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Abstract

In this paper we identify and characterize an analysis of two problematic

aspects affecting the representational level of cognitive architectures (CAs): the

size and the typology of the encoded knowledge. We argue that such aspects

may constitute not only a technological problem that, in our opinion, should

be addressed in order to build artificial agents able to exhibit intelligent be-

haviours in general scenarios, but also an epistemological one, since they limit

the plausibility of the comparison of CAs’s knowledge representation and pro-

cessing mechanisms with those executed by humans in their everyday activities.

In the final part of the paper further directions of research will be explored,

trying to address current limitations and future challenges.

Keywords:
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1. Introduction

Handling a considerable amount of knowledge, and selectively retrieving it

according to the needs emerging in different situational scenarios, is an impor-

tant aspect of human intelligence. For this task, in fact, humans adopt a wide

range of heuristics [1] due to their bounded rationality [2]. In this perspective,

one of the requirements that should be considered for the design, the realiza-

tion and the evaluation of intelligent cognitively-inspired systems should consist
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in their ability of heuristically identify, retrieve, and process, from the general

knowledge stored in their artificial Long Term Memory (LTM), that one which

is synthetically and contextually relevant. This requirement, however, is often

neglected. Currently, artificial cognitive systems and architectures are not able,

de facto, to deal with complex knowledge structures that can be even slightly

comparable to the knowledge heuristically managed by humans. In this paper

we will argue that this is not only a technological problem but also, in the light

of the distinction between functionalist and structuralist models of cognition,

an epistemological one. The rest of the paper is organised as follows: Section

2 introduces the two main problematic aspects concerning the knowledge level

in cognitive architectures, namely the size and the homogeneous typology of the

encoded knowledge. Section 3 provides a focused review of the Knowledge Level

of four of the most well known and widely used cognitive architectures (namely

SOAR, ACT-R, CLARION and Vector-LIDA) by pointing out the respective

differences and, in the light of our axis of analysis, their problematic issues1. In

doing so we will illustrate the main attempts that have been proposed to address

such problems and we will highlight the current limitations of such proposals.

In the final sections, we present an overview of three different alternative ap-

proaches that can provide a possibile solution for dealing with, jointly, both the

size and the knowledge homogeneity problems: namely the Semantic Pointer

Perspective (section 4), the idea of Conceptual Space as intermediate level of

representation connecting connectionist and symbolic approaches (section 5)

and the novel versions of the Hybrid Neuro Symbolic Approaches currently de-

veloped in the field of CAs (section 6). Interestingly all such proposals converge

in suggesting that the neural level of representation can be considered irrele-

vant for attacking the above mentioned problems, and suggest to address these

issue by operating at more transparent and abstract levels of representation.

Section 7, finally, considers the dual process approach as a possible reference

1In the present paper we will leave aside many other aspects (e.g. those related to the

knowledge acquisition problems) which are related to, and also affect, the problems into focus.
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framework for the integration of different types of knowledge processing mecha-

nisms assumed to cooperate in a CA assuming a heterogeneous representational

perspective.

2. Open Issues: Knowledge Size and Knowledge Homogeneity

Current cognitive artificial systems and architectures are not equipped with

knowledge bases comparable with the conceptual knowledge that humans pos-

sess and use in the everyday life. From an epistemological perspective this lack

represents a problem: in fact, endowing cognitive agents with more realistic

knowledge bases, in terms of both the size and the type of information encoded,

would allow, at least in principle, to test the artificial systems in situations closer

to that one encountered by humans in real-life. This problem becomes more rel-

evant if we take into account the knowledge level of Cognitive Architectures [3],

[4]. While cognitively-inspired systems, in fact, could be designed to deal with

only domain-specific information (e.g. let us think to a computer simulator of a

poker player), Cognitive Architectures (CA), on the other hand, have also the

goal and the general objective of testing - computationally - the general models

of mind they implement. Therefore: if such architectures only process a simplis-

tic amount (and a limited typology) of knowledge, the structural mechanisms

that they implement concerning knowledge processing tasks (e.g. that ones of

retrieval, learning, reasoning etc.) can be only loosely evaluated, and compared,

w.r.t. that ones used by humans in similar knowledge-intensive situations. In

other words: from an epistemological perspective, the explanatory power of

their computational simulation is strongly affected (on these aspects see [5], [6],

[7]). This aspect is problematic since this class of systems, designed according

to the “cognition in the loop” approach, aims both at i) detecting novel and

hidden aspects of the cognitive theories by building properly designed computa-

tional models of cognition and ii) at providing technological advancement in the

area of Artificial Intelligence of cognitive inspiration. In this perspective, purely

functionalist models [8], based on a weak equivalence (i.e. the equivalence
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in terms of functional organization) between cognitive processes and AI proce-

dures, are not considered as having a good explanatory power w.r.t. the target

cognitive system taken as source of inspiration. Conversely, the development

of plausible “structural” models of our cognition (based on a more constrained

equivalence between AI procedures and their corresponding cognitive processes)

are assumed to be the way to follow in order to build artificial cognitive models

able to play both an explanatory role about the theories they implement and to

provide advancements in the field of the artificial intelligence research.

By following this line of argument, therefore, we claim that computational

cognitive architectures aiming at providing a knowledge level based on the

“structuralist” assumption should address, at their representational level, both

the problems concerning the “size” and the “homogeneity” of the encoded

knowledge. Let us explore more in the details the nature of such aspects: while

the size problem is intuitively easy to understand (i.e. it concerns the dimension

of the knowledge base available to the agents), that one concerning the “types”

of the encoded knowledge needs some additional clarification and context. In

particular, this problem relies on the theoretical and experimental results com-

ing from Cognitive Science. In this field, different theories about how humans

organise, reason and retrieve conceptual information have been proposed. The

oldest one, known as “classical” or Aristotelian theory, states that concepts - the

building blocks of our knowledge infrastructure - can be simply represented in

terms of sets of necessary and sufficient conditions (and this is completely true,

for example, for mathematical concepts: e.g. an EQUILATERAL TRIANGLE

can be classically defined as a regular polygon with 3 corners and 3 sides). In

the mid ’70s of the last Century, however, Rosch’s experimental results demon-

strated its inadequacy for ordinary –or common sense– concepts, that cannot

be described in terms of necessary and sufficient traits [9]. In particular, Rosch’s

results showed that the conceptual knowledge is organized in our mind in terms

of prototypes. Since then, different theories of concepts have been proposed to

explain different representational and reasoning aspects concerning the typical-
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ity or, in other terms, the common-sense effects2. Usually, they are grouped

in three main classes, namely: prototype views, exemplar views and theory-

theories (see e.g. [10] [11]). All of them are assumed to account for (some

aspects of) typicality effects in conceptualization.

According to the prototype view (introduced by Rosch), knowledge about

categories is stored in terms of some representation of the best instances of the

category. For example, the concept BIRD should coincide with a representation

of a prototypical bird (e.g. a robin). In the simpler versions of this approach,

prototypes are represented as (possibly weighted) lists of features.

According to the exemplar view, a given category is mentally represented as

a set of specific exemplars explicitly stored within memory: the mental repre-

sentation of the concept BIRD is the set of the representations of (some of) the

birds we encountered during our lifetime.

Theory-theory approaches adopt some form of holistic point of view about

concepts. According to some versions of the theory-theories, concepts are anal-

ogous to theoretical terms in a scientific theory. For example, the concept BIRD

is individuated by the role it plays in our mental theory of zoology. In other ver-

sion of the approach, concepts themselves are identified with micro-theories of

some sort. For example, the concept BIRD should be identified with a mentally

represented micro-theory about birds.

Although these approaches have been largely considered as competing ones,

several results (starting from the work of [12]) suggested that human subjects

may use, in different occasions, different representations to categorize concepts.

Such experimental evidences led to the development of the so called “hetero-

geneous hypothesis” about the nature of concepts, hypothesizing that differ-

ent types of conceptual representations exist (and may co-exist): prototypes,

exemplars, theory-like, classical representations, and so on [11]. All such rep-

resentations, in this view, constitute different bodies of knowledge and contain

different types of information associated to the the same conceptual entity. Fur-

2A review of all the typicality-theories is in [10] and in [11].
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thermore, each body of conceptual knowledge is featured by specific processes in

which such representations are involved (e.g., in cognitive tasks like recognition,

learning, categorization, etc.). In particular prototypes, exemplars and theory-

like representations are associated with the possibility of dealing with typicality

effects and non-monotonic strategies of reasoning and categorization3, while

the classical representations (i.e. that ones based on necessary and/or sufficient

conditions) are associated with standard deductive mechanism of reasoning4. In

the representational level of the current cognitive architectures the heterogene-

ity hypothesis, assuming the availability of different types of knowledge encoded

in a conceptual structure, is almost neglected (even if with some differentiation

between the architectures exist as we will see in the next section). 5 In general,

3Let us assume that we have to categorize a stimulus with the following features: “it has

fur, woofs and wags its tail” the result of a prototype-based categorization would be dog, since

these cues are associated to the prototype of dog. Prototype-based reasoning, however, is not

the only type of reasoning based on typicality. In fact, if an exemplar corresponding to the

stimulus being categorized is available, too, it is acknowledged that humans use to classify it

by evaluating its similarity w.r.t. the exemplar, rather than w.r.t. the prototype associated to

the underlying concepts [11]. For example, a penguin is rather dissimilar from the prototype

of bird. However, if we already know an exemplar of penguin, and if we know that it is

an instance of bird, it is easier to classify a new penguin as a bird w.r.t. a categorization

process based on the similarity with the prototype of that category. This type of common

sense categorization is known in literature as exemplars-based categorization (and in this case

the exemplar is favoured w.r.t. the prototype because of the phenomenon known as old-

item effect). Finally, an example of theory-like common sense reasoning is when we typically

associate to a light switch the learned rule that if we turn it “on” then the light will be provided

(this a non monotonic inference with a defeasible conclusion). All these representations, and

the corresponding reasoning mechanisms, are assumed to be potentially co-existing according

to the heterogeneity approach.
4As before mentioned, an example of standard deductive reasoning is the categorization

as triangle of a stimulus described by the features: “it is a polygon, it has three corners and

three sides”. Such cues, in fact, are necessary and sufficient for the definition of the concept

of triangle.
5The heterogeneoty problem is a multifaceted one since, as mentioned, it not only assumes

the existence of multiple representations but, for each of them, different kinds of categorization

and reasoning mechanisms and processes are assumed to exist and need to be integrated in
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despite some efforts have been done to implicitly address the presented problems

they are, as we will show below, not completely satisfactory for solving, jointly,

both the mentioned limitations.

3. The Knowledge Level in Cognitive Architectures

Cognitive architectures have been historically introduced i) to capture, at

the computational level, the invariant mechanisms of human cognition, including

those underlying the functions of control, learning, memory, adaptivity, percep-

tion and action [13] and ii) to reach human level intelligence, also called AGI

(Artificial General Intelligence), by means of the realization of artificial artifacts

built upon them6. During the last decades many cognitive architectures have

been realized, - such as SOAR [15], ACT-R [16] etc. - and have been widely

tested in several cognitive tasks involving learning, reasoning, selective atten-

tion, recognition etc. However, as previously mentioned, they are affected by

the following problem: they are general structures without a general content.

Thus, every evaluation of systems relying upon them is necessarily task-specific

and do not involve not even the minimum part of the full spectrum of pro-

cesses involved in the human cognition when the knowledge comes to play a

role. In more practical terms this means that the knowledge embedded in such

architectures, and processed by artificial agents, is usually ad-hoc built, domain

specific, or based on the particular tasks they have to deal with. Such limita-

tion, however, affects the advancement in the cognitive research concerning how

the humans heuristically select and deal with the huge and variegated amount

of knowledge they possess when they have to: make decisions, reason about a

given situation or, more in general, solve a particular cognitive task involving

several dimensions of analysis. This problem, as a consequence, also limits the

advancement of the research in the area of Artificial General Intelligence. In

order to let intelligent behaviour emerge.
6There is an alternative perspective that sees CAs as the initial point of departure for the

subsequent autonomous development of a cognitive system (see [14]).
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the following we provide a short overview of some of the most widely known

and adopted CAs: SOAR [15], ACT-R [16], CLARION [17] and LIDA [18] (in

its novel version known as Vector-LIDA [19]). The choice of these architecture

has been based on the fact that they represent some of the most widely used

systems (adopted in scenarios ranging from robotics to video-games) and their

representational structures present some relevant differentiations that are inter-

esting to investigate in the light of the issues raised in this paper. By analyizing,

in brief, such architectures we will exclusively focus on the description of their

representational frameworks since a more comprehensive review of their whole

mechanisms is out of the scope of the present contribution (detailed reviews of

their mechanisms are described in [20]; and [21]; [22]). We will show how all

of them are affected, at different levels of granularity, by both the size and the

knowledge homogeneity problems 7.

3.1. SOAR

SOAR is one of the most mature cognitive architectures and has been used

by many researchers worldwide during the last 30-years. This system was con-

sidered by Newell a candidate for a Unified Theory of Cognition [4]. One of the

main themes in SOAR is that all cognitive tasks can be represented by problem

7By analyizing the latter aspect we will not not take into direct consideration the theory-

like representations introduced in the previous section, since the corresponding theory-theory

approach is, to a certain extent, more vaguely defined when compared to both prototypes and

exemplar based approaches. As a consequence, at present, its theoretical and computational

treatment seems to be more problematic. In addition we can take for granted that all the cur-

rently available architectures are able to learn some forms of ad-hoc micro-theories according

to their interaction with the external environment. A general objection that can be raised

to all of them is, however, that they are not architecturally equipped with mechanisms able

to define the dynamics of the interaction between this kind of theory-like typical knowledge

and the other common-sense knowledge components (e.g. prototypes or exemplars). In addi-

tion: such theories are local, they have no generality and the current CAs are not designed to

provide any kind of interaction process able to couple different local and possibly contrasting

micro-theories.
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spaces that are searched by production rules grouped into operators. These pro-

duction rules are fired in parallel to produce reasoning cycles. From a representa-

tional perspective, SOAR exploits symbolic representations of knowledge (called

chunks) and use pattern matching to select relevant knowledge elements. Basi-

cally, where a production match the contents of declarative (working) memory

the rule fires and then the content from the declarative memory (called Seman-

tic Memory in SOAR) is retrieved. This system adheres strictly to the Newell

and Simon’s physical symbol system hypothesis [23] which states that sym-

bolic processing is a necessary and sufficient condition for intelligent behavior.

W.r.t. to the size and the heterogeneity problems, the SOAR knowledge level

is problematic for both aspects. SOAR agents, in fact, are not endowed with

general knowledge and only process ad-hoc built (or task-specific learned) sym-

bolic knowledge structures 8. Such type of knowledge structures, in particular,

are usually heavily used to perform standard logical reasoning and, as a conse-

quence, are strongly biased towards a “classical” conceptualisation of knowledge

in terms of necessary or sufficient conditions. In general, symbolic representa-

tions strongly rely on the compositionality of meaning: where we can distinguish

between a set of primitive, or atomic, symbols and a set of complex symbols.

However, compositionality, despite being an important aspect of human concep-

tual systems, is somewhat at odds with the representation of concepts regarding

typicality [24]. As a consequence of this representational commitment, SOAR

agents are not equipped with common-sense knowledge components concerning,

for example, prototypical or exemplars-based representations9. Therefore the

8Despite this problem is acknowledged in [15] there is no available literature attesting

progresses in this respect.
9And this problem arises despite the fact that the chunks in SOAR can be represented as

a sort of frame-like structures containing some common-sense (e.g. prototypical) information.

In fact, the main problem of this architecture w.r.t. the heterogeneity assumption, relies on

the fact that it does not specify how the typical knowledge components of a concept, and

the corresponding non monotonic-reasoning strategy, can interact with a possibly conflict-

ing representational and reasoning procedures characterizing other conceptualisation of the

same conceptual entity. In short it assumes, like most of the symbolic-oriented CAs, the
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system is not able to deal with prototype and exemplars-based categorization

which, as described above, are two forms of common-sense conceptual reasoning

well established in human cognition and assumed to co-exist in the heteroge-

neous perspective.

3.2. ACT-R

ACT-R is a cognitive architecture explicitly inspired by theories and exper-

imental results coming from human cognition. Here the cognitive mechanisms

concerning the knowledge level emerge from the interaction of two types of

knowledge: declarative knowledge, that encodes explicit facts that the system

knows, and procedural knowledge, that encodes rules for processing declarative

knowledge. In particular, the declarative module is used to store and retrieve

pieces of information (called chunks, featured by a type and a set of attribute-

value pairs, similar to frame slots) in the declarative memory. ACT-R employs a

sub-symbolic activation of symbolic conceptual chunks representing the encoded

knowledge. Finally, the central production system connects these modules by

using a set of IF-THEN production rules.

Differently from SOAR, ACT-R allows to represent the information in terms

of prototypes and exemplars and allow to perform, selectively, either prototype

or exemplar-based categorization. This means that this architecture allows the

modeller to manually specify which kind of categorization strategy to employ

according to his specific needs. Such architecture, however, only partially ad-

dresses the homogeneity problem since it does not allow to represent, jointly,

these different types of common-sense representations conveying different types

of information for the same conceptual entity (i.e. it does not assume a het-

erogeneous perspective). As a consequence, it is also not able to autonomously

availability of a monolithic conceptual structure (e.g. a frame-like prototype or a “classical”

concept) without specifying how such information can be integrated and harmonized with

other knowledge components to form the whole knowledge spectrum characterizing a given

concept.
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decide which of the corresponding reasoning procedures to activate (e.g. proto-

types or exemplars) and to provide a framework able to manage the interaction

of such different reasoning strategies (however its overall architectural environ-

ment provides, at least in principle, the possibility of implementing cascade

reasoning processes triggering one another).

Even if some attempts exist concerning the design of harmonization strate-

gies between different types of common-sense conceptual categorizations (e.g.

exemplars-based and rule based, see [25]) however they do not handle the prob-

lem concerning the interaction of the prototype or exemplars-based processes

according to the results coming from the experimental cognitive science (for

example: the old item effect, privileging exemplars w.r.t. prototypes is not

modelled. See footnote 3 on this aspect.). Summing up: w.r.t. the hetero-

geneity problem, the components needed to fully reconcile the Heterogeneity

approach with ACT-R are present, however they have not been fully exploited

yet.

Regarding the size problem: as for SOAR, ACT-R agents are usually equipped

with task-specific knowledge and not with general cross-domain knowledge. In

this respect some relevant attempts to overcome this limitation have been re-

cently done by extending the Declarative Memory of the architecture. They will

be discussed in section 3.5 along with their current implications.

3.3. CLARION

CLARION is a hybrid cognitive architecture based on the dual-process the-

ory of mind. From a representational perspective, processes are mainly subject

to the activity of two sub-systems, the Action Centered Sub-system (ACS) and

the Non-Action Centered Sub-system (NACS). Both sub-systems store infor-

mation using a two-layered architecture, i.e., they both include an explicit and

an implicit level of representation. Each top-level chunk node is represented by

a set of (micro)features in the bottom level (i.e., a distributed representation).

The (micro)features (in the bottom level) are connected to the chunk nodes (in

the top level) so that they can be activated together through bottom-up or top-
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down activation. Therefore, in general, a chunk is represented by both levels:

using a chunk node at the top level and distributed feature representation at the

bottom level. W.r.t. to the size and the heterogeneity problems, CLARION,

encounter problems with both the levels since i) there are no available attempts

aiming at endowing such architecture with a general and cross-domain knowl-

edge ii) the dual-layered conceptual information does not provide the possibility

of encoding (manually or automatically via learning cycles) the information in

terms of the heterogeneous classes of representations presented in the section

2. In particular: the main problematic aspect concerns the representation of

the common-sense knowledge components. As for SOAR and ACT-R, also in

CLARION the possible co-existence of typical representations in terms of proto-

types, exemplars and theories (and the interaction among them) is not treated.

In terms of reasoning strategies, notwithstanding that the implicit knowledge

layer, based on neural network representations, can provide forms of non mono-

tonic reasoning (e.g. based on similarity), such kind of similarity-based reason-

ing is currently not grounded on the mechanisms guiding the decision choices

followed, for example, by prototype or exemplars-based reasoning.

3.4. Vector-LIDA

Vector LIDA is a cognitive architecture employing, at the representational

level, high-dimensional vectors and reduced descriptions. High-dimensional vec-

tor spaces have interesting properties that make them attractive for represen-

tations in cognitive models. The distribution of the distances between vectors

in these spaces, and the huge number of possible vectors, allow noise-robust

representations where the distance between vectors can be used to measure the

similarity (or dissimilarity) of the concepts they represent. Moreover, these

high-dimensional vectors can be used to represent complex structures, where

each vector denotes an element in the structure. However, a single vector can

also represent one of these same complex structures in its entirety by imple-

menting a reduced description, a mechanism to encode complex hierarchical

structures in vectors or connectionist models. These reduced description vec-
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tors can be expanded to obtain the whole structure, and can be used directly

for complex calculations and procedures, such as making analogies, logical in-

ference, or structural comparison. Vectors in this framework are treated as

symbol-like representations, thus enabling different kind of operations executed

on them (e.g. simple forms of compositionality via vectors blending). Vector-

LIDA, encounters the same limitations of the other CAs since i) its agents are

not equipped with a general cross-domain knowledge and therefore can be only

used in very narrow tasks (their knowledge structure is either ad hoc build or ad

hoc learned). Additionally, this architecture does not address the problem con-

cerning the heterogeneity of the knowledge typologies. In particular its knowl-

edge level does not represent the common-sense knowledge components such as

prototypes and exemplars (and the related reasoning strategies). In fact, as

for CLARION, despite vector-representations allow to perform many kind of

approximate comparisons and similarity-based reasoning (e.g. in tasks such as

categorization), the peculiarity concerning prototype or exemplars based repre-

sentations (along with the the design of the interaction between their different

reasoning strategies) are not provided 10.

3.5. Attempts to Overcome the Knowledge Limits

The problem concerning the limited knowledge availability for agents en-

dowed with cognitive architectures has been recently pointed out in literature

[13] and some technical solutions for filling this knowledge gap have been pro-

posed. In particular the use of ontologies and of semantic formalisms has been

10In this respect, however an element that is worth-noting is represented by the fact that

the Vector-LIDA representational structures are very close to the framework of Conceptual

Spaces. Conceptual Spaces are a geometric knowledge representation framework proposed by

Peter Gärdenfors. They can be thought as a particular class of vector representations where

knowledge is represented as a set of quality dimensions, and where a geometrical structure

is associated to each quality dimension. They are discussed in detail in section 5. The con-

vergence of the Vector-LIDA representation towards Conceptual Spaces could enable, in such

architecture, the possibility of dealing with at least prototype and exemplars-based represen-

tations and reasoning, thus overcoming the knowledge homogeneity problem.
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seen as a possible solution for providing effective content to the structural knowl-

edge modules of the cognitive architectures. Some initial efforts have been done

in this sense11. In particular, within Mind’sEye program (a DARPA founded

project), the knowledge layers of ACT-R architecture have been semantically

extended with an external ontological content coming from three integrated se-

mantic resources composed by the lexical databases WordNet [26], FrameNet

[27] and by a branch of the top level ontology DOLCE [28] related to the event

modelling. In this case, the amount of semantic knowledge selected for the

realization of the Cognitive Engine (one of the systems developed within the

MindEye Program) and for its evaluation, despite by far larger w.r.t. the stan-

dard ad-hoc solutions, was tailored on the specific needs of the system itself.

It, in fact, was aimed at solving a precise task of event recognition trough a

video-surveillance intelligent machinery; therefore only the ontological knowl-

edge about the events was selectively embedded in it. While this is a reasonable

approach in an applicative context, still does not allow to test the general cog-

nitive mechanisms of a Cognitive Architecture on a general, multi faceted and

multi-domain, knowledge. Therefore it does not allow to evaluate strictu sensu

to what extent the designed heuristics allowing to retrieve and process, from a

massive and composite knowledge base, conceptual knowledge can be considered

satisfyicing w.r.t. the human performances.

More recent works have tried to completely overcome at least the size prob-

lem of the knowledge level. To this class of works belongs that one proposed by

Salvucci [29] aiming at enriching the knowledge model of the Declarative Mem-

ory of ACT-R with a world-level knowledge base such as DBpedia (i.e. the se-

mantic version of Wikipedia represented in terms of ontological formalisms) and

a previous one proposed in [30] presenting an integration of the ACT-R Declar-

11It is worth-noting that all of the attempts have been performed on ACT-R that seems

to be currently the available CA paying more attention to carefully constraint its knowledge

infrastructure to the insights coming from the results of the experimental cognitive science

w.r.t. the representation and reasoning procedures operating at the knowledge level.
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ative and Procedural Memory with the Cyc ontology [31] (one of the widest on-

tological resources currently available containing more than 230,000 concepts).

Both the wide-coverage integrated ontological resources, however, represents

conceptual information in terms of symbolic structures and encounter the stan-

dard problems affecting this class of formalisms: i) they are not well equipped to

deal with common-sense knowledge representation and reasoning (since approx-

imate comparisons are hard and computationally intensive to implement with

graph-like representations), and ii) the typology of encoded knowledge is biased

towards the “classical” (but unsatisfactory) representation of concepts in terms

of necessary and sufficient conditions ([24]). In other terms: these ontology-

based systems, if considered in isolation, only allow de facto, to represent (and

reason on) one part of the whole spectrum of conceptual information12. On the

other hand, the so called common-sense knowledge components (i.e. those that,

allow to characterize and process conceptual information in terms of prototypes,

exemplars or theories and described above) is largely absent. Common-sense

conceptual knowledge, however, is exactly the type of cognitive information cru-

cially used by humans for heuristic reasoning and decision making and therefore

represents a necessary aspect to be integrated in CAs aiming at providing an

explanatory role of some sorts in the science of mind.

It is worth-noting that some of the described limitations are partially over-

come by the above mentioned works, since the integration of such wide-coverage

ontological knowledge bases with the ACT-R Declarative Memory allows to pre-

12In concrete applications, in fact, the information usually used by adopting ontological

knowledge resources is that one concerning the taxonomical relations between concepts since

it based on necessary and sufficient conditions and allows to perform efficiently forms of au-

tomatic monotonic reasoning. The remaining common-sense characterization of concepts are

not modelled since, despite in the field of logic-oriented KR various fuzzy and non-monotonic

extensions of DL formalisms have been designed to deal with such aspects, various theoretical

and practical problems remain unsolved and, in general, an acceptable KR framework able

to provide a practically usable trade-off regarding language expressivity and complexity has

been not yet achieved [24].
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serve the possibility of using the common-sense conceptual processing mech-

anisms available in that architecture (e.g. prototype and exemplars based

categorization). Therefore, to a certain extent, dealing with the size prob-

lem also allows to address some aspects concerning the heterogeneity problem.

Still, however, remains the problem concerning the lack of the representation of

common-sense information to which such common-sense architectural processes

can be applied: e.g. a conceptual retrieval based on prototypical traits (i.e. a

prototype-based categorization) cannot be performed on such integrated onto-

logical knowledge bases if these symbolic systems do not represent at all the

typical information associated to a given concept (and, as we will see in more

detail in section 7, this phenomenon is largely majoritarian). In addition, as

already mentioned in the section 3.2, it remains not yet addressed the prob-

lem concerning the interaction, in a general and principled way, of the different

types of common-sense processes involving different representations of the same

conceptual entity.

In the light of the arguments presented above it can be argued, therefore, that

the current proposed solutions for dealing with the knowledge problems in CAs

are not completely satisfactory. In particular, the integrations with huge world-

level ontological knowledge bases can be considered a necessary solution for

solving size problem. It is, however, insufficient for dealing with the knowledge

homogeneity problem and with the integration of the common-sense conceptual

mechanisms activated on heterogeneous bodies of knowledge, as assumed in the

heterogeneous representational perspective.

In the next sections we outline three possible alternative solutions that, de-

spite being not yet fully developed are, in perspective, suitable to account for

both for the heterogeneous aspects in conceptualization and for the size prob-

lems. In doing so we will outline how they share the same insights about the

neural level of representation (adopted in most CAs because of its efficacy in

perceptual-based tasks). Namely, such approaches converge on the idea that

the problems affecting the knowledge level can be better addressed by focussing

on more abstract levels of representations w.r.t that one available in neural
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networks. In this perspective, the interesting aspect concerning neural repre-

sentations consists in the definition and development of transformation methods

allowing to pass from low-level representations to more abstract ones. As we

will show, such methods already exists and have been successfully employed

in the area of computational cognitive science in systems aiming at providing

a reconciled and unified view of the theories of concepts based on prototypes,

exemplars, and theory-like structures.

4. Semantic Pointers

The Semantic Pointers approach is a representational perspective currently

investigated in the context of the biologically inspired SPAUN architecture [32].

Semantic pointers architecture sees concepts as symbol-like vectorial represen-

tations that result from different kind of transformation processes of low-level

neural representations in further high-level representations that function to sup-

port cognitive processes like categorization, inference, and language use. The

core idea behind this approach is that the activity of a population of neurons

at any given time can be interpreted as representing a vector.

The SPAUN architecture, assuming this perspective, has been successfully

used to replicate three paradigmatic categorization studies concerning prototype-

based categorization, exemplars-based categorization and theory-theory based

categorization [33]. Such results show that the provided representational ap-

proach can account for different kinds of categorisation processes assumed in

the heterogeneous perspective. However, it is agnostic w.r.t. how such pro-

cesses interact each other in the case of multiple available representations for

the same conceptual entity. From the size perspective, on the other hand, this

approach has been currently exploited for representing the human-sized lexical

knowledge structured in the Wordnet taxonomy in terms of biologically plausible

and scalable neural network representations [34].

In this approach, the interpretation of neural representations as vectors is

obtained through different kind of transformation operations, namely: circular
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convolution, vector addition and involution [34]. In the circular convolution op-

eration two input neural populations, each representing a vector, are connected

to an intermediary population that projects to an output population a vector

that is the convolution of the two input vectors. The Vector addition operation

plays, on the other hand, the role of a superposition operator. In particular,

it allows multiple bindings to be stored in a single vector. Finally, the vec-

tor involution operation is an approximate inverse with respect to the circular

convolution. As reported by the authors ’the circular convolution, vector ad-

dition, and involution operations can be thought of as vector analogs of the

familiar algebraic operations of multiplication, addition, and taking the recip-

rocal, respectively’ [34]. In this sense, the Semantic Pointer perspective seems

to provide an effective set of operational tools to proceed from a lower level of

representation to another, more abstract, one.

Summing up: for what concerns the size problem, as mentioned, this ap-

proach has proven to be usable to neurally represent human-level lexical knowl-

edge. On the other hand, i.e. w.r.t. the heterogeneity problem, it represents

a more powerful, but still incomplete account, of the common-sense typicality-

based processes executable on conceptual representations. In particular: the

framework has been proven able to replicate the full spectrum of typicality

effects studied in human cognition including (and differently from the other

proposals reviewed) the theory-theory approach 13. However it still does not

provide any account concerning the dynamics of interaction and the harmo-

nization of the plethora of processes involving the conceptual representations

assumed to co-exist according to the heterogeneous hypothesis. Therefore, in

this sense, the same objection raised for the current state of development of the

13In this respect it is worth-noting that the methods employed by the Semantic Pointers Ar-

chitectures to provide an abstract interpretation of neural mechanisms and representation, are

completely compatible (and integrable) with some mechanisms provided by cognitive archi-

tectures dealing with the neural representations. For example: they can be easily reproduced

within the sub symbolic activation mechanisms of a cognitive architecture such as ACT-R.
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knowledge level of the standard CAs remains unanswered. As a consequence,

currently, also the explanatory power of the Semantic Pointer Architecture w.r.t.

the cognitive theories and the experimental results that it is able to replicate

is very limited (since the replication of such categorization experiments did not

lead to any kind of additional explanation of these, already known, phenomena).

This aspect represents a symptom that, in order to account for the interaction

of the heterogeneous mechanisms operating over different, but interlinked, rep-

resentations the focus on the neural level is, in some sense, unnecessary and can

be demanded to other classes of representations having the advantage of being

less opaque.

5. Conceptual Spaces as Intermediate Level

Conceptual Space [35] have been proposed by Peter Gärdenfors as an in-

termediate level of representation between the subsymbolic and the symbolic

ones. It has been argued that the integration of this level enables to overcome

some classical problems specifically related to the sub symbolic and symbolic

representations considered in isolation [36]. Conceptual Spaces are a geomet-

rical framework for the representation of knowledge14 and can be thought as

a metric space in which entities are characterized by quality dimensions [35].

To each quality dimension is associated a geometrical (topological or metrical)

structure. In some cases, such dimensions can be directly related to perceptual

mechanisms; examples of this kind are temperature, weight, brightness, pitch.

In other cases, dimensions can be more abstract in nature. In this setting,

concepts correspond to convex regions, and regions with different geometrical

properties correspond to different sorts of concepts [35]. Here, prototypes and

prototypical reasoning have a natural geometrical interpretation: prototypes

correspond to the geometrical centre of a convex region (the centroid). Also

14In the last fifteen years, such framework has been employed in a vast range of AI appli-

cations spanning from visual perception [37] to robotics [38], from question answering [39] to

music perception [40] (see [41] for a recent overview).
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exemplars-based representation can be represented as points in a multidimen-

sional space, and their similarity can be computed as the intervening distance

between each two points, based on some suitable metrics (such as Euclidean

and Manhattan distance etc.).

Recently some available conceptual categorization systems, explicitly as-

suming the heterogeneous representational hypothesis and coupling Conceptual

Spaces representations and ontological knowledge bases, have been developed.

For our purposes, we will consider here the DUAL PECCS system [42]: such

system has been integrated with available CAs by explicitly designing the flow of

interaction between the common-sense, non-monotonic, categorization strategies

(based on prototypes and exemplars and operating on conceptual spaces repre-

sentations) and the standard deductive processes (operating on the ontological

conceptual component). The harmonization regarding such different classes of

mechanisms has been devised based on the tenets coming from the dual pro-

cess theory of reasoning (see section 7). Additonally, in this system, also the

flow of interaction occurring within the class of non monotonic categorization

mechanisms (i.e. prototypes and exemplars-based categorisation) has been de-

vised and is dealt with at the Conceptual Spaces level. This latter aspect is of

particular interest in the light of the multifaceted problem concerning the het-

erogeneity of the encoded knowledge. In fact, since the design of the interaction

of the the different processes operating with heterogeneous representations still

represents a largely unaddressed problem in current CAs, this system shows the

relative easiness that the Conceptual Spaces framework provides to naturally

model the dynamics between prototype and exemplars-based processes.

For what concerns the size problem, the possible grounding of the Concep-

tual Spaces representational framework with symbolic structures enables the

integration with wide-coverage knowledge bases such CYC (as provided, for

example, in DUAL PECCS [42]), DBpedia or similar.

An additional element of interest concerning the advantages provided by in-

troducing the adoption of Conceptual Spaces as intermediate representational

level in CAs regards its capability of addressing a classical problem in formal
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conceptualisation: namely the problem of reconciling compositionally and typ-

icality effects (for more details on this issue we remind to [43]) 15. This aspect

does not affect, per se, the size problem but that one concerning the knowledge

heterogeneity (since it assumes the existence of typicality-based representations)

and has been shown to be problematic for symbolic/logic-oriented approaches

[45]) as well as, according to the well-known argument by Fodor and Phylishin

[46], for classical connectionist approaches. On the other hand this aspect can

be formally handled by recurring to Conceptual Spaces (as shown in [43, 47]).

Interestingly enough, this problem can also be treated by the Semantic Pointers

perspective (once, in this framework, the more abstract level of representation

is reached through the transformation operations mentioned above). The simi-

larity between the two approaches is another indirect suggestion that the neural

level of representation, per se, can be considered not directly necessary to deal

with the problematic aspects affection the conceptual representation and pro-

cessing capabilities in CAs.

Summing up: endowing CAs with Conceptual Spaces seems, in principle,

a promising way to deal with both the size and the heterogeneity problems of

conceptual representations. There is, however, still an open problem to explicitly

face for such approach. In particular, for what concerns the size issue, there is

15Broadly speaking this aspect regards the problem of dealing, in a coherent way, with the

compositionality of prototypical representations. According to a well-known argument ([44];

[45]), prototypes are not compositional. In brief, the argument runs as follows: consider a

concept like pet fish. It results from the composition of the concept pet and of the concept

fish. However, the prototype of pet fish cannot result from the composition of the prototypes

of a pet and a fish: a typical pet is furry and warm, a typical fish is grayish, but a typical

pet fish is neither furry and warm nor grayish. The possibility of explaining, in a coherent

way, this type of combinatorial and generative phenomenon regards a crucial aspect of the

conceptual processing capabilities in human cognition and concerns and some crucial high-level

cognitive abilities such as that ones concerning conceptual composition, metaphor generation

and creative thinking. Dealing with this problem requires the harmonization of two conflicting

requirements in representational systems: the need of syntactic, generative, compositonality

(typical of logical systems) and that one concerning the exhibition of typicality effects.
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still lack of knowledge bases encoded in terms of Conceptual Spaces comparable

with the sizes of the ontological KB. Some initial attempts to automatically

learn and encode wide-coverage Conceptual Spaces knowledge bases by starting

by linguistic resources such as BabelNet16 and ConceptNet17 have been done

[48, 49], but still there is a huge gap to cover and this aspect requires further

investigations.

6. Neural-Symbolic Integrations and Extended Declarative Memories

As mentioned in section 3.5. there are different attempts that have been de-

veloped to implicitly address the size and the knowledge heterogeneity problems

in CAs. Notably such attempts, that share the same limitations and possibilities

of the others, have been developed within an architecture such as ACT-R that

presents an hybrid approach to conceptual representation and reasoning combin-

ing sub-symbolic based activation mechanisms, operating on classical symbolic

structures, and rule based representational structures (see section 3.2). Since

the current state of the art achieved by the works done on this CA, and the

possibile future developments, have been already mentioned in section 3.5, we

focus here is showing how the underlying assumptions adopted by ACT-R is

compliant with both the Semantic Pointers Perspective and with the approach

claiming for the advantages provided by an intermediate Conceptual Spaces

representation connecting sub-symbolic and symbolic levels. W.r.t. the first

approach, in particular, it has been showed how the integration of ACT-R with

a connectionist architecture allows to learn without any supervision, associa-

tions in object recognition between percepts and categorical labels. [50]. The

way in which such elements are integrated in fully compliant with the Semantic

Pointer perspective and is based on the shared assumption that leveraging and

abstracting on more high-level forms of representation is a necessary element

to produce advancements that cannot be achieved by operating exclusively at

16http://babelnet.org/
17http://conceptnet5.media.mit.edu/
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the neural level. W.r.t. the Conceptual spaces approach, on the other hand,

the neuro-symbolic integration allows to deal with the the classical problem

concerning the need of reconciling compositionally and typicality effects in con-

ceptualization. The approach developed in ACT-R, in fact, belongs to the class

of the so-called neo-connectionist approaches that, differently from the classical

connectionist systems, are able to deal with limited forms of compositionality

in neural networks (see [51] on this point).

Interestingly enough, there are also attempts that have shown how the neuro-

symbolic approach adopted by ACT-R can be used as an intermediate functional

level in a compex system combining different Cognitive Architectures, such SO-

DAS [52] and SOAR, to which are demanded different cognitive tasks (e.g. the

high level symbolic and knowledge-drive reasoning in SOAR and the low-level

perceptual one to SODAS) that are more naturally dealt with in different en-

vironments [53]. This idea is somehow similar to that one of using Conceptual

Spaces an intermediate level of representations since, from a knowledge pro-

cessing perspective, the types of tasks that such hybrid architecture is able to

account are essentially the same.

ACT-R has been also enabled to generalize over perceptual transductions by

applying fine-grained models of the world to concrete scenarios. As already dis-

cussed, in order to fulfill this goal, ACT-R needs to properly encapsulate those

models – or ontologies – and exploit them for pattern recognition and high-level

reasoning. Since ACT-R declarative module supports a relatively coarse-grained

semantics based on slot-value pairs, and the procedural system is not optimal to

effectively manage complex logical constructs (e.g., 2nd order), a specific exten-

sion has been designed to make ACT-R suitable to fulfill knowledge-intensive

tasks. Accordingly, the work outlined in [13] proposed an expansion of ACT-R

with SCONE [54]. SCONE is an open–source knowledge-base system intended

for use as a component in many different software applications: it provides a

LISP-based framework to represent and reason over symbolic common–sense

knowledge. Unlike most diffuse KB systems (e.g. ontologies), SCONE is not

based on Description Logics [55]: its inference engine adopts marker–passing
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algorithms [54] (originally designed for massive parallel computing) to perform

fast queries at the price of losing logical completeness and decidability. In par-

ticular, SCONE represents knowledge as a semantic network whose nodes are

locally weighted (marked) and associated to arcs (wires18) in order to optimize

basic reasoning tasks (e.g. class membership, transitivity, inheritance of prop-

erties, etc). The philosophy that inspired SCONE is straightforward: from

vision to speech, humans exploit the brain’s massive parallelism to fulfill all

recognition tasks; if we want to build an AGI system that is able to deal with

the large amount of knowledge required in common-sense reasoning, we need

to rely on a mechanism that is fast and effective enough to simulate parallel

search. Shortcomings are not an issue since humans are not perfect inference

engines either. Accordingly, SCONE implementation of marker–passing algo-

rithms aims at simulating a pseudo-parallel search by assigning specific marker

bits to each knowledge unit. For example, if we want to query a KB to get

all the parts of cars, SCONE would assign a marker M1 to the A-node car

and search for all the statements in the knowledge base where M1 is the A-wire

(domain) of the relation part-of, returning all the classes in the range of the

relation (also called ‘B-nodes’). SCONE would finally assign the marker bit M2

to all B-nodes, also retrieving all the inherited subclasses19. The modularization

and implementation of an ontology with SCONE allows for an effective formal

representation and inferencing of core ontological properties of world entities.

Note that the integration of SCONE into ACT-R respects the requirements of

the cognitive architecture, especially in terms of limited-capacity buffers con-

straining the communication between a dedicated SCONE module and ACT-R’s

default modules. Also, the SCONE marker-passing algorithms are comparable

to ACT-R spreading activation, leaving open the possibility of a deeper in-

tegration of the two frameworks in future work. The integration of ACT-R

18In general, a wire can be conceived as a binary relation whose domain and range are

referred to, respectively, as A-node and B-node.
19We refer the reader to [54] for details concerning marker–passing algorithms.
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with SCONE represents, in other words, a suitable way to connect architec-

tural mechanisms to a symbolic knowledge base. W.r.t. the external extensions

provided with wide-coverage KBs (and discussed in section 3.5), however, such

approach still needs to face the problem concerning the size aspect (since the

SCONE KBs are not comparable with Cyc or DbPedia). For what concerns

the heterogeneity problem, on the other hand, such integration seems to pro-

vide a straightforward way to combine common-sense reasoning operating on

symbolic knowledge structures. Still, however, the problem concerning the in-

tegration of heterogeneous processes acting on different bodies of knowledge is

not addressed.

Summing up: all these presented approaches can be seen as alternative, but

compliant, solutions in order to develop a more comprehensive (and constrained

to human cognition) account to conceptual representation and processing mech-

anism in Cognitive Architectures.

As we will show in the next section, a further axis that could be considered

by the current CAs in order to reconcile, under a unified umbrella, both the size

and and the knowledge heterogeneity problems is represented by the so called

dual process hypothesis of reasoning and rationality.

7. A Dual Process Approach for the Heterogeneous Integration of

Cognitive Mechanisms

The approaches presented in the previous sections converge on the insight

that the problem concerning the design of the interaction (and integration) of

the heterogeneous processes operating with different representations (i.e. the

heterogeneity problem) can be attacked in a more efficacious and natural way

by operating at more abstract levels of representation than that one proposed

by connectionist representations.

In our opinion an additional element that is worth to consider, in current and

future research, in order to determine, at the architectural level, the interaction

strategies between different types of mechanisms operating on heterogeneous
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representations, is represented by the dual process hypothesis of reasoning and

rationality. According to dual process theories ([56], [57], [58]) two different

types of cognitive processes and systems exist, which have been called respec-

tively System(s) 1 and System(s) 2.

Systems 1 processes are automatic. They are phylogenetically older and

shared by humans and other animal species. They are innate and control in-

stinctive behaviors, so they do not depend on training or particular individual

abilities and, in general, they are cognitively undemanding. They are associa-

tive and operate in a parallel and fast way. Moreover, Systems 1 processes are

not consciously accessible to the subject.

Systems 2 processes are phylogenetically recent and are peculiar to the hu-

man species. They are conscious and cognitively penetrable (i.e. accessible

to consciousness) and based on explicit rule following. As a consequence, if

compared to Systems 1, Systems 2 processes are sequential and slower, and

cognitively demanding. Performances that depend on Systems 2 processes are

usually affected by acquired skills and differences in individual capabilities.

The dual process approach was initially proposed to account for systematic

errors in reasoning. Such errors (consider, e.g., the classical examples of the

selection task or the conjunction fallacy) should be ascribed to fast, associative

and automatic type 1 processes, while type 2 is responsible for the slow and

cognitively demanding activity of producing answers that are correct concerning

the canons of normative rationality.

In general, many aspects concerning of the psychology of concepts have

presumably to do with fast, type 1 systems and processes, while others can be

plausibly ascribed to type 2. In particular, the ability to make explicit, high-level

inferences involving conceptual knowledge, and capacity to justify them, can be

considered as a type 2 process. While, on the other hand, the common-sense

mechanisms operating with typical representations (e.g. prototype, exemplars

or theory-based categorization) can be considered type 1 processes.

A possibile way to evaluate the importance of dual process strategies in

knowledge processing can be provided by testing to what extent an AI system
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designed with this perspective has a “common knowledge about the world that

is possessed by every schoolchild and has the methods for making obvious in-

ferences from this knowledge” [59]: such common-sense based evaluation task

is known to be on of the grand challenges of AI and Cognitive Modelling in

general [60]. In doing so we can account for the importance of the dual process

approach by analysing the results obtained by the system by executing S1 or

S2 processes alone or in combination.

By following the general suggestions presented in [61] we tested the DUAL-

PECCS categorisation system (see section 5), integrated with the ACT-R mech-

anisms, in a conceptual categorization task very similar to the psychological test

known as “Word Reasoning” 20. For human subjects, the Word Reasoning task

consists in identifying a concept based on one to three clues. The testee might

be told ‘You can see through it’ as a first clue; ‘It is square and you can open

it’, and so on. The processing required by a Word Reasoning items goes be-

yond retrieval because the testee has to integrate the clues and choose among

alternative hypotheses. Unfortunately, as reported by [61], the standard specific

questions provided for this task in the Wechsler Preschool and Primary Scale of

Intelligence are proprietary. Nonetheless, the general structure of each sentence

is public. For this purpose we have therefore re-used a dataset composed of 112

linguistic descriptions (corresponding to very simple riddles) designed by a team

of linguists and neuroscientist in the frame of a research project investigating

neural correlates of lexical processing and already used for previous comparisons

between humans and systems performances 21 [39].

Such descriptions exhibit a structure similar to that of the Word Reasoning

task: on average, no more than 3 cues are present in each riddle. An example of

20For this experiment the system relies on a Conceptual Spaces KB of 300 concepts, exe-

cuting S1 processes, integrated with the corresponding classes in the Open Cyc ontology via

Wordnet IDs (see [42] for the details abut the integration). The S2 processes are operated

on the ontological knowledge base and work as control mechanism w.r.t. the categorisation

results provided by type 1 processes which are non monotonic in nature.
21The full list of descriptions is publicly available at: http://goo.gl/EYJozw.
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such descriptions is “The mice hunter with whiskers and long tail”, where the

expected category to be retrieved was cat, and in particular its representation

corresponding to the “prototype of cat”; conversely, a description such as “The

felin mice hunter without fur” was expected to lead as answer to “exemplar

of canadian-sphynx”. The expected categorical targets represent a gold stan-

dard, since they correspond to the results provided by 30 human subjects in a

psychological experimentation and already described and presented elsewhere

[62, 42].

For such descriptions we have recorded the categorization capabilties of the

system by analyzing: i) when the expected categorical target is obtained by

S1 processes in isolation ii) which role is played by the S2 types of processes

iii) whether the S2 types of processes considered in isolation would have been

able to provide the same of better results w.r.t. the S1 processes considered

in isolation. The test of the efficacies of S2 types of processes in isolation (the

third condition mentioned above) has been executed by quering large ontological

knowledge bases such as Cyc [31] and DBPedia. The differences between the

two systems are reported as well. For querying both Cyc and DBPedia we have

manually extracted the information from the text and have transformed then

in SPARQL queries. For example: the description ”A big, black and white sea

bird that swims and cannot fly” corresponds to the following SPARQL query in

DbPedia (provided here with a N3 notation to favour the readability) 22

SELECT DISTINCT ? animal

WHERE {? animal

dbpedia−owl : c l a s s dbpedia : Bird ;

dcterms : s u b j e c t ? s1 ;

dcterms : s u b j e c t ? s2 .

? page dbpedia−owl : fami ly ? animal .

22The complete list of queries is available: https://goo.gl/fnwwqO.
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FILTER( conta in s ( b i f : lower ( s t r (? page ) ) , ” white ”)

| | conta in s ( b i f : lower ( s t r (? page ) ) , ” b lack ” ) ) .

FILTER( conta in s ( b i f : lower ( s t r (? s1 ) ) , ” f l y ”)

| | conta in s ( b i f : lower ( s t r (? s1 ) ) , ” f l i g h t ”)

&& conta in s ( b i f : lower ( s t r (? s1 ) ) , ” l e s s ” ) ) .

FILTER( conta in s ( b i f : lower ( s t r (? s2 ) ) , ” sea ” ) ) .

Table 1: Experimental results assessing the usefulness of the S1-S2 integration processes in

a categorisation task w.r.t. the S1 or S2 processes considered in isolation.

Cases where S2 confirmed the category returned by S1 99.0% (111/112)

Cases where S1 (alone) returned the expected category 77.7% (87/112)

Cases where S2 (Cyc) alone returned the expected category 1.6% (2/112)

Cases where S2 (DbPedia) alone returned the expected category 2.7% (3/112)

The results obtained by this experimentation are reported in table 1 23.

7.1. Discussion

An interesting aspect revealed by this analysis is that, the tested DUAL-

PECCS system (explicitly based on both a heterogeneous representational hy-

pothesis and on the dual process assumption), results to be able to categorise,

thanks to the S1 component, stimuli with typical, though ontologically inco-

herent, descriptions. An example of such a case is the result obtained for the

stimulus “The big fish that eats plankton”. In this case the expected proto-

typical answer is whale. However, whales are mammals, not fishes. In the

adopted system, the S1 component returns the “whale” answer by resorting to

23The results for the S1 categorization performance cover the full pipeline of the DUAL-

PECCS system including the information extraction step from the natural language. Therefore

some errors are due to the difficulty of this step. Without IE step the performance of the S1

system increase to the 89.3%.
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the prototypical knowledge. However, when then the output of S1 is checked

with S2 processes against the Open Cyc ontology (the symbolic KB used in

DUAL-PECCS), an inconsistency is detected and explained as follows:

subClassOf ( ( cetacean ) , ( p l a c e n t a l mammal) )

subClassOf ( (mammal) , (warm−blooded animal ) )

subClassOf ( ( newClass ) , ( whale ) )

type ( newIndiv , ( newClass ) )

subClassOf ( ( newClass ) , ( f i s h ) )

d i s j o in tWith ( (warm−blooded animal ) , ( cold−blooded animal ) )

subClassOf ( ( f i s h ) , ( cold−blooded animal ) )

subClassOf ( ( p l a c e n t a l mammal) , (mammal) )

subClassOf ( ( whale ) , ( cetacean ) )

Laconic Explanation : Class ( whale ) i s not ( cold−blooded animal )

but i s (warm−blooded animal )

As shown in the example above, the S2 processes activated by the ontological

component provides, when tested on the ontological model, the whole logical

path leading to the inconsistency of the S1 result (it also provides a summary

of the complete explanation, a laconic explanation, that is easier to read and

understand for human users). Due to the detected inconsistency, the first result

of S1 is withdrawn and the second best result provided by S1 is tested. As the

consistency of the second S1 result in (Atlantic Salmon in this case) is tested

against the ontology and results compliant with the ontological model, then this

solution is returned by the S2 component. This example shows in which cases

the cycle of interaction between S1 and S2 processes can lead to revised and

interesting conclusions.

An additional datum coming out from this evaluation is that S1 mostly pro-

vided an output coherent with the model in the S2 component (there is only

one case, i.e. the one described above, where S2 component corrects the out-
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put of S1). This datum is of interest in that, although it is postulated that

the reasoning check performed by S2 is beneficial to ensure a refinement of the

categorisation process, in this experimentation S2 did not reveal any significant

improvement to the output provided by S1. This is, on the other hand, in line

with the assumption that most of the common-sense answers can be success-

fully addressed, in the heterogeneous perspective, by the typical representational

components adopting S1 processes. In addition, this datum can be additionally

explained by considering the fact that the adopted dataset contains, as above

mentioned, exclusively common-sense linguistic descriptions to be categorized.

In cases of datasets with a different type of descriptions and involving, for ex-

ample, the categorization of items based on necessary and sufficient condition

(e.g. as it happens in the mathematical domain) our prediction is that the S2

processes operating on classical ontological representation could categorize very

well the correct answer since, in this case, the activated reasoning process would

correspond to a very simple form of deductive categorization that has a different

nature w.r.t. the S1 processes.

Finally, the current analysis showed that the S2 knowledge components (con-

sidered in isolation) are not able de facto to provide answers to most of the pro-

vided common-sense queries. The completely inadequate, or absent, answers

provided by the tested large-scale ontological systems (Cyc and DbPedia) is a

result compliant with the problems mentioned in section 3.5 and affecting this

class of ontological structures (namely the fact that, due to the tarkian-like se-

mantics assumed by the underlying formalims, the common-sense information

is largely absent in such representations). In other words, this is a symptom of

the fact that such representational frameworks need to be integrated with other

frameworks in order to able to represent and reason on common-sense infor-

mation. In general, the results obtained by this preliminary analysis suggests

that, for common-sense reasoning and retrieval, the improvement provided by

the adoption of the S2 mechanisms operating on classical symbolic structures is

very limited.
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On the other hand, it is also clear, however, that it is not possibile to explain

the entire cognition of a cognitive agent exclusively in terms of S1 processes.

Therefore, given the importance of the dual process approach in explaining how

to harmonize and integrate different kind of reasoning processes assumed to co-

exist in a heterogeneous representational perspective, additional investigations

are needed.

In particular, in our opinion, such analyses should investigate: i) in which

cases the S2 processes play a more relevant role w.r.t. that one proposed here

ii) in which cases the S2 processes are not at all evoked by a cognitive system,

since the need to react in real time is more pressing. Since there is not a

clear answer to such questions, such aspects will involve, in our opinion, the

future research agenda of both the cognitive psychology and cognitive (artificial)

systems research.

8. Conclusions

In this paper we identified and characterized two main aspects concerning

the knowledge level of the current CAs, namely the size and the homogeneous

typology of the encoded knowledge. We have argued that, on the basis of the

results coming from the experimental research in cognitive science, such aspects

need to be addressed in order to structurally bind the knowledge leve of the

Cognitive Architectures to the constraints and the challenges faced by human

cognition in everyday knowledge processing tasks. Additionally, we have argued

that these issues represent, from a technological perspective, a crucial challenge

to address in order to be able to build cognitive agents able to operate and make

decisions in general scenarios by exploiting a plethora of integrated reasoning

mechanisms. Based on these assumption we have provided an analysis of the

most relevant CAs in the state of the art: we showed how all of them encounter,

at different levels of granularity, some problems in dealing, jointly, with the

above mentioned aspects. In the final part of the paper we have presented

three different, but compliant, approaches that converge on the insight that,
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in order to address the problems affecting the knowledge level in CAs, the

focus of attention should be posed on more abstract level of representation

w.r.t. that one addressed by neural representations (the analyzed approaches

are: the Semantic Pointers approach; the approach based on Conceptual Spaces

as intermediate representational level; and the novel Neuro-Symbolic Approach

embedded in ACT-R).

Finally, since a crucial problem in the heterogeneous representational per-

spective is represented by the harmonization of different kinds reasoning pro-

cesses, we have preliminary investigated the usefulness of the dual process ap-

proach of reasoning by analysing the results obtained by the DUAL-PECCS

system in a categorization tasks. The obtained results suggest that, while the

general heuristic provided by the dual approach represents a suitable way to in-

tegrate different reasoning mechanisms, it is still not clear (nor from a theoretical

and from an applicative point of view) if both the dual process mechanisms are

always activated. Therefore it results still not clear whether the hypothesized

dual processes are worth considering as a general architectural mechanism (and,

as such, worth implementing in the CAs processes operating on the conceptual

structures of a cognitive agent) or as a local mechanisms, activated under certain

circumstances. As above mentioned, an answer to this question will require a

joint investigation effort of both the cognitive psychology an the cognitive mod-

elling community.
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