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Abstract

More than 30 years ago, Johansson was the first to show that humans are capable of recovering information about the identity and
activity of animate creatures rapidly and reliably from very sparse visual inputs – the phenomenon of biological motion. He filmed human
actors in a dark setting with just a few strategic points on the body marked by lights – so-called moving light displays (MLDs). Subjects
viewing the MLDs reported a vivid impression of moving human forms, and were even able to tell the activity in which the perceived
humans were engaged. Subsequently, the phenomenon has been widely studied and many attempts have been made to model and to
understand it. Typical questions that arise are: How precisely is the sparse low-level information integrated over space and time to pro-
duce the global percept, and how important is world knowledge (e.g., about animal form, locomotion, gravity, etc.)? In an attempt to
answer such questions, we have implemented a machine-perception model of biological motion. If the computational model can replicate
human data then it might offer clues as to how humans achieve the task. In particular, if it can do so with no or minimal world knowledge
then this knowledge cannot be essential to the perception of biological motion. To provide human data for training and against which to
assess the model, an extensive psychophysical experiment was undertaken in which 93 subjects were shown 12 categories of MLDs (e.g.,
normal, walking backwards, inverted, random dots, etc.) and were asked to indicate the presence or absence of natural human motion.
Machine perception models were then trained on normal sequences as positive data and random sequences as negative data. Two models
were used: a k-nearest neighbour (k-NN) classifier as an exemplar of ‘lazy’ learning and a back-propagation neural network as an exem-
plar of ‘eager’ learning. We find that the k-NN classifier is better able to model the human data but it still fails to represent aspects of
knowledge about body shape (especially how relative joint positions change under rotation) that appear to be important to human
judgements.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The ability to detect the characteristic motion of humans
and other animals is a very important aspect of human
vision. It remains largely unaffected by distance variations
or poor visibility conditions. Even in poor quality videos
or blurred images, humans not only perceive the motion as
characteristic of a living being but can also discern the kind
of activity, e.g., jumping, dancing, hopping, running or

walking (Bobick & Davis, 1996; Cédras & Shah, 1995). Often
we can recognise a friend walking at a distance. Any familiar-
ity clues such as clothes, hair style etc. are mostly obliterated
at large distances, so it must be the motion itself that is
responsible for this identification. However, precisely what
aspects of the visual scene are responsible for motion detec-
tion still remain unknown. Since human walking is a com-
plex activity comprised of simpler movements – translatory
and/or rotational, or more specifically pendular – a good
understanding of gait perception may give insight into the
visual perception mechanism generally (Stevenage, Nixon,
& Vince, 1999). And from the computational point of view,
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a good understanding of the human perceptual system may
lead to more robust computer vision systems with better
noise tolerance and view-invariance as compared to existing
ones.

Johansson (1973) was the first to show that humans are
capable of recovering quickly and reliably information
about the identity and activity of animate creatures from
very sparse visual inputs. He filmed human actors in a
dark setting with just a few strategic points on the body
marked by lights – so-called moving light displays (MLDs).
His experimental subjects reported a vivid impression of
human movement, and were even able to tell the activity
(e.g., walking, dancing, etc.) in which the actors were
engaged. Only about 0.2 s was required for subjects to
come to a judgement that the perceived patterns repre-
sented human motion. This is remarkable when we con-
sider that only minimal, impoverished information is
available in MLDs; each individual light point or ‘dot’
means little by itself and there are relatively few of them
overall, yet somehow they are integrated over space and
time to create a vivid and compelling global percept of
the underlying motion. This has come to be called biologi-
cal motion since similar reliable judgements can be made
about moving light displays of non-human animal actors
too. In this paper, however, we will focus entirely on
human motion.

Subsequent to Johansson’s pioneering work, the phe-
nomenon of biological motion has been widely studied
and many attempts have been made to model and to under-
stand it. Several important questions arise: For instance,
how exactly is the sparse low-level information integrated
over space and time to produce the global percept? What
is essential information and what is not? What transforma-
tions can MLDs tolerate while still maintaining the percept
of biological motion? And how important is world knowl-
edge (e.g., about human form, biomechanics of loco-
motion, forces of action and reaction, effects of gravity
on bodies, and so on)? Although many of these questions
can be (and have been) addressed by conventional, psycho-
physical experimentation, we believe that machine-percep-
tion models have a part to play. If a computational model
can replicate human data then it might offer clues as to how
humans achieve the task. Clearly, an artificial system is
much easier to analyse and interrogate, so as to uncover
its operating principles, than any living system could ever
be. Further, if we can model human data using little or
no world knowledge, then such knowledge cannot be essen-
tial to the perception of biological motion. Thus, there
seems to be considerable potential in studying human
and machine perception of biological motion in parallel.
This paper, we believe, represents one of only few attempts
to do so.

Although there do exist some works which attempt to
model human perception of MLDs (e.g., Giese & Poggio,
2003; Goddard et al., 1992), these often make assumptions
about the actual mechanisms of perception that we wished
to avoid. (In particular, Giese and Poggio give an excellent

account of possible neural mechanisms; The interested
reader is recommended to consult this source for details.)
As this is early work, we wanted to use unashamedly naı̈ve
models, based on general pattern recognition principles,
omitting any biological detail. This avoids premature com-
mitment to specific biological mechanisms as a basis of per-
ception of MLDs that could only be provisional in the
current state of knowledge. Admittedly, this also limits
the possibilities for relating outcomes of our work to biol-
ogy, yet we believe – with Dror and Gallogly (1999) – that
there can be sound reasons for eschewing biological real-
ism. As Dror and Gallogly point out (p. 173) ‘‘biologically
implausible computational analyses can contribute to (1)
understanding and characterising the problem that is being
studied, (2) examining the availability of information and
its representation, and (3) evaluating and understanding
the neuronal solution’’. The remainder of this paper will,
we believe, illustrate these contributions in the specific con-
text of the perception of biological motion. Although, like
us, Pollick, Lestou, Ryu, and Cho (2002) avoid commit-
ment to biological details by using artificial neural net-
works, they address the different but related problem of
gender recognition from MLDs. Similarly, Troje (2002)
and Davies and Gao (2004) avoid building in biological
details, by using principal component methods, but they
too consider gender recognition.

The rest of this paper is structured as follows. Section 2
describes moving light displays in brief and gives an over-
view of human perception of such displays. Our methodo-
logical approach based on comparing human and machine
perception is described in Section 3. Section 4 describes our
video data of walking humans, and details how the various
categories of MLD used in this study were derived from
these data. We then describe in Section 5 details of the psy-
chophysical experimentation from which we obtained
human data both for training the machine-perception mod-
els and to act as a basis of comparison. Results of the
human experimentation are presented in Section 6. Section
7 describes machine perception of MLDs. Section 8 dis-
cusses the results of the human and machine studies, and
considers what we have learned from comparing them
before concluding.

2. Human perception of biological motion: a brief review

Moving light displays (MLDs) can be obtained by affix-
ing small lights to specific points of the object (a living
being) and filming it in nearly dark conditions such that
the resulting displays do not carry explicit information
about the shape, structure or contours of the object.
Another alternative is to attach reflector patches to the
object and to film it in minimal lighting. In either case,
the recorded film displays only the specific points. In per-
ception studies related to human motion, these markers
are usually attached to the major parts or joints of the body
(e.g., head, shoulder, elbow, hip, knee, ankle, etc.) as
shown in Fig. 1. For convenience, we will refer to all of
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these as ‘joints’ (although it is debatable that the head is a
joint as such). In recent years, it has become technically
possible to film the moving objects in full lighting and sub-
sequently to mark the joints with video-editing software.
The joints alone can then be displayed (e.g., on a computer
screen) in a form of ‘simulated’ MLD. However they are
derived, in respect of human perception, MLDs are mini-
mal information systems as the motion and relative loca-
tion of a small number of dots are the only available
cues. In spite of this, the perception of human motion
remains vivid.

Ever since Johansson (1973) used MLDs to demonstrate
the capability of the human vision system to recover (or
recreate) information about human form and activity,
researchers have used them (or their computerised counter-
parts) extensively to study the mechanisms underlying
visual motion perception. Johansson (1973, 1975, 1976) pre-
sented MLD sequences derived from humans carrying out
various activities like walking, running, hopping, dancing
and cycling to his experimental subjects. Twelve light mark-
ers were used (shoulder, elbow, wrist, hip, knee and ankle –
both left and right). From the dynamic display, observers
were not only able to discern a human figure but also to
identify the type of motion correctly and without exception.
They required a display time of approximately 0.2 s (about

five frames) to achieve perceptual organisation of the pat-
tern and to be able to make a correct report: ‘‘artificial’’ pat-
terns with puppet-like motions required longer.

Subsequent work has shown that subjects are able to
identify gender of actors from MLDs (Kozlowski & Cut-
ting, 1977; Mather & Murdoch, 1994) and to tell individual
friends (Cutting & Kozlowski, 1977). Even human infants
as young as 3-months are able to perceive biological
motion (Fox & McDaniel, 1982) as are non-human animals
such as cats (Blake, 1993). Sumi (1984) found that when
Johansson displays were inverted and run backwards, they
were perceived more frequently as an upright image of a
person moving forward in a very strange manner than as
an inverted image of a person moving backward.

According to Ahlström, Blake, and Ahlström (1997),
normal MLD sequences of walkers can be easily discrimi-
nated from phase scrambled ones. Phase scrambled
sequences contain precisely the same local dot motions as
regular MLDs but the starting point for the motion cycle
of each is chosen randomly, e.g., the dot associated with
the wrist may start at frame 6 whereas that associated with
the elbow may start at frame 14. Dots specifying ankles
only were perceived as non-biological motion but the addi-
tion of points representing knees resulted in an impression
of biological motion. This impression grew stronger as
more joints were added. Superimposition of an inverted fig-
ure on an otherwise normal biological motion sequence
resulted in a multistable perceptual grouping of dots. How-
ever, this perceptual multistability was abolished when the
dots describing the inverted figure were of different colour.
Pavlova and Sokolov (2000) reported that despite prior
familiarisation with an MLD figure at all orientations, its
detectability within a mask (of distracting dots) decreased
with a change in orientation from an upright figure (i.e.,
0� reference) to one in the range 90–180�, where the latter
is upside-down.

What then are the processes involved in perception of bio-
logical motion? Johansson (1975) suggested that the visual
system follows the principles of central perspective and not
Euclidean space and prefers maintaining figural constancy.
Any change in the figure/shape is perceived as a central per-
spective transformation rather than the actual change hap-
pening in Euclidean space. Subsequently, Johansson (1976)
formulated a mathematical model called ‘‘visual vector anal-
ysis’’ and suggested that the perception of biological motion
involves an integration of spatio-temporal differentials,
which can be abstracted as visual vector differentials. These
differentials are, in effect, motion vectors of a joint. Thus,
motion abstraction is akin to spatio-temporal differentia-
tion. The visual memory needs to perform a continuous inte-
gration of these differentials for the grouping of perceptual
elements.

Cutting and Proffitt (1981) suggested that while perceiv-
ing biological motion from MLD displays, the motions
and locations of the hip and shoulder are extracted first as
they are close to the body’s deepest center of moment within
the torso. These points now serve as the static centers of

Elbow

Head

Wrist

Shoulder

Foot

Knee

Hip

Heel

Fig. 1. Major joints of the human body. Only the joints used in this study
have been labelled, and only those on the left side of the body. Note that
head and foot are referred to as ‘joints’ for convenience.
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moment for the lower and upper body, respectively. For
example, for the lower body, the hip acts as the center of
moment for the knee, which moves in pendular fashion
about it. One perceives the knee motion only by its motion
relative to the hip.

Pinto and Shiffrar (1999) reported that detection of a fig-
ure missing elements (‘joints’) on the extremities, i.e.,
ankles and wrists as in Fig. 2(a), did not differ significantly
from the detection of the whole figure. However, omission
of central elements, i.e., hips and shoulders (Fig. 2(b)), did
significantly diminish performance. Omission of mid-limb
joints, i.e., knees and elbows (Fig. 2(c)), also impaired per-
formance. On this basis, Pinto and Shiffrar concluded that
a hierarchical vector analysis as suggested by Johansson
(1973) and Cutting (1981) does not by itself give a complete
description of the visual perception. The three body config-
urations missing extremities, mid-elements and central ele-
ments maintain a hierarchical structure amenable to such
analysis yet sometimes performance is impaired. Hence,
motion perception can not be explained by a simple hierar-
chical model. Rigid relations (cf. Hoffman & Flinchbaugh,
1982; Webb & Aggarwal, 1982) alone can not account for
the different performances as all these configurations have
the same number of rigid relations.

Another important finding of this study was that the
detection of ipsilateral (arm and leg on same side) and/or
contralateral limbs (both arms or both legs) did not differ
significantly from that of diagonal limbs (arm and leg on
opposite sides). On the basis of this observation, Pinto
and Shiffrar concluded that neither dynamic symmetry
nor the inclusion of information about principal axis is nec-
essary for human motion detection. If dynamic symmetry
was necessary, diagonal limbs would not be detected as
human motion since these move in synchrony; further, no
anti-phase information to indicate dynamic symmetry is

available. If the elongated structure of the figure’s principal
axis was necessary, the contralateral limb condition would
not be detected as only legs or arms were shown. Yet it is
known that the absence of both, as in the case of randomly
organised limbs (Fig. 3), largely abolishes the perception of
biological motion.

Pinto and Shiffrar argued that the visual system responds
equivalently to figures exhibiting any organisation of limbs
consistent with the human form. Not only this, the visual
system is capable of exploiting the configural information
specifically indicative of the human form in the perception
of MLDs. However, figural coherence is not sufficient to
explain the detection of human movement. If it were so,
the inverted figure detection would not significantly differ
from the upright one. This difference, they argue, can not
be explained by models based on hierarchical vector analy-
sis and rigid relations. According to these authors, some
other explanation is required.

3. Methodology: comparing human and machine perception

The primary objective of this work is to assess if it is
possible to build an artificial perceptual system, making
minimal assumptions, that is capable of reproducing the
human data relating to biological motion detection. If so,
this can act as a parsimonious model of human perception
that is far easier to analyse and understand than the human
system. It can also be used in future work to generate
experimental hypotheses to be tested, so increasing our
understanding of how humans are able to do biological
motion detection.

As humans can perceive biological motion even from
MLDs, where only spatio-temporal information of joint

Fig. 2. Sub-configurations for the study of biological motion perception.
In (a), extremities (wrists and ankles) are missing but performance is not
significantly impaired. In (b), mid-limb elements (elbows and knees) are
missing with a consequent loss of performance. In (c), central elements
(shoulders and hips) are missing and again performance is impaired.

Fig. 3. Random (‘spatial’) scrambling of the limbs largely abolishes the
detection of biological motion from MLDs.

342 V. Laxmi et al. / Cognitive Systems Research 7 (2006) 339–356
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positions is available in the input, MLDs are used as the
basis of this work. In particular, analysis of our machine
models is likely to be very much simpler if it works with very
sparse inputs, as in the case of MLDs, rather than the com-
plete human shape being considered in full-frame video. To
minimise the assumptions made in building the artificial
perception model, we have adopted a machine-learning
approach in which the model abstracts information about
biological motion from (hopefully representative) example
data with a minimum of intervention from us, the research-
ers. As machine learning is much more effective if it is
supervised, i.e., the example (training) data are labelled with
the correct classification, we have restricted our interven-
tion to labeling data sequences as either positive (i.e., this
is human motion) or negative (i.e., this is not human
motion).

In an attempt to avoid our work being too sensitive to a
particular choice of machine-learning methodology, we
have deliberately used two very different approaches. Per-
haps the most profound difference between methods is
the distinction between eager and lazy learning (Aha,
1997). In eager learning, every effort is made (hence the
name) to abstract and compress the training data into a
small set of statistical regularities that capture the main
generalisations of the domain. The archetypical eager
learning methodology is error back-propagation (Rumel-
hart, Hinton, & Williams, 1986) where the training data
are recoded into the connection weights and unit biases
of an artificial neural network (ANN), which is then used
as a data classifier or function interpolator. By contrast,
lazy learning attempts to retain the training data in its
entirety, often in the original form. Probably the ‘purest’
lazy learning technique is the k-nearest neighbour, or k-
NN, method (Devijver & Kittler, 1982; Duda & Hart,
1973; Duda, Hart, & Stork, 2000). In the 1-nearest neigh-
bour case, classification is effected by comparing an
unknown instance with the entire database of examples,
selecting the example that is ‘closest’ in some defined sense,
and taking the label of this example to be the classification.
More generally, the k-NN approach takes the classification
to be that label that is maximally represented among the k

nearest neighbours.
In our earlier work on machine perception of biolog-

ical motion (Laxmi, Carter, & Damper, 2002a, 2002b),
we attempted to train classifiers on different positive
and negative examples of MLDS. In so doing, we tried
to infer from the literature what might actually constitute
positive and negative classes. This turned out to be prob-
lematic since the literature is not entirely clear and
unambiguous on this issue. We therefore decided to col-
lect our own human data to validate our labeling of the
training data and to serve as a sound foundation for the
comparison of machine and human perception of biolog-
ical motion. In all, 12 different categories of MLD
sequence were devised and used in the human experimen-
tation and as input to the machine model, as we now
describe.

4. MLD data and categories

In this section, we briefly describe the human motion
data used as the basis for deriving MLDs. We also describe
the various categories of MLD (e.g., normal, inverted,
phase scrambled) that were used in subsequent studies of
human and machine perception.

4.1. Dataset

The dataset used in this study was collected by Georgia
Tech Research Institute (GTRI), Georgia Institute of
Technology, Atlanta, GA. It consists of labelled sequences
of 21 walkers. Joint labeling is three-dimensional and was
achieved using infra-red markers. For each walker, there
are four sequences:

(1) without shoes;
(2) without shoes and carrying a five-pound backpack;
(3) wearing street shoes; and
(4) wearing street shoes and carrying a five-pound

backpack.

There is only one sequence for each walking mode; so,
there are 84 sequences in total. Each walker has 15 infra-
red markers (‘joints’), namely head plus two each of shoul-
der, elbow, wrist, hip, knee, ankle, foot. We thus have three
more markers for each walker than in the classical Johans-
son (1973) MLDs; the additions are head and two feet. Each
sequence was 150 frames long (i.e., approximately 2.6 s as
the inter-frame interval in the GTRI data is 17 ms). Because
the subjects walked freely, each sequence starts in general at
a different (random) point in the gait cycle.

For presentation to subjects on a computer screen, 2-D
data are required. Particular views of the 3-D data were in
most cases prepared by simply ignoring one of the three
dimensions. Full details are given below. In one instance,
however, all the 3-D data were used (to produce an oblique
view).

4.2. Sequence categories

In all, 12 categories of 2-D MLD sequences were
prepared; 11 of the 12 being derived from the GTRI 3-D
dataset. From the perception studies as discussed in Sec-
tion 2, MLDs of a walking or running human seen in side
view are perceived as positive instances of human motion
whereas a sequence of random configurations of dots is
not (i.e., it is a negative instance). To determine if a
machine is capable of perceiving human motion in a man-
ner akin to humans, we need to determine what constitute
positive and negative instances of human motion in the
case of other views or transformations, i.e., other categories

of MLD. The categories used here were chosen either
because they have been used in human perceptual studies
in the past, or because they seemed (to us) to raise interest-
ing questions about biological motion.

V. Laxmi et al. / Cognitive Systems Research 7 (2006) 339–356 343
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NOR This category is the NORmal, fronto-parallel (‘side-
ways’) view of a person walking left-to-right. NOR
sequences were produced from the 3-D dataset by
ignoring the z-axis data. Although the labeling of
this and all other categories is ultimately to be deter-
mined by the human experimentation described in
Section 5 below, this category of sequence is reported
as a positive instance in all previous perception
studies.

DIR This change of DIRection category was generated
by a spatial reflection of individual frames of the
NOR sequences in the vertical plane and temporal
reversal of the sequences to give right-to-left move-
ment of the walker. We expect such sequences to be
labelled as positive by subjects as biological motion
detection is independent of the direction of motion
(Johansson, 1976).

WBK This Walking BacKwards category was obtained
by spatial reflection of individual frames of the
NOR sequences but without temporal reversal.
Hence, the figure appears to walk backwards in
a left-to-right direction. Although human shape
is preserved, it is relatively uncommon (although
not unknown) to see people walking back-
wards. However, Johansson (1976) reports that
sequences of this category invoke perception of
human motion, so this category is expected to
be positive.

INV This is an INVerted version of NOR, corresponding
to a viewing angle of 180� (0� reference for NOR).
Although inverted displays have relative spatial
and motion relationships similar to normal ones,
most structure-based perception theories cannot
explain the negative response of human observers
to this category.

TOP This is the view obtained from the TOP. It is pro-
duced from the 3-D dataset by ignoring the x-axis
data. As there are no results in the literature on
this category of MLD, we had no prior expecta-
tion as to how experimental subjects would label
it.

OBQ Here viewing is at an OBliQue angle of 60�. This is
an exceptional case in that we used all the 3-D data
to produce the OBQ sequences. A simple program
was written to extract these sequences from the 3-
D data. Again, to the best of our knowledge this
category has not previously been studied, so we
had no prior expectation as to how experimental
subjects would label it.

SPT A Small PerTurbation was added to all the joint
positions in the NOR view. The perturbation was
different from frame to frame. For any given frame,
the bounding box is determined. Let w and h be,
respectively, the width and height of this rectangle.
Every joint, at position (x,y), is perturbed to a new
position (x + dx,y + dy) according to the following
pseudocode:

d ¼ 1:0=randomð6:0; 10:0Þ;
dx ¼ xþ randomð�d; dÞ � w;

dy ¼ y þ randomð�d; dÞ � h;

where random(a,b) returns a random number rect-
angularly distributed in the interval (a,b). In the
worst case, a joint is perturbed by one-sixth of the
dimensions of the body for that frame. This trans-
formation retains the structure of the human figure
on average, although inter-joint spatial relations are
perturbed.

LPT A Large PerTurbation was added to all the joint
positions in the NOR view. The perturbation was
different from frame to frame. Perturbations are
made to the joints as in the SPT case except that
here the relevant pseudocode is

d ¼ 1:0=randomð3:5; 5:5Þ;
dx ¼ xþ randomð�d; dÞ � w;

dy ¼ y þ randomð�d; dÞ � h.

Thus, in the worst case, a joint is perturbed by
approximately one-third of the dimensions of the
body for that frame. This is of a sufficient magnitude
that the human shape is significantly disordered and
masked. Our expectation was that SPT would be
labelled as positive but LPT would not.

PER The frames in a NOR sequence were PERmuted in
a random order. Thus, each frame retains the
human shape but the natural temporal order of
walking is destroyed. It is expected that this will
be labelled negative by subjects.

SSR Sequences in this category were derived by Spatially
ScRambling the limbs – arms and legs – in the NOR
view (cf. Fig. 3). Only the positions of the limbs are
randomised; motion trajectories are not disturbed
at all. These sequences were expected to be labelled
negative in view of the results of Pinto and Shiffrar
(1999).

PSR In this category, NOR sequences were Phase
ScRambled as described in Section 2 above. These
sequences were expected to be labelled negative in
view of the results of Ahlström et al. (1997).

RAN The appropriate number of dots was placed at
RANdom in the bounding box of each frame of
the fronto-parallel (NOR) sequence. As this config-
uration has neither shape nor motion consistent
with human walking, the sequence was expected
to be labelled strongly negative by subjects. This
is the only category of the 12 that was not derived
from the GTRI 3-D dataset.

Sequences were scaled to have the same height for pre-
sentation to experimental subjects and to the machine-
perception models. For each category, a snapshot of some
frames from one of the corresponding image sequences is
shown in Fig. 4.

344 V. Laxmi et al. / Cognitive Systems Research 7 (2006) 339–356
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5. Details of human experimentation

To provide training data for the machine-learning mod-
els, and to give a basis of comparison between human and
machine perception, an extensive psychophysical experi-
ment was undertaken with 93 subjects. The subjects’ task
was to distinguish sequences displaying biological motion
(positive examples) from sequences that did not (negative
examples). As far as possible, we attempted to reduce any
biasing of subjects to expect to see moving humans by care-
fully controlling their instructions and minimising what
they were told about the experiment. Thus, they were not
given any prior knowledge of the experimental set-up and
were asked not to discuss it subsequently with any other
subject. At the beginning of the experiment, they were
given on-screen instructions as shown in Fig. 5. We also
attempted to focus on basic perceptual classification (mini-
mising post-perceptual reinterpretation of the data) by
requiring subjects to respond as quickly as possible.

Of the 93 subjects, 37 were students or research staff
from the University of Southampton, UK. The remaining
56 were undergraduate engineering students and faculty
members from Malaviya National Institute of Technology,
Jaipur, India. The age range was 18–35 years. A number of

the Southampton subjects worked in gait recognition spe-
cifically, or computer vision generally. We felt that these
subjects were likely to produce a different pattern of results
from subjects without this prior exposure; they were desig-
nated ‘experts’. There were 23 such expert subjects, all from
Southampton. Expert status was ascertained by a simple
pre-experiment question: ‘‘Do you now, or have you ever,
worked in computer vision or image processing?’’

For each of the 84 sequences in the GTRI dataset (21
walkers, with and without shoes, with and without back-
pack, see Section 4.1), all 12 categories of MLD (as discussed
in Section 4.2) were generated. As a result, the total number
of sequences was 1008. Sequences were shown in four
conditions:

Absolute. Dots corresponding to all body joints were
shown with their corresponding translatory
motion.

Spot. Translatory motion was removed. In the NOR
case, this will give the impression of walking
‘‘on the spot’’.

Partial. One half of the dots (randomly selected from
each individual frame) were shown.

Centroid. Only the centroid of the dots (with its corre-
sponding translatory motion) was shown.

This gave a total of 4032 possible stimuli but this was too
much data to present to subjects. So only a subset of 576
was actually used, constructed as follows. Of the 84 basic
sequences described in Section 4.1, a selection of 12 was
made by randomly taking 3 sequences from each of the 4
walking modes (with/without shoes, with/without back-
pack). This gave 12 selections times 12 categories (NOR,
DIR, etc.) times 4 conditions (absolute, spot, etc.), or 576
sequences in all. To minimise the chance of results being
biased by a statistically unrepresentative selection, each
subject was shown a different random sample of 576 of
the 4032 sequences.

(a) NOR (b) DIR

(c) WBK (d) INV

(e) TOP (f) OBQ

(g) SPT (h) LPT

(i) PER (j) SSR

(k) PSR (l) RAN

Fig. 4. Snapshots (of 5 frames) from each of the 12 MLD categories used
in this study.

Fig. 5. Screen shot of instructions to experimental subjects.
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The complete experiment was broken down into 6 ses-
sions, during each of which 96 sequences were presented.
Subjects were asked to view the screen from a comfortable
distance of their own choosing. For the Southampton sub-
jects, a 17-inch screen was used. For the Malaviya subjects,
a 15-inch screen was used. Dot size was an ‘oval’ of 3 by 3
pixels centered on the screen coordinates of each joint. The
original MLD data had a 60 Hz frame rate. We used a delay
of 17 ms (closest integer value to 1000/60) between consec-
utive frames. After each 150-frame display, the screen was
blanked for 300 ms. Subjects could take a short break after
each session to help prevent fatigue.

For each sequence, subjects were required to press a key
to indicate if it corresponded to natural human motion or
not (cf. Fig. 5). If no key was pressed over the entire dura-
tion of a sequence, a time-out was recorded. For every sub-
ject, both the response itself and response time were
recorded. For the purposes of analysis, a time-out was con-
sidered as a negative response.

6. Results of human experimentation

Here, we first deal with the rating responses for the
absolute and spot conditions, which were generally the
most interesting and informative. We then briefly discuss
rating results for partial and centroid conditions, and
finally present timing data.

6.1. Absolute and spot conditions

Fig. 6 summarises the positive responses obtained from
all subjects (both expert and naı̈ve) for the absolute and
spot conditions. As each category was shown 12 times, a
value of 6 positive responses (and 6 negative responses)
corresponds to the chance rate as shown on the figure.
Sample mean is shown as an asterisk and the error bars
indicate the 95% confidence interval. Fig. 7 separates these
results into those for the experts ((a) and (b)) and those for
the naı̈ve subjects ((c) and (d)), for absolute and spot con-
ditions, respectively.

From these results, our task is to infer positive and neg-
ative labelings to inform our subsequent machine-learning
study. For those categories where the mean was above the
chance level of 6, a one-tailed t-test was used to determine
with 95% confidence whether the category represents
human motion (positive label; mean significantly greater
than 6) or was indeterminate (mean not significantly differ-
ent from 6). Similarly, for those categories where the mean
was below chance, a one-tailed t-test was used to determine
with 95% confidence whether the category was definitely
not perceived as human motion (negative label; mean sig-
nificantly less than 6) or was indeterminate (mean not sig-
nificantly different from 6). In this way, we obtain the
labelings shown in Table 1.

It is clear from Figs. 6 and 7 and Table 1 that the results
for absolute and spot conditions are very similar. In fact,

the main difference is that the spot responses are slightly
more negative overall, probably reflecting the loss of infor-
mation (about absolute motion) for this condition com-
pared to the absolute condition. The similarity suggests
that the human perceptual system is primarily sensitive to
relative motion of the limbs between frames of MLDs
rather than to absolute (translatory) motions of the figure
across frames.

As expected, NOR, DIR and WBK are all labelled
strongly positive by both expert and naı̈ve subjects, while
RAN is labelled strongly negative. However, the response
for the upside-down display (INV) is not negative as
expected. This contradicts the previous findings of Sumi
(1984), Pinto and Shiffrar (1999) and Pavlova and Sokolov
(2000). The direct comparison with the earlier experimental
data is difficult since these previous workers used some-
what different stimuli (e.g., walkers in masking noise in
the case of Pavlova and Sokolov) or experimental condi-
tions (e.g., Sumi used totally naı̈ve subjects and it may be
that after a few trials our subjects were not naı̈ve any
more). An additional possibility that we favor is that,
unlike the MLDs used by previous researchers, feet mark-
ers are displayed in our sequences and these act as addi-
tional cues to body-shape recognition for some subjects
(more especially the experts).

The (novel) TOP category was found to be indetermi-
nate, i.e., subject responses were not significantly different
from chance. Yet OBQ is generally judged positive (an
exception being the spot condition with the naı̈ve subjects).
It seems that the additional information that the oblique
viewpoint offers about relative limb positions and move-
ments can be exploited by subjects to build up an impres-
sion of human motion.

NOR DIR WBK INV TOP OBQ SPT LPT PER SSR PSR RAN
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Fig. 6. Human responses for (a) absolute and (b) spot conditions. Asterisk
denotes sample mean; error bars denote 95% confidence interval.
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Consistent with our expectations, small permutations of
the joint’s spatial positions (SPT category) did not abolish
the impression of human motion, although the positive
responses were less strong. However, large perturbations
(LPT category) led to consistent and moderately strong
negative judgements.

Generally, the permuted, spatially scrambled and phase
scrambled (PER, SSR and PSR) sequences were judged to
be negative, in line with our expectations. The naı̈ve sub-
jects, however, gave markedly indeterminate responses to
the PER category.

The naı̈ve subjects are rather less assertive than the
experts in that their mean responses are generally closer
to chance, especially in spot condition. A category-wise
analysis of variance indicates that responses for these
two sets of subjects vary at the 5% significance level, as
follows:

• INV, PER and PSR categories for absolute condition;
• NOR, INV, OBQ, PER and RAN categories for spot

condition.

In all of these cases, the experts’ responses are more cat-
egorical (i.e., further from chance). It is also noticeable
from Fig. 6 that the variance of the experts’ judgements
is wider, but this is almost certainly a trivial consequence
of there being fewer of them (23 as opposed to 70 naı̈ve
subjects).

6.2. Partial and centroid conditions

Fig. 8 shows consolidated human responses (i.e.,
expert, naı̈ve and all subjects) for the partial and centroid
conditions. In just the way that the spot results of the pre-
vious subsection display the same pattern as absolute
results but shifted towards more negative responses, so
the results for the partial condition are similar to those
for spot condition but are again shifted downwards. This
shows that the loss of information relative to absolute
mode results in fewer positive responses (for spot and par-
tial conditions) and further indicates that the partial con-
dition – in which half of the joints are randomly masked
on a per-frame basis – is more disruptive than the loss of
absolute motion information in the spot condition. The
centroid results are essentially uninteresting. All categories
(even NOR) are rated negative. This is consistent with the
inference, drawn from the similarity of results for the
absolute and spot conditions, that translation between
frames of the figure’s centroid carries little or no informa-
tion supporting positive identification of human biological
motion.
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Fig. 7. Responses of experts for (a) absolute and (b) spot conditions and
of naı̈ve subjects for (c) absolute and (d) spot conditions. Asterisk denotes
sample mean; error bars denote 95% confidence interval.

Table 1
Positive (+), negative (�) and indeterminate (blank) instances of biolog-
ical motion as inferred from human data (93 subjects)

Category Absolute Spot

Expert Naı̈ve Overall Expert Naı̈ve Overall

NOR + + + + + +
DIR + + + + + +
WBK + + + + + +
INV + + + + +
TOP
OBQ + + + + +
SPT + + + + + +
LPT � � � � � �
PER � � � �
SSR � � � � � �
PSR � � � � � �
RAN � � � � � �
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6.3. Timing data

Fig. 9 shows mean response times (excluding time outs)
for the four conditions. The response is measured relative
to the end of the sequence, and thus it does not necessarily
indicate the time taken from the point at which the subject
reached his/her decision to pressing a key to signal this
decision. In particular, it could be negative. Nonetheless,
conditions are constant for all subjects and all stimulus
sequences, so we believe the data are both useful and
meaningful.

Mean response times are very similar for absolute and
spot conditions, with subjects generally taking longest to
respond to SSR and PSR categories and responding fastest
to NOR, DIR and RAN. The longest response times are
seen with the partial condition, indicating that the rating
task was hardest in this case. Again, SSR and PSR catego-
ries are the most difficult to rate, at least as assessed by
response time, implying that the correct motion of each
individual joint retained in these sequences was recognised
by subjects but could not be integrated, spatially or tempo-
rally, respectively, into a realistic whole (hence the negative
categorisation).

For the centroid condition, response times are relatively
flat across categories and relatively long also, indicating
that subjects saw little difference between categories (there
was after all just a single dot) yet still were not able to make
a speedy rejection of the sequences as instances of biologi-
cal motion. It is difficult to know precisely why this is. Per-
haps the residual information about human motion that is
undoubtedly present (and that accounts for absolute condi-

tion judgements being overall slightly more positive than
spot condition judgements) may have been recognised,
but subjects were unwilling to rule that a single dot could
be constitutive of human motion.

7. Machine perception of MLDs

Having obtained labelled human data for training and
comparison purposes, we now consider the machine per-
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Fig. 8. Consolidated human responses for (a) partial and (b) centroid
conditions.
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Fig. 9. Timing data for (a) absolute, (b) spot, (c) partial and (d) centroid
conditions.
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ception of biological motion from MLDs. As they were the
most interesting and informative in the human data
described in the previous section, we restrict attention to
absolute and spot conditions only. (In any event, the cen-
troid condition did not yield any positive human responses
for any category, so there is nothing here to model.) The
main points at issue are:

(1) Can a machine classifier be trained on data alone –
without prior world knowledge or experience of
physical laws and biological constraints governing
movement of humans – to reproduce human responses
to MLDs?

(2) If so, what can we learn about human perception
from analysis of the trained classifier responses?

Since perception of biological motion is in essence a task
of spatio-temporal integration, and most artificial pattern
classifiers are basically recognisers of static patterns, our
first requirement is to devise some means of presenting
dynamic information to the k-NN and ANN models iden-
tified in Section 3.

7.1. Spatio-temporal integration for machine input

For any frame in an MLD sequence, the dot positions
describe the body configuration at time t, where t is the
position index of the frame in the sequence. The dots are
scanned in a top-down, left–right ‘raster’ manner as shown
in Fig. 10. It should be obvious that the correspondence of
joints between frames will not be preserved in this scheme.
That is, dot i in one frame will not necessarily correspond
to the same joint as dot i in another frame (although it
often will do so). The number of parameters per frame is

twice the number of dots, as each dot is represented by
two (x and y) coordinates. For this discussion, we will
assume that an MLD sequence consists of F frames, with
each frame containing M dots and, hence, 2M parame-
ters/frame.

Considerable thought was given to the suitability or
otherwise for our purposes of this rasterised representa-
tion. Ideally, a bit-map with the same resolution as the
computer display would have been used, but this implies
enormous input dimensionality for an essentially sparse
representation. Some sort of dimensionality reduction is
essential from a practical point of view. We did not want
to use a method such as principal components (e.g., Davies
& Gao, 2004; Troje, 2002) as we felt that this transforma-
tion on the input space would complicate interpretation of
the model. A particular consideration was that we wanted
the machine-perception model to solve the problem of
inferring correspondences between joints without undue
‘help’ from us, the experimenters, in just the way that
human subjects have to do. From all these considerations,
we felt that the raster-scan representation was a good
compromise.

Using this representation, the body configuration vector
c(t) corresponding to a single frame with index t is given by

cðtÞ ¼ ðx1ðtÞ; y1ðtÞ; . . . ; xMðtÞ; yMðtÞÞ t ¼ 1; . . . ; F ;

where xi(t) and yi(t) are the coordinates of the ith dot in the
frame. Integration of temporal information over N frames
can be effected by constructing an N-tuple hc(t),c(t + 1),
. . .,c(t + N � 1)i, i.e., a concatenation of the configuration
vectors of N consecutive frames. We will refer to this con-
catenated vector as a datapoint. It is important to note that
each datapoint is a sequence of static patterns; there is po-
sition information only and no explicit representation of
motion in the form of velocity, for example.

For a given value of N, all possible datapoints, each with
temporal information spanning N frames, are generated. So,
for N = 5, the first datapoint was generated by concatenat-
ing configuration vectors for frames 1–5, the second by con-
catenating these vectors for frames 2–6, and so on. So, each
datapoint is a snapshot of a fraction of a gait cycle. MLD
sequences are presented to the classifier as an unordered col-
lection of datapoints. As the snapshots overlap, this provides
‘context’ information, and is a classical way to transform
data sequences into a form suitable for input to classifiers
of static patterns (e.g., Sejnowski & Rosenberg, 1987).

The datapoints were normalised to the unit hypercube
and then were subjected to mean removal. For the artificial
neural network, such normalisation helps avoid network
saturation and the mean removal helped faster convergence
during training.

For a sequence consisting of F frames with M dots per
frame and with groupings of N frames, the number of data-
points is (F � N + 1) and the dimensionality of each data-
point is 2MN. Fig. 11 illustrates the process of generating
datapoints from an MLD sequence, with N = 3. There is
a trade-off in setting the value of N: As this value increases,
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Fig. 10. Dots in an MLD sequence are scanned in a top-down, left–right
(‘raster’) manner for input to the machine-perception model (k-NN or
ANN). Numbers indicate the order in which the x–y coordinates are
entered into the feature vector. In this example, there are M = 15 dots and,
consequently, 2M = 30 parameters.
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the number of datapoints per sequence decreases (giving
less training data, see below) but the temporal information
available per datapoint increases. To explore the effect of
this trade-off, we collected results for various values of N.
Here, we will present results for N = 1, 9, 15 and 25.

The 12 categories considered in this work range from the
well-structured (in terms of shape and motion) NOR cate-
gory to the completely random RAN category. Human
responses to these two categories were generally the most
positive and most negative, respectively (Section 6). An
exception is the DIR category, which was (not surprisingly)
rated just as positive as NOR by the subjects. For all other
categories, the responses are less differentiated.

7.2. Training and test data

For training the machine-perception systems, NOR
sequences for 9 of the 21 walkers were taken as positive data;
RAN sequences for the same 9 of the 21 walkers were taken
as negative data. The test set consisted of the remaining data-
points. Thus, the training and test sets were mutually exclu-
sive. Also, data were disjoint for the absolute and spot
conditions. That is, when testing sequences in the absolute
condition, the machine-perception models were trained
using absolute data only; when testing sequences in the spot
condition, they were trained using spot data only. There was
one distinct model for each of N = 1, 9, 15 and 25.

7.3. k-Nearest neighbour detector

For the k-NN detector, each test datapoint is assigned
the label of the nearest category in the respective training

set. That is, k = 1 for the results reported in this paper. Dif-
ferent values of k were in fact studied, but no interesting
dependence on k was found. Here, ‘nearest’ is defined in
terms of Euclidean distance between corresponding dots
in the datapoints. Generalisation results are presented in
Fig. 12(a) and (b) for absolute and spot conditions, respec-
tively. Each bar represents the fraction of test datapoints of
the respective category labelled as positive biological
motion.

In all cases, test (unseen) datapoints from the NOR cat-
egory are classified as positive with 100% accuracy. Note
that this is superior to average human performance but
not dissimilar to the performance of several individual sub-
jects (especially the experts). However, test data from the
RAN category are classified as negative with considerably
lower accuracy, even though this category constituted the
negative training data. Nonetheless, there is a good degree
of generalisation on the categories used in training.

It is noticeable that RAN test sequences are classified as
more negative in spot condition than in absolute condition,
and for the smaller values of N in constructing the data-
points. That is, in the absolute condition (Fig. 12(a)), the
N = 25 model has greater difficulty in identifying negative
instances than does the N = 1 model. This could either be
because the absolute movement of the bounding box is
incorrectly taken as an indicator of biological motion, or
because of the mere presence of larger numbers of dots in
approximately the right region – although actually in incor-
rect positions within that region. Looking to the RAN
responses in the spot case (Fig. 12(b)), we see that this effect
is much reduced, indicating that the movement of the
bounding box (present in absolute but not in spot condi-
tion) is the principal explanation. Careful scrutiny of
Fig. 12 reveals that the increase in positive responses as
N increases is a quite general finding across categories,
regardless of whether they are actually positive or negative.
This points to an imperfection of the rasterised scan form
of input, which seems not to be retaining motion informa-
tion in a way which distinguishes positive and negative cat-
egories. Alternatively, it is possible that this is a real effect,
which might be behind the positive votes for RAN in the
human data (Figs. 6 and 7), which are more pronounced
for naı̈ve than for expert subjects.

Except for N = 1, where motion information is absent,
the DIR category is labelled as 100% positive, as is the
WBK category. Performance of the k-NN classifier for
DIR sequences is typical of several of the human experts,
but for WBK is slightly above that achieved by any of
the human subjects. The result for DIR is intriguing. It
shows either (1) that the machine-perception model has
been able to generalise successfully from the left-to-right
motion always present in the NOR sequences to unseen
instances of right-to-left motion, or (2) such motion is
being ignored. The latter possibility is consistent with the
rasterised scan failing to represent this information appro-
priately. In either case, having the correct body disposition
(as in the NOR, DIR and WBK categories but not RAN) is

Fig. 11. Temporal integration of frames across an MLD sequence to
generate datapoints (i.e., concatenated feature vectors for contiguous
frames) in groups of N = 3.
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more important to the model than any absolute motion
information.

Responses for INV are generally far more negative than
the human data, where this category was weakly positive
(Figs. 6 and 7 and Table 1). However, other investigators
have generally found strong negative judgements in their
human experiments. We conjectured earlier that the dis-
crepancy between our human data and previous studies
might be due to the inclusion of feet ‘joints’ in our MLDs,
giving an additional cue to body-shape recognition. If cor-
rect, this kind of world knowledge (that human bodies have
feet, two of them) would obviously not be available to the
k-NN classifier. Again, like RAN, INV is more negative for
the spot condition and for the smaller values of N. It seems
that information about bounding-box motion is being used
as the basis of detecting biological motion, whether appro-
priate or not.

Responses to TOP are interesting as for both absolute
and spot conditions they range from strongly negative to
strongly positive depending upon the value of N. It seems
that provided enough context of the motion is seen, the
k-NN classifier can discern it and treat it as indicative of

biological motion. However, the evidence from other cate-
gories (e.g., RAN) is that the machine tends to use any

motion (not just biological motion) as a cue to a positive
judgement. And, of course, this category (TOP) is indeter-
minate for the human subjects.

In the human data, the shift of viewing angle from TOP
to OBQ results in a shift of categorisation from indetermi-
nate to positive (Table 1). This does not happen with the
k-NN data, where the two categories are essentially indistin-
guishable. We take this as a strong indication that the
human subjects can bring to bear prior knowledge about
human body form (which is more discernible in OBQ than
in TOP view) in a way that the machine cannot.

Like the human subjects, the k-NN classifier distin-
guishes SPT from LPT categories. However, the distinction
is much stronger than that made by most human subjects.
Indeed, the k-NN classifier is generally more categorical in
its judgements, appearing to act somewhat as a ‘super’
expert (at least for those categories it gets right).

In the human data, the PER category was rated negative
by experts and indeterminate by naı̈ve subjects, irrespective
of condition. By contrast, here the k-NN classifies PER

(a)

(b)

Key:

Fig. 12. Biological motion detection with k-NN model: generalisation performance on unseen test data in (a) absolute and (b) spot conditions. For each
category, the performance is displayed for different values of frames per datapoint.
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sequences as indeterminate in absolute condition (more so
for larger values of N) and strongly positive in spot condi-
tion. The 100% positive result for N = 1 is only to be
expected since, in this case, the data are indistinguishable
from NOR. The results for larger values of N indicate that
relative joint position is a very strong positive cue for the
machine, much stronger than is the movement of the joints
in context. The latter, however, is not negligible since the
enhanced movement information in the absolute condition
is obviously contributing to the reduced positive ratings.
And, of course, we have already seen in the case of RAN
that any motion (represented statically in a datapoint of
sufficient length) can be used as a positive cue. Overall, it
seems that random motion has a centralising effect, push-
ing the data to midrange much as in the human data, but
the effect is not as strong relative to body shape cues in
machine perception as it is in human perception.

SSR and PSR categories for the k-NN classifier are quite
positive, in contradiction of the negative human responses
(Table 1). On the face of it, this is quite a puzzling finding
as the correct cues to body shape are either absent (for
SSR) or disordered (for PSR). However, the relatively high
ratings found for N = 1 in each of the four cases of spot/
absolute and SSR/PSR indicate that in spite of the scram-
bling some usable information about body shape is
retained and the k-NN classifier is seemingly able to inte-
grate this with whatever motion information is retained
in the rasterised input.

In summary, the machine perception is more categorical
than the human perception. This is perhaps not surprising
as the k-NN classifier acts somewhat like a ‘super’ expert
focusing solely on the task at hand and unaffected by fati-
gue, attentional issues, and/or other sources of inter- or
intra-subject variability. Machine perception seems to be
based primarily on static cues about relative joint position
and only secondarily on motion cues, and these appear to
be additive in their effects. The primacy of static cues is
to be expected since the k-NN classifier is at heart a classi-
fier of static patterns. Motion cues can only be extracted by
integrating information quite widely across the feature
space (Fig. 11) and it seems that the rasterised-scan input
might not be retaining this information in usable form.
Finally, there is some evidence from the INV and OBQ cat-
egories that human subjects do use prior knowledge of
human body morphology to help make judgements, in a
way which the machine classifier (because of its impover-
ished training and ‘closed world’) is unable to do.

7.4. Artificial neural network detector

A non-recurrent feed-forward network with back-prop-
agation learning, a single hidden layer of two processing
units (‘neurons’), and a single output neuron was used.
We decided against using a recurrent net, which might have
been better suited to representation of the sequence infor-
mation inherent in MLDs, because of known difficulties
in training such nets and for comparability with the

k-NN model. The units had sigmoidal activation func-
tions. Initially, larger hidden layer sizes of 8 and 4 neu-
rons were tried but results were insensitive to this so the
smaller network was used subsequently. The learning rate
and momentum for the back-propagation learning were
0.6 and 0.8, respectively. A positive/negative decision was
made by simply thresholding the output neuron’s activa-
tion at 0.5. Training was assumed to have converged if clas-
sification accuracy on the training set remained above 95%
for five successive epochs after the assumed convergence
point. Convergence was found to be very rapid: typically
5 or 6 epochs.

In the following discussion, the performance of the detec-
tor is averaged over five program runs, since back-propaga-
tion is known to be sensitive to initial condition (Kolen &
Pollack, 1990). Weights were randomly initialised for each
of these five runs. These initial weights were constrained
in the range of [�l,l], where l = 1/2MN, and 2MN is the
dimensionality of vector input to a layer (Section 7.1).

Generalisation results are shown in Fig. 13(a) and (b)
for absolute and spot conditions, respectively, for different
values of N. Again, as in the case of the k-NN classifier,
there is good generalisation on unseen examples of the
NOR and RAN categories used in training. However, clas-
sification is much more categorical than humans, and even
more categorical than the k-NN classifier. There is little
evidence of any indeterminate categories at all.

Generally, the ANN takes NOR, DIR, WBK and SPT
as positive categories as humans do, but unlike humans,
PER and PSR are also taken as positive. An exception to
this general observation (about the absence of indetermi-
nacy) is the SPT category for N = 1 but, as there is no
motion information retained in this case, this is probably
just a reflection of the degree of perturbation applied in
generating the SPT category. Interestingly, the ANN rat-
ings are less positive for this specific situation (i.e., SPT,
N = 1) than the k-NN ratings. This indicates that there is
a loss of information in the ‘eager’ style of ANN training
through compression relative to the ‘lazy’ style of k-NN
training, which retains example data without compression.
The 100% responses to PER (even for N = 1) show the
ANN to be effectively insensitive to the motion information
in the datapoints. INV, TOP, OBQ, LPT, SSR and RAN
are all strongly negative for the ANN. This accords with
the human data (Table 1) for the latter three categories
but INV and OBQ should be positive whereas TOP should
be indeterminate.

It seems that this simple ANN model is acting as a very
crude dichotomiser and, as a result, it is unsatisfactory as a
model of human perception. Perhaps its ‘eager learning’
compresses and/or discards too much. However, as men-
tioned above, an increase in hidden units does not improve
the performance. Rapid convergence (see above) indicates
that the machine can find discriminating features within
the training set quite quickly, so the ANN is apparently
doing something quite basic. It appears to be finding
‘shortcuts’ that are useful for distinguishing NOR from
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RAN categories, but do not give good generalisation on
some of the unseen categories.

One striking observation is that the spatial scrambling
(SSR) produces strongly negative ratings whereas the phase
scrambling (PSR) yields strongly positive ratings. The main
difference between these is that the x–y coordinates of the
joints are severely disrupted in SSR but less so in PSR. This
led us to hypothesise that the ANN might simply (as a
‘shortcut’) be learning the absolute values and/or range
of x–y positions occupied by the dots while remaining
insensitive to the motion information encoded in the data-
points. This is consistent with what was found using the
k-NN model, i.e., static cues appear to be primary since
these simple models are essentially classifiers of static pat-
terns and/or the rasterised-scan input is not retaining
motion information in usable form.

If this hypothesis were true, then INV, TOP and OBQ
would (as found) merit no positive responses as these are
structurally different from the NOR category; the scanned
dots occupy altogether different positions and hence differ-
ent ranges. As the PER category has the same spatial struc-
ture as NOR but different temporal ordering, the hypothesis
holds good. Also, for the PSR category, although different
joints/dots have different initial phases, the range of spatial
positions over the entire gait cycle remains the same.

To test this hypothesis, we retrained the ANN on data in
which the height of individual MLD sequences was varied

randomly in the range [0.2,1.0]. (Note that the height was
fixed for all frames of any given sequence.) By disrupting
the y-scale, this was intended to prevent the machine from
focusing solely on spatial information, producing a simple
dichotomy on this basis, at the expense of temporal informa-
tion. Accordingly, our expectation is that the PER and PSR
categories should, at least, become less strongly positive.

The responses of the retrained ANN are illustrated in
Fig. 14. In contradiction of our hypothesis, these are broadly
similar to those shown in Fig. 13 for the original ANN, i.e.,
the PER and PSR categories remain strongly positive in gen-
eral. There are, however, two differences. First, there is a lar-
ger response for the LPT category, which is now close to
being indeterminate. This is perhaps to be expected, since
the random rescaling of the y-axis amounts to a large part
of the large perturbation, making the test data more like
the training data. Second, and very strikingly, positive
responses to the N = 1 data are entirely obliterated in spot
condition, but not in absolute condition. It seems that, in
absolute condition with N = 1, the ANN is able to distin-
guish the NOR and RAN categories by some combination
or correlation of the characteristic x-positions of the body
and the relative limb positions in the former which are absent
from the latter. In spot condition, this correlation is
destroyed. For N P 9, however, the ANN is able to use
the context information to infer x-motion characteristic of
walking humans in the NOR case, without regard to any

(a)

(b)

Key:

Fig. 13. Biological motion detection with ANN model: generalisation performance for (a) absolute condition and (b) spot condition.
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correlation with relative limb positions, and to contrast this
with the absence of such motion in the RAN case.

8. Discussion and conclusions

The main purposes of our psychophysical study of 93
subjects were to gain labeling data for training and assess-
ing the machine-perception models but also to provide a
basis of comparison with the machine-learning models.
There was, however, one interesting observation from this
study in its own right, namely that our subjects judge the
INV category to be positive whereas the literature indicates
this category to have been negative in previous studies.
Although experimental differences between our study and
earlier work are not precisely comparable, we have inter-
preted this in the light that the addition of feet to the
MLDs gives our subjects additional information assisting
body-shape recognition that was not available in earlier
studies in which feet ‘joints’ were absent.

Regarding machine perception, the main questions
addressed by our study were as follows (Section 7):

(1) Can a machine classifier be trained on data alone –
without prior world knowledge or experience of
physical laws and biological constraints governing
movement of humans – to reproduce human responses
to MLDs?

(2) If so, what can we learn about human perception
from analysis of the trained classifier responses?

Results indicate that the answer to question (1) is essen-
tially negative, at least as far as our attempt to do this is
concerned. However, much will depend on the training,
and on the way that the spatio-temporal information is
represented and presented to the machine. The rasterised
representation used here is only one of many possible
and, as pointed out earlier, it only approximately maintains
correspondence between joints across consecutive frames.
At this stage, we know neither the extent to which corre-
spondence is disrupted, nor the precise effects of this on
results, although there is reason to think that our input rep-
resentation has problems. A priority for future work is to
explore the consequences of our input representation.
One way that we might introduce motion information
without ‘‘pre-solving’’ the correspondence problem in the
way that we were reluctant to do in this work is to include
‘difference images’, much like the delta features used in
speech and speaker recognition, where dots in each static
image are replaced by vectors pointing to the nearest dot
in the subsequent image.

Although we find that the k-NN classifier is a more
accurate model of human performance than the ANN –
perhaps because generalisation is less of an issue – neither
is able to model correctly the (weakly) positive human

(a)

(b)

Key:

Fig. 14. Biological motion detection with ANN model trained on randomly resized data for (a) absolute condition and (b) spot condition.
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responses to the INV category, and the differential human
responses to the TOP and OBQ categories. We have con-
jectured that the human responses indicate that world
knowledge (about body shape) is being used, and this sort
of knowledge is only indirectly available to the machine-
perception models through the NOR (positive) training
data. As the machine-learning models do not have the
capacity of rotation as humans do, a low response for
the INV category is understandable. No doubt, responses
more in line with the human data could be obtained by
training the machine models on INV and OBQ data as
positive instances and on TOP data as negative, but the
strength of any such model must lie in its ability to gener-
alise to unseen data. Ultimately, if we train on all 12 cate-
gories, any possible explanatory power is lost.

The largely positive responses for the PSR category for
both k-NN and ANN models, indicate that the machine is
less sensitive to the phase than to the static information.
This almost certainly derives from the fact that these mod-
els are at heart recognisers of static patterns, as well as
from imperfections of our input representation. Future
work should consider models which are more capable of
representing temporal, sequence information, such as hid-
den Markov models (HMMs). There is already some inter-
est in the literature in the use of HMMs for gait analysis
(Lee, Dalley, & Tieu, 2003; Meyer, 1997; Meyer, Pösl, &
Niemann, 1998; Sundaresan, Roy Chowdhury, & Chell-
appa, 2003).

Consistent with our desire to minimise initial assump-
tions, the machine-learning methods used here are what
are sometimes called parametric, or ‘model-free’. That is,
the learning system is given no ‘higher-level’ information
about how limbs fit together to form bodies, how bodies
move during walking, etc. other than that implicit in the
training data. This is what we have characterised as ‘world
knowledge’ throughout this paper. There is, of course, a
long tradition in computer vision of model-based process-
ing, including applications to human gait/walking (e.g.,
Hogg, 1983; Kale, Cuntoor, & Chellappa, 2002; O’Rourke
& Badler, 1980; Rehg et al., 1995; Wachter et al., 1999;
Yam, Nixon, & Carter, 2004). The indications of this work
are that such approaches should be seriously considered in
future work, as a way of breaking out of the ‘closed world’
assumptions of the k-NN and ANN classifiers.

Considering the answer to question 2, we cannot claim to
have a machine-perception model that can be trained on
data alone, without world knowledge, to replicate human
data on detection of biological motion. On the contrary,
as discussed above, we believe successful replication will
require an approach in which world knowledge is supplied
via some appropriate model of human body disposition
and characteristic limb movements during walking. But this
is not to say that the work reported here is in any way
unsuccessful. In fact, we have learned a great deal, not least
that human subjects appear to use prior knowledge to
detect human motion in moving light displays, and a
machine-perception model replicating the human data will

need to do likewise. This points the way towards a realisa-
tion in the future of the potential that studying human
and machine perception in parallel undoubtedly offers.
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