
Journal of Computer Languages 65 (2021) 101054

H
R
G
a

b

A

K
P
P
P
S

1

M
a
b
R
a
o
b
l
d
a
R
n
e

c
t
t
c
c
c
c

d

h
R
A
2

Contents lists available at ScienceDirect

Journal of Computer Languages

journal homepage: www.elsevier.com/locate/cola

igh-level and efficient structured stream parallelism for rust on multi-cores
icardo Pieper a,1, Júnior Löff a,1, Renato B. Hoffmann a,1, Dalvan Griebler a,b,∗, Luiz
. Fernandes a

School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
Laboratory of Advanced Research on Cloud Computing (LARCC), Três de Maio Faculty (SETREM), Três de Maio, 98910-000, Brazil

R T I C L E I N F O

eywords:
rogramming language
arallel programming
arallelism abstractions
tream processing

A B S T R A C T

This work aims at contributing with a structured parallel programming abstraction for Rust in order to provide
ready-to-use parallel patterns that abstract low-level and architecture-dependent details from application
programmers. We focus on stream processing applications running on shared-memory multi-core architectures
(i.e, video processing, compression, and others). Therefore, we provide a new high-level and efficient parallel
programming abstraction for expressing stream parallelism, named Rust-SSP. We also created a new stream
benchmark suite for Rust that represents real-world scenarios and has different application characteristics and
workloads. Our benchmark suite is an initiative to assess existing parallelism abstraction for this domain, as
parallel implementations using these abstractions were provided. The results revealed that Rust-SSP achieved
up to 41.1% better performance than other solutions. In terms of programmability, the results revealed that
Rust-SSP requires the smallest number of extra lines of code to enable stream parallelism.
. Introduction

Rust is an open-source system programming language sponsored by
ozilla. It provides memory safety, performance, reliable concurrency,

nd high-level features for productivity. It was built using some of the
est features found in other well-established programming languages.
ust also introduces unique concepts such as ownership, borrowing,
nd lifetimes, that allow Rust to make memory safety guarantees with-
ut needing the extra overhead of a garbage collector. The language has
een popularized in recent years and used in production code for fast,
ow-resource, and cross-platform system applications as well as web
evelopment [1]. Regarding parallelism, Rust has an active community
nd even originally written in C++ solutions completely migrated to
ust language such as Rayon [2]. However, since Rust is a relatively
ew language, many research opportunities remain open in the field of
fficient and abstract parallelism.

Advances in technology gave place to applications whose increased
omputational complexity may demand parallel programming in order
o achieve feasible time performance. However, parallelism is not a
rivial endeavor. Programmers must deal with complex error-prone
oncepts such as thread creation and management, synchronization,
ommunication mechanisms, load balancing, data dependency, criti-
al or mutual exclusive data access, etc. This is more relevant when
onsidering the main programming paradigm remains the sequential

∗ Corresponding author at: School of Technology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
E-mail addresses: ricardo.pieper@edu.pucrs.br (R. Pieper), junior.loff@edu.pucrs.br (J. Löff), renato.hoffmann@edu.pucrs.br (R.B. Hoffmann),

alvan.griebler@pucrs.br (D. Griebler), luiz.fernandes@pucrs.br (L.G. Fernandes).
1 Authors have contributed equally to this work.

one [3–5]. Therefore, parallelism abstractions are crucial to increase
code productivity and enable high performance. One such way to
provide parallel abstractions is employing structured programming
solutions [5,6]. They provide ready to use patterns or structures that
represent recurrent situations commonly found in a specific study
domain. Often, these structures are provided by experts in the field.
This way, the general purpose developer can leverage the expertise
behind the structured parallel programming provider simply by instan-
tiating the correct API (Application Programming Interface). In fact,
this approach is common in C++ language. Some examples are Intel
TBB [7], Microsoft PPL [8], Parallel STL [9], among others.

Stream processing applications can be found in several fields of
study. Some common examples are signal processing, audio, image, and
video filtering but it can also represent applications for cryptography,
data compression, etc. They are characterized by a continuous flow of
data through a sequence of independent processing stages or filters.
In fact, the stream processing paradigm has been studied in C++
for several years [10–12]. Some researches were conducted to create
a language specific to this domain [11,13]. In Rust, parallel stream
processing can be represented in the standard library using a stream of
futures. Unlike the structured approach, in Rust, the programmer must
compose this stream specifying communication directives, execution
flow, and thread creation. To effectively execute this stream, a stream
of futures execution engine such as Tokio [14] must be used.

Aiming to leverage the advantages of the structured parallel pro-
gramming, we proposed Rust-SSP (Rust Structured Stream Parallelism)
ttps://doi.org/10.1016/j.cola.2021.101054
eceived 12 April 2021; Received in revised form 18 June 2021; Accepted 12 July
vailable online 31 July 2021
590-1184/© 2021 Elsevier Ltd. All rights reserved.
2021

https://doi.org/10.1016/j.cola.2021.101054
http://www.elsevier.com/locate/cola
http://www.elsevier.com/locate/cola
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cola.2021.101054&domain=pdf
mailto:ricardo.pieper@edu.pucrs.br
mailto:junior.loff@edu.pucrs.br
mailto:renato.hoffmann@edu.pucrs.br
mailto:dalvan.griebler@pucrs.br
mailto:luiz.fernandes@pucrs.br
https://doi.org/10.1016/j.cola.2021.101054

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

w
r
a
p
b
t
p
𝐹
i
t
t
p

2

o
p
t
p
m

2

s
b
b
t
t
d
a
l
l

in [15]. It provides a pipeline skeleton that abstracts details of parallel
stream processing implementation. This work extends this previous
work by deeply discussing and evaluating Rust-SSP compared to other
available options. Due to the absence of a benchmark suite to conduct
the experiments, our goal is to provide a new benchmark suite that
represent different scenarios and workload to assess parallel program-
ming abstractions. This initiative will help other researchers to improve
and evolve their works, as benchmarks become a baseline to assess
overheads and optimizations. Our contributions are summarized in the
following:

• A high-level, productive, and efficient parallel programming ab-
straction for expressing multi-core parallelism on Rust language.

• A new benchmark suite with different stream processing applica-
tion workloads and parallel programming abstractions.

• A set of experiments evaluating the feasibility of Rust-SSP, Rayon,
Tokio, Pipeliner, and standard Threads concerning performance
and programming aspects.

The rest of this paper is organized as follows. Section 2 discusses
the necessary background on structured parallel programming and
previous related works. Then, Section 3 explains details of our Rust-SSP
solution for structured stream parallelism. The stream processing ap-
plications benchmark suite and workloads were presented in Section 4.
Subsequently, Section 5 presents a performance evaluation of the par-
allelized applications as well as discusses programmability aspects of
each parallel programming interface. Finally, Section 6 concludes the
work and discusses possible future works.

2. Background

In this section we briefly explain the structured parallel program-
ming paradigm and its distinguished importance to the future of par-
allel programming. Then, we discuss the Rust programming language
advances and address recent research works and community driven
tools for parallel programming.

2.1. Structured parallel programming

Parallel programming is often a difficult task [16,17]. Program-
mers must deal with error-prone complex concepts such as task dis-
tribution, communication mechanisms, synchronization, thread man-
agement, and others. Incorrect implementations of parallelism may
introduce deadlocks and data races. Also, inefficient implementations
may yield limited scalability. Moreover, the non-deterministic behavior
of parallel programs makes them harder to reason about when com-
pared to sequential programs. Operations often do not execute in the
same order and similar tasks may take different amounts of time to
execute. Such programs may become complex and hard to debug or
maintain. This problem is even more relevant considering application
developers often do not specialize in parallel programming techniques.
They are usually concerned with algorithmic solutions of their own
specialization field rather than parallelism implementation details. On
the other hand, application developers still should be able to easily
achieve good performance.

Sequential programs are simpler to reason about since they often
run deterministically. It always performs the same operations in the
same order. Authors of [16,17] proposed pattern-based methods to
bring some characteristics of serial programming into parallel program-
ming. This way, they can help application developers understand their
parallel code better since the main programming paradigm remains the
sequential one [3]. McCool et al. [16] also argue that such techniques
must enable programs to scale in performance as the number of cores
grows. Thus, such techniques would make parallel code benefit from
future hardware improvements.

Adopting a structured approach to parallel programming is a com-

mon solution to help abstract parallel programming complexity [16]. m

2

In fact, several C++ parallel programming interfaces do exactly that.
Some examples are FastFlow [3], Intel TBB [7], Microsoft PPL [8],
Parallel STL [9], and others. They employ parallel patterns as a way
to codify commonly recurring strategies for dealing with specific par-
allel programming problems. The idea is for the developer to easily
reuse and compose these patterns which are typically developed by
experts in the field. The responsibility for the lower-level parallel
details falls upon the pattern provider. For the high-level programmer,
all he needs to understand is the pattern implementation semantics
and its behavior and implications. There is no need to learn about
internal communication protocols, synchronizations or load balancing
schedulers.

Parallel patterns have two parts, high-level semantics and lower-
level implementation. Semantics define how and when a parallel pat-
tern can be used for a specific algorithm as well as data dependencies
and possible limitations. For example, common parallel patterns used
for data parallelism are Map and Reduce. Map is a parallel pattern in
which a function is applied over a list of independent items, possibly
in parallel. Reduce combines all items from a list into a single output
using an associative binary function. With this semantic information,
a high-level programmer is able introduce parallelism without getting
involved with low-level parallel details. Besides, the responsibility for
achieving efficient parallelism performance is passed to the parallel
pattern and its provider. Many solutions, such as high-level parallel
libraries and domain-specific languages, can provide its own parallel
pattern version, which may implement different strategies and op-
timizations. Indeed, parallel patterns may vary drastically between
different providers since they may choose different algorithms, lock
mechanisms, load balancing, memory optimizations, and others.

In the field of stream processing, the most important parallel pat-
terns are Farm and Pipeline [6]. Farm has a scheduler called emitter,

orker replicas, and a collector that gathers results from the worker
eplicas. A Pipeline is built with a sequence of stages that perform as
n assembly line, where each stage processes a different task/item in
arallel. A Pipeline is defined as 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒(𝐹0, 𝐹1,…) and is composed
y a set of independent sequential processing filters 𝐹𝑛 that perform
heir computations on different stream data items. There is a direct
roducer–consumer dependency where 𝐹𝑛 always takes input data from
𝑛−1. A pipeline can be linear or non-linear. A non-linear pipeline

s a regular pipeline that has at least one of its stages replicated
o increase the degree of parallelism. For the purpose of this work,
he pipeline is employed as the parallel pattern to abstract stream
rocessing applications.

.2. Rust in prior works

This section of the paper has the goal to provide a quick overview
ver important advances towards Rust ecosystem. In Section 2.2.1 we
resent a summary of some works that aim at helping to consolidate
he fundamentals for Rust programming language. In Section 2.2.2 we
rovide a discussion about parallelism in Rust, where we review the
ost used parallel programming abstractions.

.2.1. Rust overall advances
According to the authors in [18], there is a longstanding barrier

eparating programming languages: safety vs. control. The former is
ased in rigorous type systems for statically avoiding many classes of
ugs. The latter allows the access to the ‘‘bare metal’’ for exploiting
he maximum performance of the underlying hardware. At one end of
he spectrum, we have languages like Java, that enforce safety to the
etriment of performance. At the other end, languages like C and C++
re standard system languages when it comes to performance, but offer
ittle safety guarantees. Rust was proposed as an attempt to shorten this
ongstanding barrier. The main goal is to offer a strong type system and

emory safety guarantees without giving away too much performance.

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

m
T
a
t
c
T
v
T
R
a
s
s

2

l
p
b
f
C
R
o
o
i
n
p

r
t
m
I
i
e
p
c
e
c

c
r
i
i
t
p
o

[
f
c
n
o
a
m
t

i
f
t
f
o
e
c

a
c

Over the past years, the open-source Rust community has conducted
any researches for improving core programming language features.
he RustBelt project [19] provides a formal machine-checked evalu-
tion of Rust’s safety claims. In other words, the correctness of Rust’s
ype system, borrowing mechanisms, ownership features, lifetimes, and
oncurrency is being investigated to build a formal foundation for Rust.
he authors from [20] presented a new technique for specifying and
erifying functional correctness proprieties for real-world Rust code.
hey provide an implementation of their technique as a plugin for the
ust compiler. The authors in [21] used their experiences for providing
discussion about memory safety and possible improvements for the

afety guarantees. Also, they propose a Rust extension for memory
afety in event-driven platforms.

.2.2. Parallelism in Rust
Parallelism in Rust still is an open research topic. Rust’s standard

ibrary does not provide any parallel programming abstraction. It only
rovides basic low-level parallelism features, such as OS threads and
locking system calls. Besides that, Rust relies on the active community
or introducing new efficient parallel implementations and abstractions.
urrent state-of-the-art parallel programming abstractions for Rust, like
ayon and Tokio, rely in an ad-hoc parallelism approach. To the best of
ur knowledge, Rust does not yet have many consolidated researches
n structured parallel programming techniques. Therefore, we have
ncreased the scope of our review to also include some tools that do
ot implement this programming model and do not support stream
arallelism.

Sydow et al. [22] implemented a graphical programming model
untime for safe stream parallelism based on data-flow model. The
ool generates parallel code based on a graphical application program-
ing interface (API). However, the tool is coupled with the IntelliJ

DEA IDE, limiting usability. An extension of this work is presented
n [23]. Although the previous version of their framework could gen-
rate automatic code, the authors claim it did not achieved efficient
arallelization results. In [23], the authors introduce an algorithm that
ombines profiling with static analysis and a performance model that
stimates parallelization costs for generating more efficient parallel
ode.

The research presented in [24] investigates the performance when
onverting two parallel patterns (based in C++ FastFlow) to Rust. The
esults revealed that the Rust version of parallel patterns achieved sim-
lar performance with respect to the C++ version. Similarly, our goal
s to investigate the benefits of the structured parallel programming on
he brand-new Rust programming language. However, we work with
arallel programming abstractions fully implemented in Rust instead
f using Rust’s FFI (Foreign Function Interface) support.

The de-facto library for data parallelism in Rust language is Rayon
2]. Its parallelism relies on parallel iterators, which extend the de-
ault sequential iterators of the standard library. Rayon has many
haracteristics that make it very optimized for data parallelism, but
ot for stream parallelism. Nonetheless, we have included Rayon to
ur performance evaluation due to its ubiquity on the Rust ecosystem
nd there are few cases where stream processing applications can be
odeled using data-parallel techniques. It is also important to show

he limitations of Rayon for this application domain.
As the state-of-the-art in Rust for streaming applications, Tokio [14]

s a library for asynchronous programming. Tokio is entirely based on
utures, which represent abstract units of work that might complete in
he future. Tokio is composed of many modules that provide essential
eatures for implementing asynchronous applications. For example, it
ffers a high-level interface for expressing asynchronous I/O (sock-
ts, file system) and asynchronous tasks (synchronization primitives,
hannels, timeouts).

Pipeliner [25] is a Rust community library that offers a high-level
bstraction for instantiating pipelines. It aims at avoiding unsafe Rust

ode and operates over a set of Iterators. Pipelines [26] is another

3

Table 1
A comparison of Rust parallel programming abstractions.

Implementation support Tokio Rayon Pipeliner Ours

Stream parallelism Yes Possibly Possibly Yes
Data parallelism Possibly Yes Possibly Possibly
Task parallelism Yes No No No
Data-flow parallelism Possibly No No No
Structured parallelism No Possibly No Yes
Stateful stages Yes No No Yes

community Rust library for implementing pipeline parallelism. This
project seems to be discontinued and we high performance overheads
with respect to the other parallel abstractions, therefore, we excluded
this library from our study.

Data-flow parallelism is an important branch of the stream process-
ing domain, along with stream parallelism. Although it is not the focus
of our work, we consider essential to cite some important works in this
sub-domain. Timely [27] is a low-latency cyclic data-flow system. It
was first published in the work [28], and later was made fully available
in Rust. Materialize [29] is a streaming database targeting real-time
applications. This framework implements the previous Timely Dataflow
runtime. Materialize allows users to interact with real-time streaming
data for getting real-time information. Similarly, Noria [30] acts like a
storage backend for heavy databases. While streaming data is changing,
it caches precomputed but up-to-date results, so that reads to that
database execute faster. Noria was first introduced in the work [31].

Table 1 compares some main features of the parallel program-
ming abstraction that are related to ours. The column Ours refers to
our work, which focuses on structured stream parallelism. Tokio is
a general-purpose parallel programming abstraction for asynchronous
programming, therefore, it is flexible enough to support almost any par-
allelism domain implementation. However, implementing parallelism is
not trivial, since it still exhibits too many low level parallelism details.
In the future, Tokio may be used by other higher-level abstraction as an
intermediate for generating efficient parallel code. Pipeliner is a par-
allel abstraction for modeling pipelines only. Pipelines are expressive
enough to fully support stream parallelism, but also partially support
data parallelism. Nonetheless, in Pipeliner the stream parallelism sup-
port is further limited since it does not allows stateful stages. Rayon
targets efficient parallel execution for data parallelism. The parallel
iterators that Rayon uses are also very expressive, since they are built
based on Rust standard library iterators. This explains why Rayon
possibly supports stream parallelism. Besides, Rayon’s internal iterative
functions resemble parallel patterns (maps and reduces), making this
tool the closest one regarding structured parallelism. The tool proposed
in this work (Rust-SSP) is the only solution that fully supports stateful
stages combined with structured stream parallelism.

Another difference with respect to related works is that we con-
tribute with a new benchmark and its parallelization using all parallel
abstractions discussed in Table 1. Although the parallel programming
abstractions have well-defined standards and goals, it is Rust develop-
ers’ interest to know their performance behavior. Indeed, this entails
in two limitations we must handle in our work. First, none of the
parallel programming abstractions has yet been evaluated with real-
world stream processing applications. Second, since Rust is a relatively
new programming language compared to others like C and C++, there
is a lack of well defined applications and benchmark suites for this pro-
gramming language. For this reason, we have manually implemented a
set of applications that will be described in Section 4.

3. Rust-SSP: Structured stream parallelism

This section discusses Rust-SSP, a high-level and efficient parallel
programming abstraction for structured stream parallelism in Rust pro-
posed in [15] and deeply discussed in this article. Section 3.1 reviews

our design principles and discusses a possible systematic methodology

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054
for expressing stream parallelism. Then, Section 3.2 presents the API
abstractions and how programmers can use this abstractions to paral-
lelize sequential code. Section 3.3 goes beyond by discussing low-level
mechanisms and strategies used for implementing Rust-SSP runtime.

3.1. Design principles

In this section we discuss the design principles for Rust-SSP. Our
main goal is to provide a high-level and efficient parallel program-
ming abstraction. For that, we take inspiration from structured parallel
streaming programming libraries for C++, namely TBB (Threading
Building Blocks) [7], FastFlow [3], and SPar [13]. The first two are
general-purpose parallel libraries, while the later is a domain-specific
language (DSL) for stream parallelism. For now, our solutions remains
closer to libraries like TBB and FastFlow. Nonetheless, in the future we
would like to approach SPar’s level of abstraction, which presents some
benefits for developers. For example, in SPar developers use C++11 an-
notations for expressing stream parallelism within the sequential code.
This bypasses the need of refactoring the sequential code. Currently,
we are interested in offering a friendly and expressive interface for
implementing stream parallelism in Rust, which could later be used in
combination with a SPar like methodology. Rust-SSP offers a first layer
of abstraction for improving programmability without giving away
much performance. Our design goals are:

• Hide and abstract many parallelism details from high-level devel-
opers. Examples are synchronizations, task scheduling, low-level
system mechanisms, and others.

• Support stateful stages and other efficient mechanisms that high-
level programmers can use explicitly or implicitly with minimal
effort. Examples are communication queues, ordering mechanism,
and others.

• Avoid the use of Unsafe Rust in the API and runtime.

Rust’s programming language unique features establishes new ben-
efits and challenges for achieving this design goals. We discuss some
of them as follows. Rust extensive compile-time checks may decrease
concurrency issues in library code as well as programmers’ specific im-
plementations. It is necessary to clarify the extent in which Rust ensures
the program is correct. Rust is designed to avoid undefined behavior
such as data races such as memory and lifetime issues (i.e. double-
free and dereferencing null pointers). However, Rust does not detect
some concurrency problems, like deadlocks. Rust helps making the
program safer by forbidding code that generates an undefined behavior.
Undefined behavior in Rust is defined in the Rustonomicon, a guide
for Unsafe Rust [1]. Even with compile-time checks, the programmer
is still responsible for correctly implementing multi-threading without
deadlocks or memory leaks. This can be a confusing Rust aspect:
although difficult, memory leaks are possible with Safe Rust. In some
scenarios Rust allows the programmer to explicitly leak heap-allocated
memory with the Box type. This is useful when lower-level control of
memory is necessary, but this is not the scope of this document.

One of the main differences between Rust-SSP and similar struc-
tured parallel abstractions from C++ concerns mutability. In FastFlow
and TBB, the pipeline stages are implemented as classes or structs.
Each stage is free to mutate itself. Since C++ compiler does not check
data races, the programmer could accidentally implement data races.
In Rust-SPP, each stage has by default local state because of Rust
semantics. For instance, if a pipeline stage is running with 4 threads,
each thread will see a different state. In other words, each thread has
the ownership of its own local variables or state. If the programmer
needs shared state, they need to use Rust’s synchronization primitives,
as will be better discussed in the next Section 3.2.

In Rust-SSP, each pipeline stage has input and output types, except
the last one, which may only have inputs. Additionally, real streaming
applications can drop some data items during computation. We support
this characteristic in Rust-SSP, where stream items does not necessarily
4

need to flow for each stage. Stages support dropping items without
affecting the pipeline execution flow. Since values are moved between
threads, Rust-SSP requires the data type to implement the Send trait
as well. This trait tells the Rust compiler that the value can be safely
moved between threads. Most common Rust types implement Send
and Sync by default.

3.2. Rust-SSP programming interface

In this section we describe Rust-SSP (available at2). Our solution
offers a small set of abstractions with straightforward syntax that pro-
grammers can use for expressing stream parallelism in the sequential
code:

• A pipeline! macro to instantiate the pipeline parallel pattern.
• The parallel!, sequential! and
sequential_ordered! macros to express stages in the
pipeline.

• post, collect, end and end_and_wait methods to control
the pipeline execution and data exchange.

• In and InOut trait objects to instantiate stages.

In Listing 1 we illustrate a pipeline implementation using Rust-SPP.
It resizes a stream of images, and waits until all images are processed.
The pipeline parallel pattern is composed by a Pipeline object with
three computing stages: LoadImage, Resize and SaveToDisk.
Since stages are stateless and can be safely executed in parallel, we
instantiated them using the parallel stage macro. By default, a
programmer can specify the code that will be executed within the
pipeline stages using one of the following methods:

• A function name or a closure for stateless stages. The function
must return Option;

• A struct that implements InOut (intermediate pipeline stages)
or In (last stage) traits for stateful and stateless stages. Rust
enforces the programmer to implement the process method
which also needs to return Option.

For this example, we used the last method. An illustration of such
implementation is given in Listing 2. The InOut trait declares a
process function that takes a value from the stream and returns a new
value. The code that will be executed by the stage must be implemented
inside the process function. The input parameter of this function are
also the stage inputs. Besides, the return values will be the output data
of this stage. The code for In has been omitted for brevity, but it is
similar, except it does not have output. Both trait objects allow the user
to mutate internal state.

To instantiate a stage, three macros are available:

• parallel!(stage, threads): defines stages that are stateless and
can be safely replicated for parallel execution.

• sequential!(stage): defines a stage that runs sequentially in a
single thread.

• sequential_ordered!(stage): defines a stage that runs se-
quentially in a single thread, receiving items in the same order
they were initially produced.

Listing 1 also illustrates how data generation is performed for the
pipeline. The post routine (line 10) is normally coupled with a data
stream source argument (i.e. camera, social media logs, directories, and
others). Each generated input item from the source must be posted
in the pipeline so that the Rust-SSP runtime will send it in an on-
demand fashion to the next stage. When required, a programmer can
collect the pipeline output into a vector. In this example, we use the
collect method. This abstraction also en-queues in the pipeline the

2 Rust-SSP source codes: https://github.com/GMAP/rust-ssp.

https://github.com/GMAP/rust-ssp

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

c

w
t
p

m
v
g
b
a
p

‘‘end’’ signal. When a thread receives the ‘‘end’’ signal, it propagates
this signal to the subsequent stages and terminates its processing. This
eventually cause all threads in the pipeline to finish. Additionally, there
is a end_and_wait method if the programmer does not want to
ollect the results. If the programmer forgets to call end_and_wait

or collect, the library automatically sends an end signal and waits
for all threads to join. This is done by implementing the Drop trait,

hich is similar to a C++ destructor. To create an infinite stream,
he programmer must simply not signal the end of stream or drop the
ipeline.

1

2 l e t threads = num_cpus : : get () ;
3 l e t pipe = pipeline ! [
4 paral le l ! (LoadImage : :new() , threads) ,
5 paral le l ! (Res ize : :new() , threads) ,
6 paral le l ! (SaveToDisk : :new() , threads) ,
7 sequential ! (Co l l e c t o r : :new())] ;
8 l e t image_paths = load _ f rom_d i r () ;
9 for entry in image_paths {

10 pipe . post (entry) .unwrap () ;
11 }
12 l e t r e s u l t = pipe . col lec t () ;

Listing 1: Pipeline example: resizing images.

1

2 struct LoadImage ;
3 impl InOut<PathBuf , Image> for LoadImage {
4 fn process (&mut s e l f , input : &s t r) −> Option<Image> {
5 i f f i l e _ e x i s t s (input) {
6 Some(load_image (input))
7 }
8 else { None }
9 }

10 }

Listing 2: Creating an InOut stage.

In Rust-SSP, we offer macros instead of other language features. The
ain reason is to simplify instantiating the stages. Macros in Rust are

ery common, as can be noticed in one of the most famous Rust pro-
ramming instructions: println!. The other reason we used macros is
ecause, in Rust, each copy of a parallel stage needs to be independent,
s explained in Section 3.1. For that, an alternative would be forcing
rogrammers to implement the Clone trait for each stage. Another

alternative would be enforce the use of factory functions. Although
simple to implement, programmers would be compelled to write extra
boilerplate code for implementing new stages in these alternatives.
Therefore, the best solution we found were macros. We automatized
the process by transforming the first macro argument into a factory
function by wrapping it into a closure. Therefore, the programmer
only specifies the stage, and the macros take care of correctly and
automatically instantiating it.

Rust-SSP abstracts the Farm concept, focusing on Pipeline concepts
that mimic an assembly line, which is also the concept introduced
on SPar for C++. However, Farm can be seen when there are the
following structures in Rust-SSP: let pipe = pipeline! [paral-
lel! (...), sequential!(...)]. Therefore, the emitter may be
represented by the post() method like in line 10 of Listing 1. The
worker is then represented by parallel! and the sequential!
represents the collector.

Programmers can be guided by the following methodology for
expressing stream parallelism in their sequential code:

1. Identify code regions that could execute independently and in paral-
lel: A simple way to check if a code region can run in parallel
is to verify whether these code regions do not mutate shared

state. For instance, a loop processing items where each iteration

5

does not depend on the previous iteration. In other words, a
stateless stage. Each item processed by the loop can become a
stream item, and the code inside the loop can be organized into
a sequence of stages.

2. Isolate these regions inside functions and identify their inputs and
outputs: The programmer must ensure that the input and output
types of the stage are correct. The library supports returning
Option, which allows a stage to return some item to the next
stage or none (dropping an item).

3. Wrap the functions using the API to build the pipeline: The library
will provide a mechanism to allow the user to pass a given
function as a stage of the streaming application. Alternatively,
the user might implement a stage using an abstraction similar to
FastFlow and TBB in the form of a struct. This struct might also
be necessary when a given stage must hold persistent variable
states such as a file descriptor for writing output.

4. Identify the primary input data source: Every stream processing
system will have a data producer. The source of data can be
anything: files in a directory, lines in a file, data coming from
the network, frames in a video, etc.

5. Determine whether the program should wait until all items are
processed (collection): Streaming systems can be used for data
parallel workloads. The abstraction will provide a way to collect
the results when a stream end signal is received by the collector.

6. Determine whether the stream items should be processed in the same
order they are produced: For some applications, it is important
that the stream output is in the same order of the input. For
instance: a video application. When the application program-
mer uses a parallel stage, they might emit stream items in an
unpredictable order. Notice that ordering stream items require
an extra processing step in the collector, which might cause a
measurable overhead.

3.3. Rust-SSP runtime

In this section, we discuss the low-level Rust-SSP mechanisms. We
describe how stages are connected to each other; how the output of
a stage is sent to the next stage; the synchronization mechanism for
work queues; and how threads are spawned. Our parallel programming
abstraction core mechanisms are generated using the In and InOut
trait objects. Internally, these trait objects become a PipelineBlock.
A PipelineBlock is a trait that requires its implementations to
provide a process method. This trait is purely internal, and it is not
exposed to the user. There are two implementations: InOutBlock and
InBlock. We illustrate a high-level representation of such traits and
their relations in Fig. 1.

In Fig. 1, all InOutBlock objects have the ownership of the
next block, which are implementations of PipelineBlock. They are
stored in the next_step field. Whenever a parallel pipeline stage
is created, Rust-SSP starts long-lived threads for each replica of the
stage. Since the thread can potentially live forever, we need to have
multiple ownership of the work queue and the next step. For that we
use Arc, which is an atomic reference counter in Rust. Internally, Rust-
SSP macros transform InOutBlock and InBlock objects (exposed by
the public API) into pipeline blocks and spawn all the necessary threads
using Rust standard threads.

To ensure threads join after computation, Rust-SSP also implements
the Drop trait, which is similar to a destructor in C++. It is called
automatically by the compiler whenever the pipeline trait goes out
of scope. Joining threads works as a sort of barrier that does not
allow the main program to continue executing until all threads finish.
Since spawned threads can potentially live forever, this mechanism
guarantees that working threads are finished and destroyed when the
pipeline trait is dropped. The Drop implementation also sends a stream
stop signal: once all threads receive the signal, they first finish their
execution then stop running and join. As explained in Section 3.2, the

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

u

a

c
t
s
T
s

c
a
a
𝑛
M
a
I
t
i
v
m
s
n

4

m
l
b
b
d
p
s
o

o
r
a
o
c
o
o
r
e
p
a

S

Fig. 1. Pipeline block implementations.

ser can explicitly call the methods end or end_and_wait. These
methods are equivalent to Drop: they send a stop signal and wait until
ll threads finish.

During runtime, Rust-SSP stores the last stage output results into the
ollected_items vector in the InBlock type. However, this raises

he following questions: if a stream is infinite, will Rust-SSP always
tore processed items into this field? Will it accumulate data infinitely?
he answer is yes. Nonetheless, the programmer can implement the last
tage to return an empty item of type (). This is similar to void in

C++. This type is a zero-sized type, which does not cause any allocations
and can be stored in a Vec without ever allocating data.

Still regarding Fig. 1, the process routine implemented in In-
OutBlock and InBlock enqueues the WorkItem in a FIFO queue,
namely work_queue. InOutBlock executes the stage code and
passes the result to the next stage using the process method. For
InBlock, it only executes the stage code, since this object is the last
pipeline stage. By using generic types, Rust can prevent type errors at
compile-time. This means the input and output types need to match for
next_step on InOutBlock.

Stream processing systems frequently use queues to communi-
cate data between stages. In Rust-SSP, this is implemented using the
BlockingQueue type, which is based in a VecDeque type wrapped
by a Mutex. When ordered items are needed, Rust-SSP uses a different
communication queue, namely ordered_work_queue. This queue
is a BTreeMap<u64, WorkItem> type wrapped in a Mutex. It is a
map in which the key is the number of the work item, which increases
by 1 for every new work item posted in the pipeline. This map keeps
the items in the order they were produced, and the worker threads
always search for the next item, advancing by 1 at every iteration and
removing from the map. However, stages are free to drop items from
the stream by returning None. To avoid losing track of the counting,
even when an item is dropped from the stream, it still produces a stream
signal. The WorkItem represents all possible signals:

• Value(T): A value to be processed by a stream stage.
• Dropped: Represents a stream item drop signal. It gets processed

by all stages in order to keep tracking of ordering.
• Stop: A stream stop signal. Once it reaches a stage, all threads of

that stage finish execution. The first thread that receives a Stop
signal in a parallel stage broadcasts the signal to all other threads.

Finally, macros are also used to link together all blocks of the
pipeline. If we had opted for a manual linking approach, where the pro-
grammer must construct the stages and connect them using a method
call, the ownership system would require the linking of the blocks to
6

Fig. 2. Data flow in the runtime.

be done in a counter-intuitive reversed order. If a pipeline sequence
has stages in the order s1, s2 and s3, the programmer would have
to create links in the order s2.link_to(s3);s1.link_to(s2);
because the subsequent stage is owned by the previous stage. This
effectively ends the scope of the object, preventing it to be used again.
The pipeline! macro allows the stages to be defined in the intuitive
order without worrying about ownership. Macros are also the only way
to make variadic functions in Rust. If a standard function was used,
the programmer would have to pass a vector of stages. Therefore, the
macro provides a syntactical advantage by offering a clean way to pass
a varying number of stages without boilerplate code.

A general visualization of the runtime is shown in Fig. 2, repre-
senting an abstract stream processing application. In it, the first Stage
(𝑆.1) is a sequential stream generator that insert stream items in the
first queue (Queue 1). Then, the parallel Second stage (𝑆.2.1,… , 𝑆.2.𝑛)
onsume from Queue 1 in an on-demand fashion. The interface supports
s many stages, with one queue for each producer–consumer relation,
s necessary. In this example, we end the pipeline with a sequential
th stage 𝑆.𝑛. The queues connecting stages are protected by a single
utex and developed with a FIFO access pattern. When an item is
dded, a condition variable is used to notify that an item was enqueued.
n the case of a sequential ordered stage, we re-order items using a
agging and reordering algorithm based on [32]. The tagging process
s performed by the post method. It assigns to the stream item a tag
alue based on an internal counter that increments each time the post
ethod is called. The reordering algorithm applied to the sequential

tages dequeues work items in order based on this tag, blocking if the
ext item is not in the queue yet.

. Rust stream benchmark suite

Rust is a relatively new language. As a result, it does not have as
any applications, benchmark suites, and scientific studies as an older

anguage such as C++. In C++, there is a plethora of well established
enchmark suites available in the literature to choose from. These
enchmark suites are composed of a set of applications with very well
efined characteristics and workloads. This way, when a new parallel
rocessing solution in C++ is developed, researchers can perform a
olid comparison with regards to the state-of-the-art. Some examples
f great popularity are Parsec [33], Splash [34], and Rodinia [35].

On the other hand, evaluating new Rust solutions require the devel-
pment of ad-hoc benchmark suites. Often, these are particular to each
esearch or to a specific scenario. This means that different solutions to
similar problem will likely be compared with totally different meth-

ds. Another important aspect is that in this benchmark suite we do not
onsider distributed data stream applications. Instead, we only focus
n multi-core environment. In the future, we can consider this domain
f applications, such as the ones used in DSPBench suite [36]. They
ecently worked with streaming applications in distributed computing
nvironments like clusters and cloud. With that in mind, our goal is to
rovide a Rust benchmark suite suitable for parallel stream processing
pplications targeting multi-cores.

In this work, the benchmark suite will be used for evaluating Rust-
SP with respect to state-of-the-art parallel programming abstractions

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

i

Fig. 3. The flow-graph of the benchmark applications.
n Rust targeting stream parallelism. The benchmark suite3 is avail-
able to the community so that other researches focusing on stream
processing applications can use it. Consequently, other researchers can
use the benchmark suite to evaluate qualitatively or quantitatively
their own parallel programming abstractions, programming strategies,
computer architectures, compilers, and other computing systems. In the
following, Section 4.1 characterizes and explains each one of the 4
selected applications. Then, in Section 4.2 we characterize 3 different
workloads for each one of these applications.

4.1. Applications

In this Section we characterize and explain each one of the four
applications selected for our benchmark suite. Two of them are simpler
test cases while the other two are more robust and closer to real-world
cases. The test applications are Micro-bench and Image Processing. The
real-world cases are Bzip2 compression and Eye Detector. They were
chosen to represent different computational characteristics that can
be commonly found in the stream processing scenario. These involve
different memory access patterns, disk access, throughput variation,
number of processing stages, and computational intensity.

The Fig. 3 depicts the streaming data flow for each application
within our benchmark suite. Each sphere represents a sequential block
of code, or, in other words, a stage of computation. The arrows rep-
resent the direction data is being moved. The ellipsis symbol indicates
that the current stage is stateless, meaning the stage can be replicated.

The Micro-bench is a mathematical synthetic application we de-
signed using a fractal in the complex plane, namely the Mandelbrot set.
The main reason we choose this application is because of its unbalanced
computation. For example, points from the complex plane that are
within the Mandelbrot set may compute to infinite, while others iterate
much less. Micro-bench data flow is depicted in the superior part of
Fig. 3. We have modified the Micro-bench (Mandelbrot set fractal) to
have two sequential stages of intensive computation, namely Fractal A
and Fractal B. For each one of these stages, the computational intensity
can be customized by setting a maximum number of iterations. Usually,
the Mandelbrot set is parallelized using a single stage, instead of two
stages design. This design tends to stress the abstractions’ schedulers
by increasing the level of complexity required to balance the use of
computer resources.

The next test application chosen for the benchmark suite is called
Image Processing. It is characterized by a stream of images flowing
through 5 different filters, as seen in Fig. 3. They are Saturation,
Emboss, GammaCorrection, Sharpen, and Grayscale. All filters were

3 Benchmark source codes: https://github.com/GMAP/RustStreamBench.
7

provided by Raster library from Rust. Some filters may take longer
than others to complete and all of them are stateless, which means
they can be parallelized. It is important to highlight that these filters,
together, do not represent any specific computation. It was created to
represent a deeper pipeline and stress different computational workload
characteristics for our benchmark suite.

The Bzip2 application is an important open-source tool for loss-
less data compression/decompression. Bzip2 uses the Burrows–Wheeler
transform to optimize frequently-recurring characters. This effectively
makes the compression computationally costly whereas the decompres-
sion is shipper. The algorithm divides the input file in blocks of bytes
with sizes ranging from 100 kb up to 900 kb, where the block size must
be multiple of 100 kb. In our version of the algorithm, we used 900 kb
blocks as default. One of the main specific characteristics of Bzip2 is
that the performance heavily depends on the characteristics of the input
file. Bzip2 is built using three stages as depicted in Fig. 3. The first one
(Read) reads data from the input, the middle one is a computational
intensive stage compress or decompress, and the last stage collects and
writes the output items, which items need to be re-ordered.

The last application chosen to compose part of the benchmark suite
is Eye Detector. It is a stream processing application that detects the
eyes in the faces within an input video. One possible use of this type of
application would be tracking the eye movement of a group of people
to automatically identify their interest in a certain product inside a
store. The image processing is performed using Rust’s OpenCV library
support. Eye Detector can be separated in four processing stages. They
are illustrated in the right-hand part of Fig. 3. The first stage constantly
reads frames from an input video. Then, the second stage is responsible
for detecting faces in each individual frame. These detected faces are
forwarded to the third stage, which detects a set of eyes in each face.
Finally, the fourth stage writes the resulting detection to an output
video.

4.2. Workloads

In this Section, we describe three different workloads for each
application. They were selected to represent different computational
characteristics for each application such as computational intensity,
contrasting memory or disk read/write overheads, and throughput
variation. The main goal is to later use these workloads to assess per-
formance and to help identifying potential issues or advantages of each
parallel programming abstraction. For this workload characterization,
we ran the experiments in the same machine described in Section 5.1.

We have measured latency to characterize each workload. Latency
represents the time it takes from one stage to compute a single stream

item from the beginning to the end of that stage. For example, if a

https://github.com/GMAP/RustStreamBench

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054
Fig. 4. Computational intensive stages of Micro-bench.

Fig. 5. Characterization of Bzip2 Compress/Decompress stages.

Table 2
Workload sizes before and after Bzip2 compression.

Bzip2 WIKI data AVI video ISO file

Original file 557 Mb 673 Mb 704 Mb
Compressed file 78 Mb 665 Mb 658 Mb

certain workload has 100 items in the stream, there will be 100 differ-
ent latency measurements for each processing stage. The latency was
individually measured in milliseconds for each stage of the applications
(stages defined in Section 4.1). All latency data was collected from
the sequential implementation. This way, there is no interference from
any parallel programming abstraction. Next, we demonstrate all latency
measurements.

In Fig. 4 we present the two computational intensive stages from
the Micro-bench application, which are the Fractal A and B stages.
Since the Mandelbrot set fractal is a known and well-defined set of
complex numbers, the three workloads have the same characteristic
with different intensities. We have made the number of stream items
constant, using 2048 total items. However, we have modified the maxi-
mum number of iterations for each stage using 500, 5.000, and 50.000
iterations. In our experiments, we also used asymmetric values for
splitting the iterations between the two stages. For example, one stage
computes 60% of the iterations while the other the remaining 40%.
This explains why Fractal A (Fig. 4a) has maximum latency around
35% higher than the maximum latency achieved on Fractal B (Fig. 4b).
Concerning the Read and Write stages, we do not illustrate the results
because the latencies are very low and similar for different input
configurations.

Fig. 5 presents the results for the computational intensive stages of
Bzip2, which are the Compress and Decompress stages. We have chosen
three different workloads from distinct domains: (1) WIKI data — a
binary file containing text information about the page view statistics
from Wikipedia. It represents a workload with significant variation.
(2) AVI video — a video with 300 fps and dimensions 880𝑥540. It
represents a constant input, with few variation. (3) ISO file — an
ISO file that represents a combination of a constant input with an
unbalanced workload.

Table 2 presents the original sizes of the three workloads and the
corresponding sizes after executing Bzip2 compression. We were careful
to select workloads with similar amount of computational work.
8

Fig. 6. Characterization of Bzip2 Write stages.

In Fig. 6 we present the characterization of the writing stages. We
used two versions of the Bzip2 application: One writes the results on
memory, while the other version writes the results on disk. The versions
were designed having in mind the parallel implementation. For that,
the memory version exhibits only overheads arising from the parallel
programming abstractions while the I/O version exhibits other sources
of overhead commonly found on the stream processing domain. As can
be seen in Figs. 6a and 6c, that operate on memory, the latencies are
similar for all stream items, except the WIKI data on Compression. The
reason is that compressing the WIKI data may compress the file with a
factor of 7.14 times, while others have a factor of 1.07 times at best.
This is shown in Table 2. On the other hand, Figs. 6b and 6d show that
writing on disk exhibits high latency variations. The former graphic
shows more variations than the later since compressing blocks results
in unknown sizes, which depends on how much data was compressed.

Regarding Image Processing application, Fig. 7 showcases latency
results for each one of three different workloads: small, mixed, and big.
The idea is that the higher the resolution, the longer each filter may
take to process the image. With that in mind, small workload is a set of
100 images of the same size (640 × 427 pixels), big is composed of 100
higher resolution images (1920 × 1280 pixels), and mixed is composed
of half of each workload to create a more unbalanced scenario. All
images are encoded using the JPEG format. The latency results in
Fig. 7 showcase that small and big are relatively stable across all filters
while mixed oscillate between the two. Finally, read and write image
operations perform in a similar pattern, as depicted in Fig. 8.

Fig. 9 represents the latency measurements for Eye Detector’s work-
loads. We have named the first workload as one, the second as mixed
and the third as several. All workloads are MPEG-4 videos with 450
frames, 15 s duration, and 640 × 360 resolution. The difference be-
tween workloads was in the video characteristics. The one video was
characterized by a single face in the whole video. On the other hand,
several had several faces in the whole video and mixed had moments
with only one face and moments with several faces. This way, the
variations in the workloads are actually how many elements are there
to process in the image and not the image itself. The first and last stage
in Fig. 10 are similar between different workloads since they perform
I/O operations. The second stage in Fig. 9a detects faces, therefore the
more faces in it, the longer it takes to process. The third stage, which
detects eyes, in Fig. 9b has even more variation. That is because if
there are more faces, there is more eyes to process. This workload has
moments where the latency is close to zero since no faces were detected
in that particular frame.

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

a
f
t
a
b

5

s
e
p
p
t
c
T
e
s
e
s
T
t
o

Fig. 7. Characterization of computational intensive stages for Image Processing.

Fig. 8. Characterization of Read and Write stages for Image Processing.

Fig. 9. Characterization of Eye Detector Read and Write stages.

Fig. 10. Characterization of Eye Detector Read and Write stages.
 f

9

5. Evaluation

This Section presents the experimental analysis of this paper. First,
Section 5.1 showcases the performance results using three different
workloads for each application, by first explaining the parallel imple-
mentation for each parallelism abstraction used. Second, we deliber-
ate on Rust parallelism development and programmability for stream
processing applications in Section 5.2.

5.1. Performance evaluation

The experiments were executed on a machine with two Intel(R)
Xeon(R) Silver 4210 CPU @ 2.20 GHz, featuring 20 cores and 40
threads. Each hyper-threaded core has 64 kB private L1, 1 MB private L2
and 13.75 MB of L3 shared. The machine has 64 GB of RAM @ 2400
MHz. The machine is also equipped with four HDD 3.5 @ 7200rpm
using SATA 3.1 with 6.0 Gb/s. The kernel was Linux 5.4.0-59-generic
and the OS Ubuntu 20.04.1 LTS. The code was compiled using Rust
1.47.0 and the optimization flag --release. Other software details
are, Tokio version 0.1.17, Rayon version 1.5, Pipeliner version 1.0.1,
Crossbeam utils version 0.8, and Crossbeam channels version 0.5.

The execution time metric was chosen to evaluate performance.
With the execution time, workload information (Section 4.2), and
degree of parallelism, most other performance metrics can be derived.
Regarding the graphs, the 𝑥 axis is always the degree of parallelism,
which goes from 1 up to 40 (number of cores with hyper-threading
in the system). The position at 𝑥 = 0 in the graphs represents the
sequential version of each application.

Another important aspect to consider is that the number of replicas
in the 𝑥 axis may not represent the actual active thread count in the
system. Rather, each runtime may spawn one dedicated thread for each
stage, or in the case of parallel stages, a thread pool determined in
size by the value of the degree of parallelism. Ultimately, each parallel
runtime and its abstractions define the active thread count. Finally, the
𝑦 axis in the graphs represents the execution time in seconds, which are
represented in logarithmic scale 2.

Each plotted value on the graphs was obtained from the arithmetic
mean of 5 executions performed for each parallelism degree value
ranging from 1 up to 40. Moreover, the standard deviation was plotted
in the form of error bars, which may not be visible in some cases as it is
mostly negligible. To guarantee the correctness of the parallel versions,
we compared the hash value of the output with the sequential version.

For the parallel versions using std-threads, we have not used
sync-std mechanisms, which employs lightweight tasks handled as
utures and streams. Instead, we have opted for spawning persistent
hreads. The downside of this approach is to handle communication
nd synchronization, in which we used efficient lock-free crossbeam
ounded channels.

.1.1. Micro-bench
Previous Fig. 3 has shown the Micro-bench data flow contains four

tages, in which two are computational intensive and stateless. An
fficient parallel version was obtained by implementing a non-linear
ipeline with two sequential stages (Generator and Write) and two
arallel stages (Fractal A and B). Because of parallelism, it is mandatory
o re-order stream items after the parallel stages for obtaining the
orrect output. Rust-SSP has a sequential ordered stage for that. For
okio, Rayon, and Pipeliner we have collected all stream items and
xecuted an efficient ordering from Rust’s standard library. In real work
tream processing, this is not a viable option since the stream will never
nd. The reason to do in this way is that Rayon and Pipeliner do not
upport stateful sequential stages for collecting stream items. Although
okio has an ordered buffer, it achieved poor performance with respect
o the other parallel abstractions and we avoid using it. std-threads
rdering was manually implemented using the strategy presented in the
ollowing work [32].

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

l
f
i
s
r
c
w
w
o
v
t
p
s
c
f
p
m
e
s

5

c
P
r
p
P
p

s
A
T
q
u
P
t

5

c
c
f
a
d
t
o
v
T
e
d
i
d
o

Fig. 11. Execution time in seconds of Micro-bench.
1
b
i
a
c
i
f
o
p
o
s
w
i
t
R
d
e
r
t
a

f
i
t
t
o
o
p
r
b
e
t
u
f

5

e
p
o
b
T
e
t
m
h
o
a
b

a
d
a

Fig. 11 shows the results. As can be seen, with the smallest work-
oad, Rust-SSP presents on average lower execution times than others,
ollowed by Tokio with a difference close to 10%. In Tokio, execut-
ng with a single thread is 18% slower than executing Micro-bench
equentially. However, it scales well later. Both Rayon and std-threads
esults are unstable for the smallest workload. Rayon uses work-stealing
ommunication queues, which exhibits to much overhead for this small
orkload (250 ms). The mechanism overhead only pays off for bigger
orkloads. std-threads was implemented manually and we did not
ptimize everything possible. The reason is that the current std-threads
ersion uses busy-wait channels, which introduces starvation when
he execution has more threads than available cores. In degree of
arallelism 20, there are 41 threads running (20 threads for each parallel
tage + 1 thread for the generator). More details about the problem
an be found in Section 5.1.4, where we introduce an optimized queue
or std-threads. With the largest workload, the differences between the
arallel programming abstractions are similar, except std-threads. At
aximum degree of parallelism, Rust-SSP and Rayon present the same

xecution time, with difference less than 0.1%, while Tokio is 2.3%
lower.

.1.2. Image processing
Image Processing results were depicted in Fig. 12. For this appli-

ation, it was developed a version using Rust-SSP, Tokio, std-threads,
ipeliner, and Rayon. In this case, we did not consider the stateful
ead and write operations in the implementation. Instead, they were
erformed before and after processing respectively. Therefore, Image
rocessing implementation comprises solely the 5 image filtering stages
reviously described.

Among all results in Fig. 12, Rayon demonstrated a relatively high
tandard deviation, which was 5.05 s at its highest in big workload.
nother trend was the load balancing issue with std-threads version.
his was due to the busy-wait scenario introduced by the crossbeam
ueue implementation. In fact, we observed that Rust-SSP performs
p to 2.47 times faster than std-threads. Overall, Rust-SSP, Tokio, and
ipeliner have mostly comparable results, but there were cases where
he difference is 5% between them.

.1.3. Bzip2
Bzip2 is a straightforward application from the parallel stream pro-

essing viewpoint. Bzip2 embraces two complementary applications, a
ompress and a decompress. As shown in Fig. 3, it has the same data
low for both versions, which is composed by three stages. The Read
nd Write are sequential stateful stages, since they use a single file
escriptor for reading and writing data. Reading from and writing into
he original file uses by default blocks of 900 kb. However, operating
ver the compressed file shows unbalancing, since the block size can
ary depending on how much data Bzip2 algorithm is able to compress.
o measure the performance we designed two versions, one operates
ntirely on memory, while the other includes disk operations. The
ifference is the memory version is an ideal scenario for parallelism
n which other sources of overhead are hidden. For instance, local
isk read and write operations, network communication latencies, and
thers.
10
Fig. 13 reports the results for Bzip2 application. The first two Figs.
3a and 13b present the results when executing on memory. As can
e seen, the behavior of different parallel programming abstractions
s very similar, even for different workloads. In Fig. 13a, the parallel
bstractions exhibit maximum variation of 3.8%, but on average are
lose to 1%. This maximum variations are from Tokio and can be seen
n the decompress version (Fig. 13b) using the AVI video and ISO
ile workloads. Tokio’s performance scaling decreases around degree
f parallelism 30. Also, we observed that on maximum degree of
arallelism the std-threads version again exhibits starvation. On the
ther hand, implementing I/O streaming applications indeed reveals
ome parallel programming abstractions’ weaknesses, meaning it was
orth introducing such additional Bzip2 version. Results are depicted

n Figs. 13c and 13d. In this case, Bzip2’s last stage needs to maintain
he state of a file descriptor for saving compressed/decompressed data.
ayon and Pipeliner cannot implement those applications because they
o not support stateful stages. A possible workaround would be using
xternal mechanisms. That is, manually spawning a new thread that
eceives data from a channel connected to all of the third stage parallel
hreads. In this work, we focus on supported default library mechanisms
nd did not implement such version.

Rust-SSP and std-threads present similar performance behavior (dif-
erence close to 1% on average). Tokio results show variation depend-
ng on the input. The worst results (up to 41.1% slower than the other
wo) were observed in unbalanced workloads, as discussed in Sec-
ion 4.2. The reason Tokio achieved this performance is mainly because
f their ordering mechanism. In other applications (Micro-bench, Bzip2
n memory) we avoided using it on Tokio, which resulted in similar
erformance with respect to the others. However, since Bzip2 on disk
equires on-the-fly output writing, there is no option for not using it
esides manually implementing our own ordering algorithm. The only
xperiment Tokio obtained the highest speedup was in Fig. 13c, using
he AVI video workload (middle one). Yet, the results for Tokio are
nstable and oscillated between Tokio being 11.3% slower and 6.0%
aster than Rust-SSP.

.1.4. Eye detector
Fig. 14 showcases the results of the Eye Detector application. As

xplained previously, it is a pure stream processing application com-
osed of 4 computational stages. Since the last stage writes the resulting
utput to file during execution time, Pipeliner and Rayon could not
e used. Instead, this application could be developed using Rust-SSP,
okio, and std-threads. The *std-threads version is a test case we will
xplain below. Regarding the parallel implementation, both second and
hird stages can be safely parallelized as they are stateless stages. That
eans they do not share or hold previous states of data. On the other
and, the first and last stage respectively perform sequential input and
utput operations. They only have one file descriptor for reading and
nother for writing data. Therefore, these are stateful stages and cannot
e developed with Rayon and Pipeliner as previously explained.

Evaluating the graphs in Fig. 14, we observed a similar trend among
ll three workloads. Tokio and Rust-SSP perform similarly (maximum
ifference of 6.03% in favor of Rust-SSP) while std-threads suffers from
load balancing issue. This issue is less prevalent with the several

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054
Fig. 12. Execution time in seconds of Image Processing.
Fig. 13. Execution time in seconds on Bzip2.
workload in Fig. 14 (right-hand side) since it is a more naturally
balanced workload (refer to Section 4.2). The reason for these problem
is because the default crossbeam communication channel deployed is
affected work starvation and does not relinquish the thread access until
a new work arrives. This effectively means that when there is no work
available, it infinitely loop checks the queue for new work or the end of
processing. To test prove that this is the problem, we have developed
the *std-threads version, which uses the default Rust RwLock for fine
grain queue access control combined with standard thread parking and
11
unparking. The resulting tests from *std-threads demonstrated that the
performance was improved by up to 52.56%.

5.2. Programmability

In this Section we discuss programmability aspects regarding the
parallel implementation techniques for Rust-SSP, Tokio, Rayon, Rust’s
standard threads, and Pipeliner. For that, we discuss coding characteris-
tics from each interface and measured SLOC (Source Lines of Code) for
the applications described in Section 4.1. SLOC does not consider blank

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

o
p
e
h
p
n
a

c
s
s
R
a
a
c
m
c
f
s
m
N
l
p
T
s

l
g
i
d
P
f
a
f
S
s
t
a

i
f
s
o
i
i
c
a
f

Fig. 14. Execution time in seconds on Eye Detector.
lines and comments, only practical code lines and language syntax.
We measured SLOC with the cloc4 tool. SLOC gives a general idea
f the level of code intrusion that each interface requires to enable
arallelism. It does so by comparing the number of extra lines of code
ach interface introduces over the original sequential version. It has
owever its limitations. SLOC alone is not sufficient to claim that one
arallel programming interface is easier to code with. Other aspects
eed to be considered such as time to develop, programmer experience
nd background, etc. [37,38].

Table 3 demonstrates the measured SLOC for each benchmark appli-
ation and parallel programming interface. The label seq represents the
equential code. Every line of code comparison is made considering the
eq as base. Save for Eye Detection application, it can be observed that
ust-SSP is consistently the parallel interface that requires the smallest
mount of extra code. This is due to the structured approach Rust-SSP
dopts. It is modeled specifically for the stream processing paradigm,
ompletely abstracting from the developer communication and thread
anagement details. On the other hand, in the Eye Detection appli-

ation, Rust-SSP introduces more lines of code than Tokio. The cause
or that is the use of persistent unique local variables in the parallel
tages, namely eye and face detector modules. Therefore, it requires a
ore verbose struct implementation, which ends up increasing SLOC.
one of the other benchmark applications require persistent and unique

ocal variables. Regarding the *std-threads version for Eye Detector
resented in the previous Section 5.1, the measured SLOC was 290.
his showcases that the extra performance benefits come at the cost of
everal extra lines of code.

The version that introduces the highest overall number of extra
ines of code in Table 3 is std-threads. This is the lowest-level pro-
ramming interface. It requires the developer to directly handle most
mplementations aspects including thread management, execution flow,
ata reordering, and communications. Concerning Tokio, the Image
rocessing application is a case where Tokio can leverage Rust’s de-
ault iterators to create the stream generation phase. In every other
pplication, Tokio requires the developer to create a special polling
unction for the stream generation stage, which increases the total
LOC. Tokio also requires the programmer to manually handle thread
pawning and stage communications. However, Tokio does not require
he programmer to introduce manual reordering algorithms in the
pplications where its necessary (Micro Bench, Eye Detector, Bzip2).

The Rayon and Pipeliner interfaces in Table 3 were not developed
n Bzip2 Disk and Eye Detector applications due to lack of support
or sequential stateful stages as previously stated. Both interfaces have
imilar SLOC results since they are implemented with similar level
f abstractions. Additionally, despite the name, Pipeliner does not
mplement a structured pipeline such as Rust-SSP. It does however,
mplement parallelism that can be represented with iterators. Con-
eptually, Rayon supports Pipeliner features and further makes avail-
ble a plethora of other data parallelism features such as reductions,
ork-joins, and others.

4 https://github.com/AlDanial/cloc.
12
Table 3
Benchmark applications source lines of code (SLOC).

Interfaces Benchmark applications

Micro-bench Image Proces. Bzip2 memory Bzip2 disk Eye Detec.

seq. 35 26 103 98 57
rust-ssp 84 47 150 137 120
Tokio 119 74 185 170 107
std-threads 119 121 204 253 187
Rayon 102 44 190 – –
Pipeliner 103 52 182 – –

6. Conclusion

In this work, we argued that Rust parallelism abstractions are not
yet fully explored due to the relatively small language lifespan. We
specifically focused and explained structured parallel programming
techniques which are common in C++ but mostly untouched in Rust.
Aiming to leverage the structured parallel programming paradigm, we
proposed to use Rust-SSP. Therefore, we detailed its design princi-
ples, programming interface, and runtime. We have also observed that
Rust still lacks well defined stream processing applications benchmark
that could be used to compare performance between different parallel
implementations. For that, we have composed such benchmark by
selecting and describing a set of Rust applications with different compu-
tational characteristics. Furthermore, we implemented parallel versions
of these applications using different Rust parallel programming abstrac-
tions: Tokio, Rayon, Pipeliner, standard Rust threads, and our Rust-SSP.
From this point, we also have selected, and explained three different
workloads for each application. Combining the applications and work-
loads, we have created a benchmark for parallel stream processing in
Rust that will be made publicly available for the community. With this
benchmark suite, we have performed a set of experiments for assessing
performance and programmability aspects of the parallelizations.

The experiments have shown that Rust-SSP achieved similar, or
in some cases, better performance with respect to other parallel ab-
stractions. Rust-SSP, Standard Threads, and Tokio showed to be the
most expressive options to develop stream processing applications. In
fact, Tokio is a state-of-the-art solution for stream processing in Rust.
However, Tokio has shown performance issues, specially when data
reordering is needed (up to 41.1% worse than Rust-SSP). In some cases,
Rayon performed up to 30.3% and Pipeliner up to 27.7% worse when
compared to Rust-SSP. In terms of programmability, among all parallel
abstractions, Rust-SSP was the one that required the lowest average
amount of extra lines of code to enable parallelism.

This study has revealed some opportunities for future works. First,
our benchmark suite could include streaming applications from the
distributed processing domain such as DSPBench [36]. For instance,
they could represent heavily distributed IoT applications. Second, there
is a possibility that Rust-SSP’s communication queue might be a perfor-

mance bottleneck due to lock contention. Other queue implementation

https://github.com/AlDanial/cloc

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054

F

D

c
i

A

g
C
(
(
(

1

R

with fine grained locks could be studied to mitigate this potential prob-
lem. Third, we could support more structured programming patterns
besides pipeline and allow arbitrary pattern combination. Especially
aiming to provide support for data parallelism such as map and reduce
patterns and combine/nest it with pipeline pattern.

CRediT authorship contribution statement

Ricardo Pieper: Software, Investigation, Validation, Visualization,
Writing – original draft. Júnior Löff: Software, Investigation, Vali-
dation, Visualization, Writing – original draft. Renato B. Hoffmann:
Software, Investigation, Validation, Visualization, Writing – original
draft. Dalvan Griebler: Conceptualization, Project administration, Val-
idation, Writing – review & editing. Luiz G. Fernandes: Supervision,
unding acquisition.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

We would like to acknowledge the support of GMAP research
roup and PUCRS university. This research is partially funded by
oordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
CAPES) - Finance Code 001, FAPERGS - 05/2019-PQG project ParAS
No 19/2551-880001895-9), FAPERGS - 10/2020-ARD project SPar4.0
No 21/2551-890000725-7), MCTIC/CNPq - No 28/2018 project SPar-
Cloud (No 437693/2018-0), and MCTIC/CNPq - call 25/2020 (No

30484/912021-0).

eferences

[1] Mozilla Research, The rustonomicon, 2019, URL: https://doc.rust-lang.org/
nomicon/.

[2] Rayon, Rayon, 2019, URL: https://github.com/rayon-rs/rayon (Accessed on
27.03.2021).

[3] M. Aldinucci, M. Danelutto, P. Kilpatrick, M. Torquati, Fastflow: High-level and
efficient streaming on multi-core, in: Programming Multi-Core and Many-Core
Computing Systems, in: PDC, vol. 1, Wiley, 2014, p. 14.

[4] D. Griebler, Domain-Specific Language & Support Tool for High-Level Stream
Parallelism (Ph.D. thesis), Faculdade de Informática - PPGCC - PUCRS, Porto
Alegre, Brazil, 2016, URL: http://tede2.pucrs.br/tede2/handle/tede/6776.

[5] M. McCool, A. Robison, J. Reinders, Structured Parallel Programming: Patterns
for Efficient Computation, Elsevier Science, 2012.

[6] T. Mattson, B. Sanders, B. Massingill, Patterns for Parallel Programming, first
ed., Addison-Wesley Professional, 2004.

[7] J. Reinders, Intel Threading Building Blocks, O’Reilly, Sebastopol, CA, USA, 2007.
[8] Microsoft, Parallel patterns library (PPL), 2016, URL: https://docs.microsoft.

com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl (Accessed on
27.03.2021).

[9] A. Moskalev, A. Fedorov, Get started with parallel STL, 2018, URL:
https://software.intel.com/content/www/us/en/develop/articles/get-started-
with-parallel-stl.html (Accessed on 27.03.2021).

[10] H.C.M. Andrade, B. Gedik, D.S. Turaga, Fundamentals of Stream Processing,
Cambridge University Press, New York, USA, 2014.

[11] W. Thies, M. Karczmarek, S.P. Amarasinghe, Streamit: A language for streaming
applications, in: Proceedings of the 11th International Conference on Compiler
Construction, Springer, Grenoble, France, 2002, pp. 179–196.

[12] W. Thies, S. Amarasinghe, An empirical characterization of stream programs and
its implications for language and compiler design, in: Inter. Conf. on Par. Arch.
and Compil. Tech., in: PACT ’10, ACM, Austria, 2010, pp. 365–376.

[13] D. Griebler, M. Danelutto, M. Torquati, L.G. Fernandes, Spar: A DSL for high-
level and productive stream parallelism, Parallel Process. Lett. 27 (01) (2017)
1740005, http://dx.doi.org/10.1142/S0129626417400059.

[14] Tokio, Tokio - the asynchronous runtime for the rust programming language,

2019, URL: https://tokio.rs (Accessed on 27.03.2021).

13
[15] R. Pieper, D. Griebler, L.G. Fernandes, Structured stream parallelism for rust,
in: XXIII Brazilian Symposium on Programming Languages (SBLP), in: SBLP’19,
ACM, Salvador, Brazil, 2019, pp. 54–61, http://dx.doi.org/10.1145/3355378.
3355384.

[16] M. McCool, A.D. Robison, J. Reinders, Structured Parallel Programming: Patterns
for Efficient Computation, Elsevier, Waltham, MA, 2012.

[17] M.I. Cole, Algorithmic Skeletons: Structured Management of Parallel Computa-
tion, University of Glasgow, Glasgow, United Kingdom, 1989.

[18] R. Jung, J.-H. Jourdan, R. Krebbers, D. Dreyer, Safe systems programming in rust,
Commun. ACM 64 (4) (2021) 144–152, http://dx.doi.org/10.1145/3418295.

[19] R. Jung, J.-H. Jourdan, R. Krebbers, D. Dreyer, Rustbelt: Securing the foundations
of the rust programming language, Proc. ACM Program. Lang. 2 (2017) http:
//dx.doi.org/10.1145/3158154.

[20] V. Astrauskas, P. Müller, F. Poli, A.J. Summers, Leveraging rust types for
modular specification and verification, Proc. ACM Program. Lang. 3 (2019)
http://dx.doi.org/10.1145/3360573.

[21] A. Levy, M.P. Andersen, B. Campbell, D. Culler, P. Dutta, B. Ghena, P. Levis,
P. Pannuto, Ownership is theft: Experiences building an embedded OS in rust,
in: Proceedings of the 8th Workshop on Programming Languages and Operating
Systems, in: PLOS ’15, Association for Computing Machinery, New York, NY,
USA, 2015, pp. 21–26, http://dx.doi.org/10.1145/2818302.2818306.

[22] S. Sydow, M. Nabelsee, H. Parzyjegla, P. Herbe, A safe and user-friendly
graphical programming model for parallel stream processing, in: Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing,
IEEE, 2018, pp. 239–243.

[23] S. Sydow, M. Nabelsee, S. Glesner, P. Herber, Towards profile-guided optimiza-
tion for safe and efficient parallel stream processing in rust, in: 2020 IEEE
32nd International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), 2020, pp. 289–296, http://dx.doi.org/10.1109/SBAC-
PAD49847.2020.00047.

[24] L. Rinaldi, M. Torquati, D.D. Sensi, G. Mencagli, M. Danelutto, Improving the
performance of actors on multi-cores with parallel patterns, Int. J. Parallel
Program. 48 (4) (2020) 692–712, http://dx.doi.org/10.1007/s10766-020-00663-
1.

[25] Cody Casterline, Pipeliner: a rust library for pipelines, 2021, URL: https://docs.
rs/pipeliner (Accessed on 27.03.2021).

[26] David King, Pipelines: A tool for pipelines, 2021, URL: https://docs.rs/pipelines
(Accessed on 27.03.2021).

[27] Frank McSherry, Timely dataflow: A framework for managing and executing
data-parallel dataflow computations, 2021, URL: https://docs.rs/timely (Accessed
on 27.03.2021).

[28] D.G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, M. Abadi, Naiad: A
timely dataflow system, in: Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, in: SOSP ’13, Association for Computing
Machinery, New York, NY, USA, 2013, pp. 439–455, http://dx.doi.org/10.1145/
2517349.2522738.

[29] I. Materialize, Materialize: a streaming database for real-time applications, 2021,
URL: https://github.com/MaterializeInc/materialize (Accessed on 27.03.2021).

[30] J. Gjengset, M. Schwarzkopf, Noria: a streaming data-flow system, 2021, URL:
https://docs.rs/noria (Accessed on 27.03.2021).

[31] J. Gjengset, M. Schwarzkopf, J. Behrens, L.T. Araújo, M. Ek, E. Kohler, M.F.
Kaashoek, R. Morris, Noria: Dynamic, partially-stateful data-flow for high-
performance web applications, in: Proceedings of the 13th USENIX Conference on
Operating Systems Design and Implementation, in: OSDI’18, USENIX Association,
USA, 2018, pp. 213–231.

[32] D. Griebler, R.B. Hoffmann, M. Danelutto, L.G. Fernandes, Stream parallelism
with ordered data constraints on multi-core systems, J. Supercomput. 75 (8)
(2018) 4042–4061, http://dx.doi.org/10.1007/s11227-018-2482-7.

[33] C. Bienia, S. Kumar, J.P. Singh, K. Li, The PARSEC benchmark suite: Charac-
terization and architectural implications, in: 17th International Conference on
Parallel Architectures and Compilation Techniques, in: PACT ’08, ACM, Toronto,
Ontario, Canada, 2008, pp. 72–81.

[34] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs:
Characterization and methodological considerations, SIGARCH Comput. Archit.
News 23 (2) (1995) 24–36.

[35] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, S.-H. Lee, K. Skadron,
Rodinia: A benchmark suite for heterogeneous computing, in: Proceedings of the
2009 IEEE International Symposium on Workload Characterization (IISWC), in:
IISWC ’09, IEEE Computer Society, Washington, DC, USA, 2009, pp. 44–54.

[36] M.V. Bordin, D. Griebler, G. Mencagli, C.F.R. Geyer, L.G. Fernandes, Dspbench: a
suite of benchmark applications for distributed data stream processing systems,
IEEE Access 8 (na) (2020) 222900–222917, http://dx.doi.org/10.1109/ACCESS.

2020.3043948.

https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://doc.rust-lang.org/nomicon/
https://github.com/rayon-rs/rayon
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb3
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb3
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb3
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb3
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb3
http://tede2.pucrs.br/tede2/handle/tede/6776
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb5
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb5
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb5
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb6
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb6
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb6
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb7
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl
https://docs.microsoft.com/en-us/cpp/parallel/concrt/parallel-patterns-library-ppl
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
https://software.intel.com/content/www/us/en/develop/articles/get-started-with-parallel-stl.html
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb10
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb10
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb10
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb11
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb11
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb11
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb11
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb11
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb12
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb12
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb12
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb12
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb12
http://dx.doi.org/10.1142/S0129626417400059
https://tokio.rs
http://dx.doi.org/10.1145/3355378.3355384
http://dx.doi.org/10.1145/3355378.3355384
http://dx.doi.org/10.1145/3355378.3355384
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb16
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb16
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb16
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb17
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb17
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb17
http://dx.doi.org/10.1145/3418295
http://dx.doi.org/10.1145/3158154
http://dx.doi.org/10.1145/3158154
http://dx.doi.org/10.1145/3158154
http://dx.doi.org/10.1145/3360573
http://dx.doi.org/10.1145/2818302.2818306
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb22
http://dx.doi.org/10.1109/SBAC-PAD49847.2020.00047
http://dx.doi.org/10.1109/SBAC-PAD49847.2020.00047
http://dx.doi.org/10.1109/SBAC-PAD49847.2020.00047
http://dx.doi.org/10.1007/s10766-020-00663-1
http://dx.doi.org/10.1007/s10766-020-00663-1
http://dx.doi.org/10.1007/s10766-020-00663-1
https://docs.rs/pipeliner
https://docs.rs/pipeliner
https://docs.rs/pipeliner
https://docs.rs/pipelines
https://docs.rs/timely
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
https://github.com/MaterializeInc/materialize
https://docs.rs/noria
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb31
http://dx.doi.org/10.1007/s11227-018-2482-7
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb33
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb34
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb34
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb34
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb34
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb34
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://refhub.elsevier.com/S2590-1184(21)00033-2/sb35
http://dx.doi.org/10.1109/ACCESS.2020.3043948
http://dx.doi.org/10.1109/ACCESS.2020.3043948
http://dx.doi.org/10.1109/ACCESS.2020.3043948

R. Pieper, J. Löff, R.B. Hoffmann et al. Journal of Computer Languages 65 (2021) 101054
[37] D. Griebler, D. Adornes, L.G. Fernandes, Performance and usability evaluation
of a pattern-oriented parallel programming interface for multi-core architectures,
in: The 26th International Conference on Software Engineering & Knowledge
Engineering, Knowledge Systems Institute Graduate School, Vancouver, Canada,
2014, pp. 25–30, URL: https://gmap.pucrs.br/dalvan/papers/2014/CR_SEKE_
2014.pdf.

[38] D. Adornes, D. Griebler, C. Ledur, L.G. Fernandes, Coding productivity in
mapreduce applications for distributed and shared memory architectures, Int. J.
Softw. Eng. Knowl. Eng. 25 (10) (2015) 1739–1741, http://dx.doi.org/10.1142/
S0218194015710096.

Ricardo Pieper is a software engineer at Ubots Brasil. He
received his M.Sc. Degree in Computer Science from Pon-
tifical Catholic University of Rio Grande do Sul (PUCRS) in
2020. His thesis included stream parallelism using parallel
patterns in cluster environments. His interests are: high-
performance computing, parallelism, computer graphics and
programming languages.

Júnior Löff is a M.Sc student in Computer Science at the
Pontifical Catholic University of Rio Grande do Sul (PUCRS),
and research member of the Parallel Applications Modeling
Group (GMAP) at PUCRS. He received his B.Sc Degree in
Computer Engineering from PUCRS in 2020. His research
interests include: Parallel and distributed systems, high-
performance applications modeling and hardware/software
co-design.
14
Renato B. Hoffmann is a M.Sc student in Computer Science
at the Pontifical Catholic University of Rio Grande do
Sul (PUCRS), and research member of the Parallel Appli-
cations Modeling Group (GMAP) at PUCRS. He received
his B.Sc Degree in Computer Engineering from PUCRS in
2020. His research interests include: High performance com-
puting, parallel programming, parallel architectures, and
high-performance algorithms.

Dalvan Griebler is an Associate Professor at the Pontifical
Catholic University of Rio Grande do Sul (PUCRS). Also
Associate Professor at Três de Maio Faculty (Setrem) and
head of the Laboratory of Advanced Research on Cloud
Computing (LARCC) at Setrem. He received the Ph.D. in
computer science from both PUCRS and University of Pisa
in 2016. His main research interests are: parallel and dis-
tributed computing, methodologies, languages and libraries
for high-level parallel programming; benchmarking; and
cloud computing.

Luiz Gustavo Fernandes is an Associate Professor of the
graduate program in computer science (PPGCC) at the
Pontifical Catholic University of Rio Grande do Sul (PUCRS).
His primary research interests are Parallel and Distributed
Computing, High Performance Applications Modeling, Green
Computing and Parallel Programming Interfaces. Dr. Fernan-
des received his Ph. D. in Computer Science from the Institut
National Polytechnique de Grenoble (France) in 2002. He
currently leads the Parallel Applications Modeling Group
(GMAP) at PUCRS.

https://gmap.pucrs.br/dalvan/papers/2014/CR_SEKE_2014.pdf
https://gmap.pucrs.br/dalvan/papers/2014/CR_SEKE_2014.pdf
https://gmap.pucrs.br/dalvan/papers/2014/CR_SEKE_2014.pdf
http://dx.doi.org/10.1142/S0218194015710096
http://dx.doi.org/10.1142/S0218194015710096
http://dx.doi.org/10.1142/S0218194015710096

	High-level and efficient structured stream parallelism for rust on multi-cores
	Introduction
	Background
	Structured parallel programming
	Rust in prior works
	Rust overall advances
	Parallelism in Rust

	Rust-SSP: Structured stream parallelism
	Design principles
	Rust-SSP programming interface
	Rust-SSP runtime

	Rust stream benchmark suite
	Applications
	Workloads

	Evaluation
	Performance evaluation
	Micro-bench
	Image processing
	Bzip2
	Eye detector

	Programmability

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

