.3) represents a homogeneous

Neumann condition of ζ on Σ and equation (4.4) describes the equilibrium equation. Equations (4.5)

and (4.6) denote the clamped boundary condition and the tractive boundary conditions, respectively.

Equations (4.7) and (4.8) are called normal damped condition with unilateral constraint, which have been

studied in [7] without wear. In the previous literature, the normal compliance function p(u̇ν) was used to

model the lubricated contact. In this paper, we assume that the lubrication is incomplete and the normal

compliance depends on wear, i.e., p has the form of p(w, u̇ν) with w being the wear. Equation (4.9) gives

the functional relationship between the wear coefficient k and the friction coefficient which denoted µ. Here

we assume that v∗(t) is much larger than the tangential body velocity u̇τ (t). Equation (4.10) is related to

the development of the wear function which can be obtained from the Archard’s law with α(t) = k‖v∗(t)‖.
For more details concerned with equations (4.7)-(4.10), we can refer to the literature [32]. Finally, equation

(4.11) gives the initial conditions for the displacement field, the wear function and the damage field.
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In order to get the variational formulation of Problem 4.1, we need the following spaces. LetW k,p(Ω;Rd)

denote the Sobolev space of all functions. On Ω, the weak derivatives of functions with order less than or

equal to k are p-integrable. Specially, let H1 := W 1,2(Ω;Rd) and H = L2(Ω;Rd). Let V = {v ∈ H1|v =

0 a.e. on Γ3} endowed with the norm

‖u‖V := ‖u‖H1 = ‖u‖L2(Ω;Rd) + ‖▽u‖L2(Ω;Rd×d),

where ∇u = ( ∂ui

∂xj
) for i, j = 1, · · · , d with u ∈ H1. Let Divσ = (σij,j) = (

∂σij

∂xj
) with σ ∈ W 1,2(Ω; Sd).

Then we have the following Green formula:

(Divσ,v)H + (σ, ε(u))L2(Ω;Sd) =

∫

Γ

σν · vdΓ,

where (σ, ε(u))L2(Ω;Sd) =
∫
Ω
σ · ε(u)dΩ. From the assumption of meas(Γ1) > 0, we know that Korn’s

inequality holds, i.e.,

‖ε(v)‖L2(Ω;Sd) ≥ c‖v‖V , ∀v ∈ V.

Here and then, c represents a positive constant which may change from line to line. We can endow with

inner product on V as

〈u,v〉V = 〈ε(u), ε(v)〉L2(Ω;Sd).

Let Y = H1(Ω;R) and Y1 = L2(Ω;R) endowed with the inner products

(w, z)Y1 =

∫

Ω

wzdΩ, (w, z)Y = (w, z)Y1 +

∫

Ω

∇w · ∇zdΩ.

Denote KV = {v ∈ V | vν ≤ g a.e. on Γ3} and KY = {u ∈ Y | 0 ≤ u ≤ 1 a.e. in Ω}. Then KV and KY are

both convex. Suppose that {u,σ, ζ, w} are sufficiently smooth functions solving (4.1)-(4.11) with t ∈ I.

Then, we can employ the following method to derive the variational formulation of Problem 4.1. Firstly,

we use the Green formula and the equation (4.1) to obtain

〈σ(t), ε(v)− ε(u̇(t))〉L2(Ω;Sd) = 〈f0(t),v − u̇(t)〉L2(Ω;Rd) +

∫

Γ

σ(t)ν · (v − u̇(t))dΓ. (4.12)

Considering the boundary conditions (4.5), (4.6), (4.9) and the formula

σ(t)ν · v = σν(t)vν + στ (t) · vτ ,

the equation (4.12) can be transformed as

〈σ(t), ε(v) − ε(u̇(t))〉L2(Ω;Sd)

= 〈f0(t),v − u̇(t)〉L2(Ω;Rd) +

∫

Γ2

f2(t) · (v − u̇(t))dΓ −
∫

Γ3

µp(w(t), u̇ν(t))n
∗(t) · (vτ − u̇τ (t))dΓ

+

∫

Γ3

σν(t) · (vν − u̇ν(t))dΓ. (4.13)

From Remark 4.1 and v ∈ KV , one has
∫

Γ3

σν(t) · (vν − u̇ν(t))dΓ ≥
∫

Γ3

−p(w(t), u̇ν(t))(vν − u̇ν(t))dΓ.

Now (4.13) becomes

〈σ(t), ε(v) − ε(u̇(t))〉L2(Ω;Sd) +

∫

Γ3

µp(w(t), u̇ν(t))n
∗(t) · (vτ − u̇τ (t))dΓ

+

∫

Γ3

p(w(t), u̇ν(t))(vν − u̇ν(t))dΓ

≥ 〈f0(t),v − u̇(t)〉L2(Ω;Rd) +

∫

Γ2

f2(t) · (v − u̇(t))dΓ. (4.14)
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Let

j(w, γu̇, γv) :=

∫

Γ3

µp(w(t), u̇ν(t))n
∗(t) · vτdΓ +

∫

Γ3

p(w(t), u̇ν(t))vνdΓ.

Then it follows from (4.14) that

〈σ(t), ε(v) − ε(u̇(t))〉L2(Ω;Sd) + j(w, γu̇, γv)− j(w, γu̇, γu̇)

≥ 〈f2(t), γv − γu̇(t)〉L2(Γ3;Rd) + 〈f0(t),v − u̇(t)〉L2(Ω;Rd) , (4.15)

where γ : V → L2(Γ3;R
d) is the trace operator. Applying Korn’s inequality, the Riesz representation

theorem and the trace theorem, we know that there exists f : I → V ∗ such that

〈f(t),v − u̇〉V ∗×V = 〈f2(t), γv − γu̇(t)〉L2(Γ3;Rd) + 〈f0(t),v − u̇(t)〉L2(Ω;Rd) .

Similarly, from the integration by parts and the definition of convex subdifferential of I[0,1], it follows that

〈φ(t, ε(u(t)), ζ(t)) − ζ̇(t), η − ζ(t)〉L2(Ω;R) ≤ a(ζ, η − ζ), (4.16)

where a(ζ, η) = κ
∫
Ω ∇ζ · ∇ηdx for all ζ, η ∈ Y.

Now, by integrating these relations and inequalities, the variational formulation of Problem 4.1 can be

obtained as follows.

Problem 4.2. Find u : I → KV , ζ : I → KY and w : I → L2(Γ3;R) such that, for a.e. t ∈ I,

σ(t) = A(t, ε(u(t))) +

∫ t

0

B(t− s, ε(u(s)), ζ(s))ds + C(t, ε(u̇(t))) in Ω, (4.17)

〈σ(t), ε(v) − ε(u̇(t))〉L2(Ω;Sd) + j(w, γu̇, γv)− j(w, γu̇, γu̇) ≥ 〈f(t),v − u̇(t)〉V ∗×V , ∀v ∈ KV , (4.18)

〈(ζ̇(t), η − ζ(t)〉Y1 + a(ζ, η − ζ) ≥ 〈φ(t, ε(u(t)), ζ(t)), η − ζ(t)〉Y1 , ∀η ∈ KY , (4.19)

ẇ(t) = α(t)p(u̇ν(t)− w(t)) in Γ3, (4.20)

u(0) = u0, w(0) = 0, ζ(0) = ζ0 ∈ (0, 1). (4.21)

To solve Problem 4.2, we need the following assumptions.

H(1) : The elasticity operator A : Ω× I × S
d → S

d satisfies





(a) A(·, t, ε) is measurable on Ω, for all (t, ε) ∈ I × S
d;

(b) A(x, ·, ·) is continuous on I × S
d for a.e. x ∈ Ω;

(c) A(x, t, ·) is Lipschitz continous with mA > 0 for all t ∈ I, i.e.,

‖A (x, t, ε1)−A (x, t, ε2)‖ ≤ LA ‖ε1 − ε2‖ , ∀ε1, ε2 ∈ S
d, a.e. x ∈ Ω;

(4.22)

H(2) : The relaxation operator B : Ω× I × S
d × R → S

d satisfies




(a)B(·, t, ε, ζ) is measurable on Ω, for all ε ∈ S
d, t ∈ I and ζ ∈ R;

(b)B(x, ·, ε, ζ) is continuous on I

for a.e. x ∈ Ω and all (ε, ζ) ∈ S
d × R;

(c)B(x, t, ·, ·) is Lipschitz continuous with LB > 0 for all t ∈ I and a.e. x ∈ Ω, i.e.,

‖B(x, t, ε1, ζ1)− B(x, t, ε2, ζ2)‖ ≤ LB(‖ε1 − ε2‖+ |ζ1 − ζ2|),

∀ε1, ε2 ∈ S
d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω;

(d)For all (t, ε, ζ) ∈ I × S
d × R and a.e. x ∈ Ω, there exixsts a function

ρB ∈ L2(I;R+) such that ‖B(x, t, ε, ζ)‖ ≤ ρB(t)(|ζ| + ‖ε‖).

(4.23)
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H(3) : The viscosity operator C : Ω× I × S
d → S

d satisfies





(a) C(·, t, ε) is measurable on Ω for all (t, ε) ∈ I × S
d;

(b) C(x, ·, ·) is continuous on I × S
d for a.e. x ∈ Ω;

(c) C(x, t, ·) is strongly monotone with mC > 0 for all t ∈ I, i.e.,

(C (x, t, ε1)− C (x, t, ε2)) · (ε1 − ε2) ≥ mC ‖ε1 − ε2‖2 , ∀ε1, ε2 ∈ S
d, a.e. x ∈ Ω;

(d) C(x, t, ·) is Lipschitz continous with LC1 > 0 for all t ∈ I, i.e.,

‖C (x, t, ε1)− C (x, t, ε2)‖ ≤ LC1 ‖ε1 − ε2‖ , ∀ε1, ε2 ∈ S
d, a.e. x ∈ Ω;

(e) C(x, ·, ε) is Lipschitz continous with LC2 > 0 for all ε ∈ S
d, i.e.,

‖C (x, t1, ε)− C (x, t2, ε)‖ ≤ LC2 ‖t1 − t2‖ , ∀t1, t2 ∈ I, a.e. x ∈ Ω;

(4.24)

H(4) : The normal compliance function p : Γ3 × R× R → R
+ satisfies





(a) p(·, w, u) is measurable on Γ3 for all w, u ∈ R;

(b) p(x, ·, ·) is Lipschitz continuous with L̃p > 0, a.e. x ∈ Ω, i.e.,

|p(x, w1, u1)− p(x, w2, u2)| ≤ L̃p(|w1 − w2|+ |u1 − u2|), ∀w1, w2, u1, u2 ∈ R;

(c) p(x, 0, 0) = 0 for a.e. x ∈ Ω and all r ≤ 0.

(4.25)

H(5) : The damage source function φ : Ω× I × S
d × R → R satisfies





(a)φ(·, t, ε, ζ) is measurable on Ω, for all t ∈ I, ε ∈ S
d and ζ ∈ R;

(b)φ(x, t, ·, ·) is Lipschitz continuous with Lφ > 0 for all t ∈ I a.e. x ∈ Ω, i.e.,

‖φ(x, ε1, ζ1)− φ(x, ε2, ζ2)‖ ≤ L̃φ(‖ε1 − ε2‖+ |ζ1 − ζ2|)

∀ε1, ε2 ∈ S
d, ζ1, ζ2 ∈ R, a.e. x ∈ Ω;

(c)φ(x, t,0Sd , 0R) ∈ L2(I;L2(Ω;R)).

(4.26)

Moreover, suppose the volume forces and surface tractions satisfy

f0 ∈ C(I;H), f2 ∈ C
(
I;L2

(
Γ2;R

d
))

. (4.27)

To make the sliding condition (4.9) and wear condition (4.10) reasonable, the coefficient of friction,

wear coefficient and velocity of the foundation are, respectively, assumed to be

µ ∈ L∞(Γ3;R), µ(x) ≥ 0 a.e. x ∈ Γ3, (4.28)

k ∈ L∞(Γ3;R), k(x) ≥ 0 a.e. x ∈ Γ3, (4.29)

and {
v∗ ∈ C

(
I;R3

)
and there exist v1, v2 > 0 such that

v1 ≤ ‖v∗(t)‖ ≤ v2, ∀t ∈ I.
(4.30)

Clearly, the conditions (4.29) and (4.30) suggest that

n∗ ∈ C
(
I;R3

)
, α ∈ C(I;L∞(Γ3;R)). (4.31)

Moreover, g ≥ 0 yields that 0V ∈ KV .
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For Banach spaces V = {u ∈ H1(Ω;Rd) | u = 0 on Γ3} and Y = H1(Ω;R), Hilbert spaces H =

L2(Ω;Rd) and Y1 = L2(Ω;R), by the basic theory of Sobolev spaces, we know that (V,H, V ∗) and (Y, Y1, Y
∗)

form two Gelfond triplets. Let X = L2(Γ3;R
d) and W = L2(Γ3;R).

Now we give a unique solvability result for Problem 4.2 as follows.

Theorem 4.1. Let assumptions (4.22)-(4.31) hold. If

mC > ‖µ‖L∞(Γ3;R)L̃(p) + L̃(p),

then Problem 4.2 has a unique solution (ζ,uζ , wζ) ∈ (H1(I;Y1) ∩ L2(I;Y ))× C(I;KV )× C1(I;W ).

Proof. For any t ∈ I, define operators A(t, ·) : V → V ∗, B(t, ·, ·) : V × Y → V ∗, C(t, ·) : V → V ∗,

F (t, ·, ·) : W × V → W , φ(t, ·, ·) : V × Y → Y ∗, a functional j(·, ·, ·) : W ×X ×X → R and a symmetric

bilinear form a(·, ·) : Y × Y → R by setting






〈A(t,u),v〉V ∗×V =
∫
ΩA(x, t, ε(u)) · ε(v)dΩ,

〈B(t,u, ζ),v〉V ∗×V =
∫
Ω
B(x, t, ε(u), ζ) · ε(v)dΩ,

〈C(t,u),v〉V ∗×V =
∫
Ω C(x, t, ε(u)) · ε(v)dΩ,

F (t, w,u) = α(t)p(w, uν),

φ(t,u, ζ) = λD

(
1−ζ
ζ

)
− 1

2λE‖ε(u)‖2 + λw ,

j(w, r1, r2) =
∫
Γ3

µp(w, r1ν)n
∗r2τdΓ +

∫
Γ3

p(w, r1ν)r2νdΓ

for all u, v ∈ V , r1, r2 ∈ X , w ∈ W and ζ ∈ Y . Then Problem 4.2 can be transformed as follows

ẇ(t) = F (t, w(t),u(t)),
〈
A(t,u(t)) +

∫ t

0

B(t− s,u(s), ζ(s))ds + C(t, u̇(t)),v − u̇(t)

〉

V ∗×V

+ j(w(t), u̇,v)− j(w(t), u̇(t), u̇(t)) ≥ 〈f(t),v − u̇(t)〉V ∗×V , ∀v ∈ KV ,

〈ζ̇(t), η − ζ(t)〉Y1 + a(ζ(t), η − ζ(t)) ≥ 〈φ(t, u(t), ζ(t)), η − ζ(t)〉Y1 , ∀η ∈ KY ,

u(0) = u0, w(0) = 0, ζ(0) = ζ0 ∈ (0, 1).

Next we show that assumption conditions H(A)-H(a) are satisfied.

I). It is easy to see that A(·, ·) is continuous on I × V for all t ∈ I. From (4.22)(c) and the Holder’s

inequality, we have

〈A(t,u1)−A(t,u2),v〉V ∗×V ≤
(∫

Ω

‖A(x, t, ε(u1))−A(x, t, ε(u2))‖2dΩ
) 1

2

‖v‖V

≤ LA

(∫

Ω

‖ε(u1)− ε(u2)‖2dΩ
) 1

2

‖v‖V

for all u1, u2, v ∈ V with t ∈ I. It follows that

‖A(t,u1)−A(t,u2)‖V ∗ ≤ LA‖u1 − u2‖V .

This shows that LA = LA in (4.22)(c) and so assumption condition H(A) holds.
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II). Condition H(B)(a) can be verified from (4.23)(b). In addition, by Hölder’s inequality and (4.23)(c),

one has

〈B(t,u1, ζ)−B(t,u2, η),v〉V ∗×V ≤
(∫

Ω

‖B(x, t, ε(u1), ζ) − B(x, t, ε(u2), η)‖2dΩ
) 1

2

‖v‖V

≤
√
2LB

(∫

Ω

‖ε(u1)− ε(u2)‖2 + ‖ζ − η‖2dΩ
) 1

2

‖v‖V

and

〈B(t,u, ζ),v〉V ∗×V ≤
(∫

Ω

‖B(x, t, ε(u), ζ)‖2dΩ
) 1

2

‖v‖V

≤
√
2ρB(t)

(∫

Ω

‖ε(u)‖2 + ‖ζ‖2dΩ
) 1

2

‖v‖V

for all u1, u2, u, v ∈ V and ζ, η ∈ Y with t ∈ I. It follows that



‖B(t,u1, ζ)−B(t,u2, η)‖V ∗ ≤

(√
2LB

)
(‖u1 − u2‖V + ‖ζ − η‖Y ) ,

‖B(t,u, ζ)‖V ∗ ≤
(√

2ρB(t)
)
(‖u‖V + ‖ζ‖Y ) .

Thus, LB =
√
2LB and ρ(t) =

√
2ρB(t) in H(B)(b)(c) and so assumption condition H(B) is true.

III). It is easy to see that C(·, ·) is continuous on I × V for all t ∈ I. From (4.24)(c)(d)(e) and Hölder’s

inequality, we have

〈C(t,u)− C(t,v),u− v〉V ∗×V =

∫

Ω

(C(x, t, ε(u))− C(x, t, ε(v))) · (ε(u)− ε(v)) dΩ

≥ mC

∫

Ω

‖ε(u)− ε(v)‖2dΩ

= mC‖u− v‖2V ,

〈C(t,u1)− C(t,u2),v〉V ∗×V ≤
(∫

Ω

‖C(x, t, ε(u1))− C(x, t, ε(u2))‖2dΩ
) 1

2

‖v‖V

≤ LC1

(∫

Ω

‖ε(u1)− ε(u2)‖2dΩ
) 1

2

‖v‖V ,

〈C(t1,u)− C(t2,u),v〉V ∗×V ≤
(∫

Ω

‖C(x, t1, ε(u))− C(x, t2, ε(u))‖2dΩ
) 1

2

‖v‖V

≤ LC2

(∫

Ω

‖t1 − t2‖2dΩ
) 1

2

‖v‖V

for all u1, u2, u, v ∈ V with t, t1, t2 ∈ I. It follows that

‖C(t,u1)− C(t,u2)‖V ∗ ≤ LC1 (‖u1 − u2‖V ) , ‖C(t1,u)− C(t2,u)‖V ∗ ≤ LC2 (‖t1 − t2‖V ) .

Thus, LC1 = LC1, LC2 = LC2 and mC = mC in H(C)(a)(b)(c) and so assumption condition H(C) is

satisfied.

IV). Since

j(w, r1, r2) =

∫

Γ3

µp(w, r1ν)n
∗r2τ + p(w, r1ν)r2νdΓ,

we know that j(w, r1, ·) is a convex proper and lower semicontinuous functional with respect to r2. More-

over, the convex subdifferential of j(w, r1, r2) with respect to its third variable can be given by

∂j(w, r1, r2) =

∫

Γ3

µp(w, r1ν)n
∗ + p(w, r1ν)νdΓ.
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This fact combined with (4.25)(b)(c) yields that

‖∂j(w, r1, r2)‖X∗ =

(∫

Γ3

µ2p2(w, r1ν) + p2(w, r1ν)dΓ

) 1
2

≤
√
1 + ‖µ‖2

L∞(Γ3;R)

(∫

Γ3

(p(w, r1ν)− p(0, 0))2dΓ

) 1
2

≤
√
1 + ‖µ‖2

L∞(Γ3;R)
L̃p

(∫

Γ3

(|w|+ |r1ν |)2dΓ
) 1

2

≤
√
2 + 2|µ‖2

L∞(Γ3;R)
L̃p(‖r1‖X + ‖w‖W ).

Taking
√
2 + 2‖µ‖2

L∞(Γ3;R)
L̃p = c1, there exists a constant c1 > 0 such that

‖∂j(w, u, v)‖X ≤ c1(‖w‖W + ‖u‖X), ∀(u, v, w) ∈ X ×X ×W. (4.32)

Letting w1, w2 ∈ W and s1, s2 ∈ X , one has

j(w1, r1, s2)− j(w1, r1, s1) + j(w2, r2, s1)− j(w2, r2, s2)

=

∫

Γ3

[µp(w1, r1ν)n
∗(s2τ − s1τ ) + p(w1, r1ν)(s2ν − s1ν) + µp(w2, r2ν)n

∗(s1τ − s2τ )

+p(w2, r2ν)(s1ν − s2ν)] dΓ

=

∫

Γ3

µ (p(w1, r1ν)− p(w2, r2ν))n
∗(s2τ − s1τ )dΓ +

∫

Γ3

(p(w1, r1ν)− p(w2, r2ν))(s2ν − s1ν)dΓ

≤
∫

Γ3

|µ||p(w1, r1ν)− p(w2, r2ν)|‖s2τ − s1τ‖dΓ +

∫

Γ3

|p(w1, r1ν)− p(w2, r2ν)||s2ν − s1ν |dΓ

≤ ‖µ‖L∞(Γ3;R)

∫

Γ3

|p(w1, r1ν)− p(w2, r2ν)|‖s2τ − s1τ‖dΓ

+

∫

Γ3

|p(w1, r1ν)− p(w2, r2ν)||s2ν − s1ν |dΓ. (4.33)

The condition (4.25)(b) combined with Hölder’s inequality shows that

∫

Γ3

|p(w1, r1ν)− p(w2, r2ν)|‖s2τ − s1τ‖dΓ

≤ L̃p

∫

Γ3

(|r1ν − r2ν |+ |w1 − w2|)‖s2τ − s1τ‖dΓ

≤ L̃p(‖r1ν − r2ν‖X + |w1 − w2|W )‖s2 − s1‖X

and
∫

Γ3

|p(w1, r1ν)− p(w2, r2ν)|‖s2ν − s1ν‖dΓ ≤ L̃p(‖r1ν − r2ν‖X + |w1 − w2|W )‖s2 − s1‖X . (4.34)

Then inequality (4.33) becomes

j(w1, r1, s2)− j(w1, r1, s1) + j(w2, r2, s1)− j(w2, r2, s2)

≤ (‖µ‖L∞(Γ3;R) + 1)L̃p (‖w1 − w2‖W ‖s1 − s2‖X + ‖r1 − r2‖X‖s1 − s2‖X) . (4.35)

This implies that H(j)(b) holds with

α0 = (‖µ‖L∞(Γ3;R) + 1)L̃p, α1 = (‖µ‖L∞(Γ3;R) + 1)L̃p.

and so assumption condition H(j) is satisfied.
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V). It follows from (4.34) that

‖F (t, w1,u1)− F (t, w2,u2)‖2W =

∫

Γ3

α(t)2(p(w1, u1ν)− p(w2, u2ν))
2dΓ

≤ 2‖α‖2C(I;L∞(Γ3;R))
L̃p

(
‖u1 − u2‖2X + ‖w1 − w2‖2W

)

and so

‖F (t, w1,u1)− F (t, w2,u2)‖W ≤
√
2L̃p‖α‖C(I;L∞(Γ3;R))(‖u1 − u2‖V + ‖w1 − w2‖W ).

Thus, H(F)(b) holds with

Lp = max

{√
2L̃p‖α‖C(I;L∞(Γ3;R)),

√
2L̃p‖α‖C(I;L∞(Γ3;R))

}
.

Clearly, H(F)(a) follows from condition (4.31) and so assumption condition H(F) is fulfilled.

VI). Based on (4.26), we can conclude that H(φ) holds with Lφ =
√
2L̃φ.

VII). Finally, we can check that H(a) holds. Indeed, from

‖ζ‖2Y = ‖ζ‖2Y1
+

∫

Ω

∇ζ · ∇ζdΩ,

it follows that a(ζ, ζ) + κ‖ζ‖2Y1
= κ‖ζ‖2Y and so H(a) is satisfied with a1 = a2 = κ.

Thus, combining I)-VII), we know that Theorem 4.1 is a direct consequence of Theorem 3.1.
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