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Chapter 1  

 

 

Introduction 

 

 

 

One advantage that humans have over current artificial intelligence (AI) systems is a 

personal history of specific events from their past that they can draw upon to improve 

their learning and decision making.  This episodic memory was first described in depth 

by Endel Tulving (1983, 2002).  Tulving’s focus is phenomenological and in particular 

distinguishes episodic memory from semantic memory.  In particular, episodic learning 

remembers events and history that are embedded in experience, while semantic learning 

extracts facts from their experiential context.  Thus a memory of looking out over the 

Grand Canyon during your last family vacation is an episodic memory; however, if 

someone asks what state the Grand Canyon is in, we would typically use semantic 

memory to answer (unless the answer relies on the recall of a specific episode where 

someone is telling you where the Grand Canyon is). 

The ability to remember where you have been, what you have sensed and what 

actions you have taken in various situations provides a knowledge base of information 

that is invaluable for acting in the present.  Knowing your personal history facilitates 

your ability to perform several cognitive capabilities in the context of sensing, reasoning 

and learning: 

Sensing: 

• Noticing Significant Input  – detecting what is important about a given situation 

by its relative familiarity 
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• Detecting Repetition – realizing when you are repeating the same series of 

actions and altering your behavior as a result 

• Virtual Sensing – retrieving past sensing of features outside current perception 

that is relevant to the current task 

Reasoning: 

• Action Modeling – predicting the immediate outcome of your actions 

• Environment Modeling – using past experience to predict how the environment 

will change 

• Recording Previous Successes/Failures – using past performance to guide future 

behavior 

• Managing Long Term Goals – keeping track of a plan and what steps in that 

plan have been accomplished so far 

• Sense of Identity – understanding one’s own behavior in relation to other agents 

Learning: 

• Retroactive Learning – reviewing experiences and learning from them when 

sufficient time (or another resource) becomes available 

• Reanalysis Given new Knowledge – relearning from experience upon receiving 

new knowledge 

• Explaining Behavior – reviewing your past actions to others for mutual benefit 

• “Boost” other Learning Mechanisms – provide a database of knowledge that 

can be manipulated by other learning mechanisms 

Despite this array of benefits, the vast majority of AI agents lack an episodic memory.  

This does not mean that they lack all the cognitive capabilities listed above.  Specialized 

algorithms can provide individual cognitive capabilities, but if all of these capabilities are 

to be supported, doing so with specialized algorithms would lead to redundant 

functionality that could be provided more efficiently by a single episodic memory. 

Therefore, a general, task independent episodic memory is a summarily efficient 

approach to providing an agent with a wealth of functionality.  

As an example, consider an agent that is navigating in a two dimensional maze.  

Using only its own local percepts, it navigates gathering resources and using them to 
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attack and defend itself from other agents in the maze1.  Episodic memory can be 

invaluable to this agent.  It can use its episodic memory to evaluate the resource cost vs. 

gain of taking certain actions.  When the agent is about to run out of an essential 

resource, it can use its virtual sensors to recall and navigate to the location of that 

resource and replenish it.  Upon sensing a new object in its world, the agent’s episodic 

memory allows it to recognize that it has not seen the object before and investigate the 

object.  When it meets an enemy, the agent can examine the past success or failure that 

resulted from similar situations to determine how best to engage the enemy. 

A flexible way for an agent to benefit from its experiences is to simply record 

them so that they can be examined and reexamined when they become appropriate.  This 

appears to be the approach that evolution has taken with humans and episodic memory.  

Episodic memory does not preclude humans (or intelligent agents) from distilling 

experience into knowledge.  Instead, episodic memory can assist that process and 

ultimately improve cognition.  Certainly, there is evidence that human cognition is 

severely crippled by the loss of episodic memory.  The difficulties that amnesiacs face 

have been documented (Tulving 2002) and were dramatically portrayed in the movie 

Memento (Nolan 2001).  Therefore, we have conducted an investigation of algorithms for 

artificial episodic memory.   

This is not a trivial task.  The prospect of recording everything that an agent 

experiences is problematic.  Any attempt to reduce the size of the memory store faces the 

problem of selecting what is “important” in a task independent manner.  Being able to 

efficiently retrieve a single, appropriate experience from such a knowledge base is 

daunting.  The first goal of this research is to engage these issues and explore how an 

effective, general purpose, task independent episodic memory system can be built and 

built to operate efficiently.  

Concurrently, the second goal of this research is to explore how such an episodic 

memory system can be exploited by an agent.  Specifically, we attempt to investigate 

whether episodic memory is sufficient to support a subset of the previously-listed 

cognitive capabilities across a range of tasks in two environments.  This research suggests 

                                                 
1 TankSoar, a domain that meets this description, will be introduced in the next chapter. 
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that episodic memory can be applied in a wide variety of ways and can enhance the 

performance of AI agents with a range of goals and behaviors.   

Investigating whether episodic memory is the best learning mechanism for any 

given domain is not a goal of this research.  In particular, some of this research 

demonstrates that episodic memory works effectively in concert with other learning 

mechanisms and does not necessarily compete with them. 

Modeling human behavior (cognitive modeling) is also not a goal of this research. 

However, much of the inspiration and some ideas for this research come from the field of 

psychology.  Human memory is complex and has many characteristics whose necessity 

for effective behavior is unknown (see Appendix A).  Moreover, at this time there is 

inadequate data and theory to form the basis for a detailed model.  For now, the 

functional computational constraints provide sufficient direction for the research. To date, 

this approach has been to introduce new functionality as demanded by the tasks that the 

agents perform and to temper open-ended design decisions with input from psychology. 

Throughout this research, we have alternated between these two goals: the 

engineering problem of building the episodic memory and the research problem of 

investigating its effectiveness.   

As you will see, the majority of this dissertation follows this paradigm.  Chapter 2 

begins with a framework for building an episodic memory and describes a set of 

requirements for such a memory system.  Then, Chapter 3 goes into detail about the 

cognitive capabilities listed above and how they might manifest both in humans and 

intelligent agents.  Chapter 4 discusses the prior work that has influenced and inspired 

this research.  In Chapter 5, we present the Soar architecture and why it is well suited for 

this research. Chapter 6 provides a detailed description of the two environments that were 

used for both goals of this research.  Chapter 7 describes the evolution of this episodic 

memory system with the framework defined by Chapter 2 using examples from those 

environments.  Chapter 8 returns to the goal of evaluating the effectiveness of episodic 

memory by describing the agents we have built to demonstrate the cognitive capabilities 

granted by episodic memory.  The behavior of these agents also exhibits the motivation 

behind some of the design decisions described in Chapter 7.  We conclude in Chapter 9 
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with a discussion of the results as a whole, their implications, and how we expect them to 

drive future progress in episodic memory research.  
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Chapter 2 

 

 

Requirements for an Episodic Memory System 

 

 

 

This chapter presents a comprehensive examination of the design decisions and 

challenges that must be considered when constructing an episodic memory.  Doing so 

provides two benefits.  First, this analysis motivates effective comparison between 

disparate episodic memory systems both within the context of this research as well as 

future research. For example, we use this benefit in Chapter 7 when we present the 

evolution of the episodic memory system used for this research.  Second, identifying the 

major decisions we faced provides motivation to explore other decisions at the same 

choice points and thus leads naturally into some of the experiments discussed in section 

7.4.   

In this chapter, we also discuss the functional and architectural requirements that 

influenced the design choices made as part of this research.  Functional requirements are 

derived from the definition of episodic memory (e.g., versus another memory or learning 

mechanism).  The architectural requirements stem from the decision to embed this 

episodic memory system into an architecture.  This decision also motivates the discussion 

of where to separate agent from architecture at the conclusion of this chapter. 

2.1 Framework for an Episodic Memory System 

Episodic learning can be decomposed into the following major phases 

• encoding – how a memory is captured and stored 
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• storage – how a memory is maintained 

• retrieval – how a memory is retrieved.  

Additionally, there is an external (but compulsory) phase: How a retrieved memory will 

be used by the agent.  Some of the most basic design decisions, such as the structure of 

the representation of a memory, have impact across all phases.   

By refining these three high level phases, we arrive at a larger set of steps that 

comprise a framework of all the points where a major design decision must be made in 

the implementation of an episodic memory.  In effect, each of these steps is an axis, and 

each decision, selects a point on that axis.  Together, the axes define a space of episodic 

memory implementations.  This original framework was based upon the work of Endel 

Tulving (1983) and then further refined as we encountered issues or other research.  

There is not a definitive framework, but it does encompass all implementations and ideas 

we have considered to date. 

Encoding 

• Encoding initiation  – when an episode is recorded. There are many possible 

events that could trigger its encoding.  This might be as simple as recording a new 

memory at regular intervals.  Alternatively, a new episode might be recorded 

whenever the agent takes an action in the world, whenever there is a significant 

change in its sensing, or when something unexpected occurs. 

• Episode determination – what information is stored in an episode.  An agent’s 

state consists of a set of features that represent its current sensing and information 

derived from its processing.  The content of an episode consists of a subset of 

these features from a particular point in time.  This subset could consist of only 

the sensing information or only the internally derived features.  The episode might 

consist of only those features that have been attended to by the agent.  It is at this 

stage that the episodic memory system must select what is “important” about the 

agent’s current state that should be stored for possible later retrieval. 

• Feature selection – which features in an episode will be available for matching 

against a cue during the retrieval phase.  The selection of features may include the 

entire episode or as little as one or two key features.  If a subset is selected, this 
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reflects the episodic memory system’s prediction about what features will be 

useful when matching future memory cues.   

 

Storage 

• Episode structure – how the encoded episode is stored.  The structure of the 

episode is often dependent upon the computational architecture upon which it is 

built.  The structure must support the other phases of the memory system within 

the constraints of the requirements of the architecture.  In particular, the structure 

must support efficient and stable storage as well as expedient episode retrieval. 

• Episode dynamics – how stored episodes change over time.  This may manifest 

as cross-indexing with other memories.  It may include a form of memory decay 

such as a loss of detail, a decline in activation, a merging with other memories or 

outright removal from the episodic store. 

 

Retrieval 

• Retrieval initiation  – how memory retrieval is triggered.  The agent may 

deliberately initiate memory retrieval in order to accomplish a specific subtask 

where it deems that previous experience may be useful.  Episodic retrieval may 

also be triggered spontaneously by the presence of strongly familiar elements or 

unexpected sensing. 

• Cue determination – how data are selected or created to cue the retrieval of an 

episode.  Memory cues can consist of a partial memory that is matched directly to 

other memories in the store.  They can also consist of only a few key features that 

the retrieved episode should or should not contain.  Finally, a memory cue can 

also contain meta-information that is relative to the current state or the most 

recent retrieval (e.g., retrieve a memory of an episode that occurred after some 

other episode). 

• Selection – how the retrieved episode is selected based upon the given cue.  This 

is the critical matching phase of memory retrieval.  Matching can be exact or 

partial.  Different features of the cue can be given different weight in the match.  
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The match algorithm can also be influenced by the agent’s current sensing and 

internal state.  Multiple memories can be retrieved or just a single episode.   

• Retrieval – what aspects of the episode(s) are retrieved and how they are 

represented.  The result of a match can be as simple as a Boolean yes/no (i.e., 

recognition) or it can include all the data structures in the matching episode.  

Typically, the episodes are recreated or referenced in some location where the 

agent can examine them. 

• Retrieval meta-data – what meta-information about the retrieved episode is 

available.  Meta-data that could be available includes: information about the 

strength of the match between the episode and the cue; temporal information 

describing when the episode occurred; and information about when or how often 

the episode has been retrieved in the past.   

Use 

Once the episode is retrieved, how it is used to aid reasoning?  This is not a part of the 

design of the episodic learning system, but depends on the capabilities of the embedding 

architecture, general methods, and task knowledge.  In this dissertation, we demonstrate 

how episodic memory can be used to enhance an agent’s cognitive capabilities.  We 

discuss these capabilities in detail in Chapter 3. 

 

2.2 Functional Requirements 

Episodic memory has several characteristics that define it and may have an impact on its 

implementation. Below are some of the most distinguishing features of episodic learning 

and how those features impact the design of an artificial episodic memory: 

• Architectural  –  Episodic memory is a functionality that should not change from 

task to task.  (However, agent reasoning can impact episodic memory indirectly 

by affecting the determination of what is stored such as through deliberate 

rehearsal.) As such, it should be part of the underlying architecture with which an 

agent is built. 

• Automatic – Memories are created without a deliberate decision by the agent.  

The nature of the episodic memory is that it records experience without 
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adjustment or distillation into knowledge.  The underlying assumption is that the 

agent does not know which aspects of its experiences will be relevant to decisions 

it makes in the future.  If an agent must decide when or how to record each 

episode, then intellectual power must be expended that could be spent on the task 

itself.  

• Autonoetic – A retrieved memory is distinguished from current sensing.  Clearly, 

an agent that believes a retrieved episode is actually part of its current situation 

will make decisions that are not necessarily consistent with its current situation.  

To prevent this, retrieved episodic memories should be marked as such by the 

architecture or occupy a reserved space in the agent’s working memory. 

• Temporally Indexed – The agent has a sense of the time when the episode 

occurred.  Because an episodic memory describes a particular, unique moment in 

time, some temporal information is a part of any episodic memory.  This need not 

be an exact time but it should convey a sense of the relative time of the episode 

with respect to other episodes. 

2.3 Architectural Requirements 

The first functional requirement (above) is that we create an architectural episodic 

memory.  To meet that requirement an episodic memory must function across many tasks 

and behave in real time.  This section introduces and describes the specific requirements 

that allow this.  All of these requirements were either met or at least addressed as part of 

the research. 

• Task Independent – Task independence has obvious value but seems particularly 

critical for episodic memory.  The programmer of a task-specific episodic 

memory must decide in advance which features of an episode will be important 

and which features can be ignored.  However, the features that are not recorded 

may be features that are needed in situations that the agent cannot predict in 

advance. A task-independent episodic memory can be used in domains that the 

agent encounters but for which it is not programmed.   

However, implementing a task-independent episodic memory is difficult and 

has been (and will likely continue to be) a central theme of this research.  Among 
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the steps that are difficult to perform in a task-independent manner are the 

following: 

o Deciding when to record a new episode 

o Deciding what features of the agent’s state should be recorded in an 

episode 

o Deciding how to weigh the features of the cue and candidate memory 

during a match 

o Deciding what memories or features might be discarded by a forgetting 

mechanism 

An episodic memory can be task-independent and still be informed about the 

task by the agent.  During the course of this research, we examined multiple 

mediums for communication between the episodic memory system and the agent.  

The most concrete of these are the ability for the agent to provide commands 

along with an episodic memory query (see section 7.4.3.1) and the additional 

meta-information provided with a retrieved memory (see section 7.4.3.2). 

• Low Resource Demand – If the episodic memory system interrupts, or severely 

slows the agent’s reasoning, then the cost of the system can outweigh its value.  

As a result, there should be a bound on the computational overhead for recording, 

maintaining and retrieving episodes.  We describe the work we have done so far 

to reduce the resource load of the baseline episodic memory system in section 

7.4.2 

• Non-Invasive Integration – When an episodic memory system is added to an 

existing agent, the system should not require any changes to that agent beyond 

those that actually use the episodic memory.  This means the episodic memory 

system observes the agent and records episodes without being told to do so and 

episodic retrieval occurs only when it is triggered by the agent.  All of the 

implementations of episodic memory presented in this research conform to this 

requirement. 

 

When building an architectural episodic memory, the issue of division of functionality 

between the agent and the architecture must also be addressed.  This division is not a 
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requirement, per se, but throughout this research, we have had to face this subtle yet 

pervasive issue.  Some functionality clearly belongs in the architectural implementation 

of the episodic memory module (e.g., matching).  Some functionality clearly belongs in 

the agent (e.g., processing the retrieved memory).  But some functions can occur in one 

or both places.  For example, an agent might construct the cue for a deliberate retrieval 

but the architecture must construct the cue for a spontaneous retrieval. 

There are clear tradeoffs between faster, task-independent architectural 

implementations and flexible, more precise knowledge-based implementations.  

Specifically, the match can be improved by allowing the agent to influence this process 

(see section 7.4.3.1) but the architecture cannot rely upon this influence without violating 

the requirement for task independence. 

 The divide between architecture and agent also has implications for agent 

performance both in terms of memory usage and response time (see section 7.4.2).  An 

architectural implementation is more efficient but the agent has less control over it.  An 

agent implementation is slower but more precise. 
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Chapter 3  

 

 

The Promise of Episodic Memory: Cognitive Capabilities 

 

 

To design a useful episodic memory system, we must be aware of how it will be used.  

For this thesis, this process began as an analysis of environments where episodic memory 

would be effective.  It evolved into a catalog (below) of the cognitive capabilities that are 

supported by episodic memory.  Episodic memory has the potential to support all these 

cognitive capabilities across sensing, reasoning and learning: 

 

Sensing: 

• Noticing Significant Input  – An episodic memory can provide a measure of 

recognition of the features of an environment.  This occurs when the agent 

retrieves memories of past situations that are similar to the current situation.  This 

capability is particularly important in environments that change independently of 

the agent’s actions.  If a situation has unexpectedly changed, that is a signal that 

those aspects that changed may deserve attention. 

• Detecting Repetition – Computers are notorious for repeating their mistakes.  

Even learning AI agents are rarely immune to situations wherein they repeat the 

same sequence of actions repeatedly.  Avoiding this situation is possible if an 

agent can compare its current situation and proposed actions to its memory of its 

past can detect and avoid repeating an error. 
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• Virtual Sensing – Events or sensing that may not have been relevant to the task 

when experienced may unexpectedly become relevant in the future (e.g., Where 

did I last see my car keys?).  Episodic memory provides an avenue for expanding 

an agents sensing beyond its immediate perceptions by retrieving past sensing of 

areas outside its immediate perception.  In effect, it provides another sensory 

input to the decision process.   

We demonstrate this cognitive capability in section 8.4. 

Reasoning: 

• Action Modeling – Episodic memory allows an agent to predict immediate 

changes in its environment that result from a given action.  It does this by 

recalling episodes where it took the same action in a similar situation and then 

retrieving the situation that immediately followed it. In addition, if an expected 

outcome does not occur it can signal to the agent that additional learning is 

necessary.   

In this research, we examine the value of action modeling with two different 

domains.  See section 8.1. 

• Environment Modeling – In many domains, the environment has its own 

dynamics (e.g., “Sunset has been around 6:30pm lately.”).   If an environment 

includes other agents, these agents can also change the environment in ways that 

are significant to the task (e.g., “Bob likes to play chess aggressively and usually 

brings his queen out early.”).  An episodic memory provides a record of these 

changes and, thus, allows the agent to predict them in similar situations in the 

future.  

• Recording Previous Successes/Failures – Many tasks can only be accomplished 

by learning a series of steps to perform in an appropriate order.  Often, success or 

failure is not apparent until the entire sequence is completed.  For example, an 

agent navigating a maze must learn a best action to take at each point in the maze.  

Such an agent does not know it has succeeded until it exits the maze. 

As a result, an agent that is attempting to learn the right steps to 

accomplish a task cannot rely on action modeling alone to succeed.  Instead, an 
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agent must be able to recall sequences of actions that led to a goal (or 

alternatively, failure to reach that goal). 

In section 8.5, we introduce an agent that demonstrates this cognitive 

capability in a complex domain and discuss the requirements for an agent to be 

successful. 

• Managing Long Term Goals – An agent that has multiple goals must often 

switch between them because of environmental demands and opportunities.  In 

addition, long term goals often require multiple-step plans with their own 

subgoals to successfully complete.  To schedule these goals, an agent needs to 

remember the progress it has made toward each one, and whether they are still 

active.  When an agent with episodic memory considers a long term goal, it can 

use its memory to determine which subgoals have already been accomplished by 

retrieving memories of a goal being completed or undone and comparing the 

relative times that they occurred. 

• Sense of Identity – For humans, one’s sense of identity is rooted in memories of 

past experiences.  As a result, granting an episodic memory to an intelligent may 

help grant it a similar sense of identity.  An agent with a sense of identity gains 

greater ability to be introspective and analyze its behavior compared to the 

behavior of other agents.  This, in turn, allows the agent to better model other 

agents’ behavior and improve its own behavior by imitating successful differences 

or exploiting perceived weaknesses. 

Learning: 

• Retroactive Learning – Often, it is not possible to learn while an event is 

occurring because the agent lacks the specific information or resources that it 

needs to learn. For example, an agent in a real-time environment may not have 

time to apply an iterative learning algorithm while it is performing a task.  

However, when time becomes available, the agent can replay the events and learn 

from them then.  Episodic memory allows previous experiences to be relived or 

rehearsed once the resources are available so it can be reanalyzed with new 

knowledge or additional experiences.   

We demonstrate this cognitive capability in section 8.2. 
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• Reanalysis Given new Knowledge – When a learning agent receives new 

knowledge about its environment, inferences and behavior it has learned in the 

past may no longer be valid.  An episodic memory allows an agent to review its 

experiences that relate to the new knowledge and change its behavior accordingly.  

For example, an agent that finds a skeleton key can reconsider the actions it took 

when it encountered a locked door. 

• Explaining Behavior – The ability to remember what you did in the past allows 

you to explain your actions to others and allow them to instruct you or you to 

instruct them (e.g., Why did you go left instead of right?).  An agent can use its 

episodic memory to recall the situation in question as well as the decisions it 

made in that situation.  A human user or an external learning mechanism can use 

this information to improve future behavior. 

•  “Boost” other Learning Mechanisms – An episodic memory store provides a 

wealth of material for other learning mechanisms.   

In section 8.3, we discuss experiments designed to demonstrate this 

cognitive capability with Soar’s chunking mechanism. 



 

 17 

Chapter 4 

 

 

Related Work 

 

 

 

The concept of memory is a familiar part of human experience.  In the vernacular, saying 

that you "remember" something refers to episodic memories.  In contrast, semantic 

memory and procedural memory are what you "know" or "can do" respectively.  

Nonetheless, acknowledging the distinction between long term memory systems has been 

a long time coming.  Perhaps as a result, there is a dearth of literature on the subject in 

the field of artificial intelligence.  While psychology has many recent studies of human 

episodic memory, few of them offer insights that aid in the creation of an artificial 

episodic memory.  This section discusses the research we could find that has been done to 

date in both fields and describes how this research builds upon that progress. 

4.1 Psychology 

The term "episodic memory" was first coined by Endel Tulving in 1972 (Tulving 

1972).  His study of the distinction between episodic and semantic memory in humans 

was covered in more depth about a decade later when he published a complete 

phenomenological study of episodic memory including high level description of the 

episodic memory architecture (Tulving 1983).  This work was the seed for this study of 

the space of implementations for an episodic memory (see section 2.1).  Tulving’s 

phenomenological examination of human episodic memory helped us define the 

behaviors and functions that are inherent to an episodic memory and provided hints about 

possible future design alternatives.   
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In the more recent past, Martin Conway proposes a distinction between short term 

episodic memory (which spans seconds or minutes) and longer term autobiographical 

memory which can persist for hours or even a lifetime (Conway 2001).  Conway's 

phenomenological basis for this distinction is based primarily on memory scope and level 

of detail.  No research we know of attempts to model this difference though it may be 

rooted in an integration of a semantic and episodic memory system (see section 9.2.1.1). 

Modern technology has allowed psychologists to begin to look for the anatomical 

basis of episodic memory (Tulving 2002, Baddeley et al. 2002).  Among neuroscientists, 

it has long been believed that the region of the brain called the hippocampus is the seat of 

memory.  Memories are registered here and then migrate over time to the neo-cortex 

(Marr 1971).  Models of long term memory that are based upon this theory have been 

built.  Some of these models exhibit multiple, familiar properties of episodic memory 

(Moll and Miikkulainen 1997).  While we are not aware of any of these models being 

used by an AI agent, these experiments provide further evidence for a distinction between 

episodic and semantic. 

In the field of cognitive science, Altmann & John (1999) built a model of episodic 

memory model that was based upon the recorded behavior of a computer programmer. 

While informative, the model was built specifically for that task (computer 

programming).  The model was also not architectural or automatic (two requirements we 

defined in section 2.2).  Specifically, it required deliberate processing that could compete 

with the task at hand).  

ACT-R (Anderson & Lebiere, 1998) creates long term memories via its 

declarative learning mechanism.  Each chunk contains partial contents of the agent's 

working memory.  This approach bears some similarities to the implementations 

presented in this research but it is most accurately described as a semantic memory 

mechanism.  In particular, the chunks cannot be used to form a complete picture of a past 

event, nor do they contain any temporal information.  Nonetheless, ACT-R's concept of 

using buffers to store retrieved long term memories was the model for the interface in this 

own system. 



 

 19 

4.2 Artificial Intelligence 

Almost no artificial intelligence research is focused directly on episodic memory for 

intelligent agents.  The most notable exception (Ho, et al. 2003) describes multiple 

experiments with an agent that uses its episodic memory to backtrack to previously seen 

locations.  Their work demonstrates the cognitive capability we describe as virtual 

sensors (see section 8.4).  The system, while strongly task specific, provides some 

support for the hypothesis that episodic memory is an essential ingredient for achieving 

general intelligence. 

In instances where researchers attempted to build a general purpose agent it 

sometimes became necessary to include an episodic memory.  In particular, Vere and 

Bickmore (1990) implemented a limited episodic memory of events for their Basic 

Agent.  Because of its peripheral nature, the effectiveness, efficiency and completeness of 

their agent's episodic memory implementation was not investigated.  However, the fact 

that their attempt at a general AI required an episodic memory is telling.  The Basic 

Agent also encountered problems with the performance of its episodic memory as the 

episodic store grew in size.  In sections 7.4.2, we present one approach to reducing this 

effect.  In section 9.2.4, we discuss additional future research that could address it. 

Similarly, researchers attempting to build believable non-player characters for 

roleplaying games found that their agents needed an episodic memory to provide 

consistently effective interactions with human players (Brom, et al. 2007). 

Episodic memory research is closely related to case-based reasoning (CBR) 

(Kolodner 1993, Shank 1999).  In CBR, each case describes a problem that the agent 

faced and a specific solution to that problem.  By maintaining a database of these cases, 

an agent can act effectively by re-using them in situations that recur or adapt them to new 

situations.  Cases are often described by filling a fixed number of contextual fields which 

are designed by a human.  While individual cases can be adapted new problems, no CBR 

systems that we know of adapt cases intended for one task for use in an entirely different 

task.   

Nonetheless, research in CBR highlights some important research that is equally 

relevant to episodic memory.  Goodman (1993) describes using a CBR systems’ case 

library to predict the future.  He found that given a particular case, he could predict future 
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cases into the near future and individual variables even further into the future.  This 

alternate use of a case library demonstrates the cognitive capabilities we call action 

modeling and learning from past success and failure (see section 8.5). 

Episodic memory is, in effect, the ultimate case database.  The episodic memory 

system presented in this research does not rely upon its episodes having any particular 

structure or content.  Nor does the episodic memory system assume its stored episodes 

will be used in any particular way.  That decision is left entirely to the agent.  Instead, we 

have focused on creating a task independent, architecture episodic memory that can be 

used to support many different cognitive capabilities (see Chapter 3) including those that 

can be demonstrated via case-based reasoning. 

In the field of machine learning, instance-based techniques for identifying the 

agent’s current state bear a strong resemblance to episodic memory (McCallum 1994).  

McCallum's approach is to record the agent’s percepts at given time intervals and encode 

the agent's state as a sequence of these percepts.  While this episodic memory is fairly 

simplistic and task specific, it demonstrates that giving an agent a personal history can 

allow it to overcome the extreme difficulty of a partially observable environment.  

McCallum’s experiments demonstrate the cognitive capability we call virtual sensing. 

Another machine learning technique reminiscent of episodic memory is locally 

weighted learning (Atkeson, et al. 1997) and the closely related approaches called lazy 

learning (Sheppard and Salzberg 1997) and continuous case-based reasoning (Ram & 

Santamaría 1997).  All these learning mechanisms are a form of unsupervised learning in 

which the agent makes no effort to generalize its experiences.  Instead, the agent simply 

stores them in much the same way than an episodic memory stores episodes.  When a test 

case is presented, the agent selects its action by taking a weighted average of the actions 

taken in training cases that are "near" the test case.  Thus, these algorithms rely upon both 

the cases and the output consisting of a fixed number of continuous values and are thus, 

by definition, task specific.  Nonetheless, these algorithms are particularly effective at 

control tasks.  Episodic memory can be thought of as providing a vehicle for the most 

general form of lazy learning.  Many of the advances in finite nearest neighbor search 

that have been made as part of nearest neighbor search are relevant to the matching 

algorithms used in this research (see section 7.4.1). 
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Rhodes (1997) describes a prototype for an episodic memory aid for humans via a 

wearable PC.  His agent collects data from the user’s environment and then prompts the 

user with appropriate information based upon where the user is and what he is doing.  

Rhodes’ episodic memory uses a database that is indexed with a word vector.  The agent 

continuously calculates a cue vector based on its textual content.  Whichever database 

entry’s word-vector most closely matches the cue is summoned and presented on a head-

up display.  This AI agent effectively provides virtual sensors to a human agent. 
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Figure 4-1: Cognitive Capabilities Demonstrated by Previous Research 
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Figure 4-1 summarizes existing research in terms of the cognitive capabilities that 

are defined in the previous chapter.  The related AI research focuses on one or two 

particular cognitive capabilities that require episodic memory.  The research in this thesis 

attempts to demonstrate multiple cognitive capabilities in a task independent manner.   

In addition, this research takes a step back and examines episodic memory for its 

own sake.  What is an episodic memory?  How can it be integrated into an agent 

architecture?  What abilities does an agent gain by virtue of having an episodic memory?  

These are the questions we attempt to address in this dissertation. 
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Chapter 5 

 

 

The Soar Architecture 

 

 

Our research does not consider episodic memory in isolation, but instead we explore 

episodic memory as a component of a broader cognitive architecture for the following 

reasons:  

 First, there are already existing arguments for using architecture to develop 

artificially intelligent agents in general.  In particular, an architecture provides a basis for 

comparison between multiple implementations.  It allows existing research to be more 

easily reused and applied to other areas and thus speeding development and allowing 

researchers to produce incremental results.  An architecture also puts clear requirements 

on the overall performance of its constituent subsystems.  (This issue that is particularly 

important to episodic memory and is discussed in sections 7.4.2 and 9.2.4.)   

Second, there is evidence that episodic memory is required for general human-

level intelligence and thus will have to be integrated into a larger system.  Specifically, 

the research of Vere and Bickmore (1990) as well as (Brom, et al. 2007) both suggest that 

episodic memory is a required functionality for achieving a general AI agent.  We’ve also 

established that the cognitive capabilities presented in Chapter 3 do not necessarily 

require an episodic memory but that to implement all of them will require some form of 

recording of events.  Given that many of these cognitive capabilities are necessary for a 

general intelligence, this suggests that episodic memory is a requirement for general AI. 

 Finally, some of the research presented in this dissertation suggests that episodic 

memory is at its most effective when used in conjunction with other learning and memory 
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systems (see section 9.2.1).  To make these disparate systems work together implies a 

medium for communication and cooperation (i.e., an architecture).  

For this research, we selected Soar (Newell 1990) as the architecture in which we 

will embed episodic memory.  Soar is a general cognitive architecture that has been used 

to model a wide variety of phenomena. It shares many of the features of other 

architectures such as ACT-R (Anderson & Lebiere 1998) and EPIC (Kieras & Meyer 

1997). However, more than any other cognitive architecture, Soar is used for both 

cognitive modeling and artificial intelligence research.  As such, it provides an excellent 

test bed for this research. 

Soar represents procedural knowledge as production rules.  Like most other 

architectures of this type, Soar has two types of knowledge: working memory and 

procedural memory.  In addition, it uses a concept for decision making called operators.  

Finally, the version of Soar used for this research includes a working memory activation 

mechanism.  The following sections provide an overview of the details of Soar necessary 

to understand many of the implementation details and experiments presented in this 

dissertation. 

5.1 Working Memory 

Working memory is a short-term declarative memory that encapsulates the 

agent’s entire state including external sensing, internal inferences and architectural 

information.  In Soar, working memory consists of working memory elements (WMEs). 

Each WME consists of three symbols: an identifier, an attribute and a value.  The 

identifier is a symbol generated by the architecture.  The attribute and value are symbols 

defined by a programmer and usually have descriptive names.  The value of a WME can 

be either a constant or the identifier of one or more other WMEs.  As a result, WMEs are 

connected together so that working memory is a directed graph.  This graph is rooted (in 

the same way that a tree data structure is rooted) with the state identifier. Thus, all WMEs 

are connected directly or indirectly to the state identifier. 

A reserved portion of working memory describes the agent’s current sensing (i.e., 

input).  Changes in this sensing can cause rules to fire or retract.  Conversely, a reserved 

portion of working memory is reserved for issuing agent action commands (i.e., output).  
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If specific environment-defined WMEs are created in this location, the agent takes the 

prescribed actions in its environment.  These actions can, in turn, cause changes in the 

environment, which can result in additional changes to working memory via its sensory 

input. 

5.2 Procedural Memory 

Procedural memory (or production memory) is a long term memory that consists 

of a set of production rules that encapsulate the agent’s knowledge about how to act in its 

environment.  Production rules are similar to the if-then statements used in many 

programming languages.  They consist of a set of conditions and actions.  If the 

conditions of a production are satisfied by the contents of working memory then that 

production “fires” by performing its actions.  The actions usually create or remove one or 

more elements in working memory.  When the conditions are no longer met, the 

production “retracts” and the WMEs it created are removed from working memory unless 

they have operator support (described below). 

Changes to working memory made by production rules may in turn trigger the 

firing (or retraction) of additional productions so that this “match-fire” cycle can repeat 

indefinitely.  When the agent reaches a state where no more productions can match, it is 

called quiescence. 

5.3 Operators 

In Soar, all matching productions fire simultaneously.  To avoid conflicting 

behavior that might result from multiple simultaneous actions, Soar supports a special 

entity called an operator.  A production can propose an operator by creating a specific 

type of structure in working memory.  Multiple operators may be proposed at one time 

but once no more rules are ready to fire, the architecture has reached quiescence and only 

one operator is selected.  Selection is controlled by the creation of preferences: directives 

created by operators that test working memory and tell the architecture which operator to 

select.  The selection of an operator can trigger the firing of additional productions.   

Soar operators extend the match-fire cycle of Soar to a five-phase decision cycle 

which repeats indefinitely as the agent executes:  
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• Input  – The agent’s sensory input from environment is updated in working 

memory 

• Propose – Productions fire based upon the changes in working memory.  

Operators are proposed and preference rules compare them.  This phase runs until 

the architecture reaches quiescence. 

• Select – The architecture uses the preferences to select a single operator.  This 

selection is notated in working memory. 

• Apply  – Production rules fire based upon the selected operator.  This phase runs 

until the architecture reaches quiescence. 

• Output  – Any action commands created by the productions are relayed to the 

environment. 

5.4 Persistence of Working Memory Elements 

Soar distinguishes between three types of persistence for working memory 

elements:   

• O-supported – If a production includes a selected operator as one of its 

conditions then any WMEs created by that production persist indefinitely; they 

remain in working memory until they are explicitly removed.  These WMEs are 

called o-supported (operator supported) WMEs.   

• I-supported – Any WME created by a production that does not test a selected 

operator persist only as long as the conditions of production continue to be met.  

These are known as i-supported (instantiation supported) WMEs. 

• Architectural  – Any WME created by the Soar architecture (e.g., WMEs that 

describe the agent’s sensory input) persist until the architecture removes them 

again. 

 

5.5 Subgoals 

There are situations when a Soar agent does not know what to do next.  For example, the 

agent could reach a state in which no rules fire or it could select an operator for which no 

rules exist to apply it.  This situation is known as an impasse. 
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 When a Soar agent enters an impasse, the architecture creates a new subgoal of 

the agent’s original goal.  This subgoal is specifically to resolve the impasse that was 

created.  The subgoal is represented in Soar’s working memory by creating a new state 

structure (i.e., a new root) for the entire graph.  The new state contains a WME that links 

it to the old state so that the new state encompasses all the information in the old state. 

While attempting to resolve the impasse, the agent may enter another impasse.  

This impasse will, in turn, generate yet another subgoal which in turn may generate other 

impasses and resulting subgoals and so on.  As a result, working memory contains a stack 

(as in the fundamental data structure) of states.   

 An agent can resolve an impasse by making changes to the original, parent state 

that allow processing to continue in that state.  Once an impasse is resolved in a particular 

state, all subgoals and corresponding substates are removed and processing continues in 

the goal that created the recently resolved impasse. 

Entering an impasse and creating a subgoal is not an error.  Among other benefits, 

subgoals provide a way for an agent to hierarchically decompose a task into manageable 

parts.  For example, the agent might begin with a subgoal to “win this game of chess.”  

However, in order to accomplish that goal it must decompose that task into a subgoal 

(e.g., “gain control of the center of the board”) which in turn may have other subgoals 

that eventually lead to atomic actions (e.g., “move king’s pawn to the 4th rank”). 

 

5.6 Chunking 

An impasse is also an indication that the Soar agent needs to learn.  If the agent doesn’t 

know what to do next, but subsequently discovers an appropriate action in a subgoal then 

it has obviously learned something.  Chunking formalizes this fact by converting the 

learned knowledge into a new production that will fire on all subsequent occasions that 

the agent reaches the state that caused the original impasse. 

To do this, the architecture records two things: 

• the working memory elements in the parent state that were tested by rules that 

fired while in the subgoal. 
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• the changes that an agent made to the working memory elements in the parent 

state while in a subgoal.   

Collectively, these two sets changes represent what needs to be done to resolve the 

impasse in the future.  When an impasse is resolved, Soar creates a set of new 

productions (called chunks) whose conditions are the WMEs that were tested and whose 

actions are to create the new WMEs that were created.  When the agent reaches the same 

state again, the new chunk fires and prevents the impasse from occurring again. 

 

5.7 Working Memory Activation 

The version of Soar used by this research has been extended to include working 

memory activation (Nuxoll, et al. 2004). All architectural and o-supported working 

memory elements in this version of Soar have an associated activation level. The 

activation level of these WMEs changes as follows: 

• WMEs receive an initial, fixed activation when they are first created. 

• Any time that a WME is tested by a production that fires, it receives an activation 

boost.  

• Any time an action attempts to add an already existing WME, the existing WME 

receive an activation boost. 
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• WME activation levels decay over time using an exponential decay formula: 

 

 

 

 

A i is the activation of a WME at time i.  Time is measured in Soar by decision 

cycles.  β is a base level constant. tj is the number of cycles since the WME was 

referenced for the jth time. d is a learning rate parameter which we set at a fixed value 

(0.8) for all of this research.  
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Chapter 6 

 

 

Evaluating Episodic Memory 

 

 

 

This chapter presents the high level approach to evaluation that supports the pursuit of 

both research goals: exploring the design space of episodic memory systems and 

demonstrating the cognitive capabilities granted by an episodic memory.  The chapter 

begins by presenting a general methodology for evaluating these episodic memory 

systems.  The remainder of the chapter describes the two environments that were used for 

all this experiments and used throughout this description of the implementation of 

episodic memory. 

 

6.1 Evaluation Methodology 

Given the exploratory nature of this part of the research, the effectiveness of the episodic 

memory systems we build are difficult to measure directly.  As a result, we evaluated 

these episodic memory systems indirectly by comparing the performance of an episodic 

memory agent versus one or more control agents.  The approach meets the goal of this 

research by providing qualitative evidence that the agent benefits from the cognitive 

capabilities it gains by virtue of having an episodic memory.   

We have also identified secondary, qualitative goals that are essential for an 

effective episodic memory system.  The complete set of evaluation criteria are as follows: 
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• Demonstrably Improved Agent Behavior – For each domain, we should be able 

to demonstrate that an agent with episodic memory can use its episodic memory 

to perform better than a control agent that begins with some task-specific 

knowledge.  In some tasks, the control agent has only enough knowledge to act 

randomly in the world.  For other tasks, we use fully functional and effective 

agents as this control.  Regardless of the point of comparison, the addition of 

episodic memory should never cause the agent to perform worse than it would 

without that memory.  Performance will be measured in terms of the quality of its 

actions in the domain.   

• Architectural and Task-Independent – The same episodic memory system 

should work with all the agents without need for modification.  

• Acceptable Resource Usage – For all the agents in these tests, this system should 

be able to operate over a long term without exceeding reasonable limits for 

resource usage, especially processing time and memory. 

• Simple Integration – Adding episodic memory to an existing agent should 

require no changes to the agent other than adding the functionality to use the 

episodic memory system. 

 

6.2 Environments for Episodic Memory 

An episodic memory is of no use by itself.  To demonstrate the efficacy of this system it 

was necessary to build agents with specific tasks set in specific environments.  Given that 

task independence is one of these goals, it was essential to have multiple tasks and, 

ideally, multiple environments.  We started with an action modeling task in a relatively 

simple environment and moved to a much more complex environment as we graduated to 

progressively more difficult cognitive capabilities. 

 This section describes both of these selected environments in detail so that we can 

refer to them throughout the remainder of this dissertation whenever we describe an 

agent’s behavior within one of these tasks. 
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6.2.1 Eaters 

The domain we selected for this first experiment is called Eaters.  An “eater” is a Pac-

Man2-like agent that moves around a 16x16 grid world. Each cell in the grid is either 

empty or contains a wall, normal food ( = 5 points) or bonus food (  = 10 points). The 

eater is able to move in each of the four cardinal directions unless there is a wall in its 

way. Each time it moves into a cell containing food; it automatically eats the food 

(receiving the appropriate increase in score). When an eater leaves a cell, the cell 

becomes empty. The eater’s goal is to get the highest score it can, as fast as it can. The 

eater’s sensory input includes the contents of nearby cells, its current score, its color, and 

number of moves taken so far. 

Figure 6-1 contains an image of the Eaters playing board (on the left) as well as a 

graphical depiction of the input available to an eater (on the right).  The eater’s actual 

input is presented to it symbolically (not graphically). 

  
Figure 6-1: The Eaters Environment 

                                                 
2 “Pac-Man” is a registered trademark of NAMCO BANDAI Games America Inc. 



 

 33 

 

For most of this research, the eater knew what actions it could take in the 

environment but did not know the significance of the content of the cells surrounding it.  

In section 8.1.1, we use this task to demonstrate the cognitive capability called action 

modeling.  Changes to agent behavior while performing this task are also used to measure 

the impact of various design alternatives as we explore the space of episodic memory 

systems in section 7.4. 

Among the merits of Eaters as this first environment were the following 

properties: 

• The domain is very simple in nature with only a limited set of four possible 

objects in the world and only four possible actions for the agent.  This allowed us 

to concentrate on episodic memory and not the environment or agent 

implementation. 

• The environment’s features are repeated over and over again in varying patterns.  

This is, in effect, a hostile environment for an episodic memory agent because all 

the agent’s episodic memories are similar but with small, significant differences.  

As a result of this property, we were able to gain significant insights into the 

effectiveness of various matching algorithms.  In particular, we examined using 

activation to bias the match within the Eaters environment (see section 7.4.1). 

• The simplicity of the environment and relatively fast pace of the task requires that 

many episodic memories be recorded and made it easy to quickly gather data 

about the performance of a given agent. 

 

6.2.2 TankSoar 

TankSoar is a two-dimensional, tile-based implementation of the computer game genre 

known as a “first person shooter”. The agent is a tank moving in a two-dimensional, tile-

based maze.  Figure 6-2 shows a typical TankSoar map. 
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Figure 6-2: The TankSoar Environment 

The tank has four types of actions it can take in the world: 

• Turn  – The tank can rotate in place to the left or right. 

• Move – The tank can move north, south, east or west.  A tank that moves in a 

direction perpendicular to its bearing is effectively taking a side-step. 

• Fire – The tank can fire a missile from its turret.  The missile moves in the same 

direction as the tank is pointed and travels in a straight line until it hits an obstacle 

or a tank. 

• Shields – The tank can turn on its shields to prevent missile impacts.  This 

preserves the agent’s health at the expense of energy (see below).  The agent can 

turn off its shields to conserve energy. 

• Radar – The tank can turn on its radar to better sense the world around it at the 

expense of energy (see below).  The radar’s range can be set by the agent up to a 

fixed maximum.  The agent can turn off its radar to conserve energy. 

The agent can take multiple actions in the same turn as long as they are of a different 

type.  (Exception:  The agent cannot move and turn at the same time.)  Each action except 

“Fire” has a variable argument.  As a result, there are between 200 and 700 different 

unique actions available to the agent at any one time. 
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While the human observer can see the entire maze, the tank’s sensors are much more 

limited though quite varied.  The following senses are available to a TankSoar agent.  

With the exception of the radar, they are always on and require no energy: 

• Smell – The agent can smell the shortest-path distance to the nearest enemy tank.   

• Hearing – If an enemy tank is nearby and it is moving or turning, the agent can 

hear it and knows how far away the enemy is.  Again, this the shortest-path 

distance. 

• Blocked – The agent knows which of the four spaces adjacent to it are clear or 

blocked.  If a space is blocked, it does not know if the space is occupied by an 

obstacle or another tank. 

• Radar Waves – If another tank is detecting the agent with its radar, the agent can 

sense the radar waves and knows which direction (north, south, east or west) the 

radar waves are coming from. 

• Incoming – If the agent is in the path of a missile, it can sense this and knows 

which direction (north, south, east or west) the missile is coming from. 

• Radar – The agent can turn on its radar to a particular range that is specified by 

the agent.  This is the most useful of the agent’s sensors but it requires that the 

agent expend energy.  Radar allows the agent to see the contents of a three-tile-

wide corridor of spaces directly in front of it.  The range of this sensing is 

specified by the agent (up to a fixed maximum).  The greater the range, the more 

energy is expended.  The radar is also blocked by solid objects (i.e., an obstacle or 

another tank).   

Succeeding in the TankSoar domain requires that the agent be successful at several 

subtasks.  One of the most critical of these is managing its three finite resources: 

• Missiles – The agent begins with a limited supply of missiles.  It can increase its 

supply by locating stationary missile packs that are placed at random locations in 

the maze.  The tank automatically picks up a missile pack by moving into its 

square. 

• Energy – The agent begins with a default amount of energy.  Energy is expended 

in three ways: 
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o Radar  - Each turn that the radar is on, the agent loses energy proportionate to 

the radar’s range. 

o Shields - Each turn that the tank’s shields are on, the agent loses a fixed 

amount of energy. 

o Deflected Missile - If a missile strikes the tank’s shield then the tank loses a 

fixed amount of energy. 

Each turn spent upon the battery (a unique stationary object in the maze) increases 

the tank’s energy.  The location of the battery is randomly selected and the agent 

must discover it during play and subsequently recall its location when needed. 

The agent’s energy cannot exceed a preset maximum.  Once the tank’s energy 

reaches zero, it is no longer able to turn on its radar or its shields.  This leaves it 

effectively blinded and vulnerable. 

• Health – An agent begins with a default amount of health.  Being hit by a missile 

lowers the agent’s health by a set amount.  Each turn spent upon the health 

charger (a unique stationary object in the maze) increases the tank’s health.  The 

location of the health charger is randomly selected and the agent must discover it 

during play and subsequently recall its location when needed. The agent’s health 

cannot exceed a preset maximum.  An agent that reaches zero health is destroyed 

and recreated (resetting health, energy and missile count) and placed at a random 

location in the maze. 

Within the TankSoar environment, we implemented agents that used episodic 

memory to accomplish three different tasks: 

• Radar Setting Task – In this task, the agent is attempting to reduce its energy 

usage by using only the minimum required setting for its radar.  (The higher range 

that the tank sets its radar, the more energy is required.)  See section 8.1.2 for a 

more detailed description of this task and how it is used to demonstrate the 

cognitive capability called action modeling. 

• Energy Search Task – In this task, the agent is low on energy and must locate 

the battery (a static object in the environment) in order to recharge.  Section 8.4 

provides a more detailed description of this task and how it is used to demonstrate 

the cognitive capability called virtual sensors. 
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• Combat Task – This is the complete task that TankSoar agents are normally 

developed for.  The agent’s goal is to maximize its score.  The agent scores points 

for hitting an enemy tank with a missile.  It scores additional points for destroying 

an enemy tank.  Conversely, the agent loses points for being hit by a missile.  It 

loses additional points when it is killed.  The agent also must maintain its supply 

of the three resources described above (energy, health and missiles).  An agent 

that is low on any resource is at a disadvantage vs. an agent that has an adequate 

supply of all of the resources.  The game ends when one of agents scores enough 

points to reach a fixed threshold (usually 50 points).  Section 8.5 describes how 

we use this task to demonstrate the cognitive capability called learning from past 

success and failure.  In addition, we use this task to demonstrate several different 

design alternatives in Chapter 7. 

 As is apparent, the TankSoar environment is much more complex than Eaters.  It 

requires the agent not only be skilled in tactical combat, but also resource management 

and navigation.  A rich, complex environment such as this is well-suited for episodic 

memory research because an agent requires multiple cognitive capabilities to be effective.  

In Chapter 8 we discuss the experiments we have performed to demonstrate multiple 

cognitive capabilities within the TankSoar environment. 
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Chapter 7 

 

 

Implementations of Episodic Memory 

 

In section 2.1, we described this framework for the space of episodic memory systems 

and also described how one goal of this research is an exploration of this space.  In this 

chapter, we describe the results of that exploration.  We reserve the discussion of the 

work towards this second goal, demonstrating the cognitive capabilities granted to an 

agent by virtue of having an episodic memory, for Chapter 8.  For the sake of clarity, we 

describe the two goals separately rather than attempting to continually switch between 

them in roughly chronological order.  In reality, this work toward these two goals was 

heavily interleaved and, as a result, this chapter makes multiple forward references to 

Chapter 8.   

To describe this exploration of the space of episodic memory systems, this chapter 

describes how each of our major implementations has evolved from this original pilot 

implementation to the current, fully task-independent implementation and beyond.  We 

begin by describing the pilot implementation and the baseline implementation by 

defining their locations in the framework.  By doing so, we hope to provide a clear 

picture of the evolution of the system as well as its future trajectory. 

We follow with a description of each of the major explorations of that 

implementation space by describing the experiments, results and conclusions for each 

experiment.  Collectively, these experiments represent further evolution of this episodic 

memory system and provide a basis for some of the future work discussed in section 9.2. 
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7.1 Pilot Implementation 

Compared to more recent implementations, the pilot implementation had limited 

functionality and a lack of task independence.  Despite these limitations, the pilot 

implementation provided an essential first step into the design space of episodic memory 

systems.  It provided valuable insights into the existence of several critical design 

decisions.  In other words, this pilot implementation and this definition of the design 

space evolved together.  The pilot implementation also was used to perform a few of the 

experiments that are discussed in this dissertation.  Finally, the pilot provided a point for 

comparison with all future implementations.  As a result, it is useful to understand some 

of the details of this implementation in order to understand future implementations. 

At a high level, the pilot implementation stored each element of an episodic 

memory as a Soar production.  These productions fired (effectively retrieving the 

episodic memory) when a special retrieval operator was selected by the agent.  This 

approach allowed us to focus on episode encoding while using Soar’s existing storage 

and retrieval functionality.  As we discuss at the end of this section, this parsimony came 

at the cost encoding specificity issues and some loss of functionality. 

 The pilot implementation fit within this framework as follows: 

Encoding 

• Encoding initiation  – New episodes were recorded whenever there was a 

significant change in the working memory of the agent.  The rationale for this 

approach was that the agent should record more episodes when the agent’s 

situations or focus of attention was changing and fewer episodes when the agent’s 

state was relatively stable.  We defined a significant change in working memory 

to be a change in the top N most-activated working memory elements (where 

multiple values of N were tried).  Working memory activation in Soar is discussed 

in section 5.7. 

• Episode determination – We hand-selected the content of the episode using a 

task-specific method.  This decision represented a deliberate departure from task 

independence that allowed us to concentrate on other aspects of the design.  In 

particular, we began by studying the efficacy of activation-based feature selection 
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(see section 7.4.1).  Future implementations of the episodic memory system have 

been task independent.  

• Feature selection – The parts of a memory that would match the cue were 

determined by selecting the N most-activated working memory elements.  We 

hypothesized that the most activated parts of working memory would provide a 

good approximation of the locus of the agent’s cognitive activity.  As a result, we 

expected that these features would be most relevant when selecting a memory to 

retrieve.   

 

Storage 

• Episode structure – Episodes were encoded as collections of rules in Soar.  In 

particular, each rule was responsible for recreating a particular working memory 

element (WME) that existed in the episode.  

• Episode dynamics – The original implementation had no episode dynamics.  

Once an episode was recorded it was never altered or removed from memory. 

 

Retrieval 

• Retrieval initiation  – In the pilot implementation, retrieval was triggered when 

the agent deliberately constructed a cue in working memory.   

• Cue determination – The agent constructed a cue by creating a special substate 

specifically for this purpose.  The agent determined the content of the cue, which 

could include not only surface features but also their relations to each other. 

• Selection – Since episodic memories were recorded as collections of Soar 

productions, episodic match and retrieval were performed as part of a normal Soar 

decision cycle.  An operator proposal rule would match the cue.  In effect, the 

operator was proposing the retrieval of a particular episodic memory.  If that 

operator was selected, the operator application rules would recreate the memory.  

If multiple memories matched the cue, multiple operators would be proposed and 

the agent would select the best match via operator selection. 
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• Retrieval – In the initial implementation, the recall operation directly overwrote 

the retrieval cue structure that the agent had created.  The resulting structure was a 

duplicate of the original state from which the episode was drawn. 

• Retrieval meta-data – The only metadata provided to the agent was a numeric 

ID that was assigned to each episode sequentially as it was encoded.  This 

provided the agent with information about the temporal order of episodes without 

providing a specific time that the episode occurred.  This information, while 

present, was never used by the agents in our experiments.   

Use 

An array of experiments was performed with the pilot implementation in the Eaters 

environment (which is described in section 6.2.1).  In particular, we used the pilot 

implementation to demonstrate three cognitive capabilities:  action modeling, retroactive 

learning, and boosting other learning mechanisms.   

 
Figure 7-1: An Episodic Memory Eaters Agent (Pilot Implementation) 
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The agent used in all of these experiments followed this basic algorithm (refer to 

Figure 7-1): 

1. The agent’s current state includes its current sensing and its current score.  

The state also contains elements related to the agent’s reasoning including a 

record of what its score was before the previous action.  This state is 

represented by the box labeled (A) in the figure. 

2. In any given state, the agent can move in at least two and as many as four 

different directions (north, south, east or west).  The agent determines which 

of these actions are available and proposes an operator to move in each of 

these directions.  In the figure, the agent can move east, north or south (it is 

blocked by a wall to the west).   

3. Since the agent does not have sufficient knowledge to decide which direction 

to move next, it must evaluate each possible movement direction.  It does this  

as follows: 

a. First, the agent creates an episodic memory cue that contains the 

agent’s entire current state plus action to be evaluated.  In other words, 

the agent is querying for an episodic memory of taking the to-be-

evaluated action in a similar situation.  In the figure, the box labeled 

(B) represents the cue the agent would create to evaluate the action 

“move north.” 

b. Once the cue is created, the episodic memory system locates the 

episode that best matches this cue.  An example of the identified 

memory is labeled (C) in the figure.  Note that this memory is not a 

perfect match but the situation is similar enough in this case since the 

agent is moving north to a cell that has the same content.  In other 

situations, the memory may not be similar enough and, ultimately, the 

agent is likely to make a bad decision as a result of this poor retrieval. 

c. Once the episodic memory system identifies the best matching 

episode, it retrieves the episodic memory of the state that occurred 

directly after the best matching episode.  This is the episodic memory 
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that the agent sees as a result of the cue it created.  An example of 

what this might look like is the box labeled (D) in the figure. 

d. The agent then compares the current and previous scores recorded in 

the retrieved episodic memory.  It uses the difference between these 

two scores as a quantitative evaluation of the movement direction 

being considered. 

4. Once all available actions have been evaluated in this manner, the agent 

selects the action with the highest evaluation.  (Ties are resolved by selecting 

randomly.) 

7.2 Lessons Learned from the Pilot Implementation 

This section describes each of the insights we gained from this work with the pilot 

implementation.  As might be expected from a pilot implementation, many of these 

insights were fundamental in nature. 

7.2.1 Definition of the Episodic Memory Space 

The most valuable insight gained from the pilot implementation was its use as a guide for 

defining the scope of this research.  What initially began as a catalog of important 

decisions made during the pilot’s construction, evolved into the axes of what we now 

define as the space of episodic memory systems (which was introduced in section 2.1).   

7.2.2 The Importance of Matching 

This work with the pilot implementation in the Eaters environment quickly taught us that 

the most important stage in the episodic memory system is selecting the best match for a 

given memory cue.  The manner in which memories are encoded and stored is important, 

but if the wrong episode is retrieved for an agent cue, agent decisions based upon that 

retrieval are suboptimal. 

 With the pilot implementation, we discovered that this decision to use Soar’s 

built-in matching mechanism hurt the performance of episodic memory agents because of 

encoding specificity issues.  To work effectively, the recalled episode had to exactly 

match the cue.  Too many cue entries meant that the memory would never be recalled.  
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Too few entries would lead to too many matches and (usually) random behavior.  

Therefore, selecting the correct entries for the agents to place in the memory cue was 

difficult.   

Even in the simple environment we used for most of this research, this 

requirement was difficult to meet.  As a result of this insight, the next episodic memory 

system implementation used a partial matching algorithm.  As is described in sections 

7.4.1 and 7.4.2, the importance of an effective matching algorithm drove us to try several 

variations and additions to this algorithm as part of this research. 

7.2.3 The Importance of Episodic Memory Sequences 

In the Eaters environment, the agent is focused on the immediate result of its actions (i.e., 

the cognitive capability we call action modeling).  The pilot implementation 

accomplished this by determining which memory best matched the cue but then 

retrieving the next memory (in chronological order) rather than the one that was the best 

match.  This behavior combined with the agent’s deliberate recording of its previous 

score at each step allowed the agent to evaluate the outcome of a particular action. 

In addition to requiring the agent to record critical information, this approach 

made it difficult to use the system for some of the other cognitive capabilities since a 

best-matching episodic memory could not be directly retrieved.  A better way to acquire 

the same information is to retrieve a sequence of two episodic memories.  The first 

memory is retrieved when the agent constructs a cue consisting of the agent’s current 

situation and a proposed action.  The agent then issues a command or special query to the 

system in order to determine what happened next.  

 This approach (which was used in future implementations) not only allows the 

agent to directly retrieve an episode, but also to retrieve sequences of episodes bounded 

only by the extent of the episodic store.  As will be shown in section 8.5, this 

functionality is essential for an agent to learn from previous successes and failures in the 

TankSoar environment. 



 

 45 

7.2.4 The Importance of an Autonoetic Episodic Memory 

To create an episodic memory cue, the pilot implementation required the agent to create a 

special Soar state for that purpose.  The retrieved episodic memory would then overwrite 

the current state.  While this approach is parsimonious, it ended up creating multiple 

problems due to the fact that productions that were designed to match against a state 

would also match against a retrieved memory.  If the agent became confused in this 

manner, its behavior usually became irrevocably aberrant.  In effect, we were violating 

the autonoetic property of episodic memory described in section 2.2. 

 As a result of this insight, subsequent episodic memory systems created separate, 

reserved areas in working memory for the cue and retrieved episodic memory. 

 

7.3 Baseline Implementation 

The lessons learned from the pilot implementation were applied to what we now call the 

baseline implementation.  The most significant difference between these two 

implementations is that the baseline implementation uses an independent episodic 

memory store rather than using Soar productions.   

Several changes stem from this difference.  Most importantly, a separate memory 

store allowed us to implement a partial matching algorithm that eliminated the encoding 

specificity issues we encountered in the pilot implementation.  Given what we had 

learned about the importance of matching in the episodic memory process, a custom 

matching algorithm allowed us to explore multiple approaches.  In addition to the 

approach used by the baseline implementation, we discuss two major modifications in 

section 7.4.1 and 7.4.2.  

This implementation is called baseline because it forms the core of all future 

modifications we have made to the episodic memory system.  In other words, if we view 

this research as a search through the space of implementations, the baseline 

implementation is near the center of all the points we have explored since the pilot 

implementation. 
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Figure 7-2: Baseline Implementation Architecture 

 

Figure 7-2 depicts an architectural diagram of the baseline implementation of 

episodic memory.  The central rectangle in the figure represents Soar’s working memory.  

The nodes in the rectangle represent the working memory elements3.  Working memory 

contains some reserved areas that contain the agent’s input (perceptions) and output 

(actions).  The baseline implementation created two special areas in working memory for 

episodic memory cue construction and episodic memory retrieval respectively.  These 

areas are strongly reminiscent of the buffers used by ACT-R 5.0 (Anderson and Labiere 

1998).  These reserved areas are delineated in the figure with dashed lines. 

The baseline implementation includes an episodic learning module that monitors 

the agent’s behavior and, at prescribed times, records a new episodic memory.  This 

memory is effectively a snapshot of working memory taken at the time of recording.  

This snapshot does not contain elements that are in the areas of working memory 

reserved for cue construction and episodic memory retrieval. 

If at any time the agent wishes to retrieve an episodic memory, it constructs a cue 

in the area reserved for that purpose.  The cue nominally consists of working memory 

elements that the agent would like to be in the retrieved episode.   

Once a cue is constructed, the episodic selection routine compares the cue to the 

stored episodic memories and determines which memory best matches the cue.  (This 

                                                 
3 An actual Soar agent is likely to have many more elements than are depicted here. 
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happens at the end of every cycle that a cue is present in working memory.)  The selected 

episode is then added to working memory by reconstructing a copy of the original 

working memory in the reserved area of working memory. 

 The baseline implementation falls into the design framework as follows: 

Encoding 

• Encoding initiation  – A new memory is encoded each time the agent takes an 

action in the world.  The approach used by the pilot implementation — recording 

new episodes when there was a significant change in working memory — led to 

the same frequency of recording.  This straightforward approach was simply more 

efficient and easier to implement.  This new approach has since proved effective 

for multiple tasks and, as a result, we have not changed it. 

• Episode determination – For the baseline implementation, we abandoned the 

task dependent approach used by the pilot implementation.  The content of an 

episode now consists of a large portion of the agent’s working memory which 

includes its input (sensing), internal data structures and output (actions in the 

world). Each working memory element is selected or rejected for an episodic 

memory based upon its activation level.  WMEs which are recorded in a new 

episodic memory are those whose activation level has not decreased to the point 

where the element would be removed in a strict psychological model4.   

• Feature selection – Since the baseline implementation incorporates a partial 

matching algorithm, we elected to allow all features of the episode to participate 

in retrieval.   

 

Storage 

• Episode structure – The episodic store was completely re-implemented for the 

baseline implementation which consists of two structures: a working memory tree 

and a set of episodic memories (refer to Figure 7-3): 

                                                 
4 Working memory activation was originally added to Soar to support memory decay models.  Thus, when 

a particular working memory element dropped below an activation threshold it was removed from working 

memory.  In this experiments, memory activation was active but memory decay was not used. 
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o The working memory tree holds a single instance of all elements that have 

ever been in an episodic memory throughout the agent’s existence.  By 

using a tree structure, we preserve most5 of the structure of each episode 

as it existed in working memory. This reduces the processing time 

required to store and reconstruct an episodic memory as compared to a 

system that recorded the entire structure.  This benefit comes at the cost of 

a loss of some detail in retrieved memories. 

o Each episodic memory consists of a list of pointers to each of the working 

memory elements it contains, in a canonical order. In addition, all 

elements in the tree have pointers to the memories that contain them. 

In section 7.4.2, we discuss an alternate approach to the structure of the 

episodic store and an associated alternate matching algorithm. 

 
Figure 7-3: Episodic Memory Data Structures 

 

                                                 
5 Two things are lost with this approach.  First, since a Soar state is a rooted graph (not a tree) recursive 

links between elements are skipped in order to force the graph into a tree.  Second, multi-valued attributes 

with non-constant values are stored in the tree as a single WME. 
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• Episode dynamics – The baseline implementation still has no episode dynamics.  

The most obvious dynamic is a forgetting mechanism.  However, we performed 

some rough performance measurements that indicated forgetting is unnecessary 

for the environments we have selected. As a result, we have chosen to ignore 

episode dynamics in favor of other experiments.  Nonetheless, forgetting remains 

a prime candidate for future explorations of the episodic memory space (see 

section 9.2.4.2). 

 

Retrieval 

• Retrieval initiation  – Just as in the pilot implementation, retrieval is triggered 

when the agent deliberately constructs a cue in working memory.   

• Cue determination – A cue is constructed by the agent (using rules) in a reserved 

location in working memory. This location no longer corresponds to an actual 

Soar state but instead is a link similar to the output-link used for I/O (an 

established paradigm in the Soar architecture).  The cue can have any number of 

working memory elements.  For purposes of the match, the root of the link 

corresponds to the root of the state. 

• Selection – During episodic retrieval, the cue is compared to all stored episodes in 

order to select the episode that “best matches” the cue. In the baseline 

implementation, the best match is determined by totaling the number of working 

memory elements that are shared between the cue and the episode.  Once an 

episode has been retrieved, the agent can also retrieve the next episode in 

temporal order via a special “next” command.  This allows the agent to retrieve 

sequences of episodes of indefinite length. 

In section 7.4.1, we discuss the effectiveness of using working memory 

activation to bias the match.  In section 7.4.2, we discuss an alternate 

implementation of the baseline matching algorithm.   

• Retrieval – The complete episode is retrieved in a reserved area of working 

memory to avoid confusion with the current state of the agent.  As with the 

episodic memory cue, the root of the retrieval area corresponds to the root of the 

state from which the memory was originally recorded. 
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• Retrieval meta-data – The baseline implementation had no metadata that was 

retrieved with an episode.  However, as part of this research we have added 

several different types of meta-data (see section 7.4.3.2). 

Use 

The remainder of the research took place within the baseline implementation or (more 

frequently) with additions and modifications made to it.  The remainder of this chapter 

introduces the agents we used for these experiments and discusses the results of 

experiments in which we tested the modifications.  Chapter 8 describes how we 

demonstrated multiple cognitive capabilities with this implementation. 

7.4 Additions to the Baseline Implementation 

As part of this exploration of the space of episodic memory system implementations, we 

experimented with several modifications to the baseline implementation.  An underlying 

question of this research was:  Given that you have an imperfect memory system, what 

are the techniques you can use to overcome that and how effective are they? However, 

the large number of modifications, environments, tasks and agents made it impractical to 

test all possible combinations.  To cope with this complexity, our experiments reduced 

the question to:  Does a particular agent performing a particular task in a particular 

environment perform better or worse with a given modification?  Modifications that were 

effective were usually kept for future experiments and modifications that were ineffective 

were removed and set aside for future work.  Thus, this search was, in some ways, a hill 

climbing approach.  

 This section describes, in roughly chronological order, the modifications that were 

tried and their outcomes.   

7.4.1 Improving Episodic Memory Selection 

The baseline implementation included a new partial matching algorithm used in episodic 

memory selection.  Effective partial matching is an issue faced by many researchers in 

artificial intelligence tasks.  Some approaches to this task include: 

• Nearest Neighbor – In the purest form of this approach, the features of the query 

are compared to each instance.  The instance which has the most features in 
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common with the query is selected for retrieval.  Nearest neighbor is processing 

intensive and is also highly sensitive to the amount of irrelevant features in the 

instance or query.  As a result, a feature weighting heuristic is often applied to 

focus the search on a few particular features of the instances or query.  A 

thorough review of nearest neighbor algorithms can be found in (Dasarathy 1990). 

• String Matching – Recent advances in rapid string matching (all based on Smith 

and Waterman 1981) focus on providing a near-best match rapidly.  If the query 

and instance can be condensed into a string of symbols, then these algorithms can 

effectively be used for partial matching.  The conversion to a string, however, can 

result in loss of information (Pardo, et al. 2004). 

• Hashing – Hash tables can be used for partial matching provided an effective 

hash function can be found for the query and instances.  As with string matching, 

there is a risk of too much information being lost via the hash function (Burkhard 

1979). 

• Classifier Systems – Various approaches to classifiers can also be applied to 

partial matching.  In effect, the individual instances become categories for the 

classifier to assign the query to.  Examples of classifier algorithms applied to 

partial match include rule induction (Gryzmala-Busse and Wang 1996), N-Gram 

matching (Tian, et al. 2006) and Bayesian learning (Meek and Birmingham 2004). 

• Hybrid Approach  – The combination of a fast inaccurate approach with a slow 

accurate approach can result in a sum that is better than its parts.  In particular, 

classifier systems can be used to narrow the field for a nearest neighbor search 

(Cercone, et al. 1999). 

Although we weren’t aware of all this options at the time, we selected a nearest 

neighbor search for this baseline implementation because it offered the most accuracy.  

As we learned from this pilot implementation, retrieving the correct memory is a critical 

requirement for an effective episodic memory system (see section 7.2.2).  We began with 

a simple nearest neighbor approach with no feature weighting.     
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7.4.1.1 The Baseline Eaters Agent 

This first experiment with this new implementation was to implement an Eaters 

agent and compare its behavior to the pilot.  This new Eaters agent used the following 

algorithm (refer to Figure 7-4): 

1. The agent’s current state includes its current sensing and its current score.  

The state also contains elements related to the agent’s reasoning.  This state is 

represented by the box labeled (A) in the figure. 

2. In any given state, the agent can move in at least two and as many as four 

different directions (north, south, east or west).  The agent determines which 

of these actions are available and proposes an operator to move in each of 

these directions.  In the figure, the agent can move east, north or south (it is 

blocked by a wall to the west).   

 
Figure 7-4: An Episodic Memory Eaters Agent (Baseline Implementation) 
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3. Since the agent does not have sufficient knowledge to decide which direction 

to move next, it must evaluate each possible movement direction.  It does this  

as follows: 

a. First, the agent creates an episodic memory cue that contains the 

agent’s entire current state plus action to be evaluated.  In other words, 

the agent is querying for an episodic memory of taking the to-be-

evaluated action in a similar situation.  In the figure, the box labeled 

(B) represents the cue the agent would create to evaluate the action 

“move north.” 

b. Once the cue is created, the episodic memory system locates the 

episode that best matches this cue and retrieves it for the agent to 

examine.  An example of the retrieved memory is labeled (C) in the 

figure.  Note that this memory is not a perfect match but the situation 

is similar enough in this case since the agent is moving north to a cell 

that has the same content.  In other situations, the memory may not be 

similar enough and, ultimately, the agent is likely to make a bad 

decision as a result of this poor retrieval. 

c. The agent records the score that it had in that episode and then 

requests the memory that occurred next in temporal order.  The 

episodic memory system responds to this command and retrieves the 

outcome of that situation and action.  In the figure, this second 

retrieval is represented by the boxed labeled (D). 

d. The agent then compares the scores from both memories and uses the 

difference between these two scores as a quantitative evaluation of the 

movement direction being considered. 

4. Once all available actions have been evaluated in this manner, the agent 

selects the action with the highest evaluation.  (Ties are resolved by selecting 

randomly.) 
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7.4.1.2 Comparing the Pilot and Baseline 

While the baseline implementation’s partial matching immediately alleviated this 

encoding specificity issues, the baseline agent’s performance did not improve. Figure 7-5 

compares the behavior of a typical Eaters agent from the pilot and baseline 

implementations.  In each case, the agent begins with no episodic memories but records 

more and more of them as it takes more and more actions in the world.  The x-axis is the 

number of successive evaluations that the agent has made of a given action in a given 

situation.  The y-axis indicates the fraction of the last ten evaluations that the agent 

attempted which resulted in success.  The dashed line at the bottom of the graph indicates 

the predicted performance of random behavior. Due to the nature of the logging 

mechanism used with the pilot implementation, data gathered from that agent is sparser 

than from the baseline.  The data in this graph for both agents is an average of five 

distinct runs. 
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Figure 7-5: Comparison of Eaters Agents for the Pilot Implementation vs. the Baseline 

Implementation 
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Examination of this data indicates that the baseline agent’s performance was 

somewhat worse as well as more erratic.  Given that the pilot implementation was using a 

task-specific method for episode determination and feature selection while the baseline’s 

approach is task independent, we hypothesized that the lack of this knowledge in the 

baseline implementation was the cause of the poor performance. 

7.4.1.3 Analysis of Baseline Memory Selection 

Close examination of agent behavior confirmed the hypothesis that the baseline 

implementation was suffering from lack of knowledge.  Without task-specific 

information, the new Eaters agent was required to create episodic memory cues that 

contained all of its current sensing as well as its proposed action.  These memory cues 

typically contained between 31 and 36 features6.  However, unbeknownst to the agent, 

only two of those features are actually relevant to the task: the direction that the agent is 

considering moving and the content of the cell in that direction.  Given so many features 

to work with, the “best” matching memory often did not contain a match for those two 

features.  The agent’s behavior suffered as a result. 

This observation combined with what we learned from the pilot implementation 

about the importance of matching led us to devote repeated efforts to understand and 

improve the task independent matching algorithm.   

 

7.4.1.4 Feature Selection with Working Memory Activation 

 Given more than thirty features in the memory cue used by the agent in the Eaters 

task, the “best” episodic memory selected by the baseline matching algorithm would 

often fail to match one or both of the most relevant features from the cue.  This, in turn, 

led to poor decisions by this agent.  More generally, as the ratio of relevant to irrelevant 

entries in the cue decreased the likelihood of an effective retrieval also decreased.   

                                                 
6 Specifically, features are working memory elements whose values are leaves of the cue’s tree structure.  

These leaf WMEs are the only ones that directly affect that match since the information provided by the 

non-leaf WMEs is implicit in the identity of the leaf WMEs. 
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 To counteract this, we needed a mechanism to weight the features of the cue to 

bias the retrieval toward memories that were likely to be relevant to the task. An excellent 

review of feature weighting for nearest neighbor algorithms can be found in 

Wettschereck, et al. (1997).  From that paper, feature weighting varies upon these 

dimensions: 

• Preset vs. Performance Bias – In some algorithms the feature weights are set at 

agent creation and do not vary.  In others, the feature weights are adjusted based 

upon agent performance. 

• Feature Weighting vs. Selection – In some algorithms, only a small subset of 

features is selected for retrieval.  Feature weighting subsumes feature selection if 

the only weights that can be applied are 0 and 1. 

• Given vs. Transformed Representation – In some algorithms, the features of 

the instances and query are used as is.  In others, they are transformed into 

another set of features that capitalize on correlation between the given features. 

• Global vs. Local Weights – In some algorithms, weights are applied globally to 

all features with the same attribute.  In others, the weights vary from instance to 

instance. 

Because selection occurs in the architecture, the most important criterion was for this 

weighting mechanism to be task-independent.  We had had some success with the pilot 

implementation using working memory activation to select cue entries for retrieval.  In 

effect, the most activated WMEs seem to reflect the agent’s focus and, thus, we 

hypothesized that it also measured what was relevant to the current task.   

We modified the baseline implementation to record the activation level of each 

WME in an episodic memory as its feature weight.  At selection, these activation levels 

were summed to create a match score for each episodic memory and the episode with the 

highest match score was retrieved.  According to the criteria presented by Wettschereck 

et al., (1997) this approach is performance biased (activation levels are determined at run 

time), feature weighted (no features are excluded during the match), uses the given 

features without transformation and applies the weights locally. 

As far as we have determined, this approach to feature weighting is unique.  The 

most closely related research involves using explanation-based learning to guide feature 
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selection in case-based reasoning (Cain, et al. 1991).  In addition, the ACT-R architecture 

(Anderson and Labiere 1998) uses activation to select among matching chunks during 

retrieval from semantic memory. 

Figure 7-6 compares the behavior of the agent before and after this activation-

based feature weighting was added.  As with Figure 7-5 above, the x-axis is the number 

of successive evaluations that the agent has made of a given action in a given situation 

and the y-axis indicates the fraction of the last ten evaluations that the agent attempted 

which resulted in success.  The data in this graph for both agents is an average of five 

distinct runs.  
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Figure 7-6: The Effects of Activation Bias on the Eaters Agent 

 

This approach created a clear improvement in the agent’s action evaluations that, 

in turn, were directly dependent up on the quality of retrieved memories. 
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7.4.1.5 Improvements to Working Memory Activation 

Success using working memory activation as a feature weight led us to examine 

Soar’s working memory activation algorithm more closely.  We made two observations 

about the design of the activation system that led us to believe we could improve its 

ability to identify salient features of an agent’s state. 

The first observation was that the activation system was designed to ignore 

instantiation supported (i-supported) WMEs.  (Recall that these are WMEs that are 

created via elaboration rules and remain on the state as long as the relevant rule continues 

to match.)  The working memory activation implementation was originally accomplished 

by James (unpublished) which was in turn based upon research by Chong (2003) and 

Anderson & Labiere (1998).  In all cases, the memory activation had been implemented 

as part of a memory decay mechanism.  Removing an instantiation supported WME due 

to decay would have no effect since the relevant production would simply fire and 

recreate it.  Thus, for James’ purposes activation on i-supported WMEs was unnecessary. 

For the purposes of agent focus, the activation level of i-supported WMEs also 

seemed unnecessary since the existence of architectural and operator supported (o-

supported) WMEs that led to the i-supported WME’s creation would have activation.  

(Recall that o-supported WMEs are created by operators and persist indefinitely.)  Upon 

closer examination, we realized that i-supported WMEs can “mask” the activation of the 

underlying o-supported WMEs responsible for the creation of the i-supported WMEs.  

Figure 7-7 shows a graphical depiction of this situation.  Consider the case where a 

production tests an i-supported WME. That WME does not receive any activation boost 

since it is not activated. However, the o-supported WME(s) that were tested in order to 

create that WME also do not receive a boost. Thus i-supported WMEs are masking o-

supported WMEs from activation.   
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Figure 7-7: Example of Activation Masking in Working Memory 

 

 In response to this problem we added a “pay it backward” approach for passing 

references from i-supported WMEs to o-supported ones. The activation system now 

calculates the set of support for any referenced i-supported WME and then boosts the 

activation of WMEs in the set.  In Figure 7-7, the set of o-support for WME 5 includes 

WMEs E and F, which are directly tested by the rule that creates 5, as well as C and D, 

which are indirectly tested by the WMEs that create 5 (via WME 4).   

 The second observation we made was in regard to the initial activation for newly 

created WMEs. In the original implementation, these WMEs receive a fixed initial boost 

equivalent to a single reference. In terms of decay and removal, this is sufficient because 

newly created WMEs will usually immediately lead to additional rule firings and thus the 

WME will receive a boost in activation.  If, instead, a newly created WME is not relevant 

to the situation it will not be tested and, thus, will be removed after a short time. 

However, when using memory activation as a measure of the importance of features of 
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the agent’s state, this flat level of initial activation can be misleading. An agent might test 

multiple WMEs with high activation and create one new WME that would have much 

lower activation. Thus, at creation time – when this feature will most likely be very 

important as a cue for future retrieval – its activation is much lower than the activation of 

the features that led to its creation.  

This may, in fact, be a new manifestation of an old problem. Chong noted that in 

both his model and some ACT-R models, newly created WMEs/chunks can decay too 

rapidly and, as a result, never have a chance to participate in reasoning.  To ameliorate 

this problem, the second modification we implemented was a “pay it forward” approach 

for setting the activation level of new WMEs wherein the activation of a new WME is 

based on the activation levels of its set of support.  

Figure 7-8 depicts the Eaters agent’s behavior before and after these 

modifications had been applied.  As with Figure 7-6 above, the x-axis is the number of 

successive evaluations that the agent has made of a given action in a given situation and 

the y-axis indicates the fraction of the last ten evaluations that the agent attempted which 

resulted in success.  The data in this graph for both agents is an average of five distinct 

runs. 
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Figure 7-8: The Effects of Improved Activation Bias on the Eaters Agent 

This data strongly suggests that working memory activation is an effective 

method for feature weighting in a task independent episodic memory system. 

7.4.1.6 Balancing Activation Bias vs. Match Cardinality 

Success with activation as a feature weighting mechanism led us to leave that 

functionality in the baseline implementation for future research.  However, when we 

began working in the TankSoar environment (described in section 6.2.2), we began to see 

instances where the system was retrieving an incompletely matching episode when a 

complete match to the given cue was available.  This behavior was because the sum of 

the activation level on the lesser match was higher despite the missing elements.  Clearly, 

there is a conflict between the activation level of the match and the overall cardinality of 

the match. 

As we furthered our investigation, we noted that some of the TankSoar agents we 

created used episodic memory cues with as few as four features.  (For a full description 

of the TankSoar agent used in this investigation, see section 8.5.) Since these cues were 

much smaller than that used by this Eaters agent, it was much more likely that a 
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particular episodic memory would be an exact match to a given cue.  However, due to the 

activation bias on the match, a non-exact match to a more highly activated episode would 

sometimes be selected instead.   

 As a result of this observation, we modified the baseline episodic memory system 

to calculate two match scores. One was based upon the sum of the activation levels of all 

matching features.   The second was based upon the strict cardinality of the match.  These 

two scores would then be combined at a user defined ratio to determine a final match 

score.  A ratio of 1.0 would weigh each score equally.  A ratio below 1.0 weighs the 

activation level more heavily.  A ratio above 1.0 weighs the cardinality of the match more 

heavily. 

 Using this new functionality, we compared the performance of multiple TankSoar 

agents.  Each agent was identical except for the value of this cardinality vs. activation 

ratio. 

Figure 7-9 depicts the performance of this TankSoar agent with each setting of the 

cardinality vs. activation ratio.  The agent begins with no episodic memories but records 

more of them as it plays more games (the x-axis).  The y-axis is the agent’s average 

margin of victory for each game given a specific number of previous games played.  A 

negative margin of victory represents a losing game and a positive margin of victory is a 

winning game.  For all curves, the data presented is the average of ten independent runs 

of the same agent. 
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Comparison of Cardinality vs. Activation Ratio
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Figure 7-9: Effects of Various Settings of the Cardinality vs. Activation Ratio in the TankSoar 

Environment 

Figure 7-10 depicts a summary of the overall results of Figure 7-9.  Each column 

in the graph depicts the average overall margin of victory of the agents with the 

cardinality vs. activation ratio specified on the x-axis. 
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Overall Performance
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Figure 7-10: Summary of the Impact of Cardinality vs. Activation Ratio (Small Cue) 

 

  As the graphs show, the TankSoar agent learned faster and performed 

better when the cardinality of the match outranked the sum of the activation level of the 

match.  These results are in contradiction to the activation bias results with the Eaters 

domain.  Given that the only thing that was varied in this particular experiment was the 

cardinality vs. activation ratio we can hypothesize that the essential difference between 

these two agents was the sizes of the respective cues and episodic memories.  The Eaters 

agent has a large cue (approximately 35 features) and a comparable episodic memory size 

(approximately 50 features).  The TankSoar agent has a small cue (approximately 9 

features) and a much larger episodic memory size (approximately 120 features). 

 To test this hypothesis we modified the TankSoar agent to use a much larger cue 

(approximately 55 features) and repeated the experiment with the same values for the 

cardinality activation ratio.  The results are shown in Figure 7-11.  While the extraneous 

cue entries hurt the performance of the agent, it is readily apparent that retrievals based 

upon large cues perform better when the activation bias is strong.  
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Figure 7-11: Summary of the Impact of Cardinality vs. Activation Ratio (Large Cue) 

 

 These data show clear evidence that a key factor in the matching algorithm for a 

task independent episodic memory system is to respond to the size of the cue and the 

episodic memory when performing episode selection.  An obvious approach to this is to 

adjust the cardinality vs. activation ratio based upon the size of the retrieval cue.  More 

data from more agents and environments will need to be gathered before this approach 

can be proven. 

7.4.2 Improving Performance: Interval Based Matching 

The impact that the episodic memory system has on the surrounding architecture is a 

crucial consideration.  In section 2.3, one of the requirements we defined for an effective 

episodic memory implementation is low resource demand.  To that end, we performed a 

close examination of the impact of the baseline episodic memory system on Soar 

performance.   

7.4.2.1 Instance-Based Matching Algorithm 

Initial profiling of the baseline system indicated that the largest fraction of processing 

time was spent during episode selection.  As a result, we started with the baseline 
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implementation’s data structures and matching algorithm (which we will henceforth refer 

to as the instance-based algorithm).  Refer to Figure 7-12 which is a replica of Figure 7-3 

from section 7.3.  This algorithm has the following steps: 

 

 
Figure 7-12: Data Structures used by the Instance-Based Algorithm 

 

1. The system simultaneously traverses the given episodic memory cue and the 

working memory tree.  For each entry in the cue, the corresponding entry in the 

working memory tree is located. 

2. Each matching entry that is found in the tree contains a list of references to every 

episode that contains it. A list of all episodic memories that match at least one 

entry from the cue is created by merging the references from each matched part of 

the cue. 

3. The complete cue is then compared to each episodic memory in the newly created 

episodic memory list and the one that best matches the cue is selected. 

 

This algorithm requires O(nm) comparisons to find the best match to a given cue 

(where ‘n’ is the number of entries in the cue and ‘m’ is the number of episodes that 
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entries of the cue appear in).  Note that the size of the cue will be much smaller than the 

number of episodes and does not grow over time.  As a result, we expect the growth in 

processing time to grow linearly over time. 

While the cardinality of ‘m’ could equal the size of the entire episodic store, in 

practice it is much smaller because a given entry in the cue is unlikely to appear in all the 

stored episodes.  Moreover, the size of the cue limits the number of memories that need 

to be directly compared to the cue.  In addition, if the agent is moving from task to task, 

so that the number of episodes with common features does not grow, the time required 

will be much smaller than O(nm) implies. 

 

7.4.2.2 Measuring the Performance of the Instance-Based Match 

Figure 7-13 depicts the memory usage required for the baseline implementation using the 

instance-based match in the Eaters task and how it is distributed among the various data 

structures used by the system.  Figure 7-14 shows the same graph for the TankSoar task 

over a longer span of time.  In both graphs, the agent begins with no episodic memories 

and the y-axis measures the amount of memory used as the agent gains more and more 

memories.   
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Figure 7-13: Baseline Implementation Memory Usage (Eaters) 

 

Memory Usage of the Baseline Implementation 
(TankSoar)

0

5000000

10000000

15000000

20000000

25000000

0 500000 1000000

decision cycles

R
A

M
 a

ll
o

ca
te

d
 (

b
yt

es
)

actwme structs

wmetree

epmem structs

epmem ptrs

strings

 
Figure 7-14: Baseline Implementation Memory Usage (TankSoar) 
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Predictably, the memory usage grows linearly as more and more memories are 

added to the episodic store.  In particular, memory spent on “actwme structs” are the 

predominant contributor.  Lists of these structures comprise an episodic memory in the 

baseline system.  (These structures contain a pointer to a node in the working memory 

tree along with an associated activation.)  In terms of the graphs shown in Figure 7-13 

and Figure 7-14 (above), the vast majority of storage is used for the episodic memories 

and not the working memory tree. 

Figure 7-15 depicts processing time required by the baseline implementation 

using the instance-based match in the Eaters task and how it is distributed among the 

three most expensive operations of the system:  memory selection (match), episode 

installation (retrieving the episode into working memory) and episode removal (removing 

the episode from working memory).  Figure 7-16 shows the same chart for the TankSoar 

task.  In both graphs, the agent begins with no episodic memories and the y-axis 

measures the amount of processing time used by the agent as it gains more and more 

memories.   
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Figure 7-15: Baseline Implementation Processing Time (Eaters) 
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Figure 7-16: Baseline Implementation Processing Time (TankSoar) 

This analysis of processing time shows that the amount of processing time also 

grows linearly and that the vast majority of time is spent on the match algorithm.  

Clearly, as more memories are added to the episodic store more time is required to select 

memories for retrieval. 

 

7.4.2.3 Interval-Based Matching Algorithm 

To improve the system’s performance we began an investigation of alternative 

data structures for the episodic memories that would reduce its size at minimal cost in 

processing time.  Examination of the content of the episodic memories revealed that each 

episode was usually only slightly different from the one that had been recorded just 

before it.  This insight led us to consider an approach in which each episodic memory 

contained only the changes from one episode to the next.  However, to implement such 

an algorithm, the activation values used for feature weighting during the match (see 

section 7.4.1) would be lost.  Unlike the WMEs themselves, these values change every 

cycle and thus are not conducive to the same data compression scheme. 
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To compensate, we considered using the activation values from the episodic 

memory cue instead of each candidate episodic memory.  We modified the baseline 

implementation to do this and re-ran the Eaters agent over a similar experiment.  The 

results are shown in Figure 7-17.  The x-axis measures successive actions taken by the 

agent.  The y-axis records the fraction of evaluations performed during the last ten 

actions that were correct.  The data shown is an average of five runs of each agent. 
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Figure 7-17: Impact of using Cue Activation vs. Memory Activation to Bias the Match 

 

As the data shows, the performance of the two agents is nearly identical.  While 

we could not conclude this would be true for all domains, this was enough support for 

that hypothesis that we proceeded with a new data structure that eliminates the need for 

an explicit representation of episodic memories.  This structure is depicted in Figure 7-18 

and should be compared to Figure 7-12. 
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Figure 7-18: Data Structures used by the Interval-Based Algorithm 

 

In this approach, the episodes are stored implicitly in the working memory tree 

via a series of time increments (ranges of decision cycles) on each node in the tree.  The 

ranges indicate the cycles when the associated working memory element was in the 

agent’s working memory.  This approach makes the required storage linear in the number 

of changes to working memory instead of the number of elements in working memory.      

We modified the matching algorithm to use this structure and to use the activation 

values from the episodic memory cue to weight the features of the candidate episodes.  

The resulting algorithm is as follows: 

1. The system simultaneously traverses the episodic memory cue and the working 

memory tree.  For each entry in the cue, the corresponding entry in the working 

memory tree is located. 

2. Each entry that is matched in the tree contains a list of ranges.  Each of these lists 

is set aside and each range in the list is assigned a match score equal to the 

activation level of the associated cue entry.   

3. All of the selected lists are merged together into a single list of ranges.  If two 

ranges partially overlap, they are split into two or more separate ranges.  For 

example, if one list contains two ranges (1-10, 15-20) and the other list contains 
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one range (8-18) the merged list will contain six ranges (1-7, 8-10, 11-14, 15-18, 

19-20). Each range in the merged list has a match score equal to the sum of the 

activation levels of all the ranges that entirely covered that range.   

4. The merged list is traversed to locate the range with the highest match score 

(activation level).  The number(s) in that range represent the cycles in which the 

best-matching episode was recorded.  (In the event of a tie, the most recent cycle 

is selected.) 

5. The episode can be recreated by traversing the working memory tree and creating 

working memory elements for each node that contains the selected cycle in one of 

its ranges. 

The complexity of this algorithm is O(nr) where ‘n’ is the number of items in the 

cue and ‘r’ is the total number of ranges that must be examined.  This complexity can 

also be expressed as O(n2l) where ‘l’ is the average number of ranges in each list that is 

merged in the matching process.  However, these two variables are not independent in 

practice.  At worst, we expect the growth to be linear in the number of episodes because 

the size of the cue (‘n’) is relatively constant.  As in the prior algorithm, the growth will 

be minimized if the same features in the environment are not continually encountered (so 

that r is small). However, this algorithm has the additional advantage in that it is sensitive 

to only changes in features, so that the growth could be significantly less than the 

instance-based algorithm if environmental features change slowly over time. 

 

7.4.2.4 Measuring the Performance of the Instance-Based Match 

 Using this new data structure and algorithm, we repeated the experiments we had 

performed with the baseline implementation.  Figure 7-19 and Figure 7-20 depict the 

memory usage and processing time (respectively) required for this new implementation 

on the same task and using the same y-axis and x-axis at the same scale as used in the 

previous figures.   
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Memory Usage with Interval-Based Match
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Figure 7-19: Impact of Interval-Based Match on Memory Usage 
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Figure 7-20: Impact of Interval-Based Match on Processing Time 
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Both resources still show linear or near-linear growth as predicted by this analysis 

but the amount of each resource used is significantly less.  In the area of memory usage, 

the majority of space is consumed by the new range lists that implicitly represent the 

individual episodic memories.  In the area of processing time, the most time is now 

required for reconstructing and installing an individual episodic memory rather than the 

match itself. 

 

7.4.3 Flexible Agent-Architecture Interface 

While the episodic memory system itself must be task independent, there is no such 

restriction on the knowledge in the agent.  As a result, the episodic memory system can 

benefit from providing as flexible an interface as possible for the agents that use it so that 

the system’s behavior can benefit from this knowledge.  As we developed agents for the 

Eaters and TankSoar environments, we also encountered situations where the agent could 

benefit from having access to a more flexible interface either for specifying these cues or 

for receiving information about memory retrieval.  Given these opportunities, we often 

implemented the requisite functionality. This section describes these additions to the 

baseline implementation and, where possible, demonstrates their impact on agent 

behavior.  

 

7.4.3.1 Expanded Cues 

The episodic memory cue that the agent constructs to trigger retrieval contains the 

WMEs that the agent believes may be relevant to the task.  In the pilot implementation, 

we discovered that the need for retrieving sequences of episodes required a “next” 

command (which was added in the baseline implementation).  As this work progressed, 

other commands were added.  Below is a complete list of the commands supported by the 

most recent implementation: 
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• query - This is the base command for retrieving an episodic memory.  All 

WMEs specified by this command (and their structure) are used to create an 

episodic memory cue. 

• neg-query - Sometimes, the best way for an agent to describe what type of 

episode it wants is by specifying the features that it does not want.  This command 

allows the agent to specify a negative cue.  We used the negative query in some of 

these experiments as a way for the agent to emphasize the importance of certain 

entries of a cue by putting alternative entries into the negative cue.  An example 

of this usage (and its impact) directly follows this list. 

• before/after - When used in conjunction with query or neg-query, 

these commands restrict the resulting retrieval to episodes that occurred before 

and/or after a given episode.  In other words, they allow the agent to set a 

chronological context for retrieval.  These commands were not used for any of the 

experiments presented in this dissertation. 

• prohibit - When used in conjunction with query (or neg-query) this 

command prevents the system from retrieving a specified episode.  Among other 

uses, by prohibiting the episode that was just retrieved for a given cue, the agent 

is able to retrieve the “second best” match for a give query.  Subsequent uses 

allow for “third best”, “fourth best”, etc. indefinitely.  In the most functional of 

this TankSoar agents (see sections 8.4 and 8.5), this command allowed some of 

this agents to reject episodes that did not match the most critical entries in the cue. 

 

While the potential value of these commands is apparent, there is usually no way to 

directly demonstrate their value in terms of an improvement in agent behavior.  However, 

we can demonstrate that a specific use of one of these commands was essential for a 

specific agent.  When this TankSoar agent (described in 8.5) is attempting to evaluate an 

action, it uses the neg-query command to bias the episodic memory system against 

retrieving episodes that do not contain the to-be-evaluated action.  Without this ability, 

the agent is less likely to get a useful memory and, as a result, is less likely to select an 

effective action.   
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Figure 7-21 depicts the performance of the combat tank both with and without 

this ability.  The agent begins with no episodic memories but records more of them as it 

plays more games (the x-axis).  The y-axis is the agent’s average margin of victory for 

each game given a specific number of previous games played.  A negative margin of 

victory represents a losing game and a positive margin of victory is a winning game.  For 

both curves, the data is the average of ten independent runs of the same agent.  The error 

bars in the figure represent the range of 95% confidence. 

 

Utility of Negative Query

-50

-40

-30

-20

-10

0

10

20

30

0 50 100 150

Successive Games

A
ve

ra
g

e 
M

ar
g

in
 o

f 
V

ic
to

ry

With Negative Query

No Negative Query

 
Figure 7-21: Impact of Removing the Negative Cue from the TankSoar Agent 

 

As is apparent in the graph, the inability to create a negative cue means that the 

agent’s rate of learning is diminished.   

7.4.3.2 Retrieval Meta-Data 

When an agent retrieves an episode, the architecture has the opportunity to supply 

metadata about the episode and the selection process that the agent can then use to guide 

its behavior in a task-specific manner.  To support the agents used in this experiments, 

the following metadata are now provided whenever an episode is retrieved by the system: 
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• Retrieval Count - If the agent is retrieving a series of episodes (via the “next” 

command) the system reports how many episodes in that sequence have been 

retrieved so far.  This retrieval count allows the agent to stop the sequence when 

“enough” episodes have been retrieved, where “enough” is a task-specific value 

determined by the agent.  In the TankSoar agent we built to demonstrate learning 

from past success and failure, the agent used this information to detect when it 

had retrieved the maximum memories in a sequence (an arbitrary maximum) and 

should stop. 

• Match Score - The raw match score is calculated during memory selection by the 

architecture and the range of possible values will vary depending upon the cue 

(and thus upon the current task).  By providing this number to the agent, it can 

monitor these values to gain a measure of its confidence in a specific retrieval for 

a given “type” of cue.  (Again, “type” must be a task-specific measure defined by 

the agent.)  This value was also used to calculate the Normalized Match Score 

(below). 

• Cue Size - The number of features that were in the cue.  The agent can use this 

value to normalize quantities or classify cue types.  The architecture uses this 

value to generate the Normalized Match Score (below). 

• Normalized Match Score - This value is the match score divided by the cue size.  

While the agent could do this math, the architecture simply provides the value as 

a convenience.  This value was never used by an agent but was used by the 

architecture to decide when to allow chunking in one experiment (see section 

8.3.2). 

• Match Cardinality - The cardinality of a match is the number of entries in the cue 

that were actually matched by the retrieved memory.  This number can be 

important (particularly with small cues) because one highly activated WME can 

overwhelm the importance of other cue entries.  (See section 7.4.1.6 for some 

experiments with balancing bias from activation versus bias from match 

cardinality.) 

• Memory ID - Each episode is assigned a unique number when it is recorded.  By 

assigning these numbers sequentially and reporting them to the agent, the episodic 
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memory system gives the agent a sense of the relative time when the episode 

occurred.  These IDs also facilitate cue commands like before, after and 

prohibit. 

• Present ID - By telling the agent which ID will be assigned to the next episodic 

memory that is recorded, the agent can compare this with the memory ID to gain a 

sense of the recency of a particular episode.  This value was not used for any of 

the experiments presented in this thesis. 
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Chapter 8 

 

 

Cognitive Capabilities 

 

In Chapter 3, we introduced and discussed a set of cognitive capabilities that episodic 

memory might facilitate.  One of the two major goals of this research is to investigate 

whether, in fact, episodic memory can play a role in supporting a subset of those 

cognitive capabilities using this episodic memory system.  This chapter presents the work 

we have performed toward accomplishing this goal. 

 Each section in this chapter begins with a cognitive capability.  We then describe 

a specific task where that cognitive capability can improve an agent’s performance in one 

of the two environments used in this research (Eaters or TankSoar).  Finally, for each 

task, we present and discuss the results from this investigation, as well as any lessons 

learned.  The experiments described here are presented in roughly chronological order.  

8.1 Action Modeling 

Action modeling is an obvious case where episodic memory can be useful.  Given a set of 

experiences in an environment, an agent can use those prior experiences to predict 

changes in the environment following a given action. 

8.1.1 Action Modeling in the Eaters Environment 

 To demonstrate this capability we created an agent for the Eaters environment 

(see section 6.2.1) with an episodic memory.  Aside from the goal of maximizing its 

score, the only knowledge given to this agent was an understanding of what actions it 

could take in the world (movement in a cardinal direction).  The agent was not aware of 
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the semantic meaning of those actions or the relative importance of the different 

information that was available from its senses.   

 Given this lack of knowledge, we designed the agent to use its episodic memory 

to learn how various situation-action pairs affect its score and, thus, what actions are best 

in a given situation.  In any given situation, the agent is aware of what actions it can take.  

To evaluate a proposed action, the agent creates a memory cue composed of its current 

sensory input and the action of moving in the proposed direction.  If the cue resulted in a 

successful retrieval of performing the same action in a similar situation, the agent would 

then ask for the next memory in chronological order.  If both memories include the 

agent’s score, then the agent can determine what immediate change in score (if any) 

resulted from that past action.  This change in score can, in turn, be used to quantitatively 

evaluate each proposed action.  The action with the highest score is the action that agent 

actually selects.  This agent is described in more detail in section 7.3. 

 Figure 8-1 depicts the accuracy of this agent’s action evaluations as it gains more 

and more episodic memories.  This particular experiment was run five times using this 

baseline implementation with this improved working memory activation mechanism 

providing feature weights for the memory selection routine (see section 7.4.1.5).  The 

results were averaged and a mean smoothing with a windows size of ten was applied to 

achieve the final results that are shown in the figure. 
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Figure 8-1: Action Modeling Results (Eaters) 

 

The x-axis is the number of predictions that the agent has made and, thus, is a 

rough measure of time.  The y-axis indicates the fraction of the last ten predictions that 

were correct.  For this experiment, a correct evaluation consists of predicting the correct 

change in score that will result for a given action.  If the agent makes an incorrect 

prediction (or is unable to make a prediction at all due to a failed episodic memory 

retrieval) then the outcome is considered a failure.   

 The agent begins with no episodic memories and, as a result, its accuracy begins 

at 0%.  (The smoothing makes this appear closer to 10%.)  As the agent acts in the world, 

its ability to model the results of its actions improves rapidly, approaching perfect 

behavior in the limit.   

8.1.2 Action Modeling in the TankSoar Environment 

 The simplicity of the action modeling cognitive capability made it a good target 

for demonstration in multiple environments.  Because the task in the TankSoar domain is 

complex, we instead focused on a smaller subtask. While a human watching the domain 

can see it in its entirety, the agent’s sensing is limited.  An agent has many senses but the 
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most useful one is its radar which allows it to sense the environment immediately in front 

of it. The radar can be set to different distances with further distances allowing the agent 

to see farther but also requiring more energy. Thus, energy is wasted if the radar is 

blocked by an obstacle (e.g., a wall or another tank).  Figure 8-2 depicts what an agent 

can see with its radar from the same position and direction using three different radar 

settings. 

         
Figure 8-2: Outcome of Three Different Radar Settings 

  

To demonstrate action modeling, this agent uses its episodic memory to predict 

what it will see when it turns on its radar, and uses that information to set the most 

efficient radar distance. As with the Eaters task, it is essential that the episodic memory 

system retrieve a relevant memory for a given cue.  Unlike the Eaters task, the size of the 

memory cue was much smaller: consisting of the agent’s current x, y coordinates, the 

direction it was facing and the maximum radar setting.  As with Eaters, we used working 

memory activation to weight the features of episodes during the match but, due to this 

small cue, we found that the agent performed best when an exact match (even with lower 

activation) was preferred over the best activation-biased match.  Section 7.4.1.6 has 

details on investigations into the balance between match cardinality vs. activation bias on 

memory selection. 

Figure 8-3 depicts the agent’s performance over one hundred radar settings while 

the agent explores a map. The y-axis is the fraction of the last ten settings that were 



 

 84 

correct. A failed setting was given a partial score based upon how close it was to the best 

setting.  Each data point is the average of five runs. The dashed line at the bottom of the 

graph indicates the performance of an agent that selects its radar setting randomly. As the 

graph shows, the agent quickly learns to make effective radar settings as it navigates the 

maze. 
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Figure 8-3: Action Modeling Results (TankSoar) 

 

 Based on the results from both the Eaters and TankSoar environments, it appears 

that episodic memory can be an effective resource for action modeling.  The learning 

appears more rapid here than in the Eaters experiment due to the fact that partial 

successes are possible. 

 

8.2 Retroactive Learning 

Retroactive learning is the ability to relive an experience when more resources (usually 

time) are available in order to learn things from those experiences that could not be 

learned when they occurred.  At the general level, a retroactive learning algorithm has 

these steps for an agent: 
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0. Gather episodic memories at a time when the agent can not learn from them fully. 

1. Retrieve an episodic memory that the agent has not retrieved before for this 

learning task.  If no such memory can be retrieved, exit. 

2. If the agent already has knowledge informing it of how to get to the goal state 

from the recalled state, go to step 1. 

3. Does the agent recall performing an action that got it to the goal state from the 

current state?  If so, record the necessary state-action combination as semantic 

knowledge.  Go to step 1. 

4. Do the agent recall taking an action in this state that gets it to another state 

wherein it already have semantic knowledge of how to get to the goal?  If so, 

record the action taken along with a sufficiently unique description of the recalled 

state as new knowledge. 

5. Go to step 1. 

We demonstrated this cognitive capability in the Eaters domain using this pilot 

implementation.  The agent we created used a simplified version of the general algorithm: 

0. We created an agent that acted randomly for a fixed period of time gathering 

episodic memories.   

1,5.    After this time, the agent would stop and retrieve its memories by constructing 

cues consisting of the agent in all possible combinations of neighboring cells.  

This is significant because it reflects additional information given to the agent: 

that the contents of cells are important.   

2-4. Based upon its retrievals, the agent gained new knowledge (chunks) describing 

which action to take based upon the contents of neighboring cells.   

After this period of reflection, the agent would resume its movement through the 

maze using this new semantic knowledge (additional episodes were also recorded). 

Figure 8-4 depicts the performance of this retroactive learning agent in the Eaters 

environment.  The y-axis measures the fraction of the last ten actions that were correct 

while the x-axis represents successive actions in the world.  The data is an average of five 

runs of the agent.   

 



 

 86 

Retroactive Learning Eater

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 44 87 130 173 216 259 302 345 388 431 474 517 560 603 646 689 732

Actions

F
ra

ct
io

n
 C

o
rr

ec
t

 
Figure 8-4: Retroactive Learning Results 

 

This graph indicates that the retroactive eater has learned near-ideal behavior via 

retroactive learning. 

 

8.3 Boosting Other Learning Mechanisms 

The ability to provide “grist” for the “mill” of other learning mechanisms is potentially an 

important ability for episodic memory.   Similar combinations of “lazy” and “eager” 

learners are demonstrated by locally weighted learning (Atkeson, et al. 1997), lazy 

learning (Sheppard and Salzberg 1997) and continuous case-based reasoning (Ram & 

Santamaría 1997). 

8.3.1 Demonstrating Boosting with Eaters 

To demonstrate an episodic memory system’s ability to boost other learning 

mechanisms we combined this pilot implementation of episodic memory with Soar’s 

built-in learning mechanism: chunking.  (You may wish to refer to section 5.6 for an 

overview of chunking.)  When the agent lacks the knowledge to choose among multiple 
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possible actions this creates an impasse.  In the resulting subgoal, episodic memory 

retrieval is used to evaluate each action.  These evaluations became results of the 

subgoals and lead to the creation of rules (chunks).  These rules test WMEs that were 

used to create the episodic memory cue and create preferences for the actions that were 

selected based on the retrieved episodes.  In other words, these chunks are compiling the 

processing that was used in the episodic memory retrievals so that the agent can skip 

these retrievals in the future.  This expectation was that this would increase the speed at 

which the agent was able to make decisions. 

Figure 8-5 depicts a comparison of an episodic memory agent with chunking and 

the same agent without the chunking mechanism.  The figure includes data from a 

hypothetical agent with ideal behavior that requires only one decision cycle per action 

and always takes the correct action.  The y-axis measures each agent’s score while the x-

axis represents successive Soar decision cycles (instead of successive actions as in Figure 

8-4 above).  This means that the graph is weighing both the effectiveness of the agent’s 

actions and the speed at which the agent makes decisions. The data is an average of five 

runs of the respective agents.   
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Figure 8-5: Boosting other Learning Mechanisms Results 
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As the figure depicts, chunking creates a significant decrease in the amount of 

time required for the agent to make decisions.  This improvement in behavior can only 

result because both mechanisms (chunking and episodic memory) are present. In other 

words, this synergy demonstrates episodic memory’s ability to boost another learning 

mechanism. 

 

8.3.2 Chunking with Confidence 

One issue that arose when using chunking with episodic memory is that chunking is a 

“one-shot” learning mechanism.  In other words, once a chunk has been learned it cannot 

be unlearned even if knowledge it contains is erroneous.  Based on these observations, we 

concluded that an agent might benefit from a chunking mechanism that had a measure of 

confidence in the results of an episodic retrieval and used that confidence to decide when 

to learn. 

An obvious way to measure this confidence is to use the match scores that the 

matching algorithm uses to rank candidate episodes for retrieval.  By normalizing the raw 

score with the size of the memory cue, we acquire a hypothetical measure of the agent’s 

confidence.  To explore this hypothesis, we gathered data about the correlation between 

the correctness of a retrieved episodic memory (where “correctness” is measured by 

whether the agent makes a correct decision based upon the memory).  We did this from 

two environments using both of this action modeling agents (see section 8.1) by showing 

the correlation of these normalized match scores to the correctness of the memory (where 

“correctness” is measured by whether the agent makes a correct decision based upon the 

memory).   

Figure 8-6 and Figure 8-7 depict a bar graph of the number of instances of each 

match score (normalized) for the Eaters agent and the TankSoar agent respectively.  The 

x-axis has a bracket for each possible match score (binned to whole numbers).  The range 

of the x-axis is larger for the TankSoar graph than for Eaters.  The y-axis measures the 

number of instances in which the episodic memory system retrieved an episode with each 
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match score.  Finally, the bars are labeled (and color coded) to indicate whether the 

retrieved memory resulted in a correct action by the agent. 
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Figure 8-6: Correlation of Match Score to Correct Decisions (Eaters) 
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Figure 8-7: Correlation of Match Score to Correct Decisions (TankSoar) 
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Two things are readily apparent upon viewing this graph.  First, scaling the match 

scores from the two domains based upon cue size did not normalize them.  The adjusted 

match scores from the Eaters agent were significantly smaller than those from the 

TankSoar agent.  Second, there is a correlation between match score and correctness. 

This is particularly true for the TankSoar agent.   

Based upon these observations we concluded that it is possible to use the match 

score as a measure of confidence.  However, we did not have a clear method for making 

this measure task independent. 

Despite the lack of task independence, we proceeded with an experiment using 

the episodic memory system’s match score as a measure of confidence for the TankSoar 

agent.  Specifically, we modified the episodic memory system so that it could turn the 

chunking mechanism on or off depending upon its confidence in the most recent retrieval.  

We set the threshold using a hardcoded (task-dependent) value for the raw match score.  

The thresholds were set based upon the data from the figures above.  Given the high 

correlation between confidence and correctness, we hypothesized the agent would only 

learn new chunks when the episodic retrieval was likely yield correct behavior.  As a 

result, we anticipated improved behavior from the agent vs. an agent with chunking 

turned on all the time. 

Figure 8-8 depicts the average performance of the agent at difference confidence 

thresholds.  The y-axis measures the fraction of correct evaluations made by the agent out 

of a fixed number of such evaluations.  The agent with confidence threshold 0 is 

chunking all the time.  The control agent was an action modeling agent for TankSoar that 

did not use chunking at all.  Instead, it used task-specific information to manually verify 

that a retrieved episode exactly matched the cue and was usable by the agent. 
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Figure 8-8: Impact of using a Hard-Coded Confidence Threshold for Chunking 

 

As the results show, we did perceive improvement in performance compared to 

the original chunking agent but the performance was still far below that of an agent that 

self-verified.  In other words, despite the task-specific threshold, the agent was still 

producing some incorrect learning.   

Upon examining the data, we discovered that the correctness correlation actually 

shifted as a result of turning on the learning mechanism.  Specifically, the changed 

created by chunking altered the activation levels.  This, in turn, altered the match scores 

of retrieved memories that, in turn, altered the strict correlation between match score and 

the correctness of agent behavior.  In short, we discovered a circular dependency between 

these four factors (depicted in Figure 8-9). 
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Figure 8-9: Circular Dependency 

 

Based on these experiments we concluded that match score was a fair predictor of 

the usefulness of a retrieved episode.  As a result, a learning algorithm that is using the 

results of episodic memory retrievals can gain a boost from having access to the match 

scores.  However, harnessing these values may be difficult.  Not only did we see evidence 

that the range of match scores is task dependent but we also observed that the relationship 

between match scores and chunking with confidence is dynamic and interdependent.   

 

8.4 Virtual Sensors 

When an agent originally senses something, it may be irrelevant to its current task. Then, 

at some future point, that past sensing may become important. An agent with episodic 

memory can retrieve details of its past sensing. This capability is useful in environments 

with large bodies of data that are irrelevant to the current task, but may be relevant to 

future tasks.  For example, a traffic controller agent may be asked by authorities if a 

green car being driven by tall, balding man passed by within the last hour.  While the 

agent normally has no need to record information about the drivers of cars, it may help 

stop a criminal by remembering this critical information. 

 To demonstrate this cognitive capability in the TankSoar domain, we chose the 

task of locating the battery used to recharge the agent’s energy supply.  When the tank’s 
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energy supply runs low, the agent uses its episodic memory to construct a map or path to 

the battery in its working memory.  The high level algorithm is as follows: 

1. If the agent can only move forward or backward, it continues to move forward 

until this changes.  Then it proceeds to step 2. 

2. If the agent already has knowledge of a path from this position to the battery, then 

it follows that path and returns to step 1.  For this agent a “path” is a location (x,y 

coordinate) combined with a direction (north, south, east or west).  For our 

implementation, these were stored in the agent’s working memory.  The agent 

follows this step until it occupies a square that does not contain a path.  Then it 

proceeds to step 3. 

3. The agent attempts to retrieve an episodic memory of seeing the battery from this 

position.  The cue for this retrieval consists of the agent’s current location and the 

perceptual elements that represent seeing the battery on radar.  If the retrieval is 

unsuccessful, the agent proceeds to step 4.  If the retrieval is successful, the agent 

records a path in working memory originating in this position and moving directly 

toward the battery.  It then resets to step 1. 

4. For each path the agent knows of, it attempts to retrieve an episodic memory of 

seeing a location from this position from which it has already recorded a path to 

the battery.  If any retrieval is successful, then creates a new path in working 

memory that directs the agent from this position toward the origin of the existing 

path and resets to step 1. 

5. If step 4 fails, the agent moves in a random direction (search) and resets to step 1. 

For this experiment, we used the baseline implementation with working memory 

activation being used to weight the features of episodes during memory selection.  The 

agent also began with a set of episodic memories that had been gathered in previous, 

exploratory movements in the maze.  Over time, an agent using this algorithm constructs 

a set of paths that can direct it from any position in the maze to the battery (see Figure 

8-10 for an example). 
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Figure 8-10: A Graphical Depiction of a Set of Paths Learned by the TankSoar Agent 

 

Figure 8-11 depicts the results from this experiment.  The y-axis (which has a 

logarithmic scale) measures the number of moves required to reach the battery.  (Thus, a 

lower score is better.)  The x-axis represents subsequent searches over time.  For the first 

search, the agent has only a few episodic memories.  As the agent gains more paths and 

more episodic memories the time required to find the battery diminishes.  Specifically, 

this data show that it is an order of magnitude faster than a random search. 
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Figure 8-11: Virtual Sensors Results 

 

8.5 Recording Previous Successes and Failures 

 Action modeling allows an agent to predict the immediate outcome of an action. 

However, in many tasks, the long term outcome of an action is more critical to success.  

In such situations, the cognitive capability of remembering the long term success or 

failure that followed a particular action in a particular situation can lead to better behavior 

on the part of the agent. 

 The TankSoar environment is well suited for demonstrating this cognitive 

capability (see section 6.2.2 for an overview of TankSoar).  The environment is fairly 

complex with multiple different sensors and many unique combinations of actions that 

can be taken simultaneously.  Within this environment, the agent must balance 

conflicting goals of survival, resource management and scoring hits on other agents.  

Most importantly, the outcome of a particular action is usually not immediate and often 

dependent upon future actions.  For example, missiles fired by TankSoar agents take time 

to travel and their effect may be unknown for several time steps.  Most poignantly, the 

decision to attack with low health and few missiles will almost certainly lead to disaster 
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in the long term.  As a result, success in the TankSoar domain requires the ability to 

predict the long term outcomes associated with an action. 

To demonstrate this cognitive capability, we started with an existing hand-coded 

agent for the TankSoar domain.  This agent has four major subgoals: 

• Attack  – This subgoal is selected when the agent sees a nearby enemy and has 

sufficient resources (i.e., missiles, health and energy) and knowledge (i.e., the 

enemy is visible) to attack.  For this agent, “sufficient” is a hard-coded set of 

criteria. 

• Chase – This subgoal is selected when the agent detects (but can not see) a 

nearby enemy and has sufficient resources to attack. 

• Retreat – This subgoal is selected when the agent detects a nearby enemy and 

does not have sufficient resources to attack 

• Wander – This subgoal is selected when the agent does not detect a nearby 

enemy. 

We modified this default agent in two ways.  First, to reduce complexity, focus 

the agent on effective tactics, and shorten simulations we prevented the agent from 

turning on its shields.   

Second, we introduced a 10% chance for aberrant behavior rather than normal 

behavior in all subgoals except Wander.  This second modification was designed to 

reduce the incidents of mutually repetitive behavior between two competing agents.  For 

example, two agents might be diagonally adjacent to each other and simultaneously 

decide to move sideways so as to be directly adjacent to its opponent.  However, since 

both agents are moving sideways they end up diagonally adjacent to each other again. 

This modified agent was this control agent for all experiments with this task in the 

TankSoar environment.  The control agent has a total of 53 Soar productions.  In all 

experiments, the episodic memory agent was pitted against this agent in a one-on-one 

match.   

To demonstrate the target cognitive capability we created an episodic memory 

agent by further modifying the control agent.  We removed the control agent’s logic for 

selecting actions in the Attack subgoal.  We replaced this logic with results from a 
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subgoal for evaluating actions based upon episodic memory retrievals.  This algorithm 

has the following steps (refer to Figure 8-12): 

 
Figure 8-12: An Episodic Memory TankSoar Agent 

 

1. The agent first determines what actions it is able to take based upon its current 

state.  Certain actions may be prevented by the presence of the obstacles or a lack 

of resources.  In the figure, the box labeled (A) represents the agent’s current state 

and the arrows emerging from the figure represent a list of possible actions. 

2. The agent does not have sufficient procedural knowledge to select which action is 

best.  Therefore, it uses episodic memory to evaluate each possible action as 

follows: 

a. First, the agent creates an episodic memory cue that contains 

heuristically-selected portions of the agent’s current state plus the action to be 

evaluated.  In other words, the agent is trying to retrieve an episode wherein it 

took the same action in a similar situation.  To emphasize the importance of 



 

 98 

this specific action, the agent creates a negative cue that biases against 

memories where a different action is being taken.  In the figure, an example of 

the memory cue is represented by the box labeled (B). 

b. The agent allows the episodic memory system to retrieve the episodic memory 

that best matches the given cue.  In the figure, an example retrieval is labeled 

(C).  As you can see, this retrieved episode is not an exact match to the cue 

but merely the closest match that the episodic memory system can identify.  

Therefore, decisions based upon this retrieval may or may not be best. 

c. The agent records the score that it had in that current episode.  Then, through 

repeated uses of the “next” command, the agent retrieves the sequence of 

subsequent memories (in temporal order) that occurred until one of the 

following events occurred in the most recently retrieved episode: 

i. one of the two agents is destroyed (indicated by a significant change in 

score) 

ii.  the end of the game 

iii.  a sequence of ten memories had been retrieved 

d. The agent uses the overall change in score between the first and last retrieved 

episode as a quantitative evaluation of the action being considered.  

Inconclusive outcomes result in a default (slightly positive) evaluation in 

order to encourage exploration. 

3. Once all the possible actions have been evaluated, the agent selects the action 

with the highest evaluation.  Ties are resolved randomly.  (There is also a 10% 

chance that the agent will take a random action in order to put it on equal footing 

with the control agent.) 

Figure 8-13 shows the episodic memory agent’s performance against the control 

agent.  The x-axis represents successive games.  The agent retained its episodic memories 

from game to game and so had a larger episodic store at each successive game.  The y-

axis measures the agent’s margin of victory (i.e., the control agent’s score subtracted 

from the episodic memory agent’s score).  Thus, a negative margin of victory indicates a 

loss.  The results depicted here are the average of ten repetitions of the same experiment.  
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Each episode contained approximately 120 WMEs.  The error bars in the figure represent 

the range of 95% confidence. 
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Figure 8-13: Initial Results from Learning from Past Success and Failure 

 

As the graph shows, overall performance versus the control agent was poor.  Closer 

examination of the agent’s behavior indicated that the agent was often incorrectly 

associating particular actions with particular outcomes.  In retrospect, this is not 

surprising given the delayed rewards inherent in the TankSoar domain.  We hypothesized 

that this failure was because all actions leading up to a particular outcome were given 

equal credit for that outcome.  To correct for this, we modified the agent to use a discount 

factor such that more recent actions would receive more credit for a particular outcome. 

 

We performed the same experiment again with this new agent.  The results are shown 

Figure 8-14.  This new agent’s performance is much improved with an average margin of 

victory defeating the control agent. 



 

 100 

Episodic Memory: Base Agent
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Figure 8-14: Subsequent Results with Learning from Past Success and Failure 

 

 Upon further analysis of the agent’s behavior, we identified three learned tactics 

that had a significant impact on its performance. First, the agent learned to dodge hits 

from short-range enemy missile attacks before they occurred. Second, the agent learned 

to back away from an enemy while firing its missiles. This delayed the impact of enemy 

missiles and opened up future opportunities to subsequently dodge.  Finally, the agent 

learned to move out of the enemy’s sight (thus leaving the Attack subgoal) when it was in 

a tactically unfavorable situation. 

 

8.5.1 Removing Heuristic Cue Selection 

One aspect of this episodic memory TankSoar agent is its use of a small set or 

heuristically-selected features of its state to construct a cue.   This approach was used in 

an attempt to simplify the learning problem faced by the episodic memory agent.  The 

agent’s state in the TankSoar environment was approximately 2.5 times larger than in 

Eaters. 
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 Once we had a successful agent in hand, we temporarily removed the heuristic 

cue content selection and replaced with the use of the agent’s entire state.  (The to-be-

evaluated action continued to be added as normal and the negative cue was left in place.) 

 We repeated the experiment with the same control agent.  The result is shown in 

Figure 8-15.  As the graph indicates, the agent performed much worse without the benefit 

of this heuristic cue content.  However, there is some indication that the agent’s behavior 

does improve gradually over time.  Figure 7-11 (in section 7.4.1.6) shows how the 

performance can be improved by adjusting the cardinality vs. activation ratio to strongly 

favor working memory activation for feature weighting during the match.  However, the 

overall result is the same:  performance is significantly worse without the heuristically 

selected cue. 
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Figure 8-15: Impact of Removing the Heuristic Cue 

 

It remains to be seen whether this agent would eventually learn to outperform the 

control agent.  Extending the experiment to a much longer duration is infeasible with the 

current architecture due to limited memory resources of this equipment.  However, it is 



 

 102 

possible that a forgetting mechanism could be used in the future to overcome this 

limitation (see section 9.2.4.2). 

8.5.2 Learning-Based Control Agent 

In order to ground the episodic memory agent’s performance we performed a second 

performance comparison with a control agent whose rules were derived by using a 

learning algorithm rather than the hand-coded decisions made by this original control 

agent.  The work of Chia and Williams (2003) describes a TankSoar agent that uses naïve 

Bayesian Learning to learn rules for selecting between the Attack, Chase, Retreat and 

Wander subgoals.  As part of their presentation, they describe their learned rules in 

sufficient detail that were we able to modify this control agent to use the same learned 

behavior.  We then performed the same experiment with this new control agent.  This 

episodic memory agent performed even more effectively than against this original 

control.  The results are shown in Figure 8-16. 
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Figure 8-16: Comparison with a Learning-Based Control Agent (Naive Bayesian) 
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8.5.3 A Reinforcement Learning TankSoar Agent 

The TankSoar task is essentially a temporal difference learning task (Sutton & Barto 

1998) and thus well suited to reinforcement learning.  Since the Soar architecture 

contains a reinforcement learning module, a reinforcement learning agent can be created.  

Figure 8-17 shows the performance of such an agent versus the same control agent.  The 

agent’s state is defined as the same heuristically selected features7 that were used to 

create the cue for the episodic memory agent.   

As before, the x-axis represents successive games.  The agent retained the 

knowledge that it learned from game to game.  The y-axis measures the agent’s margin of 

victory (i.e., the control agent’s score subtracted from the reinforcement learning agent’s 

score).  Thus, a negative margin of victory indicates a loss.  The results depicted here are 

the average of thirty repetitions of the same experiment.  The error bars in the figure 

represent the range of 95% confidence. 
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Figure 8-17: Performance of a Reinforcement Learning Agent in the TankSoar Task 

 

                                                 
7 The set is not identical as one of the features was omitted since it was not always present. 
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 By comparing this graph to Figure 8-14, it's evident that the reinforcement 

learning agent outperforms the episodic memory agent by a significant margin.  Given 

reinforcement learning's general suitability for this task and the commitment its 

knowledge makes to the task, this provides a benchmark for work with this domain.   

The episodic memory agent’s more modest performance is mostly due to the one-

shot approach to its learning.  Success in the task requires a series of correction actions 

where any error in that sequence hurts overall performance and one improbable event can 

immediately skew the agent’s performance toward bad behavior in the short to medium 

term.   

Integrating episodic learning and reinforcement learning in order to capitalize on 

their complementary strengths is a good direction for future research (see section 9.2.1.2). 
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Chapter 9 

 

 

Discussion 

 

 

 

The preceding chapters of this dissertation present a broad exploration of the challenges 

and benefits of providing an episodic memory to an intelligent agent.  We began by 

describing and defining in detail what episodic memory is and describing a design space 

of episodic memories.  We then provided a detailed discussion of the cognitive 

capabilities we expect to be granted to the agent by virtue of possessing an episodic 

memory.  The bulk of this work involved constructing and refining a task-independent 

and architectural implementation of an episodic memory and using it to demonstrate 

some of the expected cognitive capabilities. 

 This chapter reviews the major contributions of this work and also presents the 

major avenues we perceive for future research. 

 

9.1 Contributions of this Research 

The major contributions of this research include the following: 

• Episodic Memory Framework – This research provides a comprehensive 

definition of the design space of episodic memory systems.  By defining this 

space, we provide a taxonomy for comparing disparate episodic memory systems 
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to each other.  In addition, the framework guides future research by suggesting 

“spaces” in this design space that merit investigation. 

• Cognitive Capabilities – This research defines a list of cognitive capabilities that 

episodic memory could possibly support in a general agent. By investigating a 

subset of these capabilities and demonstrating the possibility of supporting them, 

we strengthen the thesis that a single memory system can, indeed, provide them.  

The existence of this list also provides a clear objective for future research. 

• Algorithms for Effective Selection – Any effective episodic memory system 

must have an effective matching algorithm.  Section 7.4.1 presents an overview of 

existing research in partial matching and this research’s position in that field and 

this relative position in that research (particularly within the context of nearest 

neighbor matching). Two of the algorithms we use include the approach of using 

working memory activation as a feature weighting mechanism for memory 

selection.  As far as we are able to discern, this approach is unique. 

• Effective Query Interface – This research has presented the concept that the 

effectiveness of a task-independent episodic memory is dependent upon the 

quality of the interface with the intelligent agent.  We perform experiments that 

demonstrate the value of allowing the agent access to a flexible cueing interface 

and giving the agent meta-information about the results of an episodic memory 

query.   

No research that we are aware of presents a focus on the impact of the 

agent-architecture interface on their mutual performance.  In section 9.2.5.4 we 

present ways in which the existing interface can be expanded. 

• Episodic Memory Performance – Due to the comprehensive nature of episodic 

memory there is significant potential for overextending the agent’s use of 

computing resources (i.e., storage space and processing time).  This research has 

gathered data about the impact of an episodic memory system on storage and 

processing time and how the resource requirements change depending up the size 

of the episodic store and the matching algorithm being used (see section 7.4.2). 
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9.2 Future Work 

Given the unusual breadth of this research, there are many directions that it could be 

taken.  This section describes four major avenues of research as well as some interesting 

options within each area. 

9.2.1 Integration with other Learning Systems 

As we have shown episodic memory can create synergy when it works in cooperation 

with other learning mechanisms, particularly semantic memory and reinforcement 

learning.  This relationship is illustrated with the chart in Figure 9-1. 

 Number of 

Tasks 

Number of Available 

Types of Inputs 

Size of Output 

Episodic Learning many many large 

Semantic Learning many few small 

Reinforcement Learning few many small 

Figure 9-1 Comparison of Episodic Memory and other Learning Systems 

 

Episodic and semantic memory systems are strongest when the information they 

gather is needed in many contexts.  In contrast, a reinforcement learning agent has more 

difficulty transferring knowledge from task to task.  Conversely, the “one-shot learning” 

approach of episodic and semantic memory systems hinder them in dynamic 

environments. 

Episodic memory cues (and states used by reinforcement learning algorithms) can 

contain many features.  Semantic information is generally requested (and doled out) at a 

much smaller bandwidth. 

One direction for this research is to investigate the potential synergy of these 

systems in more detail. 

9.2.1.1 Semantic Memory 

As described in the introduction, semantic memory is knowledge of facts which have 

been extracted from experience.  In humans, this roughly corresponds to what we “know” 
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as compared to what we “remember.”  An example of this from this research is the 

TankSoar agent that used its episodic memory to build a map of directions to the battery. 

A deeper investigation of the relationship between semantic and episodic memory 

seems particularly appropriate.  An initial semantic memory system has already been 

developed for Soar (Wang and Laird 2006) and would likely facilitate this research.  Key 

questions that should be answered include: 

• What criteria determine when a portion of an episodic memory becomes a 

semantic memory? 

• How is semantic information abstracted from episodic memories? 

• How does semantic memory increase the efficacy of episodic memory cueing and 

retrieval?   

• How does semantic memory increase the efficiency of episodic memory cueing 

and retrieval? 

9.2.1.2 Reinforcement Learning 

In section 8.2, we presented an agent that used episodic memory to demonstrate the 

cognitive capability we call retroactive learning.  While we used a simple semantic 

storage mechanism to learn, reinforcement learning relies upon learning from a series of 

experiences.  As a result, a reinforcement learning algorithm can use episodic memory to 

train (or retrain) itself to perform correctly in the future using episodic memories of past 

events.  Given that Soar already contains a reinforcement learning mechanism, there is 

ample opportunity for this line of research. 

Key questions to be addressed include: 

• Given experiences performing another task, how much knowledge can be 

transferred to a new task in the same environment? 

• Can episodic memory be used to speed up the reinforcement learning module’s 

adjustment to changes in its environment that affect its current task? 
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9.2.2 Demonstrating More Cognitive Capabilities 

This research presents demonstrations of five cognitive capabilities:  virtual sensing, 

action modeling, recording previous success/failures, retroactive learning and boosting 

other learning mechanisms.  However, of this original list this leaves six cognitive 

capabilities unexplored: 

• Noticing Significant Input  – detecting what is important about a given situation 

by its relative familiarity 

• Detecting Repetition – realizing when you’re repeating the same series of actions 

and altering your behavior as a result 

• Environment Modeling – using past experience to predict how the environment 

will change 

• Sense of Identity – understanding ones behavior in relation to other agents 

• Managing Long Term Goals – keeping track of a plan and what steps in that 

plan have been accomplished so far 

• Reanalysis Given New Knowledge – relearning from experience upon receiving 

new knowledge 

• Explaining Behavior – explaining your past actions to others for mutual benefit 

Investigating each of these would not only complete this original work but would 

almost certainly provide additional insights into creating an effective episodic memory 

system. 

 

9.2.3 More Complex Environments and Tasks 

Most of the environments and tasks presented in this research were necessarily simple 

with a graduation to the more significant task of combat in the TankSoar environment.   

As environments and tasks get more and more complex, they are more difficult to 

approach.  Using more complex environments would test the limits of episodic memory 

and provide insights on the limits of learning as well as tradeoffs in implementation.  

Particular dimensions that could be expanded include: 

• Feature Rich Environment – The more feature rich that an environment is, the 

larger episodic memories have the potential to be.  Larger memories, in turn, 
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require more resources from the architecture.  A feature rich environment also 

makes it more difficult for the episodic memory system to select which features 

are important to the agent’s current task. 

• Multi-Step Task – If succeeding at a task requires that the agent take multiple 

steps in a particular order, the episodic memory system will be required to 

accurately track long sequences of behavior and, perhaps, distinguish more 

important parts of those sequence from others. 

• Partially Observable Environment – An environment which contains many 

disparate states that appear identical to agent sensing will require the agent’s 

episodic memory to provide past context to agent’s current actions. 

• Changing Task – If the agent’s task changes regularly, long term learning 

algorithms suffer.  However, a retroactive learning approach that uses episodic 

memory (and particularly the temporal information stored in episodic memories) 

may be more successful.  In particular, we envision an agent that reviews events 

leading to a failure and mentally replays them selecting different actions and 

using episodic memory to guess the results of these alternative actions.  As a 

result, the agent can be better prepared for future similar situations. 

 

9.2.4 Improving Performance 

As was discussed in section 2.3, the resource usage (storage and processing time) of an 

episodic memory system is a critical consideration.  As a result, an available avenue for 

research is to investigate ways to reduce the resource usage without a large sacrifice in 

the efficacy of the system.  This section discusses some ways in which that could be 

accomplished. 

9.2.4.1 Engineering 

To date, most of our efforts to improve the performance of this episodic memory system 

have focused on improving performance without changing behavior. Specifically, we 

have made changes to the algorithms and data structures used to store and manipulate the 

episodic memories.  The potential exists to make still more improvements in this manner.  
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9.2.4.2 Forgetting 

A forgetting mechanism is the most straightforward approach to creating a memory store 

with a constrained size.  Previous work on long term learning (Kennedy and De Jong 

2003) indicates that in addition to reduced storage an agent’s performance can actually 

improve if low-utility information is removed from its long term memory.  Any 

implementation of this approach requires a task-independent method of deciding which 

memories are important and which are not.  Some possible approaches include the 

following: 

• Remove the oldest memories first – This approach guarantees that as many 

memories as possible are in the episodic store with the least amount of processing.  

However, it carries the distinct risk that important episodes will be lost. 

• Remove the least activated memory – A long term activation level on each 

memory could be used to measure the frequency and recency with which a 

memory has been retrieved.  The least activated memory seems least likely to be 

needed in the future.  This approach bears the most similarity to that used by 

Kennedy and De Jong. 

• Remove the most redundant memory – This method would involve locating the 

two memories that are most similar and removing one of them (probably the 

oldest or least activated).  Ram & Santamaría (1997) used an approach similar to 

this in their continuous case-based reasoning work though they did not report on 

its effectiveness vs. a non-forgetting agent. 

• Memory Decay – In this approach, the system maintains an activation level on 

individual features of episodic memories.  Features with low activation are 

removed to make room for new memories. 

9.2.4.3 Adjusting the Frequency of Recording 

Rather than forget existing episodic memories, performance can be improved by 

recording less memories to begin with.  Some possible approaches include the following: 

• Fixed Frequency – The simplest approach is to simply reduce the overall 

frequency with which memories are recorded to a fixed value.  This is a simple 
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method, though it stands the strongest chance of missing important events in the 

agent’s history. 

• Significant Change in State – By monitoring the content of the agent’s state, the 

system can attempt to measure the boundaries between significant events by 

looking for major changes.  This is the method used by this pilot implementation 

which recorded a new episode whenever the top N most activated features of the 

state changed.  There are alterative ways to measure when the agent’s state is 

“significantly different,” including a threshold match between the current state 

and the last recorded episodic memory and a count of the number of changes to 

the agent’s state since the last recording.   

• High Overall Activation  – The overall activation level of the features of the 

agent’s state can also be used as a relative measure of the agent’s arousal or 

activity level.  The more highly activated working memory elements that there 

are, the more active the agent is.  Hypothetically, the most important events will 

occur during periods of high activity.  By recording more frequently during high 

activity and less frequently during low activity, the memory store might be 

reduced without missing important episodes. 

• Familiarity Based – In this method, the agent measures the familiarity of a 

situation by comparing it to the closest matching memory in the episodic store.  If 

the closest match is “strong”, no memory is recorded since the new memory will 

be similar to one already in the episodic store.  The computational overhead 

required for this approach may be prohibitive. 

9.2.4.4 Anytime Algorithm 

By implementing key subroutines as anytime algorithms, the amount of time spent 

performing these operations could be limited to a fixed maximum.  Matching routines, in 

particular, are well suited to an anytime implementation.  However, as the episodic store 

continued to grow, this approach would become less and less effective. 
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9.2.4.5 Two Stage Match 

This current system always retrieves the best partial match.  As an alternative, it may be 

that merely retrieving an excellent (but not necessarily best) match is sufficient.  A 

familiar approach to improving performance at the sacrifice of perfection is to use a two 

stage match (Forbus, et al. 1994, Cercone, et al. 1997).  In the first stage, a small subset 

of the database is retrieved using a very efficient, but approximate algorithm.  This subset 

is likely (but not guaranteed) to contain the best possible result.  In the second stage, a 

less efficient but accurate algorithm is used to select the best member of the subset.   

 

9.2.5 Advanced Features 

The final avenue for future research is to improve the functionality of this episodic 

memory system.  Throughout this research we encountered significant features that were 

filed away for future work.  Often this was because they were too expensive (in terms of 

implementation time or resource usage) or unnecessary for the work we were doing.  

With a firm episodic memory system established it may be time to revisit these shelved 

issues. 

9.2.5.1 Agent State as a Secondary Cue 

For agents who create very small cues, the idea of using the agent’s entire state as a 

second, lower-priority cue is compelling because it could be used to bias the retrieval 

toward matching memories that occurred in similar circumstances to the agent’s current 

state.  A secondary cue allows for the possibility of spontaneous recognition of a state 

which may be essential for demonstrating the cognitive capability of detecting repetition.  

Since a secondary cue is not task-specific in nature, it could be generated and handled 

automatically by the episodic memory system.  

 The cost of the feature in system resources could be high.  The time required to 

select a best matching episodic memory is usually dependent upon the size of the cue.  

Therefore, adding a large, secondary cue would challenge the processing time limits 

required by the system. 
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9.2.5.2 Recursive Retrieval 

An agent that uses its episodic memory to make decisions may benefit from being able to 

retrieve episodic memories of retrieving episodic memories.  This ability has the potential 

to allow the agent to keep track of how helpful a particular memory has been to a given 

task.  For example, an agent navigating a complicated series of hallways may use its 

episodic memory to determine that its best action is to turn right.  However, if that same 

agent can also remember choosing to turn right at that intersection multiple times in the 

past without reaching its goal, that provides a hint that the robot may be going in circles.   

Any implementation of recursive retrieval must avoid the danger of infinite 

recursion.  It must also be able to distinguish a “root” memory from a “meta-memory.”  

We foresee three major approaches to recursive retrieval: 

1. A retrieved episodic memory contains the episodic memories which were 

retrieved at the time of recording.  These episodic memories may, in turn, contain 

further episodic memories, and so on, up to a prescribed limit. 

2. Given a particular retrieved episode, the agent can perform a second specialized 

recursive retrieval using the original episode as a cue.  The agent can continue to 

perform this specialized retrieval indefinitely. 

3. A retrieved episode contains particular highlights from the entire chain of 

remembered episodes thus condensing the entire chain into a single memory. 

9.2.5.3 Variable Episode Extent 

Most of the agents we used in this research relied upon the ability to retrieve a sequence 

of episodes in order to determine the short or long term consequences of their actions.  In 

effect, these agents were retrieving meta-episodes consisting of multiple instances in its 

history.  For example, you might remember the instant of making a particular play in a 

ping-pong match.  By placing that episodic memory into the context of a meta-memory 

which describes “that time I won the ping-pong tournament” provides a context that can 

improve the agent’s sense of the importance or relevance of an episodic memory. 

More specifically, there are several potential benefits to the system supporting the 

concept of meta-episodes directly: 
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• A longer term meta-episode provides a context for an individual episodic 

memory.  This allows the agent to better cope with situations where the 

immediate result of an action is poor but the long term result was good (or vice 

versa). 

• If the agent’s state is being used as a secondary cue (see 9.2.5.1 above) then that 

cue could be expanded to include a meta-episode.   This would further bias 

retrieval toward more relevant memories. 

• If multiple episodes can be combined into a single meta-episode, memory usage 

might improve as redundancies among constituent episodes could be condensed. 

• Similarly, a meta-episode provides a high level index into the episodic store 

which could, in turn, reduce the processing time required to select a match for a 

given cue. 

The cost of these benefits is the additional complexity they will add to the episodic 

memory system.  There is also no guarantee that the resources spent in creating and 

retaining information about meta-episodes will outweigh the performance benefits of 

having them. 

 

9.2.5.4 Improved Agent and Episodic Memory Interface 

In section 7.4.3, we introduced some research on the benefits of improving the 

communication between the agent and the episodic memory system.  The breadth of this 

communication could be improved still further.  Below are two areas for improvement, 

each of which has already received attention in the lazy learning (Wettschereck 1997) 

and/or the case-based reasoning (Kolodner 1993) communities. 

• Soft Quantities – It is advantageous for the agent to have access to more relative 

entries for the numeric values in a cue.  Specifically, the agent may gain from the 

ability to specify that the numeric value for a given attribute must be greater-than 

or less-than a given value.  The agent may also gain from an architecture that 

measures the relative difference between the requested value and the actual value 

in a cue.  For example, an agent that creates a memory cue where the radar setting 

is 13 is likely to get much more value from a partially matching memory with a 
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radar setting of 12 rather than a setting of 2.  The current implementation makes 

no distinction between these two mismatches. 

• Agent Feedback – If the agent has a method for providing feedback to the 

episodic memory system about the utility of a retrieved memory, then the episodic 

memory system has the opportunity to improve future retrievals.  This feedback 

could take many forms including the following: 

o identification of specifically unfavorable mismatches between a cue and a 

retrieved memory 

o a general reward based upon the helpfulness of the memory  

o sharing with the episodic memory system the agent’s perception of 

success or failure in its current task. 

9.3 Conclusion 

Past exploration into the challenges and benefits of implementing an episodic memory for 

an intelligent agent has focused on individual benefits or challenges of that memory.  In 

addition, previous research has often been implemented in a task specific manner.  This 

dissertation presents this work to achieve a task-independent, architectural episodic 

memory for general intelligence.  By constructing that episodic memory system, we have 

identified and cataloged the challenges faced by any researcher who attempts to 

implement such an episodic memory. 

Other results presented herein present significant evidence that episodic memory 

provides several cognitive capabilities that are essential to general intelligence.  While 

any individual cognitive capability could be implemented separately, each individual 

implementation will contain functionality that is redundant with other implementations 

and consistent with the capabilities of an episodic memory system.  Given these benefits, 

it seems eminently practical to continue to investigate the role of episodic memory in 

creating intelligent agents. 
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Appendix A 

 

 

Properties of Human Memory 

 

 

 

While modeling human episodic memory is not a goal of this research, there are many 

potential insights hidden in the observations of human episodic memory.  This appendix 

provides a brief list of established properties of human long term memory.   Unless noted 

otherwise, these properties are drawn from Anderson (2000) and Tulving & Craik (2000). 

• Includes Interference Effects – Interference is ability of a memory to prevent or 

delay the retrieval of similar memories.  This interference can occur either 

proactively or retroactively.  Also, if multiple memories share the same cue the 

time to retrieve a particular memory is extended (“the fan effect.”) 

• Demonstrates Ecphory – The term “ecphory” was coined by Endel Tulving 

(Tulving 1983) to describe the fact that memory is constructive.  The act of 

retrieving a memory in the current situation can alter the original memory to 

include features of the current situation.  In effect, episodes can leak over into 

each other over time.  Tulving conjectured that ecphory is the reason that 

brainwashing techniques are effective on humans. 

• Comprehensive Cue –  Episodic memory storage and retrieval can be influenced 

by several other factors: 

o Emotional state can be part of an episode and the current emotional state 

can influence the memory that is retrieved. 
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o Physiological state can also influence the effectiveness of episodic storage 

and retrieval. 

o A phenomenon known as encoding specificity describes the fact that 

humans are more likely to recall episodes that took place in an 

environment similar to current one. 

• Demonstrates Priming Effects – Priming is an increase in the probability that a 

particular episode will be retrieved.  Common examples of the phenomenon 

include: 

o Frequency and recency of retrieval of an episode increase the probability 

that an episode will be retrieved again. 

o Repetition of multiple episodes similar to one particular episode, primes 

that single for future retrieval. 

o Retrieval of an episode increases the probability that similar episodes will 

be retrieved. 

o Retrieval of semantic facts that are contained in an episode increase the 

probability of the retrieval of that episode. 

• Forgetting – Even eidetic memory is not really perfect.  Human forgetting bears 

these properties: 

o The more that an agent processes the events of an episode as they are 

happening (and being recorded) the longer it will be remembered.  

Similarly, the features of an episode that were processed by the agent are 

the last parts to be forgotten. 

o Consciously intending to remember an episode does not improve the 

likelihood of retrieval. 

o Forgetting follows a power law.  Most of the memory content is lost in the 

short term. 
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