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Abstract

Compositionality in language refers to how much the meaning of some phrase can be

decomposed into the meaning of its constituents and the way these constituents are

combined. Based on the premise that substitution by synonyms is meaning-preserving,

compositionality can be approximated as the semantic similarity between a phrase and

a version of that phrase where words have been replaced by their synonyms. Different

ways of representing such phrases exist (e.g., vectors [1] or language models [2]), and

the choice of representation affects the measurement of semantic similarity.

We propose a new compositionality detection method that represents phrases as

ranked lists of term weights. Our method approximates the semantic similarity between

two ranked list representations using a range of well-known distance and correlation

metrics. In contrast to most state-of-the-art approaches in compositionality detection,

our method is completely unsupervised. Experiments with a publicly available dataset

of 1048 human-annotated phrases shows that, compared to strong supervised baselines,

our approach provides superior measurement of compositionality using any of the dis-

tance and correlation metrics considered.

Keywords: Compositionality Detection, Metrics of Distance and Correlation

1. Introduction

Compositionality in natural language describes the extent to which the meaning of

a phrase can be decomposed into the meaning of its constituents and the way these

constituents are combined. Automatic compositionality detection has long received

attention (see, for instance, [1], [3], [4]). One popular compositionality detection tech-

nique is to replace the constituents of a phrase by their synonyms (one at a time),

obtaining a new “perturbed” phrase, and to measure the semantic distance of the re-

sulting phrase to the original phrase: the smaller the semantic distance, the higher the

degree of compositionality in the original phrase. Table 1 illustrates this point.

Different variants of this substitution-based approach to compositionality detection

exist (overviewed in Section 2), which differ in their measurement of semantic sim-

ilarity between the original and the perturbed phrase. One approach is to represent
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Original Phrases Perturbed Phrases Semantic Distance Compositionality

red car scarlet car, red vehicle small high

red tape scarlet tape, red ribbon large low

Table 1: Examples of a very compositional (red car) and a non-compositional (red tape) phrase, and

their perturbations.

the original phrase and its perturbed phrases as vectors, whose elements are contextual

terms (i.e. frequently co-occurring terms) extracted from their respective distributional

semantics in some appropriate corpus. Then, vector distance can be measured using,

for instance, the cosine of the angle of the vectors. Another approach is to represent

the original and perturbed phrases as language models and approximate their similarity,

e.g., using Kullback-Leibler divergence. These are mostly supervised approaches that

consider the aggregated distance or divergence (over all the elements of the vectors or

language models) as an (inverse) approximation of semantic similarity.

We conjecture that it is not necessary to use all the elements of such vectors or lan-

guage models to compute semantic similarity, but that it suffices to use solely the most

semantically salient elements. If this conjecture is true, the potential benefit is that

semantic similarity (and any derived analysis thereof) can be done more efficiently as,

e.g., the involved computations will be done on lower dimension elements. Motivated

by this, we propose the following alternative approach to compositionality detection:

we represent the original phrase and its perturbed phrases as ranked lists, containing

only the term weight (e.g., TF-IDF [5]) of their contextual terms. We rank the elements

of each list decreasingly by this term weight. This allows to compute the semantic sim-

ilarity between the phrase and its perturbed phrases using a range of different metrics

designed for ranked list comparison. Different such metrics emphasise different as-

pects of the ranked lists, such as the weight of the elements in the list, or their position

in the ranking, or the similarity between elements. As metrics of distance and cor-

relation between ranked lists tend to be parameter-free, our approach is completely

unsupervised.

Our contribution: We propose a novel formulation of compositionality detection

as ranked list similarity that is completely unsupervised. We perform an empirical

study of how this formulation fares when a number of different distance and correla-

tion metrics for ranked lists are used. The results of the study show that our method

performs better than strong, recent, supervised baselines.

2. Related Work on Compositionality Detection

We divide related work on compositionality detection into two broad categories:

• approaches estimating the similarity between a phrase and its components (mostly

earlier), and

• approaches estimating the similarity between a phrase and a perturbed version

of that phrase where terms have been replaced by their synonyms (more recent).

Baldwin et al. [4] use Latent Semantic Analysis (LSA) to calculate the similarity

between a phrase and its components, reasoning that higher similarity indicates higher
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compositionality. They extract contextual vectors for the terms in the phrase, and rep-

resent them as points in vector space. They measure the similarity between two vectors

as the cosine of the angle between them. Katz and Giesbrecht [6] present a similar

idea (with a slightly different choice of methods and with German data). Venkatapa-

thy and Joshi [7] also present a similar idea, by extending the LSA context vectors of

Baldwin et al. [4] with collocation features (e.g. phrase frequency, point-wise mutual

information) extracted from the British National Corpus. More recently, Reddy et al.

[8] define a term literality score as the similarity between a phrase and its constituent

contextual vectors. They use different vectorial operations to estimate the semantic

distance between a phrase and its individual components, from which they deduce

compositionality.

Closer to ours is the work of Kiela and Clark [1], who detect non-compositionality

based on the earlier hypothesis that the mutual information between the constituents of

a non-compositional phrase is significantly different from that of a phrase created by

substituting terms in the original phrase by their synonyms [3]. They represent phrases

by their context vectors. Using standard vectorial similarity, this model slightly out-

performs that of McCarthy et al. [9] and Venkatapathy and Joshi [7]. A recent varia-

tion of this idea replaces the context vectors with language models and computes their

Kullback-Leibler divergence to approximate their semantic distance [2]. However, the

accuracy of this approach has not been evaluated.

Further approaches to compositionality detection also exist. For instance, Cook et

al. [10] use syntax to identify non-compositionality in verb-noun phrases. They reason

that compositional expressions are less syntactically restricted than non-compositional

ones, as the latter tend to occur in a small number of fixed syntactic patterns. Along

a similar line, McCarthy et al. [9] consider the selectional preferences of verb-object

phrases.

Lastly, compositionality detection has also been studied using representation learn-

ing of word embeddings. Socher et al. [11] present a recursive neural network (RNN)

model that learns compositional vector representations for phrases and sentences of ar-

bitrary syntactic type and length. They use a parse tree structure and assign a vector and

a matrix to every node: the vector captures the meaning of the constituent, while the

matrix captures how it changes the meaning of neighboring words or phrases. Mikolov

et al. [12] extend a word-based skip-gram model that learns non-compositional phrases

by being trained on phrases (treated as individual tokens) as opposed to individual

words. The training phrases are extracted from a corpus using a threshold on the ratio

of their bigram over (product of) unigram counts. Along a similar line, Salehi et al.

[13] use the word embeddings of Mikolov et al. [14] with several vectorial composi-

tion functions to detect non-compositionality. Yazdani et al. [15] also learn semantic

composition and detect non-compositional phrases as those that stand out as outliers in

the process. They examine various composition functions of different levels of com-

plexity and conclude that complex functions such as polynomial projection and neural

networks can model semantic composition more effectively than the commonly used

additive and multiplicative functions.

To our knowledge, no prior work on compositionality detection has used ranked

list distance or correlation.
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3. Ranked lists for compositionality detection

3.1. Problem formulation

The starting point of our method is the substitution-based approach to non-composi-

tionality detection of Kiela and Clark [1]. Given a phrase, each term is replaced by a

synonym (one at a time) producing perturbations of the original phrase by substituting

synonyms. The semantic similarity between the original phrase and its perturbations

is then assumed to be proportional to the degree of compositionality of the original

phrase. This idea is in fact a modern implementation of Leibniz’s principle of inter-

substitutivity (salva veritate) to detect irregular composition of meaning, which posits

that terms which can be substituted for one another without altering the truth of any

statement are the same (eadem) or coincident (coincidentia).

3.2. Our compositionality detection method

Kiela and Clark [1] represent the original phrase and its perturbations as vectors (of

their contextual semantics) and compute their semantic distance using cosine similarity,

while Lioma et al. [2] represent them as language models and approximate their se-

mantic distance using Kullback-Leibler divergence1. Instead, we represent the original

phrase and its perturbations as ranked lists, and use their (inverse) distance or correla-

tion to measure compositionality. The elements of each ranked list are term weights

(e.g. TF-IDF) of their contextual terms that are typically represented in vectors. The

ranking in each list is by descending term weight, and hence more informative terms

are represented earlier in the list.

The high-level steps of our method are displayed in Algorithm I (Table 2).

Algorithm RankListComp

Input: Phrase p

Input: Corpus C

Output: Compositionality score comp(p)
1. Find synonym t̂ of each term t ∈ p

2. for each t and t̂

3. C ← get context terms from C

4. for each context term i ∈ C
5. compute term weight gi
6. for each t̂

7. Perturbed phrase p̂ ∋ {t̂, |p| − 1 original terms to}
8. List Lp ← sort {g(i)∀i ∈ C∀t∈p}
9. List Lp̂ ← sort {g(i)∀i ∈ C t̂∧∀to}
10. return 1

|Lp̂|

∑|Lp̂| similarity(Lp, Lp̂)

Table 2: Algorithm I.

1Strictly speaking, Kullback-Leibler divergence is not a distance.
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The ranked lists of the original and perturbed phrase appear in lines 8 – 9 of the

above algorithm, respectively. Central in the computation of compositionality is the

choice of similarity metric (line 10). A number of different ways to compute this sim-

ilarity (as distance or correlation) between two ranked lists exist in the literature (for

the problem of comparing ranked lists in general, and not for our specific problem for-

mulation). Some metrics consider the aggregate distance over the whole list, whereas

other metrics emphasise specific list characteristics, such as the weight, position, or

similarity between elements. Next, we present an overview of these metrics.

3.3. Metrics of distance and correlation between ranked lists

Let m and n be positive integers. We consider lists R1 = [v1, . . . , vm] and R2 =
[w1, . . . , wn] where v1, . . . , vm, w1, . . . , wn ∈ R+ ∪ {0} (i.e., each element in each

list is a non-negative real number). We assume that n ≥ m (i.e., R2 is possibly longer

than R1) and v1 ≥ v2 ≥ · · · ≥ vm and w1 ≥ w2 · · · ≥ wn (i.e., both lists are ordered

non-increasingly).

In our problem formulation, R1 and R2 represent ranked lists of term weights.

In principle, the lists may be of unequal length, depending on the implementation of

extracting term weights and/or the corpus statistics from which we extract contextual

terms. Note also that there is no a priori relationship between the elements of R1 and

R2. Indeed in extreme cases we may have {v1, . . . , vm} ∩ {w1, . . . , wn} = ∅.
Next, we review metrics on lists that have been, or could be, used to measure some

notion of “(dis)similarity” between ranked lists. We partition these metrics into three

general classes:

• Class I: Metrics that can natively compute differences between ranked lists of

unequal length. This is the scarcest class, consisting primarily of modern met-

rics specifically devised to tackle ranked lists.

• Class II: Metrics that can compute differences between ranked lists of equal

length. Such metrics can be applied to ranked lists on unequal length only if

the shortest list (R1 above) is padded with n − m zeroes at the end, or if the

longest list (R2 above) is pruned to the length of R1. Both of these options can

only work when they do not alter the semantics of the data represented in the list.

Most of these Class II metrics are classic metrics on the vector space Rn.

• Class III: Metrics that can compute differences between ranked lists which con-

stitute permutations of a set of n elements. Formally, let [n] = {1, ..., n}, and

let Sn be the set of permutations on [n]; for two elements σ, π ∈ Sn, a metric d

assigns a non-negative real number d(σ, π) as a “distance”, with d(σ, π) = 0 iff

σ = π.

Most of the metrics we have come across are Class III. However, as the ranked lists

R1 and R2 of term weights that we are interested in may contain different elements and

may be of different length, Class III metrics are not directly applicable to our setup of

using ranked lists: if R1 and R2 were of equal length and contained the same elements,

the fact that they are both ordered implies that they would correspond to the exact same

permutation of n elements, hence that their distance would be 0 (because they would be

5



• Spearman’s footrule (a.k.a. l1-distance): total element-wise displacement between

two ranked lists. Variations include: weighted, positional, element similarity, and

generalised (weighted + positional + element similarity) [16]

• Kendall’s τ : total number of pairwise inversions between two ranked lists. Variations

include: weighted, positional, element similarity, generalised (weighted + positional

+ element similarity) [16], version with penalty parameter for swaps early in the

permutation [17], and weighted generalisation for ties [18]

• Cayley distance: minimal number of transpositions (permutations that swap two

adjacent elements) needed to transform element σ to element π [19]

• Lee distance: variant of drank (Eq. 1) where differences |σ(i)− π(i)| larger than ⌈n/2⌉
are instead counted as n− |σ(i)− π(i)| [19]

• Expected weighted Hoeffding distance: can handle partial or missing rank

information [20]

Table 3: Class III metrics (on the set of permutations). The notation of Section 3.3 is used.

identical). Even though Class III metrics cannot be used in our setup, for completeness

we briefly outline them in Table 3. Next we focus on Class I and II metrics of distance

(Section 3.3.1) and correlation (Section 3.3.2).

We now give a brief overview of the pertinent metrics. We divide the metrics into

distances (which, strictly speaking, should satisfy the conditions of being non-negative

and symmetric and the shortest possible path between two points) and correlations.

3.3.1. Distance metrics

3.3.1.1 Rank or l1 distance (Class III), Minkowski distances (Class II). Ciobanu and

Dinu [21] introduce the rank distance drank (identical to the well-known l1 distance,

a.k.a. Spearman’s footrule). drank is the sum of absolute rank differences in the lists R1

and R2:

drank(R1, R2) =
∑

i∈[n]

|σ(i)− π(i)| (1)

While the version of Ciobanu and Dinu [21] is Class III, the l1 distance can also

easily be viewed as being in Class II. Indeed any of the Minkowski distances lp for

p ≥ 1 induce a distance metric in the usual sense on ranked lists of equal length:

lp(R1, R2) =

(
n∑

i=1

|i − wi|p
)1/p

(2)

A similar metric is the Chebyshev distance, below.

3.3.1.2 Chebyshev or l∞ distance (Class II). The Chebyshev or l∞ distance is the

maximal absolute difference in rank between two equal-sized ranked lists:

d∞(R1, R2) = max
i∈[n]
|vi − wi| (3)
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3.3.1.3 CosRank distance (Class III, Class II). Dinu and Ionescu [22] introduce the

cosine rank distance dCosRank as the usual cosine distance in an n-dimensional vector

space of the vectors (σ(1), . . . , σ(n)) and (π(1), . . . , π(n)):

dCosRank(R1, R2) =

∑
i∈[n] σ(i)π(i)∑

i∈[n]i2
(4)

The usual cosine similarity can also be used on the n-dimensional vector space R
n,

hence on equal-sized ranked lists:

dCosRank(R1, R2) =
R1 ·R2√

R1 ·R1

√
R2 · R2

(5)

where · is the dot product of vectors.

3.3.1.4 Hamming distance (Class II). The Hamming distance dH(R1, R2) between

equal-sized ranked lists R1 and R2 is the number of indices i where vi 6= wi; using

Kronecker’s delta δij , we can write:

dH(R1, R2) =

n∑

i=1

(1− δviwi
) (6)

(equivalently, dH(R1, R2) = |{i ∈ [n] : vi 6= wi}|).

3.3.1.5 Hausdorff distance (Class I). If a d metric on elements is given, the Hausdorff

distance is a particular metric computing distances between certain sets of elements.

For instance, if one considers the usual Euclidean distance | · | on real numbers, the

Hausdorff distance can be used directly on ranked lists of possibly distinct lengths:

dHaus(R1, R2) = max

{

max
vi∈R1

min
wj∈R2

|vi − wj |, max
wj∈R2

min
vi∈R1

|vi −wj |

}

(7)

The Hausdorff distance is thus the largest difference in term weight from a term

weight v in R1 to the term weight in R2 that is closest to v.

3.3.2. Correlation metrics

Ranked list similarity can also be estimated using correlation metrics that gener-

ally do not always adhere to all of the classic axioms required by distance metrics in

mathematics.

3.3.2.1 Pearson correlation coefficient (Class II). The Pearson (product-moment) cor-

relation coefficient quantifies the linear dependence between two variables. It is the

ratio of the covariance of the variables to the product of their standard deviation, easily

applicable to two equal-sized ranked lists by using the formula for a sample:

dPear(R1, R2) =
n
∑

i∈[n] viwi −
∑

i∈[n] vi
∑

i∈[n] wi
√

n
∑

i∈[n] v
2
i
−

(

∑

i∈[n] vi

)

√

n
∑

i∈[n] w
2
i
−

(

∑

i∈[n] wi

)

(8)
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Note that Etesami et al. [23] introduce it as a “Class III” distance, i.e. to compare

different rankings of the same group of items. Nevertheless, the usual Pearson cor-

relation can be used directly, as it can be computed for samples, not just for random

variables.

3.3.2.2 AP correlation coefficient (Class II). Yilmaz et al. [24] present a correlation

metric, the AP metric, inspired by Kendall’s τ , that particularly penalizes differences

in the top-ranked items. While the metric does not natively apply to lists containing

distinct items, it is easy to adapt it to do so.

Let us define τap(R1|R2) = p′ − (1− p′) where

p′ =
1

n− 1

n∑

i=2

C(i)

i− 1
(9)

where C(i) is the number of items in R1 occurring earlier than i whose value is greater

than or equal to the value of the i item in R2 (i.e., in our case C(i) = maxj∈[n],j≤i vj ≥
wi}). τap(R2|R1) is defined symmetrically mutatis mutandis.

The distance symmτap(R1, R2) is now the following symmetric function:

symmτap(R1, R2) =
τap(R1|R2) + τap(R2|R1)

2
(10)

3.3.2.3 Further Class II metrics. Two more correlation metrics that can compute dif-

ferences between ranked lists of equal length (Class II metrics) are the Hirschfeld-

Gebelein-Rényi maximal correlation and the Maximal Rank Correlation [23]. How-

ever, the Hirschfeld-Gebelein-Rényi maximal correlation is a function that, by defini-

tion, requires a probability distribution. We do not have such a probability distribution

in our setup. The reason we can do without a probability distribution for the Pearson

correlation is that it is possible to compute covariance, standard deviation etc. for a

sample — but doing so for the Hirschfeld-Gebelein-Rényi maximal correlation and the

Maximal Rank Correlation does not seem to make sense without a probability distribu-

tion (in particular since the definitions quantify over all functions between two spaces).

Also note that no polynomial-time algorithm is known for computing Maximal Rank

Correlation, even if an efficiently computable probability mass function is given as

input (for instance, by approximating the probability mass functions from relative fre-

quencies).

For compositionality detection, we use all the above distance and correlation met-

rics (except those discussed in Section 3.2.2.3) to compute the (dis)similarity in line 10

of our algorithm, i.e. the semantic distance between an original phrase and its perturbed

version.

Next, we describe in detail the implementation steps of our compositionality detec-

tion method.

4. Implementation

We refer the reader to the algorithm of our compositionality detection method (Al-

gorithm I: RankListComp) displayed in Table 2. The remainder explains how each line
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in the algorithm is implemented.

4.1. Synonym extraction (Algorithm I, line 1)

The input is some phrase, and the goal is to measure its compositionality. Given

an input phrase, for each of its terms, we fetch from WordNet all its hypernyms, and

for each hypernym we select all hyponyms. If there are no hypernyms or hyponyms,

we fetch all synonyms. We retrieve from the TREC disks 4-5 corpus2 all documents

that contain any of these hypernyms and hyponyms (and synonyms, if applied), and

select the 100 documents where the original term and its hypernyms and its hyponyms

(or synonyms) occur most often. We then select the single hypernym or hyponym (or

synonym) that occurs most often in most of these 100 documents. We consider this

term as a “near-synonym” to the original input term.

4.2. Contextual terms (Algorithm I, line 3)

For each term (in the original phrase + “near-synonym”) we identify a context

window of ±5 terms around it from TREC disks 4-5 (i.e. the 5 terms preceding the

term and 5 terms following it). We neither remove stopwords, nor apply stemming.

The above extraction of context windows can give a different number of context terms

for different words. Other sizes of context windows can also be used; we use±5 terms,

following prior work [2].

4.3. Term weights (Algorithm I, line 5)

We compute the TF-IDF score3 of each term t in the context windows as:

∑

d∈nt

f(t, d)

|d| · loge
N

nt
(11)

where f(t, d) is the frequency of term t in document d, |d| is the total number of terms

in document d, N is the total number of documents in the collection, and nt is the total

number of documents that contain t in the collection. We compute TF-IDF using the

corpus statistics of TREC disks 4-5 (unlike [1], who use an adapted version of TF-IDF

on the statistics of the context windows). We do this because we aim to compute TF-

IDF scores reflecting how generally informative a word is, hence the bigger the corpus

used to estimate this, the more representative the resulting scores will be (as long as

the corpus has good coverage and representativess).

2The TREC disks 4-5 corpus is available from: http://www.nist.gov/tac/data/data_desc.html

and contains text from a variety of sources: the 103rd Congressional Record, the 1994 Federal Register,

the 1992-1994 Financial Times, the 1996 Foreign Broadcast Information Service, and the 1989-1990 Los

Angeles Times. We use this corpus because of its coverage and diversity. Any other corpus of reasonable

coverage can be used alternatively.
3Any other reliable term weighting score can be used alternatively, for instance any of the simpler [25,

26, 27] or more elaborate [28, 29, 30] formulations in the literature.

9
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4.4. Ranked lists (Algorithm I, lines 8 – 9)

We create ranked lists of TF-IDF scores for each term in the original phrase and

its “near-synonyms”. We then combine the ranked lists of TF-IDF scores extracted for

each term, into a single ranked list for the whole original phrase (and separately for

each perturbed phrase), by simply appending their respective TF-IDF scores to one list

and sorting them by their TF-IDF. We do not keep duplicate elements. At this point,

we have a single ranked list of TF-IDF scores per phrase (either original or perturbed).

The length of the ranked lists may be different from term to term and may differ

across phrases. Indeed the minimum and maximum length of ranked lists we observe

per phrase are min=200 (for the perturbed phrase musculus contractions gen-

erated in response to the original phrase muscle contractions), and max=31309

(for the perturbed phrase know 1 generated in response to the original phrase know

one). The mean list length is 9259. This variation in the length of our ranked lists

practically means that we cannot always use the majority of distance and correlation

metrics presented in Section 3.3, because they require equal-sized lists. To address

this, we impose a fixed list length of maximum 1000 elements, i.e. we keep, at most,

the top-1000 ranked elements in each list. If, when comparing two lists, one contains

<1000 elements, we prune both lists to the length of the shortest list. The choice of

1000 as maximum length is an arbitrary choice and is not indicative of any tuning.

Fixing the length of our ranked lists to 1000 implies that we represent each phrase by

the top 1000 most informative terms found in their context windows.

We compute the distance and correlation between the ranked list of TF-IDF scores

of the original phrase and its substitution phrase using all the Class I & II metrics pre-

sented in Section 3.3. This outputs a single score per phrase, which we treat as an

(inverse for distances or direct for correlations) approximation of the degree of compo-

sitionality of that phrase.

5. Experimental evaluation

We evaluate our compositionality detection method on a recent dataset of 1048 2-

term phrases (noun-noun) [31]. This is the largest compositionality-annotated dataset

we could find. In this dataset, each phrase has four binary compositionality human ex-

pert assessments. We report Spearman’s ρ correlation between our method’s decisions

on compositionality and the average of the four human annotations of compositionality

of that dataset (Table 4).

We report, as state of the art baseline performance, the additive and multiplicative

models of Reddy et al. [8] and the best performing deep learning method (sparse

interaction) of Yazdani et al. [15]. We do not reimplement these methods; we only

report their published scores on the same dataset as per Yazdani et al. [15].

We see in Table 4 that our approach outperforms all baselines using any of the

considered metrics. Among these distance and correlation metrics, the Chebyshev and

Hausdorff distances score the lowest, but still outperform the baselines. The Cheby-

shev and Hausdorff distances emphasise the maximal absolute difference in rank and

maximal difference in TF-IDF score respectively. It thus appears that this emphasis on

maximal differences is not optimal for this setup. One reason could be that we have
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Supervised (baselines)

ADD (Reddy et al., 2011) 0.21

MULT (Reddy et al., 2011) 0.09

Deep Learning (Yazdani et al., 2015) 0.41

Unsupervised (ours)

Rank or l1 distance (Equation 1) 0.59

Chebyshev or l∞ distance (Equation 3) 0.50

CosRank distance (Equation 5) 0.60

Hamming distance (Equation 6) 0.55

Hausdorff distance (Equation 7) 0.50

Pearson correlation coefficient (Equation 8) 0.62

AP correlation coefficient (Equation 9) 0.58

Table 4: Spearman’s ρ correlation between system decisions and human annotations of compositionality (the

higher, the better).

trimmed our ranked lists to the top 1000 highest TF-IDF scores, and that among those

highest TF-IDF scores, maximal differences may not be as noticeable, as on a much

bigger range of TF-IDF scores that represent most levels of term informativeness (as

opposed to just the most informative terms).

The best performing metric is the standard Pearson’s correlation, followed closely

by the CosRank distance. Pearson’s correlation is the ratio of the covariance of the

TF-IDF scores in the two lists over the product of their standard deviation. On a higher

level of abstraction, Pearson’s correlation can be seen as analogous to the cosine dis-

tance in vector space: the cosine distance measures similarity in vector space, by con-

sidering only the non-zero dimensions of (very often) sparse vectors. It is possible to

normalise the attribute vectors by subtracting the vector means, in which case one can

compute the centered cosine similarity, which is equivalent to Pearson’s correlation.

Our second best metric, CosRank, is also analogous to the cosine distance as discussed

in Section 3.3 and also by Dinu and Ionescu [22]. The fact that our two best performing

metrics can be seen as analogous to the cosine distance in vector space indicates that

not only the choice of measurement, but also the choice of representation, can greatly

affect performance.

Figure 1 plots the human compositionality annotations of the 1042 phrases (y axis,

0 = compositional, 1 = non-compositional) against the distance or correlation of our

7 metrics (x axis). The 1042 data points have been sorted per distance or correlation

score and then binned into 11 bins. Each point in Figure 1 corresponds to the mean

human compositionality score per bin. The number of bins has been decided using

Scott’s formula [32]:

M =
R

3.49s
N1/3 (12)

where M is the number of bins, R is the range, N is the number of data points, and s is

the sample variance. This results in: 10 equal-sized bins of 95 phrases each, and 1 bin

of the remaining 92 phrases (this is the bin with the highest distance or correlation).

In Figure 1 ideally we would expect compositionality (x axis) to increase as dis-

tance decreases or as correlation increases. We see that this is indeed the case approx-

imately for Rank CosRank, Hamming distance and for Pearson and AP correlation.
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Rank distance
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0.26

Chebyshev distance
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CosRank distance
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Hamming distance

min max

0.1
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0.22

0.24

Hausdorff distance

min max

0.08
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Pearson correlation

min max

0.12

0.14

0.16

0.18

0.2

0.22

AP correlation

Figure 1: Non-compositionality score approximated by distance or correlation (x axis, binned) versus human

compositionality score (y axis).
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Non-compositional

freshman year highest Minkowski distance

case law highest Chebyshev distance

body whorl highest CosRank distance

umbrella organisation highest Hamming distance

case law highest Hausdorff distance

vice president lowest Pearson correlation

chain smoker lowest AP correlation

Compositional

mountain goat lowest Minkowski distance

picnic lunch lowest Chebyshev distance

goose fossil lowest CosRank distance

potato peeler lowest Hamming distance

nightclub goer lowest Hausdorff distance

school alumni highest Pearson correlation

flight lessons highest AP correlation

Table 5: Examples from the top- and bottom-scored phrases by each of our metrics and by humans.

However, for Chebyshev and Hausdorff, we see no such linear trend: the points are

generally scattered, and seem to have more of an approximately ascending (as opposed

to the expected descending) trend as the y axis increases. This finding agrees with the

observation that these two metrics (Chebyshev and Hausdorff) performed the lowest

among all our metrics in Table 4. As discussed above, a reason why these two metrics

underperform could be their emphasis on maximum score difference between the two

lists (which is largely reduced when we trim lists to the top 1000).

Finally Table 5 displays some examples of phrases that were annotated as most

or least compositional both by humans and also by our metrics (by having the high-

est/lowest distance/correlation respectively). We see that (a) compositional phrases

tend to have more literal meanings that non-compositional, and (b) depending on the

degree of (non-)compositionality, its detection may be a hard task even for humans

(e.g. case law, goose fossil).

6. Discussion of limitations

As all substitution-based methods for compositionality detection, our method can

also be criticised for being unable to discriminate non-compositional phrases from col-

locational phrases, because they both share the same property of non-substitutability

(their constituents cannot be replaced with their synonyms) [15]. This criticism is re-

lated to the venerable principle of semantic substitutivity, first formulated by Husserl

(1913) [33]: two phrases belong to the same semantic category if they are intersubsti-

tutable within any meaningful expression salva significatione. This principle is consid-

ered controversial, because there are many synonyms that are not everywhere intersub-

stitutable [33]. To our knowledge, this remains an open problem in substitution-based

compositionality detection.

Our method estimates the degree of compositionality of isolated phrases, following

the current experimental practice of using mainly 2-term phrases. Applying the same
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method to phrases that are embedded into fully formed sentences may be problematic.

For instance, problems may arise when the phrase whose compositionality we detect is

a constituent of a larger expression. Borrowing an example from [34], measuring the

semantic similarity of:

Plato was bald

with

baldness was an attribute of Plato

could lead to misleading inferences about the semantic similarity of:

the philosopher whose most eminent pupil was Plato

was bald

and

the philosopher whose most eminent pupil was baldness

was an attribute of Plato.

In this case, the second sentence, not only has a different meaning than the first sen-

tence, but also is semantically non-sensical. It remains to be investigated to what extent

and under which conditions phrase-level compositionality estimation can be applied to

full sentences. The absence of large human-annotated bespoke datasets for this task

remains a problem for such investigations.

7. Conclusion

We presented a method for estimating degrees of compositionality in phrases. Our

method is based on the premise that substitution by synonyms is meaning-preserving

[3], and estimates compositionality as the semantic similarity between a phrase and a

version of that phrase where words have been replaced by their synonyms [1]. Unlike

previous approaches that represent such phrases (original and substitution-formed) as

vectors or language models, we represent them as ranked lists. This ranked list rep-

resentation is a novel contribution. The elements of these lists are contextual terms

extracted from some appropriate corpus and ranked according to their TF-IDF (any

other term informativeness score can be used). Moving to ranked list representations

allows us to approximate the semantic similarity between two phrases using a range

of well-known and, we argue, more refined distance and correlation metrics, designed

specifically for lists. We review a number of these metrics and experimentally show

that they outperform state-of-art baselines for this task.
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