Enhancing Intelligent Agents with Episodic Memory

by

Andrew M. Nuxoll

A dissertation submitted in partial fulfillment
of the requirements of the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2007

Doctoral Committee:
Professor John E. Laird, Chair
Professor Martha E. Pollack
Associate Professor Satinder Singh Baveja
Associate Professor Richard L. Lewis
Robert Wray, Soar Technology

© Andrew M. Nuxoll

All rights reserved
2007

For Sarah, Isaac and Josephine

Table of Contents

(D =To [Tor=1 (o o [P PPPPPPRPPPPPPP ii
LISt OF FIQUIES ...t e et e e e e e e e ettt s e e e e e e e eeeeeeeeeeeessesnnnnnnns Vi
Chapter 1 INTrOUCTIONcoie ettt r e e e e e e e e aaeeeas 1
Chapter 2 Requirements for an Episodic Memory SysStem............ccoocciiiiiiiiiiiiiiiiieeeeeeeeeeen 6
2.1 Framework for an Episodic Memory SYStemccoovvviviiiiiiiiiiiiciiieee e 6
2.2 Functional REQUIFEMENTSccoeiiiii e eeaaaaaes 9
2.3 Architectural REQUIFEMENTSccooiiiiiiiiiieie e 10
Chapter 3 The Promise of Episodic Memory: Cognitive Capabilitiesccvvveeeee. 13
Chapter 4 Related WOTK...........ooiiiieeeicee et e e e e e e e e e s 17
4.1 PSYCNOIOQY ...ttt e e e aa e 17
4.2 Artificial INtellIigENCE ... 19
Chapter 5 The Soar ArChiteCtUIeooo i 23
5.1 WOrKING MEMIOIY.....cciiiiieiiiititiee et e e e e e e e e e e e e e e eeeereeban s 24
5.2 Procedural MEMIOIYuuiiiiiiiee e e e e e e e e e e e e s 25
5.3 OPEIALOIS ...ttt et e e e e e et ettt e e e e e e e e e e e eeees 25
5.4 Persistence of Working Memory EIementscccoceeiiiiiiiiiiiiiiie 26
5.5 SUDQOAISo ——————————————— 26
oL T O 11 [o] 4] T PSSP 27
5.7 Working Memory ACHVALION..........uiiiiiiiiiieieaee e 28
Chapter 6 Evaluating EPiSOAIC MEMOIYcoiiiiiiiiiiiiiii et 30
6.1 Evaluation Methodologycoeiiiiiiie i 30
6.2 Environments for EpISOAIC MEMOIY..........uuuuieiiiiiiiiee e 31
6.2.1 o (=] £ TP PTUPPPPPIN 32
6.2.2 1= 1016 T - S PPPUPPPPR 33
Chapter 7 Implementations of EpiSOdIC MEMOIYcoooviiiiiiiiiiiiiiieeeeeeee e 38
7.1 Pilot IMplemMENLAtiON...........coiiiieeeeee e e e 39

7.2 Lessons Learned from the Pilot Implementation ..o, 43

7.2.1 Definition of the Episodic MemMOory Space............coouvvvvvviiiiiiiieieeeeeeeeeeeeee, 43
71.2.2 The Importance of MatChingccccuiiiiiiiiii e 43
7.2.3 The Importance of Episodic Memory SeqUENCESccoevvvveeieiieninnnnnee. 44
7.2.4 The Importance of an Autonoetic Episodic Memorycccoeevvevvvnnnns 45
7.3 Baseline Implementationccoooeeiiiiiiiiiieer e 45
7.4 Additions to the Baseline Implementation................ccccouiiiiiiiiii e 50
7.4.1 Improving Episodic Memory Selection.............ccuuuvviiiiiiiiiiiiiiiiieeeeen 50
7.4.2 Improving Performance: Interval Based Matching...............cccccceeeiieeennnn. 65
7.4.3 Flexible Agent-Architecture Interface ..., 75
Chapter 8 Cognitive Capabilities ... 80
8.1 ACHON MOAEIING ...ttt ettt 80
8.1.1 Action Modeling in the Eaters ENVironmMentccceeeeeeiiieeeeeeieeeeeeeennnn, 80
8.1.2 Action Modeling in the TankSoar Environment...............ccccoovvvvevvviiinnnnnn. 82
8.2 REtrOaCtiVe LEAIMING.uuuuiiiiiiiiiiii e e e e e e e e e e e e e 84
8.3 Boosting Other Learning MeChaniSmsccccuviiiiiiiiiiiiiieeeeee e 86
8.3.1 Demonstrating Boosting With Eaterscccoovviviiiiiiiiiiiiciii e 86
8.3.2 Chunking with ConfidencCeccooiiiiiiiiiiir e, 88
S Y 1 (V= ST =T o {0 U 92
8.5 Recording Previous Successes and Failurescccoovvvieeiiiiiiiiiciiiiee e 95
8.5.1 Removing Heuristic Cue Selection................oouvviiiiiiiiee e, 100
8.5.2 Learning-Based Control AQeNt........ccooieeeeiiiiiiiieeiee e 102
8.5.3 A Reinforcement Learning TankSoar Agent...........cccccevveeeeeeeiiiiiinienns 103
ChAPLEr O DISCUSSION ...ttt ittt et e e e e e e e e e e e e e e e e e e e nnnbenneees 105
9.1 Contributions of thisS RESEarch..........ccccuuviiiiiiiiiiiiiie e 105
0.2 FULUIE WOTK ..ottt ettt e nnnnes 107
9.21 Integration with other Learning SysStems............ooooiiiiiiiiiiiiiiieeeeeeeeen 107
9.2.2 Demonstrating More Cognitive Capabilitiesccooiiiiiiiiiiiiiieeee, 109
9.2.3 More Complex Environments and Tasks...........cccoovvvveviiiiiiiiiiiiieeeeeeee, 109
9.24 IMproving Performanceccoooiiiiiiiiice e 110
9.25 AAVANCEA FEATUIES... ..o ii i e e e e 113

0.3 CONCIUSION ...ttt e et e e e e e e e e e e e e e e e e e e e sannnes
Appendix A Properties of HUMaN MEMOIYcooiiiiiiieiiiiiiiieeeeiee s e e e e eeeeeaaanns

BIDIOGrapNY ...

List of Figures

Figure 4-1: Cognitive Capabilities Demonstrated by Previous Research............. 21........
Figure 6-1: The Eaters ENVIFONMENT.............ovuuiiiiiiiiiei e e e e e e e e e e eaeeenens 32
Figure 6-2: The TankSoar ENVIFONMENTcouiiiiiiiiiiiiiieii e 34
Figure 7-1: An Episodic Memory Eaters Agent (Pilot Implementation).......................... 41
Figure 7-2: Baseline Implementation ArchiteCture............ccccceeeeeiiiieeeeiiicceeeee e 46
Figure 7-3: Episodic Memory Data StrUCIUIESuueiiiiiiiieeeeeeeceeeeeeeee e 48
Figure 7-4: An Episodic Memory Eaters Agent (Baseline Implementati................. 52
Figure 7-5: Comparison of Eaters Agents for the Pilot Implementas. the Baseline

] 0] C=T L= g1 7= L1 0] o 54
Figure 7-6: The Effects of Activation Bias on the Eaters Agent..........ccccceevveeiiiieeeennnnn, 57
Figure 7-7: Example of Activation Masking in Working Memoryccccccvvvvvvinnnne. 59
Figure 7-8: The Effects of Improved Activation Bias on the Eaters Agent............ 6l......
Figure 7-9: Effects of Various Settings of the Cardinality Astivation Ratio in the
TanKSoar ENVIFONMENToooiiiiiiii ittt e e et e e e e e e e e eaeeeeeas 63
Figure 7-10: Summary of the Impact of Cardinality vs. Activation Ratio ([SDu)... 64

Figure 7-11: Summary of the Impact of Cardinality vs. Activation Ratiogg&ue)... 65

Figure 7-12: Data Structures used by the Instance-Based Algorithm................cccoeevinnes 66
Figure 7-13: Baseline Implementation Memory Usage (Eaters)cccceeeeeviiiiieeeeeennenn.. 68
Figure 7-14: Baseline Implementation Memory Usage (TankSoar)..........cccccveevvieeeenennnn. 68
Figure 7-15: Baseline Implementation Processing Time (Eaters)cccccvvvvvvvivenennn. 69
Figure 7-16: Baseline Implementation Processing Time (TankSoar)............cccceevvvvvvvnnnnnn 70
Figure 7-17: Impact of using Cue Activation vs. Memory Activation to Bias thehVi&l

Figure 7-18: Data Structures used by the Interval-Based Algorithmccccccovinnn. 72
Figure 7-19: Impact of Interval-Based Match on Memory Usage........cccccceeeeeeeniniiiinnnns 74
Figure 7-20: Impact of Interval-Based Match on Processing Time..........ccccceeeeeeeieeeeeeennn. 74
Figure 7-21: Impact of Removing the Negative Cue from the TankSoar Agent.............. 77
Figure 8-1: Action Modeling ReSUItS (EAerS)..........cccuuuiiiiiiiiiiiiiiiiieeeeee e 82
Figure 8-2: Outcome of Three Different Radar Settingscccceeviiiiiiiiece e 83
Figure 8-3: Action Modeling Results (TankSoar)ooooeviiiiiiiiiiiie e 84

Vi

Figure 8-4:
Figure 8-5:
Figure 8-6:
Figure 8-7:
Figure 8-8:
Figure 8-9:

Figure 8-10:
Figure 8-11:
Figure 8-12:
Figure 8-13:
Figure 8-14:
Figure 8-15:
Figure 8-16:
Figure 8-17:

Retroactive Learning RESUILSovviiiiiiiiii i 86
Boosting other Learning Mechanisms Results..............oovviiiiiiiiiieeceeeeee, 87
Correlation of Match Score to Correct Decisions (Eaters)eevvveeeeennn. 89
Correlation of Match Score to Correct Decisions (TankSoar)............cc......... 89
Impact of using a Hard-Coded Confidence Threshold for Chunking............ 91
Circular DEPENUENCY..........coiiieeeieiiiie et e e e e e e e e e aaeeeenaannne 92
A Graphical Depiction of a Set of Paths Learned by the TankSeair. /9
Virtual SENSOrS RESUILSuuueiiiii s 95
An Episodic Memory TankSoar AgeNt.........ccooeviiviiieeeieiiicies e 97
Initial Results from Learning from Past Success andé&-ailur............... 99
Subsequent Results with Learning from Past Success and Failure 100

Impact of Removing the HeuristiC CUE............ccuuviiiiiiiiiiiiceieeeeeeeeeee 101
Comparison with a Learning-Based Control Agent (Naivesim)e..... 102

Performance of a Reinforcement Learning Agent in the TankSar IG3

Figure 9-1 Comparison of Episodic Memory and other Learning Systems 107

Vil

Chapter 1

Introduction

One advantage that humans have over current artificial intelliggxi¥esystems is a
personal history of specific events from their past that ttaey draw upon to improve
their learning and decision making. This episodic memory wsisdescribed in depth
by Endel Tulving (1983, 2002). Tulving's focus is phenomenological and ircydart
distinguishes episodic memory from semantic memory. In pantjoepésodic learning
remembers events and history that are embedded in experiencesevhdetic learning
extracts facts from their experiential context. Thus a mgmbtooking out over the
Grand Canyon during your last family vacation is an episodic menmmwever, if
someone asks what state the Grand Canyon is in, we would typitsalysemantic
memory to answer (unless the answer relies on the recallspédfic episode where
someone is telling you where the Grand Canyon is).

The ability to remember where you have been, what you have sam$edhat
actions you have taken in various situations provides a knowledge baderofation
that is invaluable for acting in the present. Knowing your persosbriji facilitates
your ability to perform several cognitive capabilities in toatext of sensing, reasoning
and learning:

Sensing:
* Noticing Significant Input — detecting what is important about a given situation

by its relative familiarity

» Detecting Repetition — realizing when you are repeating the same series of
actions and altering your behavior as a result

» Virtual Sensing — retrieving past sensing of features outside current perception
that is relevant to the current task

Reasoning:

» Action Modeling — predicting the immediate outcome of your actions
* Environment Modeling — using past experience to predict how the environment
will change
» Recording Previous Successes/Failuresusing past performance to guide future
behavior
 Managing Long Term Goals —keeping track of a plan and what steps in that
plan have been accomplished so far
* Sense of Identity -understanding one’s own behavior in relation to other agents
Learning:
* Retroactive Learning — reviewing experiences and learning from them when
sufficient time (or another resource) becomes available
* Reanalysis Given new Knowledge relearning from experience upon receiving
new knowledge
» Explaining Behavior — reviewing your past actions to others for mutual benefit
* “Boost” other Learning Mechanisms —provide a database of knowledge that
can be manipulated by other learning mechanisms
Despite this array of benefits, the vast majority of Al agents lack an episeanory.
This does not mean that they lack all the cognitive capabilisiesi above. Specialized
algorithms can provide individual cognitive capabilities, but ibahese capabilities are
to be supported, doing so with specialized algorithms would lead to redundant
functionality that could be provided more efficiently by a singf@sodic memory.
Therefore, a general, task independent episodic memory is a siynmefficient
approach to providing an agent with a wealth of functionality.
As an example, consider an agent that is navigating in a two donahsnaze.

Using only its own local percepts, it navigates gatheringuregs and using them to

attack and defend itself from other agents in the mazepisodic memory can be
invaluable to this agent. It can use its episodic memory to egahmtresource cost vs.
gain of taking certain actions. When the agent is about to rurofoah essential

resource, it can use its virtual sensors to recall and navigatee ttocation of that

resource and replenish it. Upon sensing a new object in its worldgt’s episodic

memory allows it to recognize that it has not seen the objéoteband investigate the
object. When it meets an enemy, the agent can examine the pzestssac failure that
resulted from similar situations to determine how best to engage the enemy.

A flexible way for an agent to benefit from its experienseso simply record
them so that they can be examined and reexamined when they bemgoropriate. This
appears to be the approach that evolution has taken with humans and epesodicy.
Episodic memory does not preclude humans (or intelligent agents) drsiiiing
experience into knowledge. Instead, episodic memory can assispriieess and
ultimately improve cognition. Certainly, there is evidence that druroognition is
severely crippled by the loss of episodic memory. The diffesiithat amnesiacs face
have been documented (Tulving 2002) and were dramatically portrayée imdvie
Memento (Nolan 2001). Therefore, we have conducted an investigatitgooftans for
artificial episodic memory.

This is not a trivial task. The prospect of recording everythitag an agent
experiences is problematic. Any attempt to reduce the sitree ahemory store faces the
problem of selecting what is “important” in a task independent rmanBeing able to
efficiently retrieve a single, appropriate experience fromhsacknowledge base is
daunting. The first goal of this research is to engage tlssses and explore how an
effective, general purpose, task independent episodic memory systeloe ¢arlt and
built to operate efficiently.

Concurrently, the second goal of this research is to explore howasugpisodic
memory system can be exploited by an agent. Specifically ttem@ to investigate
whether episodic memory is sufficient to support a subset of teeopsly-listed

cognitive capabilities across a range of tasks in two environments. Thisheseggests

! TankSoar, a domain that meets this descriptioth peiintroduced in the next chapter.

that episodic memory can be applied in a wide variety of ways andcechance the
performance of Al agents with a range of goals and behaviors.

Investigating whether episodic memory is the best learning meschaor any
given domain is_nota goal of this research. In particular, some of this relsearc
demonstrates that episodic memory works effectively in concit ether learning
mechanisms and does not necessarily compete with them.

Modeling human behavior (cognitive modeling) is also not a go&li®fésearch.
However, much of the inspiration and some ideas for this researehfomm the field of
psychology. Human memory is complex and has many charactemgimse necessity
for effective behavior is unknown (see Appendix A). Moreover, attiime there is
inadequate data and theory to form the basis for a detailed mdeémil. now, the
functional computational constraints provide sufficient direction for the réseBoadate,
this approach has been to introduce new functionality as demanded thgkbdhat the
agents perform and to temper open-ended design decisions with input from psychology.

Throughout this research, we have alternated between these two theals:
engineering problem of building the episodic memory and the res@aotilem of
investigating its effectiveness.

As you will see, the majority of this dissertation follothgs paradigm. Chapter 2
begins with a framework for building an episodic memory and descrbeet of
requirements for such a memory system. Then, Chapter 3 goesetatbabout the
cognitive capabilities listed above and how they might manifest imotitumans and
intelligent agents. Chapter 4 discusses the prior work thatnfasriced and inspired
this research. In Chapter 5, we present the Soar architectunéhgndis well suited for
this research. Chapter 6 provides a detailed description of thertwronments that were
used for both goals of this research. Chapter 7 describes the evolutioa episodic
memory system with the framework defined by Chapter 2 ustaghples from those
environments. Chapter 8 returns to the goal of evaluating theiedfeess of episodic
memory by describing the agents we have built to demonstratedghéice capabilities
granted by episodic memory. The behavior of these agents aldntexie motivation

behind some of the design decisions described in Chapter 7. WedmirclChapter 9

with a discussion of the results as a whole, their implicatenms how we expect them to

drive future progress in episodic memory research.

Chapter 2

Requirements for an Episodic Memory System

This chapter presents a comprehensive examination of the desiggiorecand
challenges that must be considered when constructing an episodmryne®oing so
provides two benefits. First, this analysis motivates effeatimeparison between
disparate episodic memory systems both within the context ofdbearch as well as
future research. For example, we use this benefit in Chapter 7 wdepresent the
evolution of the episodic memory system used for this researadon&eadentifying the
major decisions we faced provides motivation to explore other deciaiotiee same
choice points and thus leads naturally into some of the experimecussks in section
7.4.

In this chapter, we also discuss the functional and architecagairements that
influenced the design choices made as part of this resebuetttional requirements are
derived from the definition of episodic memory (e.g., versus another rgemd&garning
mechanism). The architectural requirements stem from thesialecio embed this
episodic memory system into an architecture. This decision aBeates the discussion

of where to separate agent from architecture at the conclusion of this chapter.

2.1 Framework for an Episodic Memory System

Episodic learning can be decomposed into the following major phases

* encoding— how a memory is captured and stored

storage— how a memory is maintained

retrieval — how a memory is retrieved.

Additionally, there is an external (but compulsory) phase: Howreevet memory will

be used by the agent. Some of the most basic design decisidnsssihe structure of

the representation of a memory, have impact across all phases.

By refining these three high level phases, we arrive at arlagjeof steps that

comprise a framework of all the points where a major desigisida must be made in

the implementation of an episodic memory. In effect, each oé thteps is an axis, and

each decision, selects a point on that axis. Together, thelaftes a space of episodic

memory implementations. This original framework was based upowdHhe of Endel

Tulving (1983) and then further refined as we encountered issues or eslearah.

There is not a definitive framework, but it does encompass alemmgitations and ideas

we have considered to date.

Encoding

Encoding initiation — when an episode is recorded. There are many possible
events that could trigger its encoding. This might be as simpécasding a new
memory at regular intervals. Alternatively, a new episodehiming recorded
whenever the agent takes an action in the world, whenever tharsigsificant
change in its sensing, or when something unexpected occurs.

Episode determination— what information is stored in an episode. An agent’s
state consists of a set of features that represent itsitsaesing and information
derived from its processing. The content of an episode consistsudfsat of
these features from a particular point in time. This subset amiisist of only
the sensing information or only the internally derived features. The episgte
consist of only those features that have been attended to bgethie dt is at this
stage that the episodic memory system must select whiatpsrtant” about the
agent’s current state that should be stored for possible later retrieval.

Feature selection— which features in an episode will be available for matching
against a cue during the retrieval phase. The selection ofdeahay include the

entire episode or as little as one or two key features slibset is selected, this

reflects the episodic memory system’s prediction about whatirésatwill be

useful when matching future memory cues.

Storage

Episode structure — how the encoded episode is stored. The structure of the
episode is often dependent upon the computational architecture upon whkich it i
built. The structure must support the other phases of the memogynsysthin

the constraints of the requirements of the architecture. licylart the structure
must support efficient and stable storage as well as expedient episaaletri
Episode dynamics— how stored episodes change over time. This may manifest
as cross-indexing with other memories. It may include a fdfrmemory decay
such as a loss of detail, a decline in activation, a mergirigo#liter memories or

outright removal from the episodic store.

Retrieval

Retrieval initiation — how memory retrieval is triggered. The agent may
deliberately initiate memory retrieval in order to accomplisspacific subtask
where it deems that previous experience may be useful. Episbtdeval may
also be triggered spontaneously by the presence of strongly faeMiments or
unexpected sensing.

Cue determination — how data are selected or created to cue the retriewa of
episode. Memory cues can consist of a partial memory thatchedbdirectly to
other memories in the store. They can also consist of only kefgveatures that
the retrieved episode should or should not contain. Finally, a memorgaoue
also contain meta-information that is relative to the currenée sia the most
recent retrieval (e.g., retrieve a memory of an episode thatredcafter some
other episode).

Selection— how the retrieved episode is selected based upon the given cge. Thi
is the critical matching phase of memory retrieval. Magghtan be exact or
partial. Different features of the cue can be given diffenenight in the match.

Use

The match algorithm can also be influenced by the agent’s clwseasing and
internal state. Multiple memories can be retrieved or just a single episode.
Retrieval — what aspects of the episode(s) are retrieved and how they are
represented. The result of a match can be as simple as arBygelao (i.e.,
recognition) or it can include all the data structures in thechimag episode.
Typically, the episodes are recreated or referenced in socatidn where the
agent can examine them.

Retrieval meta-data — what meta-information about the retrieved episode is
available. Meta-data that could be available includes: infeomaibout the
strength of the match between the episode and the cue; temmorahation
describing when the episode occurred; and information about when aoftesw

the episode has been retrieved in the past.

Once the episode is retrieved, how it is used to aid reasonihg?isThot a part of the

design of the episodic learning system, but depends on the capadbfliiesembedding

architecture, general methods, and task knowledge. In this dissertaé demonstrate

how episodic memory can be used to enhance an agent’s cognitivelitepabWe

discuss these capabilities in detail in Chapter 3.

2.2 Functional Requirements

Episodic memory has several characteristics that defar&itmay have an impact on its

implementation. Below are some of the most distinguishing featdiregisodic learning

and how those features impact the design of an artificial episodic memory:

Architectural — Episodic memory is a functionality that should not change from
task to task. (However, agent reasoning can impact episodic mamogctly

by affecting the determination of what is stored such as throulibedde
rehearsal.) As such, it should be part of the underlying archigesfitit which an
agent is built.

Automatic — Memories are created without a deliberate decision bydeat.

The nature of the episodic memory is that it records experievitteout

adjustment or distillation into knowledge. The underlying assumptitmatsthe
agent does not know which aspects of its experiences will be retevaetisions
it makes in the future. If an agent must decide when or how todrexach
episode, then intellectual power must be expended that could be spkattask
itself.

Autonoetic — A retrieved memory is distinguished from current sensingar,
an agent that believes a retrieved episode is actually pas ofirrent situation
will make decisions that are not necessarily consistent vgthuirrent situation.
To prevent this, retrieved episodic memories should be marked as subh b
architecture or occupy a reserved space in the agent’s working memory.
Temporally Indexed — The agent has a sense of the time when the episode
occurred. Because an episodic memory describes a particular, oroguent in
time, some temporal information is a part of any episodic membinys need not
be an exact time but it should convey a sense of the relativeofithe episode
with respect to other episodes.

2.3 Architectural Requirements

The first functional requirement (above) is that we create rahitactural episodic

memory. To meet that requirement an episodic memory mustdaratross many tasks

and behave in real time. This section introduces and describgsettiBcsrequirements

that allow this. All of these requirements were either mett deast addressed as part of

the research.

Task Independent— Task independence has obvious value but seems patrticularly
critical for episodic memory. The programmer of a task-$ige@pisodic
memory must decide in advance which features of an episode withgmetant
and which features can be ignored. However, the features that axeconted
may be features that are needed in situations that the aa@mbdtcpredict in
advance. A task-independent episodic memory can be used in domairfseethat t
agent encounters but for which it is not programmed.

However, implementing a task-independent episodic memory isulifaad

has been (and will likely continue to be) a central theme of éssarch. Among

10

the steps that are difficult to perform in a task-independent maameeithe
following:
o Deciding when to record a new episode
o Deciding what features of the agent’'s state should be recordeah i
episode
o Deciding how to weigh the features of the cue and candidate memory
during a match
o Deciding what memories or features might be discarded bygetforg
mechanism
An episodic memory can be task-independent and still be infoainedt the
task by the agent. During the course of this research, weireeémultiple
mediums for communication between the episodic memory system aagehie
The most concrete of these are the ability for the agent todgraommands
along with an episodic memory query (see section 7.4.3.1) and the additional
meta-information provided with a retrieved memory (see section 7.4.3.2).
Low Resource Demand- If the episodic memory system interrupts, or severely
slows the agent’s reasoning, then the cost of the system canghuitgevalue.
As a result, there should be a bound on the computational overhead forngcordi
maintaining and retrieving episodes. We describe the work weduaeso far
to reduce the resource load of the baseline episodic memory siystesation
7.4.2
Non-Invasive Integration — When an episodic memory system is added to an
existing agent, the system should not require any changes tog#st eyond
those that actually use the episodic memory. This means the episediory
system observes the agent and records episodes without being tolddcadd
episodic retrieval occurs only when it is triggered by the agehit. of the
implementations of episodic memory presented in this researdbrm to this

requirement.

When building an architectural episodic memory, the issue of divisidonationality

between the agent and the architecture must also be addressedliviSios is not a

11

requirement, per se, but throughout this research, we have had thifacealtle yet

pervasive issue. Some functionality clearly belongs in thetaothral implementation
of the episodic memory module (e.g., matching). Some functiorcdityly belongs in

the agent (e.g., processing the retrieved memory). But semeédns can occur in one
or both places. For example, an agent might construct the caedfgiberate retrieval
but the architecture must construct the cue for a spontaneous retrieval.

There are clear tradeoffs between faster, task-independenttearatal
implementations and flexible, more precise knowledge-based implatioms.
Specifically, the match can be improved by allowing the agemifluence this process
(see section 7.4.3.1) but the architecture cannot rely upon this inflwithogt violating
the requirement for task independence.

The divide between architecture and agent also has implicationagéort
performance both in terms of memory usage and response timge(sem 7.4.2). An
architectural implementation is more efficient but the agenidssscontrol over it. An

agent implementation is slower but more precise.

12

Chapter 3

The Promise of Episodic Memory: Cognitive Capabilities

To design a useful episodic memory system, we must be aware af alwbe used.
For this thesis, this process began as an analysis of envirawiggrte episodic memory
would be effective. It evolved into a catalog (below) of the cogndapabilities that are
supported by episodic memory. Episodic memory has the potentiappors all these

cognitive capabilities across sensing, reasoning and learning:

Sensing:

* Noticing Significant Input — An episodic memory can provide a measure of
recognition of the features of an environment. This occurs wheraghst
retrieves memories of past situations that are similar touhent situation. This
capability is particularly important in environments that changependently of
the agent’s actions. If a situation has unexpectedly changeéds thaignal that
those aspects that changed may deserve attention.

» Detecting Repetition — Computers are notorious for repeating their mistakes.
Even learning Al agents are rarely immune to situations whénenrepeat the
same sequence of actions repeatedly. Avoiding this situatipossible if an
agent can compare its current situation and proposed actions teniisrynof its

past can detect and avoid repeating an error.

13

Virtual Sensing — Events or sensing that may not have been relevant to the task
when experienced may unexpectedly become relevant in the futgreVithere

did | last see my car keys?). Episodic memory provides an aveneagpanding

an agents sensing beyond its immediate perceptions by retriewhgeguesing of
areas outside its immediate perception. In effect, it provideshar sensory
input to the decision process.

We demonstrate this cognitive capability in section 8.4.

Reasoning:

Action Modeling — Episodic memory allows an agent to predict immediate
changes in its environment that result from a given action. It twssby
recalling episodes where it took the same action in a simitiaation and then
retrieving the situation that immediately followed it. In additidran expected
outcome does not occur it can signal to the agent that additiomalnds
necessary.

In this research, we examine the value of action modeling withdifferent
domains. See section 8.1.
Environment Modeling — In many domains, the environment has its own
dynamics (e.g., “Sunset has been around 6:30pm lately.”). If anoemant
includes other agents, these agents can also change the environmays ithat
are significant to the task (e.g., “Bob likes to play chess agjgedg and usually
brings his queen out early.”). An episodic memory provides a recotidesé
changes and, thus, allows the agent to predict them in similatisits in the
future.
Recording Previous Successes/FailuresMany tasks can only be accomplished
by learning a series of steps to perform in an appropriate o@fégn, success or
failure is not apparent until the entire sequence is complefed.example, an
agent navigating a maze must learn a best action to takehapeiat in the maze.
Such an agent does not know it has succeeded until it exits the maze.

As a result, an agent that is attempting to learn the rigigs ste

accomplish a task cannot rely on action modeling alone to succeddadinan

14

agent must be able to recall sequences of actions that led to a(ogoal
alternatively, failure to reach that goal).

In section 8.5, we introduce an agent that demonstrates this igeegnit
capability in a complex domain and discuss the requirements foresn tgbe
successful.

Managing Long Term Goals —An agent that has multiple goals must often
switch between them because of environmental demands and opportuhities.
addition, long term goals often require multiple-step plans withr tbein
subgoals to successfully complete. To schedule these goalgeainreeds to
remember the progress it has made toward each one, and wihethere still
active. When an agent with episodic memory considers a long taigcan
use its memory to determine which subgoals have alreadydoeemplished by
retrieving memories of a goal being completed or undone and cowpae
relative times that they occurred.

Sense of ldentity— For humans, one’s sense of identity is rooted in memories of
past experiences. As a result, granting an episodic memary itgelligent may
help grant it a similar sense of identity. An agent withresseof identity gains
greater ability to be introspective and analyze its behavior cemp@ the
behavior of other agents. This, in turn, allows the agent to betdelnother
agents’ behavior and improve its own behavior by imitating successful difésrenc

or exploiting perceived weaknesses.

Learning:

Retroactive Learning — Often, it is not possible to learn while an event is
occurring because the agent lacks the specific informationsourees that it
needs to learn. For example, an agent in a real-time environmenhohénave
time to apply an iterative learning algorithm while it is fpeming a task.
However, when time becomes available, the agent can replaye¢hés and learn
from them then. Episodic memory allows previous experiences telilsed or
rehearsed once the resources are available so it can beyzednalith new
knowledge or additional experiences.

We demonstrate this cognitive capability in section 8.2.

15

Reanalysis Given new Knowledge- When a learning agent receives new
knowledge about its environment, inferences and behavior it has leartiee in
past may no longer be valid. An episodic memory allows an agestiew its
experiences that relate to the new knowledge and change itsdrediznordingly.
For example, an agent that finds a skeleton key can reconsidsstithres it took
when it encountered a locked door.
Explaining Behavior — The ability to remember what you did in the past allows
you to explain your actions to others and allow them to instruct yogwuwrto
instruct them (e.g., Why did you go left instead of right?). Aenagan use its
episodic memory to recall the situation in question as well asi¢kesions it
made in that situation. A human user or an external learning mschaan use
this information to improve future behavior.
“Boost” other Learning Mechanisms —An episodic memory store provides a
wealth of material for other learning mechanisms.

In section 8.3, we discuss experiments designed to demonstrate this

cognitive capability with Soar’s chunking mechanism.

16

Chapter 4

Related Work

The concept of memory is a familiar part of human experientéhel vernacular, saying

that you "remember" something refers to episodic memories. Itrasgnsemantic
memory and procedural memory are what you "know" or "can do" cteply.
Nonetheless, acknowledging the distinction between long term megysieyrs has been

a long time coming. Perhaps as a result, there is a deartbrafure on the subject in

the field of artificial intelligence. While psychology has magcent studies of human
episodic memory, few of them offer insights that aid in the neadf an artificial
episodic memory. This section discusses the research we could find that has been done to

date in both fields and describes how this research builds upon that progress.

4.1 Psychology

The term "episodic memory" was first coined by Endel Tulving in {9t&ing
1972). His study of the distinction between episodic and semantic mémbumans
was covered in more depth about a decade later when he published ateomple
phenomenological study of episodic memory including high level descripficthe
episodic memory architecture (Tulving 1983). This work was the sedtii$ study of
the space of implementations for an episodic memory (see s&tigpn Tulving's
phenomenological examination of human episodic memory helped us défne t
behaviors and functions that are inherent to an episodic memory and proviteabout

possible future design alternatives.

17

In the more recent past, Martin Conway proposes a distinction éetstert term
episodic memory (which spans seconds or minutes) and longer term awtpbiogr
memory which can persist for hours or even a lifetime (Con2@Q31). Conway's
phenomenological basis for this distinction is based primarily on meseope and level
of detail. No research we know of attempts to model this differémaugh it may be
rooted in an integration of a semantic and episodic memory system (see 8&cfidr).

Modern technology has allowed psychologists to begin to look for dierarcal
basis of episodic memory (Tulving 2002, Baddeley et al. 2002). Amamgswentists,
it has long been believed that the region of the brain cdlketdippocampus is the seat of
memory. Memories are registered here and then migrate overtdi the neo-cortex
(Marr 1971). Models of long term memory that are based upon thisythege been
built. Some of these models exhibit multiple, familiar propertiegpisodic memory
(Moll and Miikkulainen 1997). While we are not aware of any of éhe®dels being
used by an Al agent, these experiments provide further evidencei&imation between
episodic and semantic.

In the field of cognitive science, Altmann & John (1999) built a modepefodic
memory model that was based upon the recorded behavior of a computanyneg.
While informative, the model was built specifically for thatska (computer
programming). The model was also not architectural or automatcréiquirements we
defined in section 2.2). Specifically, it required deliberate psicgghat could compete
with the task at hand).

ACT-R (Anderson & Lebiere, 1998) creates long term memories tga i
declarative learning mechanism. Each chunk contains partial contetite afgent's
working memory. This approach bears some similarities to theemmpitations
presented in this research but it is most accurately descrébed semantic memory
mechanism. In particular, the chunks cannot be used to form a copiptete of a past
event, nor do they contain any temporal information. Nonetheless, ASC@eRcept of
using buffers to store retrieved long term memories was the model forghfagetin this

own system.

18

4.2 Artificial Intelligence

Almost no artificial intelligence research is focused diyech episodic memory for
intelligent agents. The most notable exception (Ho, et al. 2003)ides multiple
experiments with an agent that uses its episodic memory torbeckd previously seen
locations. Their work demonstrates the cognitive capability werithes as virtual
sensors (see section 8.4). The system, while strongly tasiigperovides some
support for the hypothesis that episodic memory is an essentiatiegt for achieving
general intelligence.

In instances where researchers attempted to build a genepalspuagent it
sometimes became necessary to include an episodic memory. titulparVere and
Bickmore (1990) implemented a limited episodic memory of eventshigir Basic
Agent. Because of its peripheral nature, the effectiveness, efficecgompleteness of
their agent's episodic memory implementation was not investigaiegiever, the fact
that their attempt at a general Al required an episodic mensotglling. The Basic
Agent also encountered problems with the performance of its epis@iom as the
episodic store grew in size. In sections 7.4.2, we present one dppooaciucing this
effect. In section 9.2.4, we discuss additional future research that could address it.

Similarly, researchers attempting to build believable non-plaharacters for
roleplaying games found that their agents needed an episodic memagmovide
consistently effective interactions with human players (Brom, et al. 2007).

Episodic memory research is closely related to case-bassonieg (CBR)
(Kolodner 1993, Shank 1999). In CBR, each case describes a problem thgerthe a
faced and a specific solution to that problem. By maintainingabdse of these cases,
an agent can act effectively by re-using them in situativeisrécur or adapt them to new
situations. Cases are often described by filling a fixed nuofi@yntextual fields which
are designed by a human. While individual cases can be adaptgutai¥ems, no CBR
systems that we know of adapt cases intended for one task forarsemtirely different
task.

Nonetheless, research in CBR highlights some important resthatcls equally
relevant to episodic memory. Goodman (1993) describes using a CBIsysase
library to predict the future. He found that given a particulae,das could predict future

19

cases into the near future and individual variables even further iatéuthre. This
alternate use of a case library demonstrates the cognitpabitibes we call action
modeling and learning from past success and failure (see section 8.5).

Episodic memory is, in effect, the ultimate case database.efibedic memory
system presented in this research does not rely upon its episodeg aayiparticular
structure or content. Nor does the episodic memory system agsustered episodes
will be used in any particular way. That decision is lafirely to the agent. Instead, we
have focused on creating a task independent, architecture episodaryrtbat can be
used to support many different cognitive capabilities (see Chaptecluding those that
can be demonstrated via case-based reasoning.

In the field of machine learning, instance-based techniques fotifideg the
agent's current state bear a strong resemblance to episodic yn@viu@allum 1994).
McCallum's approach is to record the agent’s percepts at gierirttervals and encode
the agent's state as a sequence of these percepts. Nighipisodic memory is fairly
simplistic and task specific, it demonstrates that giving amtag personal history can
allow it to overcome the extreme difficulty of a partially eb&ble environment.
McCallum’s experiments demonstrate the cognitive capability wevicialal sensing.

Another machine learning technique reminiscent of episodic memdogatly
weighted learning (Atkeson, et al. 1997) and the closely related appeoaalled lazy
learning (Sheppard and Salzberg 1997) and continuous case-based red@amng (
Santamaria 1997). All these learning mechanisms are a fanmsapervised learning in
which the agent makes no effort to generalize its expesenkestead, the agent simply
stores them in much the same way than an episodic memory siz@des. When a test
case is presented, the agent selects its action by takinglatedeaverage of the actions
taken in training cases that are "near" the test case. Tiess,dlgorithms rely upon both
the cases and the output consisting of a fixed number of continuous &atliese thus,
by definition, task specific. Nonetheless, these algorithms atieparly effective at
control tasks. Episodic memory can be thought of as providing a vébidlee most
general form of lazy learning. Many of the advances in findgarest neighbor search
that have been made as part of nearest neighbor search aentrétethe matching

algorithms used in this research (see section 7.4.1).

20

Rhodes (1997) describes a prototype for an episodic memory aid fonsiwraza
wearable PC. His agent collects data from the user’s envirorandrthen prompts the
user with appropriate information based upon where the user is atdhehs doing.
Rhodes’ episodic memory uses a database that is indexed with &eetod The agent
continuously calculates a cue vector based on its textual contentchéVér database
entry’s word-vector most closely matches the cue is summonegresehted on a head-

up display. This Al agent effectively provides virtual sensors to a human agent.

(7]
e
- ()]
T o =
e o) X%
~ = C
0 Q9 o]
R = 5
2 © e o}
2 8| 8 2 |2
g’ o 3 = o
R EREERE
=2 o = £ o| €
% = % (g Iq—) | E| € S| ®©
O Bl o o 2| 8 o 2| § ¢ 8| ©
El S 5| S22 3 5| E| 85|83
Sle 2l gltlaldl3 el
mgc‘}’)%ggs“é'ﬁg-gf
AEEREE R R:
HEERHEEEE-E
z ol S| &5 eS| | x|l x| W @
<| W 04 =
Altmann & John 1999 v
Ho, et al. 2003 v
Vere & Bickmore 1990 v
Brom, et al. 2007 v
Goodman 1993 v v
Atkeson, et al. 1997 v
Sheppard & Salzberg 1997
Ram & Santamaria 1997
Rhodes 1997 4
Nuxoll 2007 v | v v v v

Figure 4-1: Cognitive Capabilities Demonstrated byPrevious Research

21

Figure 4-1 summarizes existing research in terms of theitocgcapabilities that
are defined in the previous chapter. The related Al research $oomsene or two
particular cognitive capabilities that require episodic memdiye research in this thesis
attempts to demonstrate multiple cognitive capabilities in a task independargmma

In addition, this research takes a step back and examines episodaryrfor its
own sake. What is an episodic memory? How can it be intelgrate an agent
architecture? What abilities does an agent gain by virtlkevahg an episodic memory?

These are the questions we attempt to address in this dissertation.

22

Chapter 5

The Soar Architecture

Our research does not consider episodic memory in isolation, buadnaie explore
episodic memory as a component of a broader cognitive architeotutieef following
reasons:

First, there are already existing arguments for usinyitacture to develop
artificially intelligent agents in general. In particulam, @chitecture provides a basis for
comparison between multiple implementations. It allows existasgarch to be more
easily reused and applied to other areas and thus speeding develapoheiowing
researchers to produce incremental results. An architedsargoats clear requirements
on the overall performance of its constituent subsystems.s (3$ue that is particularly
important to episodic memory and is discussed in sections 7.4.2 and 9.2.4.)

Second, there is evidence that episodic memory is required forabénenan-
level intelligence and thus will have to be integrated into a laagstem. Specifically,
the research of Vere and Bickmore (1990) as well as (Brom, et al. 2007) both sogfgest t
episodic memory is a required functionality for achieving a ggd agent. We've also
established that the cognitive capabilities presented in Chapter ®tdoecessarily
require an episodic memory but that to implement all of themregjlire some form of
recording of events. Given that many of these cognitive capebiiite necessary for a
general intelligence, this suggests that episodic memory is a requirfemgeneral Al.

Finally, some of the research presented in this dissertstiggests that episodic

memory is at its most effective when used in conjunction with other learning anorynem

23

systems (see section 9.2.1). To make these disparate systekntogether implies a
medium for communication and cooperation (i.e., an architecture).

For this research, we selected Soar (Newell 1990) as théeatahe in which we
will embed episodic memory. Soar is a general cognitive teathire that has been used
to model a wide variety of phenomena. It shares many of therrésabf other
architectures such as ACT-R (Anderson & Lebiere 1998) and BRiKLaé & Meyer
1997). However, more than any other cognitive architecture, Soaseid for both
cognitive modeling and artificial intelligence research. Aehsit provides an excellent
test bed for this research.

Soar represents procedural knowledge as production rules. Like most othe
architectures of this type, Soar has two types of knowledgeking memory and
procedural memory. In addition, it uses a concept for decision maklied cperators.
Finally, the version of Soar used for this research includes lirgomemory activation
mechanism. The following sections provide an overview of the defaiear necessary
to understand many of the implementation details and experimenenige@sn this
dissertation.

5.1 Working Memory

Working memory is a short-term declarative memory that encatgsulthe
agent’'s entire state including external sensing, internal eénéexs and architectural
information. In Soar, working memory consists of working memory eitsn@MES).
Each WME consists of three symbols: an identifier, an attribote aa value. The
identifier is a symbol generated by the architecture. Tinkw@e and value are symbols
defined by a programmer and usually have descriptive names. [lieeofaa WME can
be either a constant or the identifier of one or more other WMEsa result, WMEs are
connected together so that working memory is a directed grapk.gndph is rooted (in
the same way that a tree data structure is rooted) with the statéedentius, all WMEs
are connected directly or indirectly to the state identifier.

A reserved portion of working memory describes the agent’s cueasing (i.e.,
input). Changes in this sensing can cause rules to fire actret€Conversely, a reserved

portion of working memory is reserved for issuing agent action comn{aadsoutput).

24

If specific environment-defined WMEs are created in this looatthe agent takes the
prescribed actions in its environment. These actions can, in turn, daasges in the
environment, which can result in additional changes to working memarisvsensory

input.

5.2 Procedural Memory

Procedural memory (or production memory) is a long term memoryongists
of a set of production rules that encapsulate the agent’s knowledgehabotd act in its
environment. Production rules are similar to the if-then seésnused in many
programming languages. They consist of a set of conditions ammhsactilf the
conditions of a production are satisfied by the contents of workingonyethen that
production “fires” by performing its actions. The actions usuakyate or remove one or
more elements in working memory. When the conditions are no longgr the
production “retracts” and the WMEs it created are removed frorking memory unless
they have operator support (described below).

Changes to working memory made by production rules may in turretrihe
firing (or retraction) of additional productions so that this “mdtidi’ cycle can repeat
indefinitely. When the agent reaches a state where no more pooducan match, it is

called quiescence.

5.3 Operators

In Soar, all matching productions fire simultaneously. To avoid ctinflic
behavior that might result from multiple simultaneous actions, Sapports a special
entity called an operator. A production can propose an operator &yngra specific
type of structure in working memory. Multiple operators may lopgsed at one time
but once no more rules are ready to fire, the architecture &efsek quiescence and only
one operator is selected. Selection is controlled by the mneattipreferences: directives
created by operators that test working memory and tell tiet@cture which operator to
select. The selection of an operator can trigger the firing of additional praakicti

Soar operators extend the match-fire cycle of Soar to a fiveepleagsion cycle

which repeats indefinitely as the agent executes:

25

* Input — The agent’'s sensory input from environment is updated in working
memory

* Propose — Productions fire based upon the changes in working memory.
Operators are proposed and preference rules compare them. Eagyhmauntil
the architecture reaches quiescence.

» Select— The architecture uses the preferences to select a sipgator. This
selection is notated in working memory.

* Apply — Production rules fire based upon the selected operator. Thisrphase
until the architecture reaches quiescence.

e Output — Any action commands created by the productions are relaydu to t

environment.

5.4 Persistence of Working Memory Elements

Soar distinguishes between three types of persistence for work@rgory
elements:

e O-supported — If a production includes a selected operator as one of its
conditions then any WMEs created by that production persist ingdfinthey
remain in working memory until they are explicitly removed. TH&84Es are
called o-supported (operator supported) WMESs.

* |-supported — Any WME created by a production that does not test a seélecte
operator persist only as long as the conditions of production continuenetbe
These are known as i-supported (instantiation supported) WMESs.

» Architectural — Any WME created by the Soar architecture (e.g., WMEs tha
describe the agent’'s sensory input) persist until the archiéeectimoves them

again.

5.5 Subgoals

There are situations when a Soar agent does not know what to do oegtxafple, the
agent could reach a state in which no rules fire or it could smheaperator for which no

rules exist to apply it. This situation is known as an impasse.

26

When a Soar agent enters an impasse, the architecture @esessubgoal of
the agent’s original goal. This subgoal is specificallyrdsolve the impasse that was
created. The subgoal is represented in Soar's working memarkehing a new state
structure (i.e., a new root) for the entire graph. The new catains a WME that links
it to the old state so that the new state encompasses all the information in théesold st

While attempting to resolve the impasse, the agent may enter anofhesse.
This impasse will, in turn, generate yet another subgoal whichnmtay generate other
impasses and resulting subgoals and so on. As a result, working n@mmtains a stack
(as in the fundamental data structure) of states.

An agent can resolve an impasse by making changes to the onugirat state
that allow processing to continue in that state. Once an impasse is resolvedisuapar
state, all subgoals and corresponding substates are removed andipgocestinues in
the goal that created the recently resolved impasse.

Entering an impasse and creating a subgoal is not an errasngAnther benefits,
subgoals provide a way for an agent to hierarchically decomposg& mta manageable
parts. For example, the agent might begin with a subgoal tottwsrgame of chess.”
However, in order to accomplish that goal it must decompose thatntask subgoal
(e.g., “gain control of the center of the board”) which in turn rhaye other subgoals

that eventually lead to atomic actions (e.g., “move king's pawn to'thank”).

5.6 Chunking

An impasse is also an indication that the Soar agent needsrio lédhe agent doesn’t
know what to do next, but subsequently discovers an appropriate actisalg@al then
it has obviously learned something. Chunking formalizes this faatolbyerting the
learned knowledge into a new production that will fire on all subseqeeaisions that
the agent reaches the state that caused the original impasse.

To do this, the architecture records two things:

» the working memory elements in the parent state that werdtést rules that

fired while in the subgoal.

27

» the changes that an agent made to the working memory elemethis parent

state while in a subgoal.

Collectively, these two sets changes represent what needsdmnbeo resolve the
impasse in the future. When an impasse is resolved, Soarscreaset of new
productions (called chunks) whose conditions are the WMEs that estesl tand whose
actions are to create the new WMEs that were created. Waemgént reaches the same

state again, the new chunk fires and prevents the impasse from occurring again.

5.7 Working Memory Activation

The version of Soar used by this research has been extended to wvoltileg
memory activation (Nuxoll, et al. 2004). All architectural and o-sufga working
memory elements in this version of Soar have an associatedtian level. The
activation level of these WMEs changes as follows:

* WMEs receive an initial, fixed activation when they are first created.

* Any time that a WME is tested by a production that firesggeives an activation

boost.

* Any time an action attempts to add an already existing WKE=gkisting WME

receive an activation boost.

28

* WME activation levels decay over time using an exponential decay formula:
n
- -d
A=pAN 2L
j=1

A; is the activation of a WME at time i. Time is measure@aar by decision
cycles. B is a base level constani.i$ the number of cycles since the WME was
referenced for the"jtime. d is a learning rate parameter which we set ateal fralue
(0.8) for all of this research.

29

Chapter 6

Evaluating Episodic Memory

This chapter presents the high level approach to evaluatiosupports the pursuit of
both research goals: exploring the design space of episodic mesysigms and
demonstrating the cognitive capabilities granted by an episodmory. The chapter
begins by presenting a general methodology for evaluating thgisedic memory
systems. The remainder of the chapter describes the two envirgrimenivere used for
all this experiments and used throughout this description of the nmeptation of

episodic memory.

6.1 Evaluation Methodology

Given the exploratory nature of this part of the research, teetigeness of the episodic
memory systems we build are difficult to measure directlys aAresult, we evaluated
these episodic memory systems indirectly by comparing tHerpence of an episodic
memory agent versus one or more control agents. The approach imeegtalt of this
research by providing qualitative evidence that the agent beredin the cognitive
capabilities it gains by virtue of having an episodic memory.

We have also identified secondary, qualitative goals that aentedsfor an

effective episodic memory system. The complete set of evaluationecateras follows:

30

» Demonstrably Improved Agent Behavior— For each domain, we should be able
to demonstrate that an agent with episodic memory can use ibsliepisemory
to perform better than a control agent that begins with sonespexific
knowledge. In some tasks, the control agent has only enough knowledge to
randomly in the world. For other tasks, we use fully functional effettive
agents as this control. Regardless of the point of comparison, themdufit
episodic memory should never cause the agent to perform worse tivaald
without that memory. Performance will be measured in tefrttseoquality of its
actions in the domain.

* Architectural and Task-Independent — The same episodic memory system
should work with all the agents without need for modification.

* Acceptable Resource Usage For all the agents in these tests, this system should
be able to operate over a long term without exceeding reasonatie for
resource usage, especially processing time and memory.

» Simple Integration — Adding episodic memory to an existing agent should
require no changes to the agent other than adding the functiotmalitye the

episodic memory system.

6.2 Environments for Episodic Memory

An episodic memory is of no use by itself. To demonstrateffloa®y of this system it

was necessary to build agents with specific tasks set irfispgorironments. Given that
task independence is one of these goals, it was essential to haydentakks and,

ideally, multiple environments. We started with an action modetielg in a relatively

simple environment and moved to a much more complex environment asduatghto

progressively more difficult cognitive capabilities.

This section describes both of these selected environmentsiirsdetaat we can
refer to them throughout the remainder of this dissertation wikenge describe an

agent’s behavior within one of these tasks.

31

6.2.1 Eaters

The domain we selected for this first experiment is callagris. An “eater” is a Pac-
Mar’-like agent that moves around a 16x16 grid world. Each cell in theigy@ither
empty or contains a wall, normal foc#l £ 5 points) or bonus food (= 10 points). The
eater is able to move in each of the four cardinal directionsattiese is a wall in its
way. Each time it moves into a cell containing food; it autora#yi eats the food
(receiving the appropriate increase in score). When an eaterslea cell, the cell
becomes empty. The eater’s goal is to get the highest $amam,ias fast as it can. The
eater’s sensory input includes the contents of nearby cellsyrient score, its color, and
number of moves taken so far.

Figure 6-1 contains an image of the Eaters playing board (on thade#kell as a
graphical depiction of the input available to an eater (on the righte eater’s actual

input is presented to it symbolically (not graphically).

Java Eaters

Map: random-walls, emap Simulation
=IIIIIIIIIIIIIII= [Run | seon [step |[Reset]
Map
. Food remaining: 104
= .. = = Painks remaining: 1230
i e Change Map

. . e @ ® e .
. ® E e . . @ ® .
. . .. Wos F'.gents
. P, ... P . A Fi . I = ” Clone][DEStr’D';."” Relu:uau:lJ
. = .. L = . Marme: Score . - = .
=°-°°II°IIIIIIO°= v+ +H

¢ H & + H + ¢+ E ¢ ¢ H + ¢ H ¢ |
. L) .. + H ¢« H & & H + & H & . !!? : .
H-::-=--:-HEN-EN-H R
. e W & & m @ . E ¢ & W & & H @& . | |
. + H ¢+ + H ¢+ ¢ H ¢ ¢+ H + & H + . Lacation: (14,100
HENEEEEEEEEEEEEEEE

Figure 6-1: The Eaters Environment

2“pac-Man” is a registered trademark of NAMCO BANDBames America Inc.

32

For most of this research, the eater knew what actions it calkl ih the
environment but did not know the significance of the content of thestelleunding it.
In section 8.1.1, we use this task to demonstrate the cognitive cgpediled action
modeling. Changes to agent behavior while performing this task are also used t@measur
the impact of various design alternatives as we explorephaeesof episodic memory
systems in section 7.4.
Among the merits of Eaters as this first environment were fttlewing
properties:
* The domain is very simple in nature with only a limited set of fpossible
objects in the world and only four possible actions for the agent. allbvged us
to concentrate on episodic memory and not the environment or agent
implementation.
* The environment’s features are repeated over and over again ingvpagterns.
This is, in effect, a hostile environment for an episodic memorgtdgrause all
the agent’s episodic memories are similar but with smalhifsignt differences.
As a result of this property, we were able to gain significgasights into the
effectiveness of various matching algorithms. In particularexamined using
activation to bias the match within the Eaters environment (see section 7.4.1).
* The simplicity of the environment and relatively fast pace otdkk requires that
many episodic memories be recorded and made it easy to quetkigr gdata

about the performance of a given agent.

6.2.2 TankSoar

TankSoar is a two-dimensional, tile-based implementation of th@uwemgame genre
known as a “first person shooter”. The agent is a tank moving ilo-@itwensional, tile-

based maze. Figure 6-2 shows a typical TankSoar map.

33

Figure 6-2: The TankSoar Environment

The tank has four types of actions it can take in the world:

Turn — The tank can rotate in place to the left or right.

Move — The tank can move north, south, east or west. A tank that mowes in
direction perpendicular to its bearing is effectively taking a side-step.

Fire — The tank can fire a missile from its turret. The missiteves in the same
direction as the tank is pointed and travels in a straight lineiuhiit an obstacle
or a tank.

Shields — The tank can turn on its shields to prevent missile impactis T
preserves the agent’s health at the expense of energy (eeg.b&he agent can
turn off its shields to conserve energy.

Radar — The tank can turn on its radar to better sense the world aroanthé
expense of energy (see below). The radar’s range can bg et agent up to a

fixed maximum. The agent can turn off its radar to conserve energy.

The agent can take multiple actions in the same turn as |lahgyaare of a different

type. (Exception: The agent cannot move and turn at the same time.) Each aejpdn exc

“Fire” has a variable argument. As a result, there aredmtw200 and 700 different

unique actions available to the agent at any one time.

34

While the human observer can see the entire maze, the tank’s saesorsch more
limited though quite varied. The following senses are availabke TankSoar agent.
With the exception of the radar, they are always on and require no energy:

* Smell- The agent can smell the shortest-path distance to the nearest enemy tank.

* Hearing — If an enemy tank is nearby and it is moving or turning, thatagsn
hear it and knows how far away the enemy is. Again, this theeshgdth
distance.

» Blocked — The agent knows which of the four spaces adjacent to it arearle
blocked. If a space is blocked, it does not know if the space is edchpian
obstacle or another tank.

» Radar Waves- If another tank is detecting the agent with its radar, tbatagn
sense the radar waves and knows which direction (north, south, eastpthee
radar waves are coming from.

* Incoming — If the agent is in the path of a missile, it can sehseand knows
which direction (north, south, east or west) the missile is coming from.

» Radar — The agent can turn on its radar to a particular rangastispecified by
the agent. This is the most useful of the agent’s sensors lagjites that the
agent expend energy. Radar allows the agent to see the coifitarttyee-tile-
wide corridor of spaces directly in front of it. The range o6 thénsing is
specified by the agent (up to a fixed maximum). The grelaéerange, the more
energy is expended. The radar is also blocked by solid objectarfi@stacle or
another tank).

Succeeding in the TankSoar domain requires that the agent be &ucatssveral

subtasks. One of the most critical of these is managing its three fsotaces:

* Missiles— The agent begins with a limited supply of missiles. It oarease its
supply by locating stationary missile packs that are placeahdbom locations in
the maze. The tank automatically picks up a missile pack by monto its
square.

» Energy — The agent begins with a default amount of energy. Energpendsd

in three ways:

35

o Radar - Each turn that the radar is on, the agent loses enepgytmmate to
the radar’s range.

o Shields - Each turn that the tank’s shields are on, the agentdofrsd
amount of energy.

o Deflected Missile - If a missile strikes the tank’s sthiien the tank loses a
fixed amount of energy.

Each turn spent upon the battery (a unique stationary object in the mazejaacrea

the tank’s energy. The location of the battery is randomly selentd the agent

must discover it during play and subsequently recall its locaticenwieeded.

The agent’s energy cannot exceed a preset maximum. Oncenkfe déaergy

reaches zero, it is no longer able to turn on its radar or g&dshi This leaves it

effectively blinded and vulnerable.

» Health — An agent begins with a default amount of health. Being hit bigsilen
lowers the agent’s health by a set amount. Each turn spent upon ttie hea
charger (a unique stationary object in the maze) increaseartkie health. The
location of the health charger is randomly selected and the agshdiacover it
during play and subsequently recall its location when needed. Thésageaith
cannot exceed a preset maximum. An agent that reaches aétoitelestroyed
and recreated (resetting health, energy and missile count) aed @ita random
location in the maze.

Within the TankSoar environment, we implemented agents that used episodic

memory to accomplish three different tasks:

* Radar Setting Task— In this task, the agent is attempting to reduce its energy
usage by using only the minimum required setting for its ra@dre higher range
that the tank sets its radar, the more energy is requiresk)sé&tion 8.1.2 for a
more detailed description of this task and how it is used to demensimt
cognitive capability called action modeling.

* Energy Search Task- In this task, the agent is low on energy and must locate
the battery (a static object in the environment) in order to rgehaSection 8.4
provides a more detailed description of this task and how it is uskmahtonstrate

the cognitive capability called virtual sensors.

36

 Combat Task — This is the complete task that TankSoar agents are normally

developed for. The agent’s goal is to maximize its scole afgent scores points
for hitting an enemy tank with a missile. It scores additipoaits for destroying
an enemy tank. Conversely, the agent loses points for being himissee. It
loses additional points when it is killed. The agent also musitamaiits supply
of the three resources described above (energy, health and shisgNe agent
that is low on any resource is at a disadvantage vs. an agehashan adequate
supply of all of the resources. The game ends when one of agergs snough
points to reach a fixed threshold (usually 50 points). Section 8.5 desbobe
we use this task to demonstrate the cognitive capabilitydckdbening from past
success and failure. In addition, we use this task to demonsivatalsgifferent

design alternatives in Chapter 7.

As is apparent, the TankSoar environment is much more complex tteas. E&
requires the agent not only be skilled in tactical combat, Isot r@lsource management
and navigation. A rich, complex environment such as this is wedlestidr episodic
memory research because an agent requires multiple cognitive caysatailtie effective.
In Chapter 8 we discuss the experiments we have performed to deateomsultiple
cognitive capabilities within the TankSoar environment.

37

Chapter 7

Implementations of Episodic Memory

In section 2.1, we described this framework for the space obdipisnemory systems
and also described how one goal of this research is an explooétiois space. In this
chapter, we describe the results of that exploration. We refsvdiscussion of the
work towards this second goal, demonstrating the cognitive cdpabigranted to an
agent by virtue of having an episodic memory, for Chapter 8. Faatte of clarity, we
describe the two goals separately rather than attemptingntingally switch between
them in roughly chronological order. In reality, this work toward éht®g goals was
heavily interleaved and, as a result, this chapter makes mutiplard references to
Chapter 8.

To describe this exploration of the space of episodic memory systeis chapter
describes how each of our major implementations has evolved frenorilyinal pilot
implementation to the current, fully task-independent implementatidrbagond. We
begin by describing the pilot implementation and the baselineemw®itation by
defining their locations in the framework. By doing so, we hope to proawidéear
picture of the evolution of the system as well as its future trajectory.

We follow with a description of each of the major explorations ot t
implementation space by describing the experiments, resultscmutusions for each
experiment. Collectively, these experiments represent fuet@ution of this episodic

memory system and provide a basis for some of the future work discussed in&@ction

38

7.1 Pilot Implementation

Compared to more recent implementations, the pilot implementation iagdl
functionality and a lack of task independence. Despite these iongatthe pilot
implementation provided an essential first step into the design spapésodic memory
systems. It provided valuable insights into the existence adrake critical design
decisions. In other words, this pilot implementation and this defindfothe design
space evolved together. The pilot implementation also was useddmpa few of the
experiments that are discussed in this dissertation. Fitladypilot provided a point for
comparison with all future implementations. As a result, utsisful to understand some
of the details of this implementation in order to understand future implementations.

At a high level, the pilot implementation stored each element oépesodic
memory as a Soar production. These productions fired (effectiettieving the
episodic memory) when a special retrieval operator was edldxt the agent. This
approach allowed us to focus on episode encoding while using Sostiegstorage
and retrieval functionality. As we discuss at the end of #aian, this parsimony came
at the cost encoding specificity issues and some loss of functionality.

The pilot implementation fit within this framework as follows:

Encoding
* Encoding initiation — New episodes were recorded whenever there was a
significant change in the working memory of the agent. The rdtidoa this
approach was that the agent should record more episodes when the agent’s
situations or focus of attention was changing and fewer episduss the agent’s

state was relatively stable. We defined a significant ahamgvorking memory

to be a change in the top N most-activated working memory elemghese(

multiple values of N were tried). Working memory activation in Soar is disduss

in section 5.7.

» Episode determination— We hand-selected the content of the episode using a
task-specific method. This decision represented a deliberatduwtep@om task
independence that allowed us to concentrate on other aspects ofite din

particular, we began by studying the efficacy of activationdésature selection

39

(see section 7.4.1). Future implementations of the episodic mensteyrsiiave
been task independent.

Feature selection— The parts of a memory that would match the cue were
determined by selecting the N most-activated working memoryeglitsn We
hypothesized that the most activated parts of working memory wwoldde a
good approximation of the locus of the agent’s cognitive activitya Aessult, we
expected that these features would be most relevant wherirggl@ehemory to

retrieve.

Storage

Episode structure — Episodes were encoded as collections of rules in Soar. In
particular, each rule was responsible for recreating a pantiostdrking memory
element (WME) that existed in the episode.

Episode dynamics— The original implementation had no episode dynamics.

Once an episode was recorded it was never altered or removed from memory.

Retrieval

Retrieval initiation — In the pilot implementation, retrieval was triggered when
the agent deliberately constructed a cue in working memory.

Cue determination — The agent constructed a cue by creating a special substate
specifically for this purpose. The agent determined the contehe aue, which
could include not only surface features but also their relations to each other.
Selection — Since episodic memories were recorded as collections of Soar
productions, episodic match and retrieval were performed as part of a normal Soa
decision cycle. An operator proposal rule would match the cue. fdaot,efthe
operator was proposing the retrieval of a particular episodic membryhat
operator was selected, the operator application rules woulcatedree memory.

If multiple memories matched the cue, multiple operators woulordygosed and

the agent would select the best match via operator selection.

40

* Retrieval — In the initial implementation, the recall operation directlgrexrote
the retrieval cue structure that the agent had created. The resultingretmas a
duplicate of the original state from which the episode was drawn.

* Retrieval meta-data— The only metadata provided to the agent was a numeric
ID that was assigned to each episode sequentially as item@sded. This
provided the agent with information about the temporal order of episotiesutvi
providing a specific time that the episode occurred. This infbemawhile
present, was never used by the agents in our experiments.

Use

An array of experiments was performed with the pilot implentmmtan the Eaters
environment (which is described in section 6.2.1). In particular, we Umegilot

implementation to demonstrate three cognitive capabilitiesoramodeling, retroactive

learning, and boosting other learning mechanisms.

(A)
M- -
@ & :
=? |- East:, 1 Evaluation Result:
L_| L : Move North = 10 points
Prev Score: |, Sout h::,
575 5
Curr Score: *
585 @
3
Agent’s ’r?g
State 518
§
=

. A ¢ L ¢ | Retrieve the
WO o | ldenity | o @ o [NextMemory]
- -

' [Best Match in Sequence
] ® L
Prew Score: Prew Score: Prew Score:
575 165 170
Curr Score: Curr Score: Curr Score:
585 170 180
(B) © (D)

Figure 7-1: An Episodic Memory Eaters Agent (Piloimplementation)

41

The agent used in all of these experiments followed this blgdthm (refer to
Figure 7-1):

1. The agent's current state includes its current sensing aradiritsnt score.
The state also contains elements related to the agent’s repgoeiuding a
record of what its score was before the previous action. Thie Ea
represented by the box labeled (A) in the figure.

2. In any given state, the agent can move in at least two andaag a&s four
different directions (north, south, east or west). The agentnaiets which
of these actions are available and proposes an operator to meaehirof
these directions. In the figure, the agent can move east, north br(gast
blocked by a wall to the west).

3. Since the agent does not have sufficient knowledge to decide whedhiahr
to move next, it must evaluate each possible movement direction. sithise
as follows:

a. First, the agent creates an episodic memory cue that contains the
agent’s entire current state plus action to be evaluated. Invotinds,
the agent is querying for an episodic memory of taking the to-be-
evaluated action in a similar situation. In the figure, the boxddbe
(B) represents the cue the agent would create to evaluate itve act
“move north.”

b. Once the cue is created, the episodic memory system locates the
episode that best matches this cue. An example of the identified
memory is labeled (C) in the figure. Note that this memonyoisa
perfect match but the situation is similar enough in this case she
agent is moving north to a cell that has the same content. In other
situations, the memory may not be similar enough and, ultimately, the
agent is likely to make a bad decision as a result of this poor retrieval.

c. Once the episodic memory system identifies the best matching
episode, it retrieves the episodic memory of the state thatrred

directly after the best matching episode. This is the episodinory

42

that the agent sees as a result of the cue it created. akmpkx of
what this might look like is the box labeled (D) in the figure.
d. The agent then compares the current and previous scores recorded in
the retrieved episodic memory. It uses the difference batiesse
two scores as a quantitative evaluation of the movement direction
being considered.
4. Once all available actions have been evaluated in this mannesgére
selects the action with the highest evaluation. (Ties aodvezsby selecting

randomly.)

7.2 Lessons Learned from the Pilot Implementation

This section describes each of the insights we gained fromwttrils with the pilot
implementation. As might be expected from a pilot implementatianynof these

insights were fundamental in nature.

7.2.1 Definition of the Episodic Memory Space

The most valuable insight gained from the pilot implementation tsasée as a guide for
defining the scope of this research. What initially began astadogaof important
decisions made during the pilot's construction, evolved into the axes ¢fwehaow

define as the space of episodic memory systems (which was introduced in 2dgtion

7.2.2 The Importance of Matching

This work with the pilot implementation in the Eaters environment quigkight us that
the most important stage in the episodic memory system iaglé¢he best match for a
given memory cue. The manner in which memories are encodestard is important,
but if the wrong episode is retrieved for an agent cue, agentalecisased upon that
retrieval are suboptimal.

With the pilot implementation, we discovered that this decision toSaose’s
built-in matching mechanism hurt the performance of episodic mergentsbecause of
encoding specificity issues. To work effectively, the recaéiptsode had to exactly
match the cue. Too many cue entries meant that the memory neted be recalled.

43

Too few entries would lead to too many matches and (usually) rarmravior.
Therefore, selecting the correct entries for the agenmat®e in the memory cue was
difficult.

Even in the simple environment we used for most of this research, this
requirement was difficult to meet. As a result of this insitie next episodic memory
system implementation used a partial matching algorithm. Alessribed in sections
7.4.1 and 7.4.2, the importance of an effective matching algorithm drdeanysseveral
variations and additions to this algorithm as part of this research.

7.2.3 The Importance of Episodic Memory Sequences

In the Eaters environment, the agent is focused on the immediateafkits actions (i.e.,
the cognitive capability we call action modeling). The pilohpiementation
accomplished this by determining which memory best matched uke bat then
retrieving the next memory (in chronological order) rather tharone that was the best
match. This behavior combined with the agent’s deliberate recorditg pfevious
score at each step allowed the agent to evaluate the outcome of a pacimniar a

In addition to requiring the agent to record critical information, #pproach
made it difficult to use the system for some of the other cegndapabilities since a
best-matching episodic memory could not be directly retrieved. tt&rbgay to acquire
the same information is to retrieve a sequence of two episodiconesm The first
memory is retrieved when the agent constructs a cue consistihg agent’'s current
situation and a proposed action. The agent then issues a commandabigsieey to the
system in order to determine what happened next.

This approach (which was used in future implementations) not omysalthe
agent to directly retrieve an episode, but also to retrieve sequainepsodes bounded
only by the extent of the episodic store. As will be shown irti®ed.5, this
functionality is essential for an agent to learn from previousesses and failures in the

TankSoar environment.

44

7.2.4 The Importance of an Autonoetic Episodic Memory

To create an episodic memory cue, the pilot implementation regbhgexhent to create a
special Soar state for that purpose. The retrieved episodic m&mold then overwrite
the current state. While this approach is parsimonious, it endedeaping multiple
problems due to the fact that productions that were designed th iegéinst a state
would also match against a retrieved memory. If the agentmigecanfused in this
manner, its behavior usually became irrevocably aberrant. Irt,effecwere violating
the autonoetic property of episodic memory described in section 2.2.

As a result of this insight, subsequent episodic memory systesied separate,

reserved areas in working memory for the cue and retrieved episodic memory

7.3 Baseline Implementation

The lessons learned from the pilot implementation were appliethab we now call the
baseline implementation. © The most significant difference betwtmse two
implementations is that the baseline implementation uses an indepegpisodic
memory store rather than using Soar productions.

Several changes stem from this difference. Most importamthgparate memory
store allowed us to implement a partial matching algorithmetlatinated the encoding
specificity issues we encountered in the pilot implementationverGwhat we had
learned about the importance of matching in the episodic meprogess, a custom
matching algorithm allowed us to explore multiple approaches. diitien to the
approach used by the baseline implementation, we discuss two mMagiifications in
section 7.4.1 and 7.4.2.

This implementation is called baseline because it forms the aball future
modifications we have made to the episodic memory system. Invatinds, if we view
this research as a search through the space of implementati@spaseline
implementation is near the center of all the points we have expleince the pilot

implementation.

45

v

Episoda
Selection
A

A 4

Episodic
Memory

=

Figure 7-2 depicts an architectural diagram of the baselineemmpitation of

Episodic
Learning

Figure 7-2: Baseline Implementation Architecture

episodic memory. The central rectangle in the figure repeSaar's working memory.
The nodes in the rectangle represent the working memory eléméattrking memory

contains some reserved areas that contain the agent’s input (joer€epind output

(actions). The baseline implementation created two specia exr@rking memory for

episodic memory cue construction and episodic memory retrieyagatdgely. These

areas are strongly reminiscent of the buffers used by AGIORAnderson and Labiere
1998). These reserved areas are delineated in the figure with dashed lines.

The baseline implementation includes an episodic learning module d¢imétors
the agent’'s behavior and, at prescribed times, records a neadigpmemory. This
memory is effectively a snapshot of working memory taken atithe of recording.
This snapshot does not contain elements that are in the areas kafigivoremory
reserved for cue construction and episodic memory retrieval.

If at any time the agent wishes to retrieve an episodic mgnaonstructs a cue
in the area reserved for that purpose. The cue nominally ws$istorking memory
elements that the agent would like to be in the retrieved episode.

Once a cue is constructed, the episodic selection routine compa@sthe the

stored episodic memories and determines which memory best sdkeheue. (This

3 An actual Soar agent is likely to have many mdeenents than are depicted here.

46

happens at the end of every cycle that a cue is present in wankimgry.) The selected

episode is then added to working memory by reconstructing a coplyeobriginal

working memory in the reserved area of working memory.

The baseline implementation falls into the design framework as follows:

Encoding

Encoding initiation — A new memory is encoded each time the agent takes an
action in the world. The approach used by the pilot implementationcerdiag

new episodes when there was a significant change in working memaded to

the same frequency of recording. This straightforward approastsimply more
efficient and easier to implement. This new approach has sincedpedfective

for multiple tasks and, as a result, we have not changed it.

Episode determination— For the baseline implementation, we abandoned the
task dependent approach used by the pilot implementation. The contmt of
episode now consists of a large portion of the agent’'s working mewiagh
includes its input (sensing), internal data structures and ouwptior{s in the
world). Each working memory element is selected or rejectedarioepisodic
memory based upon its activation level. WMEs which are recordedniew
episodic memory are those whose activation level has not decreatbedpoint
where the element would be removed in a strict psychological fnodel

Feature selection— Since the baseline implementation incorporates a partial
matching algorithm, we elected to allow all features ofepisode to participate

in retrieval.

Storage

Episode structure — The episodic store was completely re-implemented for the
baseline implementation which consists of two structures: a wprkemory tree

and a set of episodic memories (refer to Figure 7-3):

* Working memory activation was originally addedSoar to support memory decay models. Thus, when

a particular working memory element dropped belovaetivation threshold it was removed from working

memory. In this experiments, memory activation aeative but memory decay was not used.

a7

o The working memory tree holds a single instance of all elentleatdave
ever been in an episodic memory throughout the agent’s existence. B
using a tree structure, we preserve mostthe structure of each episode
as it existed in working memory. This reduces the processing t
required to store and reconstruct an episodic memory as compased
system that recorded the entire structure. This benefit cantles cost of
a loss of some detail in retrieved memories.

o Each episodic memory consists of a list of pointers to each efdhHeng
memory elements it contains, in a canonical order. In addition, all
elements in the tree have pointers to the memories that contain them.

In section 7.4.2, we discuss an alternate approach to the struétiine

episodic store and an associated alternate matching algorithm.

Episodic
Working Memory Tree Memories

a4
- —

oA

Figure 7-3: Episodic Memory Data Structures

® Two things are lost with this approach. Firshcsi a Soar state is a rooted graph (not a treejsige
links between elements are skipped in order toefthe graph into a tree. Second, multi-valuedbaites
with non-constant values are stored in the tre sisgle WME.

48

Episode dynamics— The baseline implementation still has no episode dynamics.
The most obvious dynamic is a forgetting mechanism. Howevepenfermed
some rough performance measurements that indicated forgettimmpesessary

for the environments we have selected. As a result, we have chosgmote
episode dynamics in favor of other experiments. Nonetheless, foggetains

a prime candidate for future explorations of the episodic memorge s(see
section 9.2.4.2).

Retrieval

Retrieval initiation — Just as in the pilot implementation, retrieval is triggered
when the agent deliberately constructs a cue in working memory.

Cue determination— A cue is constructed by the agent (using rules) in a reserved
location in working memory. This location no longer corresponds to an actual
Soar state but instead is a link similar to the output-link usedl/@r(an
established paradigm in the Soar architecture). The cue canrhaweraber of
working memory elements. For purposes of the match, the root ofnthe i
corresponds to the root of the state.

Selection— During episodic retrieval, the cue is compared to all stored episodes in
order to select the episode that “best matches” the cuethdnbaseline
implementation, the best match is determined by totaling the nushlwesrking
memory elements that are shared between the cue and the ep{3nde.an
episode has been retrieved, the agent can also retrieve the pieodeein
temporal order via a special “next” command. This allows teniato retrieve
sequences of episodes of indefinite length.

In section 7.4.1, we discuss the effectiveness of using working memory
activation to bias the match. In section 7.4.2, we discuss an alternate
implementation of the baseline matching algorithm.

Retrieval — The complete episode is retrieved in a reserved area ofngorki
memory to avoid confusion with the current state of the agent.wifks the
episodic memory cue, the root of the retrieval area corresportids toot of the
state from which the memory was originally recorded.

49

* Retrieval meta-data— The baseline implementation had no metadata that was

retrieved with an episode. However, as part of this researchawe added
several different types of meta-data (see section 7.4.3.2).
Use
The remainder of the research took place within the baselinenmepkation or (more
frequently) with additions and modifications made to it. The nedes of this chapter
introduces the agents we used for these experiments and disthssessults of
experiments in which we tested the modifications. Chapter 8 deschow we

demonstrated multiple cognitive capabilities with this implementation.

7.4 Additions to the Baseline Implementation

As part of this exploration of the space of episodic memory rsystglementations, we
experimented with several modifications to the baseline impleti@amtaAn underlying

guestion of this research was: Given that you have an impenfaobry system, what
are the techniques you can use to overcome that and how effectitreey?eHowever,

the large number of modifications, environments, tasks and agents mmageaittical to

test all possible combinations. To cope with this complexity, operaxents reduced
the question to: Does a particular agent performing a partitagérin a particular
environment perform better or worse with a given modification? Nuadibns that were
effective were usually kept for future experiments and modifinatthat were ineffective
were removed and set aside for future work. Thus, this searclinvamsme ways, a hill
climbing approach.

This section describes, in roughly chronological order, the modifications ¢nat w

tried and their outcomes.

7.4.1 Improving Episodic Memory Selection

The baseline implementation included a new partial matchingitgoused in episodic
memory selection. Effective partial matching is an isseeddy many researchers in

artificial intelligence tasks. Some approaches to this task include:

* Nearest Neighbor— In the purest form of this approach, the features of the query

are compared to each instance. The instance which has the rtosedein

50

common with the query is selected for retrieval. Neareshheigis processing
intensive and is also highly sensitive to the amount of irrelevaaries in the
instance or query. As a result, a feature weighting heursstaéten applied to
focus the search on a few particular features of the instasrcegiery. A
thorough review of nearest neighbor algorithms can be found in (Dasarathy 1990).
String Matching — Recent advances in rapid string matching (all based on Smith
and Waterman 1981) focus on providing a near-best match rapidilge tfuery

and instance can be condensed into a string of symbols, then theghrakyoan
effectively be used for partial matching. The conversion targshowever, can
result in loss of information (Pardo, et al. 2004).

Hashing — Hash tables can be used for partial matching provided anieffect
hash function can be found for the query and instances. As with staicting,
there is a risk of too much information being lost via the hashiam{Burkhard
1979).

Classifier Systems— Various approaches to classifiers can also be applied to
partial matching. In effect, the individual instances becomegoaés for the
classifier to assign the query to. Examples of class#igorithms applied to
partial match include rule induction (Gryzmala-Busse and Wang 1996)yahh
matching (Tian, et al. 2006) and Bayesian learning (Meek and Birmingham 2004).
Hybrid Approach — The combination of a fast inaccurate approach with a slow
accurate approach can result in a sum that is better tharnrtégs pa particular,
classifier systems can be used to narrow the field for eesteaeighbor search
(Cercone, et al. 1999).

Although we weren't aware of all this options at the time, wlected a nearest

neighbor search for this baseline implementation because it offezechost accuracy.

As we learned from this pilot implementation, retrieving theresti memory is a critical

requirement for an effective episodic memory system (semsétR.2). We began with

a simple nearest neighbor approach with no feature weighting.

51

7.4.1.1 The Baseline Eaters Agent

This first experiment with this new implementation was to an@nt an Eaters
agent and compare its behavior to the pilot. This new Eaters agguhtthe following
algorithm (refer to Figure 7-4):

1. The agent's current state includes its current sensing arairitsnt score.

The state also contains elements related to the agent’s reasdihisgstate is
represented by the box labeled (A) in the figure.

2. In any given state, the agent can move in at least two andaiag a&s four
different directions (north, south, east or west). The agentnaiets which
of these actions are available and proposes an operator to meaehirof
these directions. In the figure, the agent can move east, north br(gast

blocked by a wall to the west).

Evaluation Result;
Move North = 10 points

Compare
Memories
In the Sequence

;- . ® | Retrieve the ...
& [Episodic | o o [NextMemory| o @ o
; Retrieval in Sequence
! H @ ® L] ® L
Curr Score: Curr Score: Curr Score:
585 170 180
(B) © (D)

Figure 7-4: An Episodic Memory Eaters Agent (Basefie Implementation)

52

3. Since the agent does not have sufficient knowledge to decide whachiatir
to move next, it must evaluate each possible movement direction. sithise
as follows:

a. First, the agent creates an episodic memory cue that contains the
agent’s entire current state plus action to be evaluated. Invotinds,
the agent is querying for an episodic memory of taking the to-be-
evaluated action in a similar situation. In the figure, the boxddbe
(B) represents the cue the agent would create to evaluate itve act
“move north.”

b. Once the cue is created, the episodic memory system locates the
episode that best matches this cue and retrieves it foageet to
examine. An example of the retrieved memory is labeledn@)e
figure. Note that this memory is not a perfect match butithat®n
is similar enough in this case since the agent is moving nortltet a
that has the same content. In other situations, the memory may not be
similar enough and, ultimately, the agent is likely to make & ba
decision as a result of this poor retrieval.

c. The agent records the score that it had in that episode and then
requests the memory that occurred next in temporal order. The
episodic memory system responds to this command and retrieves the
outcome of that situation and action. In the figure, this second
retrieval is represented by the boxed labeled (D).

d. The agent then compares the scores from both memories and uses the
difference between these two scores as a quantitative tgalo&the
movement direction being considered.

4. Once all available actions have been evaluated in this manneagérg
selects the action with the highest evaluation. (Ties aodvezsby selecting
randomly.)

53

7.4.1.2 Comparing the Pilot and Baseline

While the baseline implementation’s partial matching immediatgleviated this
encoding specificity issues, the baseline agent’s perforndida®ot improve. Figure 7-5
compares the behavior of a typical Eaters agent from the pilot baseline
implementations. In each case, the agent begins with no episediormas but records
more and more of them as it takes more and more actions in tlte Wére x-axis is the
number of successive evaluations that the agent has made of aadivanin a given
situation. The y-axis indicates the fraction of the last teduatians that the agent
attempted which resulted in success. The dashed line at the lodtloengraph indicates
the predicted performance of random behavior. Due to the natutbeofogging
mechanism used with the pilot implementation, data gathered franadbat is sparser
than from the baseline. The data in this graph for both agents aveaage of five
distinct runs.

Epmem Eater Comparison

= Baseline
+ Pilot

Fraction Correct (smoothed)

0 T T T T
0 500 1000 1500 2000

Action Evaluations

Figure 7-5: Comparison of Eaters Agents for the Pdt Implementation vs. the Baseline
Implementation

54

Examination of this data indicates that the baseline agentfsrp@mce was
somewhat worse as well as more erratic. Given that theipiiementation was using a
task-specific method for episode determination and feature sel@dtienthe baseline’s
approach is task independent, we hypothesized that the lack of this #gewie the

baseline implementation was the cause of the poor performance.

7.4.1.3 Analysis of Baseline Memory Selection

Close examination of agent behavior confirmed the hypothesis thhtiedine
implementation was suffering from lack of knowledge. Withoutk-&=ecific
information, the new Eaters agent was required to create epismhwry cues that
contained all of its current sensing as well as its proposeshacihese memory cues
typically contained between 31 and 36 featureslowever, unbeknownst to the agent,
only two of those features are actually relevant to the thskditection that the agent is
considering moving and the content of the cell in that direction. Gieenany features
to work with, the “best” matching memory often did not contain a Im&dc those two
features. The agent’s behavior suffered as a result.

This observation combined with what we learned from the pilot ingigation
about the importance of matching led us to devote repeated effantedérstand and

improve the task independent matching algorithm.

7.4.1.4 Feature Selection with Working Memory Activation

Given more than thirty features in the memory cue used byt an the Eaters
task, the “best” episodic memory selected by the baseline mgtehgorithm would
often fail to match one or both of the most relevant featuoes the cue. This, in turn,
led to poor decisions by this agent. More generally, as the rateeviant to irrelevant

entries in the cue decreased the likelihood of an effective retrieval alsasedr

® Specifically, features are working memory elememt®se values are leaves of the cue’s tree steictur
These leaf WMESs are the only ones that directlgafthat match since the information provided by th
non-leaf WMES is implicit in the identity of thedEWMEs.

55

To counteract this, we needed a mechanism to weight the featutiee cue to
bias the retrieval toward memories that were likely to be relevahetmsk. An excellent
review of feature weighting for nearest neighbor algoritho@ be found in
Wettschereck, et al. (1997). From that paper, feature weightingsvapon these
dimensions:

* Preset vs. Performance Bias- In some algorithms the feature weights are set at
agent creation and do not vary. In others, the feature weightedarsted based
upon agent performance.

* Feature Weighting vs. Selection- In some algorithms, only a small subset of
features is selected for retrieval. Feature weighting sulsstenature selection if
the only weights that can be applied are 0 and 1.

» Given vs. Transformed Representation- In some algorithms, the features of
the instances and query are used as is. In others, they arfertraus into
another set of features that capitalize on correlation between the gierese

* Global vs. Local Weights— In some algorithms, weights are applied globally to
all features with the same attribute. In others, the weighsfi@am instance to
instance.

Because selection occurs in the architecture, the most imparitanba was for this
weighting mechanism to be task-independent. We had had some swithet® pilot
implementation using working memory activation to select cueesntar retrieval. In
effect, the most activated WMEs seem to reflect the agdatss and, thus, we
hypothesized that it also measured what was relevant to the current task.

We modified the baseline implementation to record the activagiosl lof each
WME in an episodic memory as its feature weight. At selectimse activation levels
were summed to create a match score for each episodic mendottyeaepisode with the
highest match score was retrieved. According to the cripeesented by Wettschereck
et al., (1997) this approach is performance biased (activation Eneetietermined at run
time), feature weighted (no features are excluded during thehjnaises the given
features without transformation and applies the weights locally.

As far as we have determined, this approach to feature weighturgque. The
most closely related research involves using explanation-basethteén guide feature

56

selection in case-based reasoning (Cain, et al. 1991). In additikCTh& architecture
(Anderson and Labiere 1998) uses activation to select among neatdinks during
retrieval from semantic memory.

Figure 7-6 compares the behavior of the agent before and aleadtivation-
based feature weighting was added. As with Figure 7-5 above,akis is the number
of successive evaluations that the agent has made of a givem iact given situation
and the y-axis indicates the fraction of the last ten evaluati@ishe agent attempted
which resulted in success. The data in this graph for both agesmtsaverage of five
distinct runs.

Epmem Eater Comparison

x Baseline (Act. Bias)
= Baseline (No Bias)

Fraction Correct (smoothed)

O T T T T
0 500 1000 1500 2000

Action Evaluations

Figure 7-6: The Effects of Activation Bias on the Bters Agent

This approach created a clear improvement in the agent’s astidmations that,

in turn, were directly dependent up on the quality of retrieved memories.

57

7.4.1.5 Improvements to Working Memory Activation

Success using working memory activation as a feature weightsldo examine
Soar’s working memory activation algorithm more closely. Welenavo observations
about the design of the activation system that led us to believeowd improve its
ability to identify salient features of an agent’s state.

The first observation was that the activation system was roasigp ignore
instantiation supported (i-supported) WMEs. (Recall that theseNdi&Es that are
created via elaboration rules and remain on the state as |ting r@devant rule continues
to match.) The working memory activation implementation wasrailyi accomplished
by James (unpublished) which was in turn based upon research by Q0&3y &nd
Anderson & Labiere (1998). In all cases, the memory activation hexd ibgplemented
as part of a memory decay mechanism. Removing an instantiation tespdaviE due
to decay would have no effect since the relevant production would siim@lyand
recreate it. Thus, for James’ purposes activation on i-supported WMESs was ungecessa

For the purposes of agent focus, the activation level of i-supported Vélas
seemed unnecessary since the existence of architectural andoosengported (o-
supported) WMEs that led to the i-supported WME's creation would haweatamn.
(Recall that o-supported WMESs are created by operators andtpedefinitely.) Upon
closer examination, we realized that i-supported WMEs can “ntaskactivation of the
underlying o-supported WMESs responsible for the creation of the i-saopdVMEs.
Figure 7-7 shows a graphical depiction of this situation. Considecabe where a
production tests an i-supported WME. That WME does not receivecirateon boost
since it is not activated. However, the o-supported WME(s) that tested in order to
create that WMEalso do not receive a boost. Thus i-supported WMEs are masking o-

supported WMEs from activation.

58

I-Supported WME

O O-Supported WME

Production

Figure 7-7: Example of Activation Masking in Working Memory

In response to this problem we added a “pay it backward” approagageing
references from i-supported WMEs to o-supported ones. The activatstemsyow
calculates theset of support for any referenced i-supported WME and then boosts the
activation of WMEs in the set. In Figure 7-7, the set of o-suppoNVMdIE 5 includes
WMEs E and F, which are directly tested by the rule thedites 5, as well as C and D,
which are indirectly tested by the WMEs that create 5 (via WME 4).

The second observation we made was in regard to the initial aotivat newly
created WMEs. In the original implementation, these WMESs re@efiseed initial boost
equivalent to a single reference. In terms of decay and remoxais thufficient because
newly created WMEs will usually immediately lead to additianée firings and thus the
WME will receive a boost in activation. If, instead, a newbBated WME is not relevant
to the situation it will not be tested and, thus, will be removed a@tshort time.

However, when using memory activation as a measure of the impodafeatures of

59

the agent’s state, this flat level of initial activation cambgleading. An agent might test
multiple WMEs with high activation and create one new WME thatldvénave much
lower activation. Thus, at creation time — when this feature mbt likely be very
important as a cue for future retrieval — its activation ishmlawer than the activation of
the features that led to its creation.

This may, in fact, be a new manifestation of an old problem. €hoted that in
both his model and some ACT-R models, newly created WMEs/chunks cay tec
rapidly and, as a result, never have a chance to participat@soning. To ameliorate
this problem, the second modification we implemented was a “gayward” approach
for setting the activation level of new WMEs wherein thevatbn of a new WME is
based on the activation levels of its set of support.

Figure 7-8 depicts the Eaters agent's behavior before and #fesge
modifications had been applied. As with Figure 7-6 above, the x-attie isumber of
successive evaluations that the agent has made of a givemiach given situation and
the y-axis indicates the fraction of the last ten evaluatioaisthe agent attempted which
resulted in success. The data in this graph for both agentsaiseeage of five distinct

runs.

60

Epmem Eater Comparison

Baseline (Imp. Act. Bias)
= Baseline (No Bias)

Fraction Correct (smoothed)

O T T T T
0 500 1000 1500 2000

Action Evaluations

Figure 7-8: The Effects of Improved Activation Biason the Eaters Agent
This data strongly suggests that working memory activationniseféective

method for feature weighting in a task independent episodic memory system.

7.4.1.6 Balancing Activation Bias vs. Match Cardinality

Success with activation as a feature weighting mechanismusedo leave that
functionality in the baseline implementation for future researtlowever, when we

began working in the TankSoar environment (described in section 6.2.2), wetbega

instances where the system was retrieving an incompleteighing episode when a
complete match to the given cue was available. This behaviobeeagise the sum of
the activation level on the lesser match was higher despitaiising elements. Clearly,
there is a conflict between the activation level of the matchtlae overall cardinality of
the match.

As we furthered our investigation, we noted that some of the Tank§eats we
created used episodic memory cues with as few as four featifesa full description
of the TankSoar agent used in this investigation, see section 8.%)tBase cues were
much smaller than that used by this Eaters agent, it was mocé Ikely that a

61

particular episodic memory would be an exact match to a givenldoeever, due to the
activation bias on the match, a non-exact match to a more higfhtgtad episode would
sometimes be selected instead.

As a result of this observation, we modified the baseline episogiigory system
to calculate two match scores. One was based upon the sum difithgcerclevels of all
matching features. The second was based upon the strict cardinality @ftthe fhhese
two scores would then be combined at a user defined ratio to deteanfinal match
score. A ratio of 1.0 would weigh each score equally. A ratio bél®mveighs the
activation level more heavily. A ratio above 1.0 weighs the cardinality of trehnraire
heavily.

Using this new functionality, we compared the performance dipteilTankSoar
agents. Each agent was identical except for the value o€dhisnality vs. activation
ratio.

Figure 7-9 depicts the performance of this TankSoar agent with each setting of the
cardinality vs. activation ratio. The agent begins with no episoéimories but records
more of them as it plays more games (the x-axis). Thesyiaxihe agent’s average
margin of victory for each game given a specific number of pre\gauses played. A
negative margin of victory represents a losing game and a pasisikgin of victory is a
winning game. For all curves, the data presented is the avefrége independent runs

of the same agent.

62

Comparison of Cardinality vs. Activation Ratio
30
el XX -

20 - : > sl S X e PO
>] (R O 2~ e) %
8 10 N : *
|5} — /2 T G T O E— NS — v r
g v g R | —+— 10000
“— o . 3 .
Z O 7TWWW_H7;‘ T 'w] # 2 e Sl N 3
> 1 S8 27 460 53 66 pdg 29405 118N 144 157 170 1.5
S -10 - g- B¢ : -1
D 3
2 20 & ot —e—0.00001
(&)
I

'30 ’ ‘@

-40

Successive Games

Figure 7-9: Effects of Various Settings of the Carihality vs. Activation Ratio in the TankSoar

Environment

Figure 7-10 depicts a summary of the overall results of Eige®. Each column
in the graph depicts the average overall margin of victory of genta with the
cardinality vs. activation ratio specified on the x-axis.

63

Overall Performance

20

15

10

g.0000[1 1.5 3 10000

Average Overall Margin of Victory
(&)

KN
o

Cardinality vs. Activation Ratio

Figure 7-10: Summary of the Impact of Cardinality vs. Activation Ratio (Small Cue)

As the graphs show, the TankSoar agent learned faster and gefform
better when the cardinality of the match outranked the sum ottivation level of the
match. These results are in contradiction to the activationrésasts with the Eaters
domain. Given that the only thing that was varied in this parti@dperiment was the
cardinality vs. activation ratio we can hypothesize that thentakdifference between
these two agents was the sizes of the respective cues andiepnemories. The Eaters
agent has a large cue (approximately 35 features) and a comparable epesndiy size
(approximately 50 features). The TankSoar agent has a smalappeximately 9
features) and a much larger episodic memory size (approximately 120 d$¢ature

To test this hypothesis we modified the TankSoar agent to uselalarger cue
(approximately 55 features) and repeated the experiment withathne values for the
cardinality activation ratio. The results are shown in Figure.7\While the extraneous
cue entries hurt the performance of the agent, it is readilyequpthat retrievals based

upon large cues perform better when the activation bias is strong.

64

Overall Performance

0
CLOOOQL |—1—| 15 3 1000d

Average Overall Margin of Victory

Cardinality vs. Activation Ratio

Figure 7-11: Summary of the Impact of Cardinality vs. Activation Ratio (Large Cue)

These data show clear evidence that a key factor in thénimgtalgorithm for a
task independent episodic memory system is to respond to the size aid and the
episodic memory when performing episode selection. An obvious approtuh i® to
adjust the cardinality vs. activation ratio based upon the sizeeaketrieval cue. More
data from more agents and environments will need to be gathered theoegproach

can be proven.

7.4.2 Improving Performance: Interval Based Matching

The impact that the episodic memory system has on the surroundhmteeture is a
crucial consideration. In section 2.3, one of the requirements fimedidor an effective
episodic memory implementation is low resource demand. To that erkrfeemed a
close examination of the impact of the baseline episodic mematgns on Soar

performance.

7.4.2.1 Instance-Based Matching Algorithm

Initial profiling of the baseline system indicated that thegést fraction of processing

time was spent during episode selection. As a result, we dstaith the baseline

65

implementation’s data structures and matching algorithm (whiclilvbenceforth refer
to as the instance-based algorithm). Refer to Figure 7-12 whictedica of Figure 7-3
from section 7.3. This algorithm has the following steps:

Episodic
Working Memory Tree Memories

o
<& m

A

Figure 7-12: Data Structures used by the Instance-ded Algorithm

1. The system simultaneously traverses the given episodic meoneryand the
working memory tree. For each entry in the cue, the correspondingimrire
working memory tree is located.

2. Each matching entry that is found in the tree contains a ligifefences to every
episode that contains it. A list of all episodic memories thdtimat least one
entry from the cue is created by merging the referemoas éach matched part of
the cue.

3. The complete cue is then compared to each episodic memory in thyecneated
episodic memory list and the one that best matches the cue is selected.

This algorithm requires O(nm) comparisons to find the best matatgieen cue

(where ‘n’ is the number of entries in the cue and ‘m’ is the nurobepisodes that

66

entries of the cue appear in). Note that the size of the idugewnuch smaller than the
number of episodes and does not grow over time. As a result, we &xpgrowth in
processing time to grow linearly over time.

While the cardinality of ‘m’ could equal the size of the entpesedic store, in
practice it is much smaller because a given entry in thésaudikely to appear in all the
stored episodes. Moreover, the size of the cue limits the numbeerobries that need
to be directly compared to the cue. In addition, if the agent is ménangtask to task,
so that the number of episodes with common features does not growneéheetjuired

will be much smaller than O(nm) implies.

7.4.2.2 Measuring the Performance of the Instance-Based Match

Figure 7-13 depicts the memory usage required for the baselphenm@ntation using the
instance-based match in the Eaters task and how it is distribut@tyahe various data
structures used by the system. Figure 7-14 shows the samefarapd TankSoar task
over a longer span of time. In both graphs, the agent begins withstaliepmemories
and the y-axis measures the amount of memory used as the agesningae and more

memories.

67

Memory Usage of the Baseline Implementation

(Eaters)

7000000

6000000
A
< 5000000 e actwme structs
0
= = wmetree
3 4000000
© X epmem structs
(&)
° 3000000 epmem ptrs
© .
s 2000000 strings
<
™ 1000000

0+

0 10000 20000 30000 40000 50000 60000

decision cycles

Figure 7-13: Baseline Implementation Memory UsageHaters)

Memory Usage of the Baseline Implementation
(TankSoar)
25000000

‘@’ 20000000
< —e— actwme structs
0
< 15000000 ~ = wmetree
% —l— epmem structs
(&)
S 10000000 epmem ptrs
[3+]
s strings
< 5000000
o

04 ‘ ‘ -

0 500000 1000000
decision cycles

Figure 7-14: Baseline Implementation Memory UsageT@nkSoar)

68

Predictably, the memory usage grows linearly as more and memories are
added to the episodic store. In particular, memory spent on “activowts’ are the
predominant contributor. Lists of these structures comprise an episeanory in the
baseline system. (These structures contain a pointer to a ndue wotking memory
tree along with an associated activation.) In terms of the gsphen in Figure 7-13
and Figure 7-14 (above), the vast majority of storage is usetidagptisodic memories
and not the working memory tree.

Figure 7-15 depicts processing time required by the baseline nmaptation
using the instance-based match in the Eaters task and howlistributed among the
three most expensive operations of the system: memory seléotaich), episode
installation (retrieving the episode into working memory) and episardeval (removing
the episode from working memory). Figure 7-16 shows the samefch#nre TankSoar
task. In both graphs, the agent begins with no episodic memories andaiie

measures the amount of processing time used by the agdngassi more and more

memories.
Baseline Implementation Processing Time
(Eaters)

" 8
@ .
c 6 < :l -l
e _ Tt
o9 5 wn F, W un = match
ho} c I - [] []]
g g 4 '-.'ul'—"'ﬁ install
L n " clear
5L 3 T
o " I--]
£ 2 P
= ng™
- |]
A I
O e

O B T T

0 10000 20000 30000 40000 50000 60000
decision cycles

Figure 7-15: Baseline Implementation Processing Tien(Eaters)

69

Baseline Implementation Processing Time

(TankSoar)

16
s 14
1z
S @ 12
s e
S S 10 —=— match
©% 8 install
()
2y 6 clear
m —

o

£2 4
g 2
o

04

0 200000 400000 600000 800000 1000000 1200000

decision cycles

Figure 7-16: Baseline Implementation Processing Tien(TankSoar)

This analysis of processing time shows that the amount of procdsamalso
grows linearly and that the vast majority of time is spemtthe match algorithm.
Clearly, as more memories are added to the episodic storgimeris required to select

memories for retrieval.

7.4.2.3 Interval-Based Matching Algorithm

To improve the system’s performance we began an investigatiorieohalive
data structures for the episodic memories that would reduceé&sasiminimal cost in
processing time. Examination of the content of the episodic mesn@vealed that each
episode was usually only slightly different from the one that beeh recorded just
before it. This insight led us to consider an approach in which gasbde memory
contained only the changes from one episode to the next. Howeweplement such
an algorithm, the activation values used for feature weighting gluhia match (see
section 7.4.1) would be lost. Unlike the WMEs themselves, these \@laege every

cycle and thus are not conducive to the same data compression scheme.

70

To compensate, we considered using the activation values from thadiepi
memory cue instead of each candidate episodic memory. We mottiéedaseline
implementation to do this and re-ran the Eaters agent over arsexpariment. The
results are shown in Figure 7-17. The x-axis measures succaestimes taken by the
agent. The y-axis records the fraction of evaluations performedgdthin last ten

actions that were correct. The data shown is an average of five runs ofjeath a

Comparison of Sources for Activation Bias

= Memory Activation
¢ Cue Activation

Fraction of Correct Evaluations

0 I T T T
0 500 1000 1500 2000

Total Actions

Figure 7-17: Impact of using Cue Activation vs. Merary Activation to Bias the Match

As the data shows, the performance of the two agents is méankycal. While
we could not conclude this would be true for all domains, this was enopglors for
that hypothesis that we proceeded with a new data structurelithatates the need for
an explicit representation of episodic memories. This strududepicted in Figure 7-18

and should be compared to Figure 7-12.

71

Working Memory Tree

Range List
LB B

| | 16 - 39

51-71

|_I_| Other 74-76
Data

107 - 151

l 1 776 - 785

Figure 7-18: Data Structures used by the Interval-Bsed Algorithm

In this approach, the episodes are stored implicitly in the wonkiegnory tree
via a series of time increments (ranges of decision Qyolegach node in the tree. The
ranges indicate the cycles when the associated working mer@nerg was in the
agent’s working memory. This approach makes the required stamageih the number
of changes to working memory instead of the number of elements in working memory.

We modified the matching algorithm to use this structure andetéhagsactivation
values from the episodic memory cue to weight the features afatididate episodes.
The resulting algorithm is as follows:

1. The system simultaneously traverses the episodic memory cuinenebrking
memory tree. For each entry in the cue, the corresponding eritrg imorking
memory tree is located.

2. Each entry that is matched in the tree contains a list of sarigach of these lists
is set aside and each range in the list is assigned a waioh equal to the
activation level of the associated cue entry.

3. All of the selected lists are merged together into a singleofiranges. If two
ranges partially overlap, they are split into two or mongasste ranges. For

example, if one list contains two ranges (1-10, 15-20) and the @hephtains

72

one range (8-18) the merged list will contain six ranges (1-7, 81tQ@4, 15-18,
19-20). Each range in the merged list has a match score eqiha& sum of the
activation levels of all the ranges that entirely covered that range.

4. The merged list is traversed to locate the range with tgleebt match score
(activation level). The number(s) in that range representycles in which the
best-matching episode was recorded. (In the event of a tie,a$terecent cycle
is selected.)

5. The episode can be recreated by traversing the working mereergrid creating
working memory elements for each node that contains the selgeiedrcone of
its ranges.

The complexity of this algorithm is O(nr) where ‘n’ is the numbkitems in the
cue and ‘r’ is the total number of ranges that must be examimat complexity can
also be expressed as @)rwhere ‘I’ is the average number of ranges in each listithat
merged in the matching process. However, these two variablesnedependent in
practice. At worst, we expect the growth to be linear in the nuofbepisodes because
the size of the cue (‘'n’) is relatively constant. As in thermaigorithm, the growth will
be minimized if the same features in the environment are nohoaliti encountered (so
that r is small). However, this algorithm has the additional rtdge in that it is sensitive
to only changes in features, so that the growth could be significeess than the

instance-based algorithm if environmental features change slowly over time.

7.4.2.4 Measuring the Performance of the Instance-Based Match

Using this new data structure and algorithm, we repeateekff@iments we had
performed with the baseline implementation. Figure 7-19 and Figaf depict the
memory usage and processing time (respectively) required fonglnsmplementation
on the same task and using the same y-axis and x-axis at thessal® as used in the

previous figures.

73

Memory Usage with Interval-Based Match

8000000

7000000

6000000

5000000

4000000

wmetree
range lists
strings

3000000

RAM allocated (bytes)

2000000

1000000 - |

0 = i T T T T 1
0 10000 20000 30000 40000 50000 60000

decision cycles

Figure 7-19: Impact of Interval-Based Match on Memoy Usage

Processing Time with Interval-Based Match

processing time (seconds/500 cycles)

a
1 B - | P S o, P T Bl
) [=
[I T .’M{!"‘. S L
i R SR A SO
N VeYS y““&'\@é'(‘ﬁiﬁ S gy DAYy
0 7’1‘,.-/!’;:,‘./‘1-'&\-2‘,"\/ "N ¢ “‘

0 10000 20000 30000 40000 50000 60000

decision cycles

= match
install
clear

Figure 7-20: Impact of Interval-Based Match on Proessing Time

74

Both resources still show linear or near-linear growth adigtesd by this analysis
but the amount of each resource used is significantly less. aAréheof memory usage,
the majority of space is consumed by the new range listartimicitly represent the
individual episodic memories. In the area of processing time, tist time is now
required for reconstructing and installing an individual episodic ongmather than the

match itself.

7.4.3 Flexible Agent-Architecture Interface

While the episodic memory system itself must be task indepenterg, is no such
restriction on the knowledge in the agent. As a result, the episwimry system can
benefit from providing as flexible an interface as possiblefferaigents that use it so that
the system’s behavior can benefit from this knowledge. As wdama agents for the
Eaters and TankSoar environments, we also encountered situationghehagent could
benefit from having access to a more flexible interface reftrespecifying these cues or
for receiving information about memory retrieval. Given these opptgsnwe often
implemented the requisite functionality. This section describes thdditions to the
baseline implementation and, where possible, demonstrates theict irmpaagent

behavior.

7.4.3.1 Expanded Cues

The episodic memory cue that the agent constructs to triggevettcontains the
WMEs that the agent believes may be relevant to the taskhelpilot implementation,
we discovered that the need for retrieving sequences of episodesedegquinext”
command (which was added in the baseline implementation). Awdhisprogressed,
other commands were added. Below is a complete list of the awelsrsapported by the

most recent implementation:

75

* query - This is the base command for retrieving an episodic memady.
WMEs specified by this command (and their structure) are usemtete an
episodic memory cue.

* neg-query - Sometimes, the best way for an agent to describe whatofype

episode it wants is by specifying the features that it doewant. This command

allows the agent to specify a negative cue. We used the negative query in some of

these experiments as a way for the agent to emphasize thaangeoof certain
entries of a cue by putting alternative entries into the negetige An example
of this usage (and its impact) directly follows this list.

» before/after - When used in conjunction witquery or neg- query,
these commands restrict the resulting retrieval to episode®dbatred before
and/or after a given episode. In other words, they allow gemtato set a
chronological context for retrieval. These commands were not asedy of the
experiments presented in this dissertation.

 prohibit - When used in conjunction witquery (or neg- query) this
command prevents the system from retrieving a specified epigadeng other
uses, by prohibiting the episode that was just retrieved forem giue, the agent
is able to retrieve the “second best” match for a give query. e§ubsat uses
allow for “third best”, “fourth best”, etc. indefinitely. In the mdsnctional of
this TankSoar agents (see sections 8.4 and 8.5), this command adlonvedof

this agents to reject episodes that did not match the most critical enthescunet

While the potential value of these commands is apparent, theraallyuso way to
directly demonstrate their value in terms of an improvement intdgghavior. However,
we can demonstrate that a specific use of one of these awmsnwas essential for a

specific agent. When this TankSoar agent (described in 8.5) is attgrigpevaluate an

action, it uses theeg- query command to bias the episodic memory system against

retrieving episodes that do not contain the to-be-evaluated actiomoutvthis ability,
the agent is less likely to get a useful memory and, asudt,rées less likely to select an

effective action.

76

Figure 7-21 depicts the performance of the combat tank both withviinout
this ability. The agent begins with no episodic memories lmards more of them as it
plays more games (the x-axis). The y-axis is the agemgsage margin of victory for
each game given a specific number of previous games playedegative margin of
victory represents a losing game and a positive margin of vid@yvinning game. For
both curves, the data is the average of ten independent runs of thagearhe The error

bars in the figure represent the range of 95% confidence.

Utility of Negative Query

HHHA
Ell."i.""', |"

¢ With Negative Query
= No Negative Query

Average Margin of Victory

Successive Games

Figure 7-21: Impact of Removing the Negative Cue &rm the TankSoar Agent

As is apparent in the graph, the inability to create a negativeneaes that the

agent’s rate of learning is diminished.

7.4.3.2 Retrieval Meta-Data

When an agent retrieves an episode, the architecture has the oppddusiipply
metadata about the episode and the selection process that theaagiaeincuse to guide
its behavior in a task-specific manner. To support the agentsiusieid experiments,

the following metadata are now provided whenever an episode is retrievedsygtéra:

77

Retrieval Count - If the agent is retrieving a series of epsd¢da the “next”
command) the system reports how many episodes in that sequencbeeave
retrieved so far. This retrieval count allows the agent to tht®sequence when
“enough” episodes have been retrieved, where “enough” is a taskespatue
determined by the agent. In the TankSoar agent we built to deaterist@rning
from past success and failure, the agent used this informatidetéot when it
had retrieved the maximum memories in a sequence (an arbiteasiynum) and
should stop.

Match Score - The raw match score is calculated during mesetegtion by the
architecture and the range of possible values will vary depengiog the cue
(and thus upon the current task). By providing this number to the ageat it
monitor these values to gain a measure of its confidence in ificpeitieval for
a given “type” of cue. (Again, “type” must be a task-specifeasure defined by
the agent.) This value was also used to calculate the NaedaWlatch Score
(below).

Cue Size - The number of features that were in the cue. Thé @ge use this
value to normalize quantities or classify cue types. Thhitacture uses this
value to generate the Normalized Match Score (below).

Normalized Match Score - This value is the match score dividetebgue size.
While the agent could do this math, the architecture simply prothgegalue as
a convenience. This value was never used by an agent but wagyuseel
architecture to decide when to allow chunking in one experimentsgeen
8.3.2).

Match Cardinality - The cardinality of a match is the nundderntries in the cue
that were actually matched by the retrieved memory. Thisbeunsan be
important (particularly with small cues) because one highlyatetd WME can
overwhelm the importance of other cue entries. (See section 7.4.1s6nar
experiments with balancing bias from activation versus bias froaich
cardinality.)

Memory ID - Each episode is assigned a unique number when doislesl. By

assigning these numbers sequentially and reporting them to thte thgeepisodic

78

memory system gives the agent a sense of the relative thea the episode
occurred. These IDs also facilitate cue commands likor e, af t er and
prohi bi t.

Present ID - By telling the agent which ID will be assijne the next episodic
memory that is recorded, the agent can compare this with the memory ID & gai
sense of the recency of a particular episode. This value wasedtfor any of

the experiments presented in this thesis.

79

Chapter 8

Cognitive Capabilities

In Chapter 3, we introduced and discussed a set of cognitive capaltititit episodic
memory might facilitate. One of the two major goals of tlesearch is to investigate
whether, in fact, episodic memory can play a role in supportingbaeswof those
cognitive capabilities using this episodic memory system. dfapter presents the work
we have performed toward accomplishing this goal.

Each section in this chapter begins with a cognitive capabM{e then describe
a specific task where that cognitive capability can impasvagent’s performance in one
of the two environments used in this research (Eaters or TankSeadlly, for each
task, we present and discuss the results from this investigatiovellaas any lessons
learned. The experiments described here are presented in roughly chroholdgica

8.1 Action Modeling

Action modeling is an obvious case where episodic memory can be useful. Giverh a set
experiences in an environment, an agent can use those prior expeterueslict

changes in the environment following a given action.

8.1.1 Action Modeling in the Eaters Environment

To demonstrate this capability we created an agent for thersEabvironment
(see section 6.2.1) with an episodic memory. Aside from the goalagirmzing its
score, the only knowledge given to this agent was an understandmigabfactions it

could take in the world (movement in a cardinal direction). The agantnot aware of

80

the semantic meaning of those actions or the relative importahdbe different
information that was available from its senses.

Given this lack of knowledge, we designed the agent to use itdepimemory
to learn how various situation-action pairs affect its scock #us, what actions are best
in a given situation. In any given situation, the agent is aafandat actions it can take.
To evaluate a proposed action, the agent creates a memory cue etrapds current
sensory input and the action of moving in the proposed direction. lutheesulted in a
successful retrieval of performing the same action in a simitiaation, the agent would
then ask for the next memory in chronological order. If both me&®madrclude the
agent’s score, then the agent can determine what immediatgeciva score (if any)
resulted from that past action. This change in score can, in tuaselddo quantitatively
evaluate each proposed action. The action with the highest stbeeastion that agent
actually selects. This agent is described in more detail in section 7.3.

Figure 8-1 depicts the accuracy of this agent’s action evahsasis it gains more
and more episodic memories. This particular experiment was vertifnes using this
baseline implementation with this improved working memory activati@chanism
providing feature weights for the memory selection routine (setose7.4.1.5). The
results were averaged and a mean smoothing with a windowsf s&e was applied to

achieve the final results that are shown in the figure.

81

Action Modeling with Eaters

Fraction Correct

1 167 333 499 665 831 997 1163 1329 1495 1661 1827 1993 2159

Action Evaluations

Figure 8-1: Action Modeling Results (Eaters)

The x-axis is the number of predictions that the agent has madehasdjst a
rough measure of time. The y-axis indicates the fraction ofagteen predictions that
were correct. For this experiment, a correct evaluation cerdigiredicting the correct
change in score that will result for a given action. If thend makes an incorrect
prediction (or is unable to make a prediction at all due to a faiesbdic memory
retrieval) then the outcome is considered a failure.

The agent begins with no episodic memories and, as a resaltciteacy begins
at 0%. (The smoothing makes this appear closer to 10%.) Aseheags in the world,
its ability to model the results of its actions improves rapi@yproaching perfect

behavior in the limit.

8.1.2 Action Modeling in the TankSoar Environment

The simplicity of the action modeling cognitive capability maida good target
for demonstration in multiple environments. Because the task in theS®ar domain is
complex, we instead focused on a smaller subtask. While a humamngatite domain

can see it in its entirety, the agent’s sensing is limi#a.agent has many senses but the

82

most useful one is its radar which allows it to sense theamagnt immediately in front
of it. The radar can be set to different distances with fudistances allowing the agent
to see farther but also requiring more energy. Thus, energy tedvdsthe radar is
blocked by an obstacle (e.g., a wall or another tank). Figure 8-2tsleghat an agent
can see with its radar from the same position and direction usieg tlifferent radar

settings.

Figure 8-2: Outcome of Three Different Radar Settigs

To demonstrate action modeling, this agent uses its episodic méonprgdict
what it will see when it turns on its radar, and uses that irdbom to set the most
efficient radar distance. As with the Eaters task, it semgal that the episodic memory
system retrieve a relevant memory for a given cue. Unlik&#bers task, the size of the
memory cue was much smaller: consisting of the agent's curentcoordinates, the
direction it was facing and the maximum radar setting.wiis Eaters, we used working
memory activation to weight the features of episodes duringntiteh but, due to this
small cue, we found that the agent performed best when anreatatt (even with lower
activation) was preferred over the best activation-biased mag&éction 7.4.1.6 has
details on investigations into the balance between match cargivsliactivation bias on
memory selection.

Figure 8-3 depicts the agent’s performance over one hundred ediitags while
the agent explores a map. The y-axis is the fraction of thedassettings that were

83

correct. A failed setting was given a partial score based hparclose it was to the best
setting. Each data point is the average of five runs. The dasleedt lihe bottom of the
graph indicates the performance of an agent that selecasl@s setting randomly. As the
graph shows, the agent quickly learns to make effective ratengseas it navigates the

maze.

Radar Tank Performance

1
0.9 -
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

O O, C s B

1 101 201 301 401 501 601 701 801 901
Radar Settings (time)

Fraction Correct

Figure 8-3: Action Modeling Results (TankSoar)

Based on the results from both the Eaters and TankSoar environinappgars
that episodic memory can be an effective resource for actionlimpderhe learning
appears more rapid here than in the Eaters experiment due tocththdh partial

successes are possible.

8.2 Retroactive Learning

Retroactive learning is the ability to relive an experiewben more resources (usually
time) are available in order to learn things from those expeee that could not be
learned when they occurred. At the general level, a retvealdarning algorithm has

these steps for an agent:

84

0. Gather episodic memories at a time when the agent can not learn from them fully.

1. Retrieve an episodic memory that the agent has not retrievede bfer this
learning task. If no such memory can be retrieved, exit.

2. If the agent already has knowledge informing it of how to gehéogpbal state
from the recalled state, go to step 1.

3. Does the agent recall performing an action that got it to thé gjate from the
current state? If so, record the necessary state-action cdimbiaa semantic
knowledge. Go to step 1.

4. Do the agent recall taking an action in this state that geits another state
wherein it already have semantic knowledge of how to get to the glhaso,
record the action taken along with a sufficiently unique descriptidine recalled
state as new knowledge.

5. Gotostep 1.

We demonstrated this cognitive capability in the Eaters domaig ukis pilot
implementation. The agent we created used a simplified version of the gdgerahm:

0. We created an agent that acted randomly for a fixed period ofgatiering
episodic memories.

1,5. After this time, the agent would stop and retrieve its memuyiesnstructing
cues consisting of the agent in all possible combinations of neighboeits.
This is significant because it reflects additional informagoren to the agent:
that the contents of cells are important.

2-4. Based upon its retrievals, the agent gained new knowledge (chusksipae
which action to take based upon the contents of neighboring cells.

After this period of reflection, the agent would resume its m@&rgnthrough the

maze using this new semantic knowledge (additional episodes were also recorded).

Figure 8-4 depicts the performance of this retroactive learmgagtan the Eaters
environment. The y-axis measures the fraction of the lastcteans that were correct
while the x-axis represents successive actions in the worlddathes an average of five

runs of the agent.

85

Retroactive Learning Eater

1
0.9 -
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

oo

Fraction Correct

1 44 87 130 173 216 259 302 345 388 431 474 517 560 603 646 689 732

Actions

Figure 8-4: Retroactive Learning Results

This graph indicates that the retroactive eater has learneddeahbehavior via

retroactive learning.

8.3 Boosting Other Learning Mechanisms

The ability to provide “grist” for the “mill” of other learning mechanismgdagentially an
important ability for episodic memory. Similar combinations leizy” and “eager”
learners are demonstrated by locally weighted learningegbdin, et al. 1997), lazy
learning (Sheppard and Salzberg 1997) and continuous case-based red@amng (
Santamaria 1997).

8.3.1 Demonstrating Boosting with Eaters

To demonstrate an episodic memory system’s ability to boost cthenirig
mechanisms we combined this pilot implementation of episodic nyemibh Soar’s
built-in learning mechanism: chunking. (You may wish to refer tige 5.6 for an

overview of chunking.) When the agent lacks the knowledge to choose artiiem

86

possible actions this creates an impasse. In the resultingpautepisodic memory
retrieval is used to evaluate each action. These evaluations éaesnlts of the
subgoals and lead to the creation of rules (chunks). These rulé¥NHss that were
used to create the episodic memory cue and create preferentes &tions that were
selected based on the retrieved episodes. In other words, these ceurik®iting the
processing that was used in the episodic memory retrievalsasdhe agent can skip
these retrievals in the future. This expectation was thatvibugd increase the speed at
which the agent was able to make decisions.

Figure 8-5 depicts a comparison of an episodic memory agent with olgusaka
the same agent without the chunking mechanism. The figure includesrda a
hypothetical agent with ideal behavior that requires only one dacgicle per action
and always takes the correct action. The y-axis measaofsagent’s score while the x-
axis represents successive Soar decision cycles (insteaccetsive actions as in Figure
8-4 above). This means that the graph is weighing both the effecsveht®we agent’s
actions and the speed at which the agent makes decisions. The @ataverage of five

runs of the respective agents.

Boosting other Learning Mechanisms (Chunking)

1200 "

1000 /
800 ~ Ideal
With Chunking
Without Chunking
600 /
400 /
200 /
04

1 91 181 271 361 451 541 631 721 811 901 991 1081 1171 1261 1351 1441

Decision Cycle

Total Score

Figure 8-5: Boosting other Learning Mechanisms Redis

87

As the figure depicts, chunking creates a significant decrieadee amount of
time required for the agent to make decisions. This improvement iwibelcan only
result because both mechanisms (chunking and episodic memory) arg.presgher
words, this synergy demonstrates episodic memory’s ability to l@udher learning

mechanism.

8.3.2 Chunking with Confidence

One issue that arose when using chunking with episodic memoryt ishilnaking is a
“one-shot” learning mechanism. In other words, once a chunk has bewdl&arannot
be unlearned even if knowledge it contains is erroneous. Based on these observations, we
concluded that an agent might benefit from a chunking mechanism thatrhaasure of
confidence in the results of an episodic retrieval and useddhftience to decide when
to learn.

An obvious way to measure this confidence is to use the match shatehe
matching algorithm uses to rank candidate episodes for retriByatormalizing the raw
score with the size of the memory cue, we acquire a hypahetgasure of the agent’s
confidence. To explore this hypothesis, we gathered data about ta&toom between
the correctness of a retrieved episodic memory (where “coresttie® measured by
whether the agent makes a correct decision based upon the meméydid this from
two environments using both of this action modeling agents (see sedt)dry&howing
the correlation of these normalized match scores to the cosecthéhe memory (where
“correctness” is measured by whether the agent makesextdacision based upon the
memory).

Figure 8-6 and Figure 8-7 depict a bar graph of the number of cestari each
match score (normalized) for the Eaters agent and the Tan&§ewair respectively. The
x-axis has a bracket for each possible match score (binned to mehmoheers). The range
of the x-axis is larger for the TankSoar graph than for Eatéhe y-axis measures the

number of instances in which the episodic memory system retrégvegisode with each

88

match score. Finally, the bars are labeled (and color codedpittate whether the

retrieved memory resulted in a correct action by the agent.

Match Score to Correctness Correlation: Eaters

60

50

40

@ Eater Incorrect

30

Eater Correct

Number of Cases

20

10

0 10 20

Match Score (normalized with cue size)

Figure 8-6: Correlation of Match Score to Correct Decisions (Eaters)

140

120

100

80

60

Number of Cases

40

20

Match Score to Correctness Correlation: TankSoar

B RadarTank Incorrect
B RadarTank Correct

0 10 20 30 40 50

Match Score (normalized with cue size)

Figure 8-7:

Correlation of Match Score to Correct Decisions (TankSoar)

89

Two things are readily apparent upon viewing this graph. Firdingdhe match
scores from the two domains based upon cue size did not normalize Thenadjusted
match scores from the Eaters agent were significantly em#ian those from the
TankSoar agent. Second, there is a correlation between matchasdooerrectness.
This is particularly true for the TankSoar agent.

Based upon these observations we concluded that it is possible to usatthe
score as a measure of confidence. However, we did not have aeld@d for making
this measure task independent.

Despite the lack of task independence, we proceeded with an egpersing
the episodic memory system’s match score as a measure afesadifor the TankSoar
agent. Specifically, we modified the episodic memory systenmadoitt could turn the
chunking mechanism on or off depending upon its confidence in the most recent retrieval.
We set the threshold using a hardcoded (task-dependent) value famtiheatch score.
The thresholds were set based upon the data from the figures aboxen ti& high
correlation between confidence and correctness, we hypothesized thevagél only
learn new chunks when the episodic retrieval was likely yieldecbisehavior. As a
result, we anticipated improved behavior from the agent vs. an ag#mtchinking
turned on all the time.

Figure 8-8 depicts the average performance of the ageliffeaence confidence
thresholds. The y-axis measures the fraction of correct évalsanade by the agent out
of a fixed number of such evaluations. The agent with confidencehtide® is
chunking all the time. The control agent was an action modeling igerankSoar that
did not use chunking at all. Instead, it used task-specific infavm#d manually verify

that a retrieved episode exactly matched the cue and was usable by the agent

90

Match Score with Chunking Confidence

AN

o o
o

o
~

o
[N

Fraction of Correct
Settings (Average)

o

0 200 280 control
Confidence Threshold

Figure 8-8: Impact of using a Hard-Coded Confidencd& hreshold for Chunking

As the results show, we did perceive improvement in performance oednfma
the original chunking agent but the performance was still flambthat of an agent that
self-verified. In other words, despite the task-specific threshbll,agent was still
producing some incorrect learning.

Upon examining the data, we discovered that the correctnestatiorrexctually
shifted as a result of turning on the learning mechanism. &jadlgif the changed
created by chunking altered the activation levels. This, in tueredlthe match scores
of retrieved memories that, in turn, altered the strict tattom between match score and
the correctness of agent behavior. In short, we discovered a ciolepmdency between

these four factors (depicted in Figure 8-9).

91

Memory

Activation
Levels
Production Match
Firings Scores
Chunking
Confidence
Levels

Figure 8-9: Circular Dependency

Based on these experiments we concluded that match score wasred@tor of
the usefulness of a retrieved episode. As a result, a leadgmgtlan that is using the
results of episodic memory retrievals can gain a boost from dhadoess to the match
scores. However, harnessing these values may be difficult. Not only did edesce
that the range of match scores is task dependent but we also observed thatahshipla
between match scores and chunking with confidence is dynamic and interdependent.

8.4 Virtual Sensors

When an agent originally senses something, it may be irrelevastdurrent task. Then,
at some future point, that past sensing may become important. el &gh episodic

memory can retrieve details of its past sensing. This catyabiluseful in environments
with large bodies of data that are irrelevant to the curreki bag may be relevant to
future tasks. For example, a traffic controller agent maysiedaby authorities if a
green car being driven by tall, balding man passed by withidatehour. While the
agent normally has no need to record information about the driverssofitcaray help

stop a criminal by remembering this critical information.

To demonstrate this cognitive capability in the TankSoar domairghese the

task of locating the battery used to recharge the agent'gyesepply. When the tank’s

92

energy supply runs low, the agent uses its episodic memory to comstnap or path to
the battery in its working memory. The high level algorithm is as follows:

1. If the agent can only move forward or backward, it continues to nmmveafd
until this changes. Then it proceeds to step 2.

2. If the agent already has knowledge of a path from this positithetbattery, then
it follows that path and returns to step 1. For this agent a “jm#nlocation (X,y
coordinate) combined with a direction (north, south, east or west). For our
implementation, these were stored in the agent’'s working membng agent
follows this step until it occupies a square that does not confa@tha Then it
proceeds to step 3.

3. The agent attempts to retrieve an episodic memory of seeingttieeylfrom this
position. The cue for this retrieval consists of the agent’®gttocation and the
perceptual elements that represent seeing the battery on dadke retrieval is
unsuccessful, the agent proceeds to step 4. If the retriesxadasssful, the agent
records a path in working memory originating in this position and mgogirectly
toward the battery. It then resets to step 1.

4. For each path the agent knows of, it attempts to retrieve an epmediory of
seeing a location from this position from which it has alreadgrdeed a path to
the battery. If any retrieval is successful, then createsva path in working
memory that directs the agent from this position toward the origiheoéxisting
path and resets to step 1.

5. If step 4 fails, the agent moves in a random direction (search) and resets to step 1

For this experiment, we used the baseline implementation with workemory

activation being used to weight the features of episodes during memlection. The

agent also began with a set of episodic memories that had bderegl in previous,

exploratory movements in the maze. Over time, an agent usindgbighan constructs

a set of paths that can direct it from any position in the raziee battery (see Figure
8-10 for an example).

93

Figure 8-10: A Graphical Depiction of a Set of Path Learned by the TankSoar Agent

Figure 8-11 depicts the results from this experiment. The s/-éahich has a
logarithmic scale) measures the number of moves requireddo tiea battery. (Thus, a
lower score is better.) The x-axis represents subsequentheganer time. For the first
search, the agent has only a few episodic memories. As thegages more paths and
more episodic memories the time required to find the batteryngih@s. Specifically,

this data show that it is an order of magnitude faster than a random search.

94

Energy Search Time

250
" 0000000000000
$ 200
(@)
E \
© 150 —
9 —e— Episodic Memory
g 100 —e— Awverage Random
z
o = \\
(o))
©
o 50
>
< M‘V

0 T T T T T T T T T T T T T T T

1 3 &5 7 9 11 13 15 17 19

Subsequent Searches

Figure 8-11: Virtual Sensors Results

8.5 Recording Previous Successes and Failures

Action modeling allows an agent to predict the immediate outaufna@ action.
However, in many tasks, the long term outcome of an action is entical to success.
In such situations, the cognitive capability of remembering thg tenm success or
failure that followed a particular action in a particular situation can lebdtter behavior
on the part of the agent.

The TankSoar environment is well suited for demonstrating thigitoos
capability (see section 6.2.2 for an overview of TankSoar). The envimnméairly
complex with multiple different sensors and many unique combinatibastions that
can be taken simultaneously. Within this environment, the agent mumhcéal
conflicting goals of survival, resource management and scoringohitsther agents.
Most importantly, the outcome of a particular action is usuallymotediate and often
dependent upon future actions. For example, missiles fired by Tarkgoas take time
to travel and their effect may be unknown for several time stéfisst poignantly, the

decision to attack with low health and few missiles will alntestainly lead to disaster

95

in the long term. As a result, success in the TankSoar domain etuéreability to
predict the long term outcomes associated with an action.

To demonstrate this cognitive capability, we started with an egistand-coded
agent for the TankSoar domain. This agent has four major subgoals:

» Attack — This subgoal is selected when the agent sees a nearby andrhgs
sufficient resources (i.e., missiles, health and energy) and kigevig.e., the
enemy is visible) to attack. For this agent, “sufficientaidard-coded set of
criteria.

 Chase— This subgoal is selected when the agent detects (but careejot s
nearby enemy and has sufficient resources to attack.

* Retreat — This subgoal is selected when the agent detects a nearny and
does not have sufficient resources to attack

 Wander — This subgoal is selected when the agent does not detectly near
enemy.

We modified this default agent in two ways. First, to reduce cexitp)] focus
the agent on effective tactics, and shorten simulations we previdrgedgent from
turning on its shields.

Second, we introduced a 10% chance for aberrant behavior rather thann norma
behavior in all subgoals except Wander. This second modificationdesigned to
reduce the incidents of mutually repetitive behavior between tw@eting agents. For
example, two agents might be diagonally adjacent to each othesimndtaneously
decide to move sideways so as to be directly adjacent to its oppddemever, since
both agents are moving sideways they end up diagonally adjacent to each other again.

This modified agent was this control agent for all experiments with thisrdble i
TankSoar environment. The control agent has a total of 53 Soar produchiomad.
experiments, the episodic memory agent was pitted against this inge one-on-one
match.

To demonstrate the target cognitive capability we created andapisiemory
agent by further modifying the control agent. We removed the caudssit’s logic for
selecting actions in the Attack subgoal. We replaced this Mglt results from a

96

subgoal for evaluating actions based upon episodic memory retrievis.algorithm

has the following steps (refer to Figure 8-12):

(A)
Move Forward Rl
Move Forward + Fire Missi.lé : E Evaluation Result;

Move Forward + Fire = 2 points

Turn Right Ay
L, Compare

Memories

In the Sequence

Agent’s
State

Retrieve the Retrieve the

Next Memory Next Memory
in Sequence T in Sequence

i Retrieval

(B) (©) (D)

Figure 8-12: An Episodic Memory TankSoar Agent

1. The agent first determines what actions it is able to takedbgsen its current
state. Certain actions may be prevented by the presenceaifdtaeles or a lack
of resources. In the figure, the box labeled (A) represents ém'sgurrent state
and the arrows emerging from the figure represent a list of possible actions

2. The agent does not have sufficient procedural knowledge to selett adtion is
best. Therefore, it uses episodic memory to evaluate each poasiin as

follows:

a. First, the agent creates an episodic memory cue that contains

heuristically-selected portions of the agent’s current statetipduaction to be
evaluated. In other words, the agent is trying to retrievpemode wherein it

took the same action in a similar situation. To emphasize the tmmger of

97

this specific action, the agent creates a negative cuebthaes against
memories where a different action is being taken. In thedjgur example of
the memory cue is represented by the box labeled (B).

b. The agent allows the episodic memory system to retrieve the episodic memory
that best matches the given cue. In the figure, an exaetpleval is labeled
(C). As you can see, this retrieved episode is not an exatchno the cue
but merely the closest match that the episodic memory sysiandentify.
Therefore, decisions based upon this retrieval may or may not be best.

c. The agent records the score that it had in that current episoda, tfifeigh
repeated uses of the “next” command, the agent retrieves the seqfenc
subsequent memories (in temporal order) that occurred until one of the
following events occurred in the most recently retrieved episode:

i. one of the two agents is destroyed (indicated by a significangeha
score)
ii. the end of the game
iii. asequence of ten memories had been retrieved

d. The agent uses the overall change in score between thanfir$ast retrieved
episode as a quantitative evaluation of the action being considered.
Inconclusive outcomes result in a default (slightly positive) evialoan
order to encourage exploration.

3. Once all the possible actions have been evaluated, the agent Heteatgion

with the highest evaluation. Ties are resolved randomly. (Tikemtso a 10%

chance that the agent will take a random action in order to puteijua footing

with the control agent.)

Figure 8-13 shows the episodic memory agent’'s performance atfg@nsbntrol
agent. The x-axis represents successive games. The agemddis episodic memories
from game to game and so had a larger episodic store at eaelssve game. The y-
axis measures the agent’s margin of victory (i.e., the controitagsecore subtracted
from the episodic memory agent’s score). Thus, a negative n@rgictory indicates a

loss. The results depicted here are the average of terticayzetif the same experiment.

98

Each episode contained approximately 120 WMEs. The error bars iguhefepresent

the range of 95% confidence.

Initial Results

0 T T IT T IT TTIT IT TTTITIT TITITI T ITT ITIT TTTIT IO T I T IO T T T T T T T T T T T I T I IO I T T T I I I T I I I I T T T T Ir Ty

L 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177
10 g - . |
15 T __'FrhII— ‘I:H;— ﬁ{

| IIII H

"\ ||||\|||[‘\ll !y‘.

..\’A ll

- I] L LJ_I-H__J_ 1 4=
T4 ST

Average Margin of Victory

Successive Games

Figure 8-13: Initial Results from Learning from Pag Success and Failure

As the graph shows, overall performance versus the control agemoaas Closer
examination of the agent's behavior indicated that the agent wes ofcorrectly
associating particular actions with particular outcomes. Imogpéct, this is not
surprising given the delayed rewards inherent in the TankSoar domaityMithesized
that this failure was because all actions leading up to aplartioutcome were given
equal credit for that outcome. To correct for this, we modifiecgieat to use a discount

factor such that more recent actions would receive more credit for a garbattome.
We performed the same experiment again with this new agéetresults are shown

Figure 8-14. This new agent’s performance is much improved witdvarage margin of
victory defeating the control agent.

99

Episodic Memory: Base Agent

40

30

20

10 -

1 51 61 71 81 91 101 111 121 131 141 151 161

Average Margin of Victory

20 |

-30

Successive Games

Figure 8-14: Subsequent Results with Learning fronPast Success and Failure

Upon further analysis of the agent’'s behavior, we identified de@®ed tactics
that had a significant impact on its performance. First, the dganted to dodge hits
from short-range enemy missile attacks before they occudestbnd, the agent learned
to back away from an enemy while firing its missiles. Thisykr the impact of enemy
missiles and opened up future opportunities to subsequently dodgely, Rimalagent
learned to move out of the enemy’s sight (thus leaving the Attack subgoal)twieesnin

a tactically unfavorable situation.

8.5.1 Removing Heuristic Cue Selection

One aspect of this episodic memory TankSoar agent is its usesofakh set or
heuristically-selected features of its state to constrattea This approach was used in
an attempt to simplify the learning problem faced by the episodimary agent. The
agent’s state in the TankSoar environment was approximately 2.5 langes than in

Eaters.

100

Once we had a successful agent in hand, we temporarily renmfodeearistic
cue content selection and replaced with the use of the agents stiatie. (The to-be-
evaluated action continued to be added as normal and the negative cue was lef))in place.
We repeated the experiment with the same control agent. esak is shown in
Figure 8-15. As the graph indicates, the agent performed morde without the benefit
of this heuristic cue content. However, there is some indicatiothiagent’'s behavior
does improve gradually over time. Figure 7-11 (in section 7.4.1.6) showsth®ow
performance can be improved by adjusting the cardinality visation ratio to strongly
favor working memory activation for feature weighting during thetain. However, the
overall result is the same: performance is significanthyse without the heuristically

selected cue.

Performance without Heuristic Cue Selection
0 T I T I T I T I oI
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161
-10
>
o
5 -20
S L
g -30 T
£ ’
S a0 T . | I I
=@ '!'ml'ﬁf"ll | | T Hi l“u[’ lﬂn‘l Mw, il
g -50 - I II!!‘nl lliiu V‘““M"IhI'i." 'll!,lﬂ '!!Hlli'l'}ii;‘ !I![tly; 'a"i-i;"lll"ll;li l'||"\ ¥ ﬂ—ﬂl‘mtiil];‘ ‘II ::
s R e
< ,.,'wn""l 'ﬂ il Il in
-60 Tu - T
-70
Successive Games

Figure 8-15: Impact of Removing the Heuristic Cue

It remains to be seen whether this agent would eventually learngerfautn the
control agent. Extending the experiment to a much longer duratiofe&sible with the

current architecture due to limited memory resources of thigfoment. However, it is

101

possible that a forgetting mechanism could be used in the futuowet@ome this

limitation (see section 9.2.4.2).

8.5.2 Learning-Based Control Agent

In order to ground the episodic memory agent’s performance we mpedoa second
performance comparison with a control agent whose rules wereedebly using a
learning algorithm rather than the hand-coded decisions made bgritjisal control
agent. The work of Chia and Williams (2003) describes a TankSoarthgenses naive
Bayesian Learning to learn rules for selecting betweerAtteck, Chase, Retreat and
Wander subgoals. As part of their presentation, they describele¢hered rules in
sufficient detail that were we able to modify this control adenise the same learned
behavior. We then performed the same experiment with this new cageot. This
episodic memory agent performed even more effectively than agduiss original

control. The results are shown in Figure 8-16.

Performance vs. Bayesian Learning Control Agent

70

Average Margin of Victory

10

0 AR RN IR RN RN IR RN RN IR AR RN IR IR NN RN R NN R IR IR RN AR RN RN RN RN RN AR AR IR AR RN R IR RR IR RN A NI AR RN RI]

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161

Successive Games

Figure 8-16: Comparison with a Learning-Based Contol Agent (Naive Bayesian)

102

8.5.3 A Reinforcement Learning TankSoar Agent

The TankSoar task is essentially a temporal difference teataisk (Sutton & Barto
1998) and thus well suited to reinforcement learning. Since d@& &rchitecture
contains a reinforcement learning module, a reinforcement lgaagient can be created.
Figure 8-17 shows the performance of such an agent versuantleecentrol agent. The
agent’s state is defined as the same heuristically seléetared that were used to
create the cue for the episodic memory agent.

As before, the x-axis represents successive games. The rag@ned the
knowledge that it learned from game to game. The y-axis measurestiie agagin of
victory (i.e., the control agent’s score subtracted from the reinfauoklearning agent’s
score). Thus, a negative margin of victory indicates a loss.réBuéts depicted here are
the average of thirty repetitions of the same experiment. efitee bars in the figure

represent the range of 95% confidence.

Performance of a Reinforcement Learning Agent

45

40
35 \ I | P s |||||| il

wo Ll JULE bl

SR L 1 e o
20 ~

15
10

Average Margin of Victory

0 T T T IT TTTITIT TTTITIT TTTIT IO T T T T T I T I T T T T T I T T I T T IO IO T T T T T T T T I T I I T T T T T T T T T T I T T T I

1 11 21 31 41 51 61 71 81 91 101 111121 131 141 151 161 171

Successive Games

Figure 8-17: Performance of a Reinforcement Learnig Agent in the TankSoar Task

" The set is not identical as one of the features avaitted since it was not always present.

103

By comparing this graph to Figure 8-14, it's evident that the reinforcement
learning agent outperforms the episodic memory agent by a significanhm@&hgien
reinforcement learning's general suitability for this task and the conemitits
knowledge makes to the task, this provides a benchmark for work with this domain.

The episodic memory agent’'s more modest performance is mostly due to the one-
shot approach to its learning. Success in the task requires a series oforoasains
where any error in that sequence hurts overall performance and one improbabtaevent
immediately skew the agent’s performance toward bad behavior in the short to medium
term.

Integrating episodic learning and reinforcement learning in order to capitadi

their complementary strengths is a good direction for future researcbe(dem 9.2.1.2).

104

Chapter 9

Discussion

The preceding chapters of this dissertation present a broad eixplahthe challenges
and benefits of providing an episodic memory to an intelligent agene. b&gan by
describing and defining in detail what episodic memory is and tasgra design space
of episodic memories. We then provided a detailed discussion of thetiwagni
capabilities we expect to be granted to the agent by virtue skegsiag an episodic
memory. The bulk of this work involved constructing and refining a-itadépendent
and architectural implementation of an episodic memory and usirg demonstrate
some of the expected cognitive capabilities.

This chapter reviews the major contributions of this work and alssepts the

major avenues we perceive for future research.

9.1 Contributions of this Research

The major contributions of this research include the following:
» Episodic Memory Framework — This research provides a comprehensive
definition of the design space of episodic memory systems. Bwirtgfthis

space, we provide a taxonomy for comparing disparate episodic megsteyns

105

to each other. In addition, the framework guides future researchdgesting
“spaces” in this design space that merit investigation.

Cognitive Capabilities— This research defines a list of cognitive capabilities that
episodic memory could possibly support in a general agent. By investigating
subset of these capabilities and demonstrating the possibistyppiorting them,

we strengthen the thesis that a single memory systenmncked, provide them.
The existence of this list also provides a clear objective for future research.
Algorithms for Effective Selection — Any effective episodic memory system
must have an effective matching algorithm. Section 7.4.1 preseoteanew of
existing research in partial matching and this research’s @ositithat field and

this relative position in that research (particularly within tdoatext of nearest
neighbor matching). Two of the algorithms we use include theoapprof using
working memory activation as a feature weighting mechanism fanane
selection. As far as we are able to discern, this approach is unique.

Effective Query Interface — This research has presented the concept that the
effectiveness of a task-independent episodic memory is dependent upon the
quality of the interface with the intelligent agent. We penf@xperiments that
demonstrate the value of allowing the agent access to a flexibieg interface

and giving the agent meta-information about the results of an epis@aiory
query.

No research that we are aware of presents a focus on thet ioipghe
agent-architecture interface on their mutual performance. hose2.2.5.4 we
present ways in which the existing interface can be expanded.

Episodic Memory Performance— Due to the comprehensive nature of episodic
memory there is significant potential for overextending the ageanse of
computing resources (i.e., storage space and processing time)re3dasch has
gathered data about the impact of an episodic memory systenorages and
processing time and how the resource requirements change dependiegsize t

of the episodic store and the matching algorithm being used (see section 7.4.2).

106

9.2 Future Work

Given the unusual breadth of this research, there are many ahieethiat it could be
taken. This section describes four major avenues of researchl as weme interesting

options within each area.

9.2.1 Integration with other Learning Systems

As we have shown episodic memory can create synergy wheorkswn cooperation
with other learning mechanisms, particularly semantic memowy @einforcement

learning. This relationship is illustrated with the chart in Figure 9-1.

Number of | Number of Available Size of Output
Tasks Types of Inputs
Episodic Learning many many large
Semantic Learning many few small
Reinforcement Learning few many small

Figure 9-1 Comparison of Episodic Memory and othet.earning Systems

Episodic and semantic memory systems are strongest whenfah@ation they
gather is needed in many contexts. In contrast, a reinforcdeaening agent has more
difficulty transferring knowledge from task to task. Conversely, tme-shot learning”
approach of episodic and semantic memory systems hinder them immidyna
environments.

Episodic memory cues (and states used by reinforcement lgaigorithms) can
contain many features. Semantic information is generallyestgd (and doled out) at a
much smaller bandwidth.

One direction for this research is to investigate the potentredrgy of these

systems in more detail.

9.2.1.1 Semantic Memory

As described in the introduction, semantic memory is knowledge tf feltich have

been extracted from experience. In humans, this roughly corresponbdattavev‘know”

107

as compared to what we “remember.” An example of this from résearch is the
TankSoar agent that used its episodic memory to build a map of directions to the battery
A deeper investigation of the relationship between semantic aratiEpmemory
seems particularly appropriate. An initial semantic mensystem has already been
developed for Soar (Wang and Laird 2006) and would likely facilitaserésearch. Key
guestions that should be answered include:
 What criteria determine when a portion of an episodic memory became
semantic memory?
* How is semantic information abstracted from episodic memories?
* How does semantic memory increase the efficacy of episoditwonyecueing and
retrieval?
 How does semantic memory increase the efficiency of episoditonyecueing

and retrieval?

9.2.1.2 Reinforcement Learning

In section 8.2, we presented an agent that used episodic memory to dat@ahstr
cognitive capability we call retroactive learning. While weed a simple semantic
storage mechanism to learn, reinforcement learning relies ugoring from a series of
experiences. As a result, a reinforcement learning algorigimuse episodic memory to
train (or retrain) itself to perform correctly in the futurengsepisodic memories of past
events. Given that Soar already contains a reinforcementrigamechanism, there is
ample opportunity for this line of research.

Key questions to be addressed include:

* Given experiences performing another task, how much knowledge can be

transferred to a new task in the same environment?
» Can episodic memory be used to speed up the reinforcement leamihders

adjustment to changes in its environment that affect its current task?

108

9.2.2 Demonstrating More Cognitive Capabilities

This research presents demonstrations of five cognitive capabilitrtual sensing,

action modeling, recording previous success/failures, retroactweirtg and boosting

other learning mechanisms. However, of this original list te&/es six cognitive

capabilities unexplored:

Noticing Significant Input — detecting what is important about a given situation
by its relative familiarity

Detecting Repetition— realizing when you're repeating the same series of actions
and altering your behavior as a result

Environment Modeling — using past experience to predict how the environment
will change

Sense of Identity -understanding ones behavior in relation to other agents
Managing Long Term Goals —keeping track of a plan and what steps in that
plan have been accomplished so far

Reanalysis Given New Knowledge relearning from experience upon receiving
new knowledge

Explaining Behavior — explaining your past actions to others for mutual benefit

Investigating each of these would not only complete this origimak iout would

almost certainly provide additional insights into creating amcéiffe episodic memory

system.

9.2.3 More Complex Environments and Tasks

Most of the environments and tasks presented in this researceaaesarily simple

with a graduation to the more significant task of combat in thkS@ar environment.

As environments and tasks get more and more complex, they arediffargt to

approach. Using more complex environments would test the limépisbdic memory

and provide insights on the limits of learning as well as tradeofimplementation.

Particular dimensions that could be expanded include:

Feature Rich Environment— The more feature rich that an environment is, the

larger episodic memories have the potential to be. Larger memarig¢urn,

109

require more resources from the architecture. A feature niglomment also
makes it more difficult for the episodic memory system tocseldich features
are important to the agent’s current task.

* Multi-Step Task — If succeeding at a task requires that the agent take multiple
steps in a particular order, the episodic memory system wiliebaired to
accurately track long sequences of behavior and, perhaps, distingargh m
important parts of those sequence from others.

» Partially Observable Environment — An environment which contains many
disparate states that appear identical to agent sensing guilreethe agent’s
episodic memory to provide past context to agent’s current actions.

 Changing Task — If the agent’s task changes regularly, long term learning
algorithms suffer. However, a retroactive learning approachuted episodic
memory (and particularly the temporal information stored in episoéigiories)
may be more successful. In particular, we envision an agdmntethaws events
leading to a failure and mentally replays them selectingrdifit actions and
using episodic memory to guess the results of these alterrsttivams. As a
result, the agent can be better prepared for future similar situations.

9.2.4 Improving Performance

As was discussed in section 2.3, the resource usage (storage assipgtime) of an
episodic memory system is a critical consideration. Asalttean available avenue for
research is to investigate ways to reduce the resource wghget a large sacrifice in
the efficacy of the system. This section discusses some iwayhich that could be

accomplished.

9.2.4.1 Engineering

To date, most of our efforts to improve the performance of this epistehtory system
have focused on improving performance without changing behavior. Spégifiwal
have made changes to the algorithms and data structures used &mdtoranipulate the

episodic memories. The potential exists to make still more improvements mahner.

110

9.2.4.2 Forgetting

A forgetting mechanism is the most straightforward approachetting a memory store
with a constrained size. Previous work on long term learning @bnand De Jong
2003) indicates that in addition to reduced storage an agent’'s pert@roan actually
improve if low-utility information is removed from its long termemory. Any
implementation of this approach requires a task-independent method ohdeglich
memories are important and which are not. Some possible approachek itiee

following:

 Remove the oldest memories first- This approach guarantees that as many

memories as possible are in the episodic store with the least amount of processing

However, it carries the distinct risk that important episodes will be lost.

*» Remove the least activated memory- A long term activation level on each
memory could be used to measure the frequency and recency with ahi
memory has been retrieved. The least activated memory seashdikely to be
needed in the future. This approach bears the most similarity taushd by
Kennedy and De Jong.

* Remove the most redundant memory This method would involve locating the
two memories that are most similar and removing one of them (@yolize
oldest or least activated). Ram & Santamaria (1997) useppaoaah similar to
this in their continuous case-based reasoning work though they did notaeport

its effectiveness vs. a non-forgetting agent.

« Memory Decay— In this approach, the system maintains an activation level on

individual features of episodic memories. Features with low dictiveare

removed to make room for new memories.

9.2.4.3 Adjusting the Frequency of Recording

Rather than forget existing episodic memories, performance eammproved by

recording less memories to begin with. Some possible approaches includesthimdpll

* Fixed Frequency — The simplest approach is to simply reduce the overall

frequency with which memories are recorded to a fixed values i§ha simple

111

method, though it stands the strongest chance of missing importard evéme
agent’s history.

Significant Change in State— By monitoring the content of the agent’s state, the
system can attempt to measure the boundaries between signéicarts by
looking for major changes. This is the method used by this pijgementation
which recorded a new episode whenever the top N most activatateteaf the
state changed. There are alterative ways to measure whagedhgs state is
“significantly different,” including a threshold match between terent state
and the last recorded episodic memory and a count of the number oéshang
the agent’s state since the last recording.

High Overall Activation — The overall activation level of the features of the
agent’s state can also be used as a relative measure of tites ageusal or
activity level. The more highly activated working memorynedats that there
are, the more active the agent is. Hypothetically, the most tengagvents will
occur during periods of high activity. By recording more frequeshtiyng high
activity and less frequently during low activity, the memotgres might be
reduced without missing important episodes.

Familiarity Based — In this method, the agent measures the familiarity of a
situation by comparing it to the closest matching memory irpisodic store. If
the closest match is “strong”, no memory is recorded since ther@mory will

be similar to one already in the episodic store. The computatomeshead

required for this approach may be prohibitive.

9.2.4.4 Anytime Algorithm

By implementing key subroutines as anytime algorithms, the amoutimef spent

performing these operations could be limited to a fixed maximuratct\hg routines, in

particular, are well suited to an anytime implementation. Howegethe episodic store

continued to grow, this approach would become less and less effective.

112

9.2.4.5 Two Stage Match

This current system always retrieves the best partitdhmaAs an alternative, it may be
that merely retrieving an excellent (but not necessarily) bmatch is sufficient. A

familiar approach to improving performance at the sacriicperfection is to use a two
stage match (Forbus, et al. 1994, Cercone, et al. 1997). In thedgst atsmall subset
of the database is retrieved using a very efficient, but appat&iaigorithm. This subset
is likely (but not guaranteed) to contain the best possible rebulthe second stage, a

less efficient but accurate algorithm is used to select the best membeisabdet.

9.2.5 Advanced Features

The final avenue for future research is to improve the functionafitthis episodic
memory system. Throughout this research we encountered signfGesuntes that were
filed away for future work. Often this was because they weyeexpensive (in terms of
implementation time or resource usage) or unnecessary for thewemere doing.
With a firm episodic memory system established it may be tonrevisit these shelved

issues.

9.2.5.1 Agent State as a Secondary Cue

For agents who create very small cues, the idea of using tisagetire state as a
second, lower-priority cue is compelling because it could be usbdgsothe retrieval
toward matching memories that occurred in similar circumsgatwéhe agent’'s current
state. A secondary cue allows for the possibility of spontanecogmigion of a state
which may be essential for demonstrating the cognitive capabilifgtecting repetition.
Since a secondary cue is not task-specific in nature, it couldrezaged and handled
automatically by the episodic memory system.

The cost of the feature in system resources could be high. maedquired to
select a best matching episodic memory is usually dependent upeizehef the cue.
Therefore, adding a large, secondary cue would challenge the gngcéisne limits

required by the system.

113

9.2.5.2 Recursive Retrieval

An agent that uses its episodic memory to make decisions maiit iieme being able to
retrieve episodic memories of retrieving episodic memories. THitydlas the potential
to allow the agent to keep track of how helpful a particular mgrnas been to a given
task. For example, an agent navigating a complicated seriesllafays may use its
episodic memory to determine that its best action is to turn rigbtvever, if that same
agent can also remember choosing to turn right at that interseatitiplentimes in the
past without reaching its goal, that provides a hint that the robot may be goinges.ci
Any implementation of recursive retrieval must avoid the dargjeinfinite

recursion. It must also be able to distinguish a “root” memimy fa “meta-memory.”
We foresee three major approaches to recursive retrieval:

1. A retrieved episodic memory contains the episodic memories whiale we
retrieved at the time of recording. These episodic memorigsimaurn, contain
further episodic memories, and so on, up to a prescribed limit.

2. Given a particular retrieved episode, the agent can performoadsepecialized
recursive retrieval using the original episode as a cue. Jdmw aan continue to
perform this specialized retrieval indefinitely.

3. A retrieved episode contains particular highlights from the erdirain of

remembered episodes thus condensing the entire chain into a single memory.

9.2.5.3 Variable Episode Extent

Most of the agents we used in this research relied upon the abildyrieve a sequence
of episodes in order to determine the short or long term consequ#rnbesg actions. In
effect, these agents were retrieving meta-episodes congigtmgltiple instances in its
history. For example, you might remember the instant of makingtiayar play in a
ping-pong match. By placing that episodic memory into the conteatméta-memory
which describes “that time | won the ping-pong tournament” providemngext that can
improve the agent’s sense of the importance or relevance of an episodic memory.
More specifically, there are several potential benefits tosyflstem supporting the

concept of meta-episodes directly:

114

A longer term meta-episode provides a context for an individual episodic
memory. This allows the agent to better cope with situations ewhies
immediate result of an action is poor but the long term reswdtgead (or vice
versa).

If the agent’s state is being used as a secondary cue (see 9.2.5)ltlaovkat

cue could be expanded to include a meta-episode. This would furdser bi
retrieval toward more relevant memories.

If multiple episodes can be combined into a single meta-episode, mesage
might improve as redundancies among constituent episodes could be condensed.
Similarly, a meta-episode provides a high level index into theodm store
which could, in turn, reduce the processing time required to seleettch for a

given cue.

The cost of these benefits is the additional complexity thely agidl to the episodic

memory system. There is also no guarantee that the resseetssin creating and

retaining information about meta-episodes will outweigh the pedace benefits of

having them.

9.2.5.4 Improved Agent and Episodic Memory Interface

In section 7.4.3, we introduced some research on the benefits of imprtheng

communication between the agent and the episodic memory system. eadtdéhlof this

communication could be improved still further. Below are two areagsrfprovement,

each of which has already received attention in the lazy tepiWettschereck 1997)

and/or the case-based reasoning (Kolodner 1993) communities.

Soft Quantities — It is advantageous for the agent to have access to moreerelat
entries for the numeric values in a cue. Specifically, thatagay gain from the
ability to specify that the numeric value for a given attributestnibe greater-than
or less-than a given value. The agent may also gain from hiteatare that
measures the relative difference between the requestedaraiube actual value
in a cue. For example, an agent that creates a memory cue tvb@adar setting
is 13 is likely to get much more value from a partially atg memory with a

115

radar setting of 12 rather than a setting of 2. The current inepi@ation makes
no distinction between these two mismatches.

* Agent Feedback— If the agent has a method for providing feedback to the
episodic memory system about the utility of a retrieved memory, then the episodi
memory system has the opportunity to improve future retrievalss f€adback
could take many forms including the following:

o identification of specifically unfavorable mismatches betweeneaand a
retrieved memory

0 ageneral reward based upon the helpfulness of the memory

o sharing with the episodic memory system the agent’s perception of

success or failure in its current task.

9.3 Conclusion

Past exploration into the challenges and benefits of implementing an eprssrdiary for
an intelligent agent has focused on individual benefits or chaléeafjthat memory. In
addition, previous research has often been implemented in a taskcspenifier. This
dissertation presents this work to achieve a task-independent, drohitegpisodic
memory for general intelligence. By constructing that episo@imany system, we have
identified and cataloged the challenges faced by any résgawho attempts to
implement such an episodic memory.

Other results presented herein present significant evidencepisatlic memory
provides several cognitive capabilities that are essentialrtergleintelligence. While
any individual cognitive capability could be implemented sepligratach individual
implementation will contain functionality that is redundant with otingplementations
and consistent with the capabilities of an episodic memory sysBiven these benefits,
it seems eminently practical to continue to investigate the ablepisodic memory in

creating intelligent agents.

116

Appendix A

Properties of Human Memory

While modeling human episodic memory is not a goal of this reseilueie, are many
potential insights hidden in the observations of human episodic memory.apgesdix
provides a brief list of established properties of human long tesmary. Unless noted
otherwise, these properties are drawn from Anderson (2000) and Tulving & Craik.(2000)

* Includes Interference Effects— Interference is ability of a memory to prevent or
delay the retrieval of similar memories. This interfereme® occur either
proactively or retroactively. Also, if multiple memories shéne same cue the
time to retrieve a particular memory is extended (“the fan effect.”)

* Demonstrates Ecphory— The term “ecphory” was coined by Endel Tulving
(Tulving 1983) to describe the fact that memory is constructive. adheof
retrieving a memory in the current situation can alter thgimal memory to
include features of the current situation. In effect, episodedecdnover into
each other over time. Tulving conjectured that ecphory is theomethat
brainwashing techniques are effective on humans.

» Comprehensive Cue- Episodic memory storage and retrieval can be influenced
by several other factors:

o Emotional state can be part of an episode and the current ematiaieal

can influence the memory that is retrieved.

117

o Physiological state can also influence the effectiveness sddipistorage
and retrieval.

o A phenomenon known as encoding specificity describes the fact that
humans are more likely to recall episodes that took place in an
environment similar to current one.

Demonstrates Priming Effects— Priming is an increase in the probability that a
particular episode will be retrieved. Common examples of the phemmm
include:

o Frequency and recency of retrieval of an episode increasedbabity
that an episode will be retrieved again.

0 Repetition of multiple episodes similar to one particular episodeep
that single for future retrieval.

0 Retrieval of an episode increases the probability that sinpiaoées will
be retrieved.

o Retrieval of semantic facts that are contained in an episodeas® the
probability of the retrieval of that episode.

Forgetting — Even eidetic memory is not really perfect. Human forgetieays
these properties:

o The more that an agent processes the events of an episode asethey
happening (and being recorded) the longer it will be remembered.
Similarly, the features of an episode that were processeldebygent are
the last parts to be forgotten.

o Consciously intending to remember an episode does not improve the
likelihood of retrieval.

o Forgetting follows a power law. Most of the memory contetdssin the

short term.

118

Bibliography

Altmann, E. M. & John, B.E. (1999). Episodic indexing: A model of memany f
attention events. Cognitive Science, 23, pp. 117-156.

Anderson, J. R. & Lebiere C. (1998). The Atomic Components of Thought. Mahdah,

Lawrence Erlbaum Associates.

Anderson, J. R. (2000Lognitive psychology and its implications, Fifth Edition, W. H.
Freeman and Company, New York.

Atkeson, C., Moore, A. & Schaal, S. (1997). Locally weighted learnirgtificial
Intelligence Review, 11(1-5), pp. 11-73.

Baddeley, A., Conway, M. & Aggleton, J. (200Episodic Memory: New directions in
research. Oxford University Press, Oxford.

Brom, C., PeSkov4, K. & Lukavsky, J. (2007). Modelling human-like RPG aggthts
full episodic memory. Technical Report No. 2007/4 of the Departmemfok&e and

Computer Science Education, Charles University in Prague, Czech Republic (2007).

Burkhard, W.A. (1979). Partial-match hash coding: benefits of redundancy. ACM
Transactions on Database Systems 4 (2), pp. 228-239.

119

Cain, T., Pazzani, M.J. & Silverstein, G. (1991). Using domain knowledgé#ltence
similarity judgement. InProceedings of the Case-Based Reasoning Workshop
(pp.1919-202). Washington, DC: Morgan Kaufmann.

Cercone, N., An, A. & Chan, C. (1999). Rule-Induction and Case-Based Reasoning:
Hybrid Architectures Appear Advantageous, IEEE Transactions on Kdgelend
Data Engineering, 11 (1), pp.166-174.

Chia, C.W. & Williams, K.E. (2003). A Modified Naive Bayes Approach for
Autonomous Learning in an Intelligent CGF. Behavior Representation in Modeling

and Smulation Conference.

Chong, R. (2003). The addition of an activation and decay mechanism toodine S
architecture. Proceedings of the 5th International Conferenceognittve Modeling.

Bamberg, Germany.

Conway, M. A. (2001). Sensory-perceptual episodic memory and its tontex
autobiographical memory. In Episodic Memory, ed. A. Baddeley, M. Conwaly,)a
Aggleton. Oxford University Press.

Dasrathy, B.V., (1990)Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques, IEEE Computer Society Press.

Forbus, K., Gentner, D. & Law, K. (1994). MAC/FAC: A Model of Samity-based
Retrieval. In Cognitive Science, 19, pp.141-205.

Goodman, M. (1993). Projective visualization: Acting from experience. In Progseafin

the Eleventh National Conference on Artificial Intelligence @p59). San Jose, CA:
AAAI Press.

120

Grzymala-Busse, J.W. & Wang, C.P.B. (1996). Classification andindlection based

on rough sets, IEEE International Conference on Fuzzy Systems, 2, pp.744-747.

Ho, W.C., Dautenhahn, K. & Nehaniv, C.L. (2003). Comparing different control
architectures for autobiographic agents in static virtual environniateigent Virtual

Agents, Springer Lecture Notes in Artificial Intelligence, 2792, pp. 182-191.

Kennedy, W.G. & De Jong, K.A. (2003). Characteristics of Long-Teearhing in Soar
and its Application to the Utility Problem, In Proceedings of theentieth
International Conference on Machine Learning (pp 337-344). Washington, DCt AAA
Press.

Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC architecture for togrand
performance with application to human-computer interaction. Human-Computer

Interaction, 12, pp. 391-438.

Kolodner, J. (1993). Case-Based Reasoning, Morgan Kaufmann Publishersatean M
CA.

Marr, D. (1971). Simple Memory: A theory for the archicortexhilosophical
Transactions of the Royal Society of London B 262, pp. 23-81.

Meek, C., & Birmingham, W. P. (2004). A comprehensive trainable error model for sung
music queries. Journal of Al Research (JAIR), 22, pp. 57-91.

Moll, M. & Miikkulainen, R. (1997). Convergence-Zone Episodic Memory: Analgsis
Simulations. Neural Networks, 10, pp. 1017-1036.

Newell, A. (1990).Unified Theories of Cognition. Harvard University Press, Cambridge,

Mass.

121

Nolan, C. (Director) (2000). Memento [Film]. Newmarket Films.
http://us.imdb.com/title/tt0209144/

Nuxoll, A. & Laird, J. (2004). A Cognitive Model of Episodic Memorydgtated With a
General Cognitive Architecture. Proceedings of the Interndti@enference on

Cognitive Modeling.

Nuxoll, A., Laird, J., James, M. (2004). Comprehensive Working Memory Auivat

Soar. Proceedings of the International Conference on Cognitive Modeling.
Pardo, B., Birmingham, W. & Shifrin, J. (2004). Name that Tune: latStudy in
Finding a Melody from a Sung Query. Journal of the American So@etipformation

Science and Technology, vol. 55 (4), pp. 283-300.

Ram, A. & Santamaria, J.C. (1997). Continuous Case-Based ReasonitiifigialAr
Intelligence, 90(1-2), pp. 25-77.

Rhodes, B.J. (1997). The Wearable Remembrance Agent. A System doneAted

Memory. Personal Technologies.
Schank, R. (1999). Dynamic Memory Revisited. Cambridge University Press.

Sheppard, J. W., & Salzberg, S. L. (1997). A teaching strategy éonomny-based
control. Artificial Intelligence Review, 11(1-5), pp. 343-370.

Stone, P. (2007). Learning and Multiagent Reasoning for Autonomous Agents.

Proceedings of the #0nternational Joint Conference on Artificial Intelligence.

Sutton, R. S. & Barto, A. G. (1998Reinforcement Learning: An Introduction. MIT

Press.

122

Tian, Y., McEachin, R.C., Santos, C., States, D.J. & Patel, J.M. (200GASA
Subgraph Matching Tool for Biological Graphs, Bioinformatics, 23(2), pp. 232-239.

Tulving, E. (1972). Episodic and semantic memory. In E. Tulving and W. Donaldson
(Eds.),Organization of Memory (pp. 381-403). New York: Academic Press.

Tulving, E. (1983)Elements of Episodic Memory. Oxford: Clarendon Press.

Tulving, E. and Craik, F.I.M., editors (2000he Oxford Handbook of Memory. Oxford:

Oxford University Press.

Tulving, E. (2002). Episodic Memory: From mind to braiAnnual Review of
Psychology, 53, pp. 1-25.

Vere, S. and Bickmore, T. (1990). A Basic Agebomputational Intelligence. 6, pp. 41-
60.

Wang, Y., and Laird, J.E. (2006). Integrating Semantic Memory into a @Gagnit
Architecture. University of Michigan Center for Cognitive Arelgiiure Technical
Report #CCA-TR-2006-02, Ann Arbor, MI.

Wettschereck, D., Aha, D.W., & Mohri, T. (1997). A review and comparatraéiation

of feature weighting methods for lazy learning algorithms. figidl Intelligence
Review, 11, pp. 273-314.

123

